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ABSTRACT
As software evolves, impact analysis estimates the poten-
tial effects of changes, before or after they are made, by
identifying which parts of the software may be affected by
such changes. Traditional impact-analysis techniques are
based on static analysis and, due to their conservative as-
sumptions, tend to identify most of the software as affected
by the changes. More recently, researchers have begun to
investigate dynamic impact-analysis techniques, which rely
on dynamic, rather than static, information about software
behavior. Existing dynamic impact-analysis techniques are
either very expensive—in terms of execution overhead or
amount of dynamic information collected—or imprecise. In
this paper, we present a new technique for dynamic impact
analysis that is almost as efficient as the most efficient exist-
ing technique and is as precise as the most precise existing
technique. The technique is based on a novel algorithm that
collects (and analyzes) only the essential dynamic informa-
tion required for the analysis. We discuss our technique,
prove its correctness, and present a set of empirical studies
in which we compare our new technique with two existing
techniques, in terms of performance and precision.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging—Testing tools, Trac-
ing ;

General Terms: Algorithms, Experimentation

Keywords: Impact analysis, dynamic analysis, software
maintenance

1. INTRODUCTION
As software evolves, changes to the software can have

unintended or even disastrous effects [8]. Software change
impact analysis estimates the potential effects of changes
before or after they are made. Applied before modifica-
tions, impact analysis can help maintainers estimate the
costs of proposed changes and select among alternatives.
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Applied after modifications, impact analysis can alert engi-
neers to potentially affected program components that re-
quire retesting, thus reducing the risks associated with re-
leasing changed software.

1.1 Dynamic versus Static Impact Analysis
Traditional impact-analysis techniques (e.g., [2, 9, 14, 15,

16]) rely on static analysis to identify the impact set—the
subset of elements in the program that may be affected by
the changes made to the program.

Although static-analysis-based techniques can safely esti-
mate the impact of changes, their conservative assumptions
often result in impact sets that include most of the software.
For example, in previous work, we found that impact anal-
ysis based on static slicing often identified, for the software
considered, impact sets that included more than 90% of the
program [10]. Such impact sets make the results of impact
analysis almost useless for other software-engineering tasks.
For example, regression-testing techniques that use impact
analysis to identify which parts of the program to retest after
a change would have to retest most of the program.

The problem with sound static-analysis-based approaches
is twofold. First, they consider all possible behaviors of the
software, whereas, in practice, only a subset of such be-
haviors may be exercised by the users. Second, and more
importantly, they also consider some impossible behaviors,
due to the imprecision of the analysis. Therefore, recently,
researchers have investigated and defined impact-analysis
techniques that rely on dynamic, rather than static, infor-
mation about program behavior [3, 6, 7, 10]. The dynamic
information consists of execution data for a specific set of
program executions, such as executions in the field, execu-
tions based on an operational profile, or executions of test
suites.

We define the dynamic impact set to be the subset of pro-
gram entities that are affected by the changes during at least
one of the considered program executions. Dynamic impact
analysis is the analysis that computes (approximates) dy-
namic impact sets. In the rest of the paper, we use the
terms dynamic impact set and impact set interchangeably,
unless otherwise stated.

1.2 Existing Approaches
To the best of our knowledge, two main dynamic im-

pact analysis techniques have been defined in the literature:
CoverageImpact [10] and PathImpact [6, 7]. (Breech and
colleagues’ technique [3] is a variant of PathImpact that
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Figure 1: Call graph of an example program P

Me Ae Ar Ae Ar Be Ce Cr Br Be

Figure 2: Trace t for program P

computes the impact sets for all methods online.) We illus-
trate the differences between these two techniques with an
example. Consider program P , whose call graph1 is shown
in Figure 1, and an execution of P , whose trace t is shown
in Figure 2. The trace consists of a list of method entries
and returns. For a given method X, an occurrence of Xe in
the trace indicates a call to X at that point of the execution.
Analogously, an occurrence of Xr in the trace indicates a re-
turn from X at that point of the execution. In the following
discussion, we refer to Xe as a method-entry event and Xr as
a method-return event. Note that we consider return events
in the most general way possible: a return event for method
X occurs any time X returns into its caller regardless of how
the return occurs (e.g., because of an actual return state-
ment or because of an uncaught exception). The trace in
Figure 2 represents an execution in which M is called, M
calls A, A returns, M calls A again, A returns, M calls B, B
calls C, C returns, B returns, M calls B again, and B exits,
terminating the program.
PathImpact works at the method level and uses com-

pressed execution traces to compute impact sets. Because
the compression reduces the space cost of the approach, but
does not affect the nature of the algorithm, we describe the
equivalent algorithm that works on uncompressed traces.

Given a set of changes, PathImpact performs forward and
backward walks of a trace to determine the impact set for the
changes. The forward walk determines all methods called af-
ter the changed method(s), whereas the backward walk iden-
tifies methods into which the execution can return. More
precisely, for each changed method X and each occurrence
of Xe:

• in the forward walk, PathImpact starts from the im-
mediate successor of Xe, includes every method called
after X in the impact set (i.e., every method Y such
that the trace contains an entry Ye after the occurrence
of Xe), and counts the number of unmatched returns;2

• in the backward walk, PathImpact starts from the im-
mediate predecessor of Xe and includes as many un-
matched methods3 as the number of unmatched re-
turns counted in the forward walk; and

1A call graph is a directed graph in which nodes represent
functions or methods, and an edge between nodes A and B
indicates that A may call B.
2Unmatched returns are returns that do not have a corre-
sponding method entry in the part of the trace examined.
3Unmatched methods are method entries that do not have
a corresponding return in the part of the trace examined.

• finally, X itself is added to the impact set, if it is not
already there.

To illustrate, consider how PathImpact computes the im-
pact set for program P (Figure 1), trace t (Figure 2), and
change set C = {C} (i.e., only method C is modified). In
the forward walk, PathImpact starts at Cr, the successor of
Ce, counts two unmatched returns (Cr and Br), and adds B
to the impact set (because of the occurrence of Be). In the
backward walk, PathImpact starts at node Be, the prede-
cessor of Ce, and, because it found two unmatched returns
during the forward walk, adds the first two methods it en-
counters that have unmatched returns (B and M) to the
impact set. The resulting impact set is {M, B, C}.
CoverageImpact also works at the method level, but uses

coverage, rather than trace, information to compute impact
sets. The coverage information for each execution is stored
in a bit vector that contains one bit per method in the pro-
gram. If a method is executed in the execution considered,
the corresponding bit is set; otherwise, it remains unset.
In our example, the execution of P would produce the bit
vector shown in Table 1.

M A B C D
1 1 1 1 0

Table 1: Coverage bit vector for the execution of P that
produces trace t.

CoverageImpact computes the impact sets in two steps.
First, using the coverage information, it identifies the exe-
cutions that traverse at least one method in the change set
C and marks the methods covered by such executions. Sec-
ond, it computes a static forward slice from each change in
C considering only marked methods. The impact set is the
set of methods in the computed slices.

To illustrate, consider how CoverageImpact computes the
impact set for our example and change set C = {C} (the
same used to illustrate PathImpact). Because C is traversed
by this execution, the methods covered by the execution (M,
A, B, and C) are marked. Assuming that a traditional static
slice from method C would include all methods in the pro-
gram, the resulting impact set—the slice computed consid-
ering only marked methods—would be {M, A, B, C}. Note
that the inclusion of method A is an imprecision: because
CoverageImpact uses simple coverage instead of traces, it
misses information about the ordering of method calls.

1.3 Our Approach
In previous work [11], we compared the precision and per-

formance of CoverageImpact and PathImpact, both analyti-
cally and empirically. Analytically, PathImpact is more pre-
cise than CoverageImpact, as shown in our example, because
it uses traces instead of coverage. However, PathImpact in-
curs much higher overhead in both time and space. Where
time is concerned, CoverageImpact requires a constant time
to update the bit vector at each method entry, whereas
PathImpact requires a time that depends on the size of the
trace analyzed so far to compress traces at both method en-
try and return. Where space is concerned, CoverageImpact
requires one bit per method (i.e., its space complexity is lin-
ear in the size of the program), whereas PathImpact’s space
cost is proportional to the size of the traces (which can be
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very large). Our empirical studies confirmed that this trade-
off also occurs in practice. For some programs and versions,
the impact sets computed by CoverageImpact are signifi-
cantly less precise than those computed by PathImpact, but
CoverageImpact imposes orders of magnitude less overhead
in both time and space across all programs and versions [11].
In fact, our studies show that the overhead imposed by
PathImpact makes it impractical to use with all but short-
running programs.

Based on these results, our goal was to define an ap-
proach that is efficient and practical (i.e., one that can be
used for large, long-running programs), yet is more precise
than CoverageImpact. Initially, we investigated a hybrid
approach that (1) uses static analysis to identify groups of
methods that could cause imprecision, and (2) collects addi-
tional dynamic information, such as partial traces, for those
methods. However, in the process, we made some funda-
mental observations about the essential information that is
required to perform dynamic impact analysis. These ob-
servations led us to a novel algorithm for dynamic impact
analysis. This algorithm is as precise as PathImpact but
only slightly more expensive than CoverageImpact.

In this paper, we present our new technique for dynamic
impact analysis and demonstrate the correctness of its un-
derlying algorithm. We also discuss our implementation of
the technique for the Java language. Finally, we present
a set of empirical studies in which we compare our new
technique with techniques PathImpact and CoverageImpact.
The studies confirm that our technique is practical: it is al-
most as efficient as CoverageImpact and as precise as Path-
Impact.

The main contributions of this paper are:

• the identification of the essential information needed
to perform dynamic impact analysis;

• the definition of a generic technique, and an underlying
algorithm, for efficiently collecting and analyzing this
information;

• the instantiation of the technique for the Java lan-
guage; and

• a set of empirical studies, performed on real programs,
that show the efficiency and effectiveness of our new
technique and compare it to existing approaches.

2. DYNAMIC IMPACT ANALYSIS ALGO-
RITHM

In this section, we first discuss our findings on what in-
formation is essential for computing dynamic impact sets.
Then, we introduce our algorithm for collecting this infor-
mation efficiently during program executions and present a
proof of correctness for the algorithm.

2.1 The Execute-After Relation
As we stated in Section 1.2, dynamic impact analysis com-

putes, for one or more program changes, the corresponding
dynamic impact set: the set of program entities that may
be affected by the change(s) for a specific set of program
executions. Intuitively, all entities that are executed after a
changed entity are potentially affected by that change. A
safe way to identify the dynamic impact set for a changed

entity e is, thus, to include all program entities that are
executed after e in the considered program executions.

Therefore, to compute dynamic impact sets for a program
P and a set of executions E, the only information required
is whether, for each pair of entities e1 and e2 in P , e2 was
executed after e1 in any of the executions in E. This binary
relation, that we call Execute After (EA hereafter) can be
defined for entities at different levels of granularity. For
ease of comparison with existing dynamic impact analysis
techniques, we formally define the EA relation for the case
in which the entities considered are methods and executions
are single-threaded. We will discuss the generalization of
the EA relation with regard to multi-threaded executions in
Section 2.3.

Definition 1. Given a program P , a set of executions
E, and two methods X and Y in P , (X, Y) ∈ EA for E if
and only if, in at least one execution in E,

1. Y calls X (directly or transitively),
2. Y returns into X (directly or transitively), or
3. Y returns into a method Z (directly or transitively),

and method Z later calls X (directly or transitively).

The problem with existing dynamic impact analysis tech-
niques [3, 6, 7, 10] is that they do not explicitly compute
the EA relation. Instead, they infer the relation from in-
formation that is either too expensive to collect or too im-
precise to provide accurate results. For example, technique
PathImpact uses complete program traces to identify which
methods are executed after a change (see Section 1.2). For
another example, technique CoverageImpact uses coverage
information combined with static slicing to approximate the
information contained in complete program traces. Our
investigation shows that trace information is excessive for
both deriving the EA relation and performing dynamic im-
pact analysis because it contains much unnecessary infor-
mation. In the following discussion, we demonstrate that
execution traces contain mostly redundant information, and
we present the considerably smaller amount of information
that our technique collects at runtime.

Our first finding, when analyzing the information con-
tained in program traces such as the one in Figure 2, is
that using only the information provided by method-return
events unnecessarily complicates the analysis of the traces.
Method-return events can be used to identify the methods
into which the execution returns, but provide this informa-
tion only indirectly—some form of the stack-based walk of
the traces is typically required to identify such methods. To
simplify the dynamic impact analysis, we collect, instead
of method-return events, what we call method-returned-
into events. A method-returned-into event for a method
X, denoted as Xi, is generated when an execution returns
(from any method) into X. For now, we simply assume that
method-returned-into events can be easily collected. In Sec-
tion 3.1, we discuss how we efficiently collect such events
for Java programs. By considering only method-entry and
method-returned-into events, we rewrite the trace in Fig-
ure 2 as follows:

Me Ae Mi Ae Mi Be Ce Bi Mi Be

In the rest of the section, we use this example trace to
illustrate how to capture the EA relation between any pair
of methods in an execution.
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Obviously, we can derive the EA relation from this com-
plete trace. Because of the way in which we defined method-
entry and method-returned-into events, we can observe the
following:

Method X executes after method Y if, in the
trace, there is a method-entry or method-returned-
into event for X that follows a method-entry or
method-returned-into event for Y.

However, if our only goal is to derive the EA relation, the
complete trace contains much unnecessary information. In
fact, the above observation can be restated as follows:

(X, Y) ∈ EA iff at least one event for X occurs
after at least one event for Y.

To assess whether at least one event for X occurs after at
least one event for Y, we do not need a complete trace—it
is enough to consider the first method event for Y (we refer
to this event as Yf ), the last method event for X (we refer to
this event as Xl), and the ordering of the two events in the
trace. If an event Y∗

4 for method Y occurs before an event
X∗ for method X, then necessarily Yf occurs before Xl: by
definition, Yf ≤ Y∗ < X∗ ≤ Xl. Conversely, if Yf occurs after
Xl, then there cannot be any X∗ and Y∗ such that Y∗ occurs
before X∗: Y∗ < X∗ contradicts X∗ ≤ Xl < Yf ≤ Y∗.

We can thus conclude that, in general, the essential infor-
mation for deriving the EA relation for an execution is, for
each method, the first and the last events that the method
generates in the execution. The first event for a method
X always corresponds to the first method-entry event for
X. The last event for a method X corresponds to the last
method-entry event for X or the last method-returned-into
event for X, whichever comes last. Intuitively, the first
and last events for a method represent the first and the
last executions of the method, where execution of a method
means the execution of one or more of the statements in the
method’s body.

By considering only the first and the last events for each
method, we reduce our example trace to the following se-
quence:

Me Ae Ae Be Ce Mi Be

To simplify the discussion, in the rest of this section we
use the notation for method events introduced above: for a
method X, Xf indicates the first method event for X, and Xl

indicates the last method event for X. Using this notation,
we rewrite the above trace as follows:

Mf Af Al Bf Cf Cl Ml Bl

Note that, because there is only one event for method
C, the event appears as both first and last. This sequence
contains at most two entries for each method in the pro-
gram. Because this sequence lets us derive the EA relation,
we refer to it as EA sequence. As we discussed above, the
EA sequence contains the essential information needed to
perform dynamic impact analysis.

4The notation Y∗ and X∗ indicates any event for method Y
and X, respectively.

Using EA sequences, we can thus perform dynamic im-
pact analysis as precise as an analysis performed on com-
plete traces, while achieving significant space savings. These
savings are obvious when we consider collecting dynamic
information for real executions, in which methods can be
executed thousands (or millions) of times. However, achiev-
ing space savings by collecting EA sequences would not be
useful if, to collect them, we still need to gather complete ex-
ecution traces first. Therefore, we developed an algorithm,
presented in the next section, for collecting EA sequences on
the fly at a cost comparable to the cost of collecting simple
method coverage information.

2.2 Algorithms
One straightforward way to collect EA sequences is to use

a list of events and update it (1) at each method entry and
(2) every time the flow of control returns into a method af-
ter a call. The update must operate so that only the first
and the last events for each method are kept in the list.
Therefore, every time an event for a method X is generated,
we check whether the list already contains entries for X. If
not, we add both an Xf entry and an Xl entry at the end of
the list. Otherwise, if there is already a pair of entries, we
remove the existing Xl entry and add a new Xl entry at the
end of the list. (Intuitively, we only record the first method
event and keep updating the last method event.) This al-
gorithm is space efficient—the space required never exceeds
2n, where n is the number of methods in the program. How-
ever, it is not time efficient because for every method event
generated, the event list must be searched and updated. We
could eliminate the searching time by keeping a pointer to
the last event for each method and by suitably updating such
pointers every time a method event is generated. However,
this approach needs to update up to five pointers at each
event and is, thus, penalized by the memory-management
overhead.

To minimize the overhead imposed by the analysis, we
developed an algorithm for collecting EA sequences at run-
time that is more efficient (by a constant factor) than the list
approach, in terms of both time and space, and that does
not incur memory-management overhead. Our algorithm is
based on the use of two arrays of event timestamps, F and
L. Arrays F and L are used to store the timestamp of the
first and last event, respectively, generated by each method.
To denote the element of array F (resp., L) for a method
X, we use the notation F[X] (resp., L[X]). The timestamp is
a global counter that is incremented by one at each event.
Figure 3 shows the algorithm, CollectEA.
CollectEA is an on-line algorithm, whose different parts

are triggered by the events that occur during a program
execution. When the program starts, all elements of arrays
F and L are initialized to ⊥, and the counter is initialized
to 1. ⊥ denotes a non-numeric special value used to identify
methods that have not yet been executed. (If a method has
value ⊥ at the end of the execution, then that method was
not executed at all in that execution.) Every time a method
M is entered, the algorithm checks the value of F[M]. If F[M]
is ⊥ (i.e., M has not yet been executed), then the algorithm
sets F[M] to the current value of the counter (lines 6–8).
Because, as discussed in the previous section, the last event
generated by M may be a method-entry event, L[M] is also
set to the current value of the counter (line 9). Finally, the
counter is incremented by one (line 10).
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Algorithm CollectEA

Declare: F array of first method events
L array of last method events
C counter
n number of methods in the program

Output: F, L

Begin:

1: On program start do

2: initialize F[i] to ⊥, for 0 ≤ i < n

3: initialize L[i] to ⊥, for 0 ≤ i < n

4: initialize C to 1
end

Begin:

5: On entry of method M do

6: if ( F[M] = ⊥) then

7: F[M] = C
8: endif

9: L[M] = C
10: increment C by 1
end

Begin:

11: On control returning into method M do

12: L[M] = C
13: increment C by 1
end

Begin:

14: On program termination do

15: output F, L
end

Figure 3: Algorithm CollectEA

Every time the control flow returns into method M, L[M]
is updated to the current value of the counter (line 12), and
the counter is incremented by one (line 13). In this way,
each element in L contains the timestamp of the last time
the corresponding method was (partially) executed.

To illustrate the algorithm, we show how it works on the
execution producing the example trace used in Section 1.2
(see Figure 2). Table 2 shows the values of F, L, and C
after each method (and program) event. The leftmost col-
umn (event) shows the program-start, method-entry, and
method-returned-into events. Columns labeled F and L
show, for each method, the values of the corresponding el-
ements in the F and L arrays, respectively. Finally, the
rightmost column (C) shows the value of the counter.

On program start, F, L, and C are initialized. When M is
called, F[M] and L[M] are set to 1, the current value of C,
and C is incremented to 2. Likewise, when A is called, F[A]
and L[A] are set to 2, and C is incremented to 3. Then, the
control flow returns into M, which generates an Mi event,
and L[M] and C are updated accordingly. When method
A is called again, F[A] is not updated (because its value is
not ⊥), L[A] is updated, and the counter is incremented.
Additional updates of F, L, and C occur in an analogous
way until the program terminates.

To illustrate that, for a given execution, the information
in a pair of F and L arrays is equivalent to the information
in an EA sequence, we demonstrate the steps to derive one
from the other and vice-versa. (Note that maintainers need

F Levent
M A B C D M A B C D

C

start ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 1
Me 1 ⊥ ⊥ ⊥ ⊥ 1 ⊥ ⊥ ⊥ ⊥ 2
Ae 1 2 ⊥ ⊥ ⊥ 1 2 ⊥ ⊥ ⊥ 3
Mi 1 2 ⊥ ⊥ ⊥ 3 2 ⊥ ⊥ ⊥ 4
Ae 1 2 ⊥ ⊥ ⊥ 3 4 ⊥ ⊥ ⊥ 5
Mi 1 2 ⊥ ⊥ ⊥ 5 4 ⊥ ⊥ ⊥ 6
Be 1 2 6 ⊥ ⊥ 5 4 6 ⊥ ⊥ 7
Ce 1 2 6 7 ⊥ 5 4 6 7 ⊥ 8
Bi 1 2 6 7 ⊥ 5 4 8 7 ⊥ 9
Mi 1 2 6 7 ⊥ 9 4 8 7 ⊥ 10
Be 1 2 6 7 ⊥ 9 4 10 7 ⊥ 11

Table 2: Values of F, L, and C during the example execution.

not perform these steps to obtain impact sets from a pair
of F and L arrays.) To convert a pair of F and L arrays to
an EA sequence, we just need to (1) order the elements of F
and L (considered together and without including elements
with value ⊥) based on their value, and (2) for each method
X, replace F[X] with Xf and L[X] with Xl. To convert an EA
sequence to a pair of F and L arrays, we do the opposite:
(1) for each method X, we replace Xf with F[X] and Xl with
L[X], and (2) we assign increasing values, starting from 1,
to the elements in arrays F and L, based on their position.

For example, the pair of F and L arrays for our example
(shown as the last row of Table 2) would first be ordered,

F[M] F[A] L[A] F[B] F[C] L[C] L[M] L[B]

and then be converted as follows:

Mf Af Al Bf Cf Cl Ml Bl

Because arrays F and L provide the same information as
an EA sequence, we can derive the EA relation from such
arrays, as stated in the following lemma:

Lemma 1. (X, Y) ∈ EA ⇐⇒ F[Y] < L[X]

Proof. To prove Lemma 1, we leverage three character-
istics of our algorithm:

1. Counter C increases monotonically each time a method
event occurs.

2. For each method X, F[X] is set only once, to the then-
current value of counter C, at the first method-entry
event for X.

3. For each method X, L[X] is set to the then-current
value of counter C every time a method event for X
occurs.

Our proof proceeds in two parts, by first showing that
(X, Y) ∈ EA ⇒ F[Y] < L[X] (1)

and then showing that

F[Y] < L[X] ⇒ (X, Y) ∈ EA (2)

We first prove part (1). According to the definition of
EA relation (Definition 1), there are three cases in which
(X, Y) ∈ EA

In the first case (Y calls X), a Ye event is generated at
timestamp t1 and an Xe event is generated at timestamp t2 >
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t1. At the end of the execution, because of Characteristics
1, 2, and 3, F[Y] is either t1 (if Ye is the first entry event
for Y) or a value less than t1 (otherwise), and L[X] is either
t2 (if Xe is the last method event for X) or a value greater
than t2 (otherwise). Thus, we conclude that F[Y] < L[X] in
this case.

In the second case (Y returns into X), a Ye event is gen-
erated at timestamp t1 (when X calls Y directly or transi-
tively) and an Xi event is generated at timestamp t2 > t1

(when Y returns). As for the previous case, F[Y] ≤ t1, and
L[X] ≥ t2. Thus, F[Y] < L[X] also in this case.

In the third case (Y returns into a method Z that then
calls X), a Ye event is generated at timestamp t1 (when Z
calls Y) and an Xe event is generated at timestamp t2 > t1

(when Z calls X). As for the previous cases, F[Y] ≤ t1, and
L[X] ≥ t2, and thus F[Y] < L[X] also in this case.

Because (X, Y) ∈ EA implies F[Y] < L[X] in all three
cases, part (1) of the Lemma holds.

Next, we prove part (2). This part follows directly from
the meaning of arrays F and L: if F[Y] < L[X], then the first
(partial) execution of method Y precedes the last (partial)
execution of method X—X executes after Y.

Now that we have shown that the CollectEA algorithm
correctly captures the EA relation among methods for a
given execution, we discuss how our technique uses such in-
formation to compute dynamic impact sets. To compute the
dynamic impact set for a changed method, our technique in-
cludes every method whose timestamp in L is greater than or
equal to the timestamp in F for the changed method. In the
case of more than one changed method, our technique just
needs to compute the impact set for the changed method
with the least timestamp in the F array (CLT hereafter).
By definition, the impact set for CLT is a superset of the
impact set computed for any of the other changed meth-
ods: any other changed method X has a greater timestamp
than CLT and, thus, the set of methods executed after X
is a subset of the set of methods executed after CLT. More
formally, given a set of changed methods CHANGED, our
technique identifies CLT and computes the dynamic impact
set for CHANGED as follows:

CLT = X | F[X] ≤ F[Y], X,Y ∈ CHANGED

impact set for CHANGED ={ X | L[X] ≥ F[CLT] }

To illustrate this, consider our example execution and a
CHANGED set that consists of A and C. In this case, CLT
is method A, and the dynamic impact set for CHANGED
is {M, A, B, C}. Note that changed methods that were
not executed (i.e., methods whose timestamps are ⊥ at the
end of the execution) are not considered. In the case of
multiple executions (i.e., multiple EA sequences), the impact
set is computed by taking a union of the impact sets for the
individual executions.

Lemma 2. The dynamic impact sets computed as described
include (1) the modified methods and (2) all and only meth-
ods that are (partially) executed after any of the modified
methods.

Proof. By definition, our technique computes dynamic
impact sets with the following property:

impact set = { X | L[X] ≥ F[Y] for any modified method Y}

Lemma 2 follows immediately from Lemma 1 and from
the above property.

The space complexity of CollectEA is O(n), where n is the
number of methods in the program, because the algorithm
needs two arrays, each of size n, and a counter. Compared to
approaches that use traces, our algorithm achieves dramatic
savings in terms of space because program traces, even if
compressed, can be very large. For example, in our previ-
ous work, we collected traces on the order of 2 gigabytes,
even for relatively small programs [11]. The time overhead
of CollectEA is a small constant per method call. At each
method entry, the algorithm performs one check, one in-
crement, and at most two array updates. Every time the
control returns into a method, the algorithm performs one
array update and one increment.

2.3 Multi-Threaded Executions
In multi-threaded executions, one method can be exe-

cuted not only before or after another method, but also
concurrently. According to the definition of dynamic im-
pact analysis, any method (or part thereof) that is exe-
cuted after a changed method is potentially affected by the
change. Therefore, any method that is executed concur-
rently with a changed method is also potentially affected by
the change because of possible interleaving of threads. Un-
fortunately, method-entry, and method-returned-into events
are not enough to identify affected methods in these cases.

To illustrate, consider a multi-threaded program in which
method A is entered at time t1 and exited at time t2, method
B is entered at time t3 and exited at time t4, and t1 < t3 <

t2. In such a case, A and B are executed in parallel, and
a possible sequence of events is (assuming that methods A
and B are invoked by two methods X and Y, respectively):

... Af Al Bf Bl Xl Yl

If method B is a changed method, the above sequence
does not give us enough information to identify A as possibly
affected by B because it only appears before B. To address
this problem, and account for multi-threaded executions, we
modify our algorithm CollectEA as follows. We still use one
pair of arrays F and L with a global counter, but we also
collect method-return events. Method-return events let us
identify whether one method in a thread is exited before or
after the entry of another method in another thread. The
algorithm treats method-return events in the same way in
which it treats method-return-into events. For the example
above, the trace would therefore change as follows:

... Af Bf Al Xl Bl Yl

We then compute the impact sets from arrays F and L
in the same way as previously described. The impact sets
obtained in this way are safe, in the sense that no method
that is not in the impact set for a change can be affected by
that change.

3. EMPIRICAL STUDIES
To evaluate our technique, we developed a prototype tool,

called EAT (Execute-After Tool), and conducted a set of
empirical studies. In the studies, we investigate the following
research questions:

RQ1: How much overhead does the instrumentation re-
quired by our technique impose, in practice, on the programs
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under analysis compared to the more efficient of the two ex-
isting techniques?

RQ2: How much does our technique gain, in terms of
precision, with respect to a technique that does not collect
trace information?

3.1 The Tool: EAT

EAT is a tool written in Java that consists of three main
components: (1) an instrumentation module, (2) a set of
runtime monitors, and (3) an analysis module.

3.1.1 Instrumentation Module
The instrumentation module uses InsECT [5] to instru-

ment the program under analysis by adding probes that pro-
duce method events. In Section 2, we assumed that method
events can be easily produced. The way these events are
produced in practice depends on the programming language
that is targeted by the analysis. Because the subjects of
our studies are Java programs, we discuss how to collect the
events for the Java language.

Collecting method-entry events is straightforward. We
simply instrument each method immediately before the first
statement with a probe that generates an event with an
attribute. The attribute is the numeric identifier for the
method in which the event is generated.

Collecting method-returned-into events is more compli-
cated because, in Java, there are three ways in which a
method X can return into another method Y:

1. Normal return: X returns into Y because of a return

statement or simply because X terminates. In this
case, the execution continues at the instruction in Y
that immediately follows the call to X.

2. Exceptional return into a catch block: while X exe-
cutes, an exception is thrown that is not caught in X
but is caught in Y. In this case, the execution contin-
ues at the first instruction in the catch block in Y that
caught the exception.

3. Exceptional return into a finally block: while X exe-
cutes, an exception is thrown that is not caught in X
and not caught in Y, but Y has a finally block associ-
ated with the code segment that contains the (possibly
indirect) call to X. In this case, the execution continues
at the first instruction in the finally block in Y.

The instrumentation for a Java program for collecting
method-returned-into events must handle these three cases.
To this end, the instrumentation module instruments each
call site by adding (1) a probe immediately before the in-
struction that follows a method call, (2) a probe before the
first instruction of each catch block (if any) associated with
the code segment that contains the call, and (3) a probe
before the first instruction of the finally block (if any) asso-
ciated with the code segment that contains the call. Each of
these probes generates an event and attaches to the event,
in the form of an attribute, the numeric identifier for the
method in which the event is generated.

Note that the program instrumented in this way may gen-
erate some redundant method-returned-into events, but the
correctness of the algorithm is preserved. For example, if
method Y returns normally into method X, but there is a
finally block in X associated with the code segment that con-
tains the call to Y, then two probes will be triggered, which

generate two Xi events: one after the call and one in the fi-
nally block (which would be executed anyway). Every time
an Xi event is duplicated, the first event produced is simply
discarded when the second event occurs (i.e., the value of el-
ement L[X] is set to the new value of the counter), which is
correct because the goal is to record the last time the method
is executed. Such events are produced only in a few cases
and, moreover, only require the update of one array element
and the increment of a counter (duplication only occurs for
method-returned-into events). Therefore, their impact on
the efficiency of the approach is unnoticeable. Obviously, a
more sophisticated instrumentation could avoid the produc-
tion of these duplicated events, but the additional overhead
would hinder the practicality of the approach.

The other two events required by our approach, program
start and program termination, are already provided by In-

sECT [5], so we simply enable them when instrumenting.

3.1.2 Monitors
The monitors are static methods that implement the four

parts of the algorithm shown in Figure 3. The monitors
initialize, update, and output the F and L arrays during
program executions.

Leveraging InsECT functionality, we link the events gen-
erated by the probes with the appropriate monitors. There-
fore, when a method event is generated, InsECT calls the
appropriate static method and passes the event attribute
(i.e., the identifier of the method in which the event was
generated) as a parameter. When a program event is gen-
erated, which happens only at program start and program
termination, InsECT simply calls the appropriate method
with no parameter.

3.1.3 Analysis Module
The analysis module inputs the arrays produced by the

monitors and the change information and outputs dynamic
impact sets. To compute the impact sets, the analysis mod-
ule uses the approach described in Section 2.2.

3.2 Experimental Setup

3.2.1 Subject programs
As subjects for our study we utilized several releases of

two programs—Jaba and Siena—summarized in Table 3.
The table shows, for each subject, the number of versions
(V ersions), the number of classes (Classes), the number of
methods (Methods), the number of non-comment lines of
code (LOC), and the number of test cases in the subject’s
test suite (Test Cases). The number of classes, methods,
and lines of code is averaged across versions.

Program Versions Classes Methods LOC Test Cases

Siena 8 24 219 3674 564
Jaba 11 355 2695 33183 215

Table 3: Subject programs

Siena [4] is an Internet-scale event notification middle-
ware for distributed event-based applications. Jaba

5 is a
framework for analyzing Java programs. For both subjects,
we extracted from their CVS repositories consecutive ver-
sions from one to a few days apart.

5
http://www.cc.gatech.edu/aristotle/Tools/jaba.html
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3.2.2 Method and Measures
Because dynamic impact analysis requires dynamic infor-

mation, we used the test suites for the subjects as input
sets. The test suite for Siena was created for earlier ex-
periments [12]. The test suite for Jaba, which was also
available through CVS, was created and used internally by
the program developers. This test suite is divided into two
parts: short tests and long tests. In our previous work, we
used only the set of short tests (125 test cases) [11]. In the
studies presented in this paper, we also use the set of long
tests (90 test cases). For ease of comparison with previous
work, we label the results for the short and the long tests
differently, as Jaba and Jaba-long, respectively.

As change sets for use in assessing impacts, we used the
actual sets of changes from each version of our subject pro-
grams to each subsequent version. To compute such changes,
we used JDiff, a differencing tool for Java programs devel-
oped by the authors [1].

In the description of the studies, we refer to our tech-
nique as CollectEA. As an implementation of CollectEA,
we used EAT, the tool described above. As an implemen-
tation of CoverageImpact, we used a tool developed by the
authors for use in earlier studies [10, 12]. (Note that these
two implementations use the same underlying instrumenta-
tion tool, which reduces the internal threats to validity in
our timing study.)

3.3 Study 1
In this study, we investigate RQ1. To evaluate relative ex-

ecution costs for CollectEA and CoverageImpact, we mea-
sured the time required to execute an instrumented program
on a set of test cases, gather the dynamic data (F and L
arrays for CollectEA, and method coverage for Coverage-
Impact), and output that information to disk. We compare
the execution costs for the two techniques to each other and
to the cost of executing a non-instrumented program on the
same set of test cases. Because we collected timing data for
each individual test case, we computed our results by con-
sidering each test case in a test suite independently and then
averaging the results across all test cases in the test suite.

The results of this study are shown in Table 4. For each
program and version, the table reports the average execu-
tion time of each individual test case on the uninstrumented
program, on the program instrumented by CoverageImpact,
and on the program instrumented by CollectEA. It also
reports the minimum, average, and maximum percentage
overhead imposed by CoverageImpact (%CoverageImpact
Overhead) and by CollectEA (%CollectEA Overhead).

As the table shows, the overhead imposed by CollectEA

varies widely depending on the subject (on average about
110% for Siena and 13% for Jaba) and also for different exe-
cutions of a given program version (e.g., it varies from 3% to
20% for Jaba-Long-v9). The overhead for CoverageImpact
shows a similar trend.

After examining the results in more detail, we discovered
that the observed variation is caused by a fixed cost associ-
ated with the instrumentation. Such fixed cost is due to the
time required to (1) load and initialize the instrumentation-
related classes and data structures, and (2) store the dy-
namic information on disk on program termination. For
short running executions, such as the executions of Siena,
the fixed cost is considerable, whereas for longer executions
is less relevant.
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Figure 4: Precision results, expressed as percentage of meth-
ods in the impact sets.

For example, for Jaba, we observed that all the executions
that require more than a few seconds (about four seconds,
for the executions considered) have an overhead consistently
below 15% and as low as 3% in many cases. Although we do
not have enough data points to generalize these results, they
are encouraging. The results are especially encouraging if we
consider that most real programs execute for more than a
few seconds (e.g., most interactive programs). Moreover, we
are using prototype, unoptimized tools, so it may be possible
to reduce both fixed and variable costs associated with the
instrumentation considerably.

Compared to CoverageImpact, CollectEA is, as expected,
more expensive than CoverageImpact. However, the practi-
cal difference between the two techniques is small, ranging,
on average, from 7% in the worst case (for Jaba-long-v9 ), to
3% in the best case (for Jaba-long-v9 ).

Therefore, we can conclude that CollectEA is practical
for most programs, especially programs that run for more
than a very short period of time. We can also conclude that
CollectEA is applicable in all cases in which CoverageImpact

is applicable.

3.4 Study 2
In this study, we investigate RQ2. To this end, we com-

pare CollectEA with CoverageImpact in terms of precision.
As a sanity check for our implementation, and to reduce
the threats to internal validity, we also compare our tech-
nique with PathImpact to make sure that they produce the
same results. To evaluate the precision of the techniques,
we measure the relative sizes of the impact sets computed
by the techniques on a given program, change set, and set
of program executions. We report and compare such sizes
in relative terms, as a percentage over the total number of
methods.

This study is an extension of the studies presented in our
previous work [11], in which we only considered a subset
of the executions considered here (due to the cost of the
most expensive technique considered, PathImpact). For this
study, we implemented a version of technique PathImpact

that does not compress the traces and, thus, has an accept-
able time overhead (at the cost of a huge space overhead).

439



Program Uninstrumented CoverageImpact CollectEA %CoverageImpact Overhead %CollectEA Overhead
min avg max min avg max

Siena-v0 52 107 109 92 106 196 98 111 163
Siena-v1 52 107 109 93 106 204 98 111 166
Siena-v2 52 107 110 93 106 170 98 112 165
Siena-v3 53 108 110 91 104 189 98 108 164
Siena-v4 53 108 110 91 104 183 96 108 158
Siena-v5 53 108 110 80 104 194 88 108 166
Siena-v6 53 108 110 84 104 200 90 108 166
Jaba-v0 421 451 475 5 7 10 10 13 17
Jaba-v1 423 453 476 5 7 10 10 13 15
Jaba-v2 423 453 476 4 7 10 9 13 15
Jaba-v3 424 454 477 5 7 10 10 13 15
Jaba-v4 428 459 483 5 7 11 11 13 14
Jaba-v5 429 459 483 5 7 10 10 13 15
Jaba-v6 429 459 483 5 7 10 11 13 15
Jaba-v7 429 459 483 5 7 10 11 13 15
Jaba-v8 452 489 511 5 7 8 6 12 14
Jaba-v9 461 496 514 5 8 14 5 12 14
Jaba-long-v0 5170 5591 5728 3 9 15 3 12 27
Jaba-long-v1 5125 5497 5749 3 9 14 3 13 26
Jaba-long-v2 5128 5496 5737 1 8 11 3 13 26
Jaba-long-v3 5170 5508 5763 2 8 13 3 13 28
Jaba-long-v4 5300 5668 5903 2 8 13 3 13 26
Jaba-long-v5 5304 5641 5928 2 8 15 3 13 26
Jaba-long-v6 5363 5715 5960 1 8 15 3 13 30
Jaba-long-v7 5313 5693 5932 1 8 13 3 13 29
Jaba-long-v8 5338 5674 5943 1 7 12 5 12 20
Jaba-long-v9 5360 5689 5969 1 6 12 3 13 20

Table 4: Execution time (ms)

The graph in Figure 4 shows the results of the study. In
the graph, each version of the two programs6 occupies a
position along the horizontal axis, and the relative impact-
set size for that program and version is represented by a
vertical bar—dark grey for technique CoverageImpact, light
grey for PathImpact, and black for CollectEA. The height
of the bars represents the impact set size, averaged across
all test cases, expressed as a percentage of the total number
of methods in the program.

As expected, the graph shows that, in all cases, the impact
sets computed by CollectEA and PathImpact are identical
(but computed at very different costs, as further discussed
in Section 4).

The graph also shows that the impact sets computed by
CollectEA are always more precise than those computed by
CoverageImpact. In some cases, such differences in preci-
sion are considerable (e.g., for Siena-v6, Jaba-v4, and Jaba-
v5 ). Therefore, the limited additional overhead imposed by
CollectEA over CoverageImpact justifies its use.

4. RELATED WORK
We discussed existing dynamic impact analysis techniques

in Section 1.2. We proved that our technique is as precise
as PathImpact in Section 2.2 and showed that empirically
in our studies (Section 3). In our studies, we also compared
our technique with CoverageImpact in terms of precision
and efficiency. In this section, we will present only a cost
comparison between our technique and the others.

The space and time costs of technique CoverageImpact [10]
are comparable to the corresponding costs for our technique.

6Note that we have two entries for each version of Jaba

because of the separation between short and long tests.

In terms of space, CoverageImpact collects, for each execu-
tion, one bit per method, whereas our technique collects,
for each execution, two integers per method. In terms of
time, the cost of the instrumentation required by the two
techniques is similar, as shown in Section 3.
PathImpact is orders of magnitude more expensive than

our technique because the cost of our technique is compa-
rable to CoverageImpact[11]. In terms of time, PathImpact
incurs significant runtime overhead because it compresses
traces on the fly. In terms of space, the traces, even when
compressed, can be very large, whereas our technique only
requires two integers per method.

Breech and colleagues present an algorithm for computing
the same impact sets as PathImpact on the fly [3]. Their
algorithm collects, for each execution, an impact set for each
method. At the entry of a method X, the algorithm adds X
to the impact set of each method currently on the call stack.
Then, it adds all methods on the call stack to X’s impact
set. This approach is less efficient than our approach both in
terms of space and time. The worst-case space complexity
is quadratic in the number of methods. The worst-case time
complexity per method call is O(n), where n is the number
of methods, compared to O(1) for our technique. Moreover,
their technique assumes that all executions terminate with
an empty call stack.

5. CONCLUSIONS
In this paper, we presented our new dynamic impact anal-

ysis technique. The technique is based on a novel algorithm
that collects and analyzes only a small amount of dynamic
information and is, thus, time and space efficient. We also
presented a set of empirical studies in which we compare
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our new technique with two existing techniques, in terms
of performance and precision. The studies show that our
technique is almost as efficient as the most efficient exist-
ing technique and is as precise as the most precise existing
technique.

One important contribution of the paper is the definition
of the Execute-After (EA) relation along with an efficient
way to derive it. Although we presented and applied it in
a specific context, the EA relation can be generalized along
at least three dimensions. First, it can be generalized with
respect to the level of granularity at which it is defined. We
defined the relation at the method level, but it could be
defined analogously at different levels (e.g., the basic-block
level) or for different entities (e.g., entities for which the
order of execution is important). Second, it can be gen-
eralized with respect to the programming language consid-
ered. Although we only described how to implement the
technique for the Java language, it can be easily extended
to other languages. Third, it can be generalized with re-
spect to the multi-threaded programming as described in
Section 2.3. Moreover, the concept of execute-after itself
is more general than its specific meaning for impact anal-
ysis. Other dynamic analyses may be able to leverage the
information provided by the EA relation.

We are considering several directions for future research.
First, we will investigate dynamic impact analysis at finer
granularity than the method level. In particular, we are cur-
rently implementing our technique at the statement level.
Using that implementation, we will assess whether the gain
in precision of the analysis at the statement level justifies the
additional cost. Second, we will continue our previous work
on performing analysis of deployed software [13] by applying
the new technique presented in this paper to real software
released to real users. The additional precision of this tech-
nique will let us better assess differences between in-house
and in-the-field behaviors [10]. Finally, we will investigate
ways to incorporate static analysis into the presented tech-
nique, to further improve its efficiency and precision. For
example, we could use static analysis to identify pairs of
methods whose relative execution order can be determined
statically and use that information to reduce the amount of
instrumentation inserted in the program under analysis. For
another example, static slicing may let us further reduce the
size of the dynamic impact sets by eliminating parts of the
program that are executed after the changed parts, but are
not dependent on the changes.
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