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ABSTRACT 
Some software defects trigger failures only when certain complex 
information flows occur within the software.  Profiling and 
analyzing such flows therefore provides a potentially important 
basis for filtering test cases.  We report the results of an empirical 
evaluation of several test case filtering techniques that are based 
on exercising complex information flows.    Both coverage-based 
and profile-distribution-based filtering techniques are considered.  
They are compared to filtering techniques based on exercising 
basic blocks, branches, function calls, and def-use pairs, with 
respect to their effectiveness for revealing defects. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging – 
Debugging aids, Monitors, Testing tools; D.4.6 [Operating 
Systems]: Security and Protection – Information flow controls.     

General Terms 
Reliability, Experimentation.                                                                                                                                                                                                       

Keywords 
Test case filtering, dynamic information flow analysis, dynamic 
slicing, program dependences, software testing, observation-based 
testing. 
 

1. INTRODUCTION 
The idea of identifying and exercising information flows within a 
program is a long-standing theme in software testing research.  
Early work in this area focused on test data adequacy criteria that 
require exercising different kinds of data flows between program 
statements [30]; subsequent research addressed the more general 
concepts of program dependences [20], which include both data 
dependences and control dependences, and program slices [1], 

which are closely related.  Podgurski and Clarke showed that for a 
program statement s1 to affect the execution behavior of another 
statement s2, there must be a (static) chain of data and/or control 
dependences connecting s2 to s1 [28].  Thus, if information flows 
from s1 to s2, then s2 is directly or indirectly dependent on s1.  All 
of these concepts are important in testing because they reflect 
interactions between different program elements.  Failures in 
deployed software are often associated with interactions that were 
not anticipated or tested by developers.  However, basic software 
testing techniques such as functional testing, statement coverage, 
and branch coverage focus on exercising individual software 
features or program elements and may fail to exercise interactions 
that are critical to revealing certain program defects. 

In principle, the conditions that cause a particular defect to trigger 
a failure may involve arbitrarily complex interactions between 
program elements.  However, it is feasible to exercise only a 
limited number of different interactions during testing.  The 
number of possible n-way interactions grows rapidly with n.   It is 
often very difficult to create test data manually to exercise all 
interactions of a given type – even simple ones – and it follows 
from basic computability results that no general algorithmic 
solution to this problem exists.    It is more tractable to instrument 
a program to profile interactions (record when they occur), to run 
the instrumented program on a test suite, and to filter the test 
cases based on the resulting profiles. 

Test case filtering involves selecting a manageable number of 
tests to use from a large, existing test suite that contains redundant 
tests or is too large to use in its entirety [5][24].1  Examples of 
such test suites include “legacy” test suites employed in 
regression testing and test suites obtained using inexpensive but 
possibly imprecise methods such as automatic test generation, 
capture of inputs in the field, or simulation.  A subset of the test 
suite is selected based on an assessment of how likely it is to 
reveal any latent defects in the program under test.  This 
assessment involves analysis of profiles of test executions.  
Various kinds of profiles can be used for this purpose, such as 
ones reflecting control flow, data flow, input or variable values, 
object states, event sequences, and timing. 

                                                                 
1 We use the term “test case filtering” in preference to “test case 

selection” because the later is often used in the literature to refer 
to techniques for creating test cases. 
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There are two main reasons for filtering test cases: (1) to reduce 
the number of test cases that must be executed and (2) to reduce 
the number of test executions for which it is necessary to 
manually determine correct output or to audit (check) actual 
output.  When the test cases to be filtered are automated and self 
validating, only reason (1) is relevant, and the filtering process 
does not involve executing test cases with the current version of 
the software under test.  Reason (2) applies with respect to 
captured or simulated operational inputs and other test cases for 
which checking results entails manual effort.  It is reasonable to 
execute such test cases with the software version to be tested, in 
order to collect execution profiles for use in filtering, since the 
cost of manually determining or auditing output typically 
dominates the cost of executing tests.  Ideally, the filtering 
process is largely automated.  An important special case of test 
case filtering is regression test filtering (often called regression 
testing selection in the literature) in which a regression test suite 
is filtered [31].  In regression test filtering, coverage profiles 
obtained when testing previous versions of the software may be 
used in filtering tests for use with the current version. 

Some techniques for test case filtering are based on exercising 
data flows or program dependences [28][36], and test data 
adequacy criteria based on these notions can be recast as filtering 
criteria.  The potential value of such techniques depends on the 
prevalence of software defects that are triggered only by certain 
kinds of information flows.  This value must be balanced against 
the cost of collecting and analyzing profiles of such flows, which 
increases with the complexity of the flows.   Filtering techniques 
based on exercising simple data flows, such as definition-use (def-
use) pairs have been subjected to empirical evaluation (see 
Section 2).  To our knowledge, the effectiveness of test case 
filtering techniques based exercising more complex information 
flows, such as ones involving a combination or sequence of 
dynamic data and/or control dependences, has not been evaluated 
empirically. 

This paper reports the results of an empirical evaluation of several 
test case filtering techniques that are based on exercising complex 
information flows.  Information flow profiles were obtained using 
a tool for dynamic information flow analysis and dynamic slicing 
that we developed [26].  Both coverage-based and profile-
distribution-based filtering techniques are considered (see Section 
3).  The techniques are general-purpose; in particular, they are not 
specific to regression test filtering.  They are compared to random 
sampling and to filtering techniques based on exercising basic 
blocks, branches, def-use pairs, and function calls. 

Section 2 surveys graph-theoretic models of information flows 
proposed for use in software testing, and it describes the models 
employed in our empirical evaluation.  Section 3 describes 
coverage-based and distribution-based test-case filtering 
techniques.  Section 4 reports on our empirical study and its 
results.  Section 5 surveys some additional related work.  Section 
6 presents our conclusions. 

2. MODELING INFORMATION FLOWS 
Software testing researchers have proposed graph theoretic 
models of several types of information flows and have used them 
to define testing techniques.  In this section we present some 
illustrative examples of such models and indicate the models 
employed in our empirical evaluation.  We assume the reader is 

familiar with control flow graphs and program dependences (See 
[26] for formal definitions of the terminology used here.) 

Rapps and Weyuker define a family of test data adequacy criteria 
based on exercising “du (definition-use) paths” in a program’s 
control flow graph.  A du-path for a variable x is a path of the 
form uPv such that x is defined at u, x is used at v, and x is not 
defined along path P.  Such a path demonstrates that v is directly 
data dependent on u with respect to x.  Thus, Rapps and 
Weyuker’s adequacy criteria exercise direct data dependences, 
which, together with direct control dependences, are the simplest 
form of information flow in programs.  A number of papers 
describe empirical evaluations of one or more of Rapps and 
Weyuker’s criteria [9][10][11][13][36].   

Some software failures are associated with more complex 
interactions between program elements than those represented by 
direct data or control dependences.  These interactions may 
correspond to a sequence or combination of direct dependences.  
Some proposed testing techniques are intended to exercise such 
interactions.  For example, Ntafos proposed a family of test data 
adequacy criteria based on exercising chains of direct data flows 
(data dependences) called “k-dr interactions” [27].    Formally, a 
k-dr interaction in a program’s control flow graph is a sequence 
of k ≥ 2 vertices <v1, v2, …, vk> and a sequence of k – 1 variables 
<x1, …, xk – 1> such that for i = 2, ..., k, vertex vi is directly data 
dependent on vertex  vi – 1 with respect to  xi – 1.  Ntafos’s required 
k-tuples test data adequacy criterion is satisfied by a set T of test 
data if, among other conditions, T exercises each feasible l-dr 
interaction in a program’s control flow graph at least once for 2 ≤ 
l ≤ k.2  Ntafos empirically evaluated only the required 2-tuples 
technique. 

Laski and Korel proposed two test data adequacy criteria called 
“context coverage” and “ordered context coverage”, which are 
based on exercising combinations of direct data flows [23].  These 
combinations are of two types.  An (unordered) definition context 
for vertex v in a control flow graph G is a set of vertices {u1, u2, 
…, un} and a corresponding set of variables {x1, x2, …, xn} such 
that there is a path Pv in G that can be decomposed for i = 1, 2, ..., 
n into XiuiYiv, where the subpath uiYiv demonstrates that v is 
directly data dependent on ui with respect to xi.  An ordered 
definition context for v is a sequence of vertices <u1, u2, …, un> 
and a corresponding sequence of variables <x1, x2, …, xn> such 
that there is a path of the form P0u1P1u2P2 ⋅⋅⋅ unPnv in G, where 
for i = 1, 2, ..., n, the subpath uiPi ⋅⋅⋅ unPnv demonstrates that v is 
data dependent on ui with respect to xi.  Laski and Korel’s context 
coverage (respectively ordered context coverage) criterion is 
satisfied by a set T of test cases for a program P if T exercises 
each feasible definition context (ordered definition context) in a 
P’s control flow graph at least once.  Laski and Korel did not 
evaluate their adequacy criteria empirically. 

Clarke et al [3] showed that, with certain minor modifications, 
Ntafos’s required k-tuples criteria and Laski and Korel’s context 
coverage and ordered context coverage criteria subsume the 
family of data flow testing criteria defined by Rapps and 
                                                                 
2 We say that an information flow relationship defined in terms of 

a program’s control flow graph is feasible if it is realized by a 
CFG walk whose corresponding sequence of program 
instructions is executed by some input(s). 
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Weyuker, in the sense that a test set satisfying the former criteria 
also satisfies the latter.  This is true because the data flow 
relationships exercised by the former criteria are more general 
than those exercised by the latter criteria.  Nevertheless, none of 
the aforementioned criteria models all of the kinds of information 
flows that can be associated with software failures.  It is not 
difficult to prove that certain program failures can be triggered 
only by exercising arbitrarily complex information flows, e.g., 
arbitrarily long chains of data and/or control dependences. 

These considerations lead naturally to the idea of defining test 
case filtering techniques in terms of even more general models of 
information flows in programs.  Such models are employed in 
program dependence analysis [8], information flow analysis [4], 
and program slicing [34], which are closely related program 
analysis techniques that each support modeling of arbitrary 
combinations of indirect information flows between instructions 
or objects, where each indirect flow corresponds to a sequence of 
one or more direct data dependences and/or direct control 
dependences.  Information flow analysis originated in the field of 
computer security [4].  It is used to determine if information 
stored in a sensitive variable or object can flow or actually has 
flowed to a variable or object that is accessible to an untrusted 
party.  Program slicing is a debugging technique that seeks to 
identify the set of program statements – called a slice – that could 
be responsible for an erroneous program state that occurred at a 
particular location in a program.  Information flow analysis and 
program slicing each have both static and dynamic variants.  Both 
dynamic information flow analysis [26] and dynamic slicing [21], 
which involve analyzing runtime data and control dependences, 
are potentially much more precise than their static counterparts, 
because the outcomes of conditional branches become known at 
runtime. 

Podgurski and Clarke described the semantic basis for the use of 
program dependence analysis in software testing, debugging, and 
maintenance [28].  They showed that the presence of a syntactic 
dependence (a chain of data and/or control dependences) between 
two statements is a necessary but not sufficient condition for one 
statement to affect the execution behavior of the other.  They also 
argued that the number of tests required to adequately exercise all 
syntactic dependences can be impractically large, and they 
suggested that information about syntactic dependences might be 
useful for filtering test cases. 

Thompson et al present an information flow model of fault 
detection, focusing on transfer of an incorrect intermediate state 
from a faulty statement to output [34].  Transfer occurs along 
information flow chains, where each link in the chain involves 
data dependence transfer or control dependence transfer. 

Agrawal et al define a regression test filtering technique based on 
dynamic slicing [1].  The dynamic slices with respect to a 
program’s output are computed for all test cases in its regression 
test suite.  After the program is modified, the new program is run 
on only those test cases whose dynamic slices contain a modified 
statement.  Agrawal et al also define a variant of this technique in 
which “relevant” program slices are computed.  A relevant 
program slice is a dynamic program slice augmented to include 
certain predicates on which statements in the dynamic slice are 
potentially dependent.  Agrawal et al did not empirically evaluate 
the effectiveness of either version of their technique. 

In this paper, we empirically evaluate approaches to filtering test 
cases based on two closely related ways of characterizing 
complex information flows, namely: (1) tracing information flows 
between objects and (2) computing dynamic program slices.  
Since both forms of analysis produce large amounts of raw 
output, it is necessary to summarize information flows and slices 
using profiles that are more compact.  The form of these profiles 
is described in Section 4.2.   

3. FILTERING TECHNIQUES 
In this section we describe two basic approaches to filtering test 
cases, which were compared in our empirical study.  One 
approach calls for greedily selecting test cases to maximize 
coverage of program elements.  The other approach calls for 
selecting test cases that span the profile-distribution of the 
original test suite.  

3.1 Coverage-based Techniques 
Coverage-based filtering techniques select test cases to maximize 
the proportion of program elements of a given type that are 
covered (executed).  These techniques are based on the 
assumption that many software defects can be revealed simply by 
exercising such elements, regardless of other factors.  To reduce 
testing costs, coverage-based filtering techniques attempt to cover 
as many elements as the original test suite with as few test cases 
as possible.  This type of filtering is called test suite minimization 
in the regression testing literature [36][37].  Selecting a minimal-
size, coverage-maximizing subset of a test suite is an instance of 
the set-cover problem, which is NP-complete but which admits a 
greedy approximation algorithm [14].  On each of its iterations, 
the greedy algorithm selects the test that covers the largest 
number of elements not covered by the previously selected tests.  
In the sequel, we will refer to this technique as basic coverage 
maximization to emphasize that code coverage is the basis for 
selecting test cases. 

3.2 Distribution-based Techniques 
Distribution-based filtering techniques select test cases based on 
how their execution profiles are distributed in the 
multidimensional profile space [5][6][24][25].  They identify 
features of the profile space, such as clusters, and use these to 
guide test selection.  The profile space is defined by a 
dissimilarity metric, which is a function that for each pair of 
profiles outputs a real number representing their degree of 
dissimilarity.  An example of a profile space is the n-dimensional 
space defined by applying the Euclidean distance metric to 
profiles that record basic-block execution counts for a program 
with n basic blocks.  The tester may choose a dissimilarity metric 
emphasizing whatever aspects of the available profiles that he or 
she believes are most relevant to revealing defects.  Typical 
dissimilarity metrics take the form of a (possibly weighted) sum 
of difference terms, in which there is a difference term for each 
profile feature (e.g., each execution count). 

We consider two types of distance-based filtering techniques: 
cluster filtering and failure pursuit.  Cluster filtering [5] is based 
on automatic cluster analysis.  Cluster analysis is a multivariate 
analysis method for finding groups or clusters in a population of 
objects.  Cluster analysis algorithms use a dissimilarity metric 
such as Euclidean distance or Manhattan distance to partition the 
population into clusters.  Objects placed together in a cluster are 
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Table 1 – Number of unique profile features encountered during execution (unique execution counts) for the various 
types of profiles.  *Combines MC, MCP, BB, BBE and DUP 

 

 MC MCP BB BBE DUP *ALL IFP SliceP 

javac 1,022 2,123 3,655 4,307 9,620 11,315 66,829 - 

Javac700 818 1,333 2,164 2,413 4,793 5,681 25,247 194,840 

Xerces 361 690 1,725 1,982 3,812 4,519 6,547 84,565 

JTidy 195 243 1,355 1,645 3,680 4,362 11,061 235,925 

 

more similar to one another than to objects in other clusters.  
Cluster filtering uses cluster analysis to partition a set of tests into 
clusters based on the dissimilarity of their profiles.  One or more 
test are selected for audit from each cluster or from particular 
clusters.  A cluster filtering procedure is defined by a choice of 
clustering algorithm, dissimilarity metric, cluster count, and 
sampling method.  An example of a sampling method is one-per-
cluster (OPC) sampling, which calls for selecting exactly one test 
from each cluster.  One-per-cluster sampling economically 
exercises each program behavior represented by a cluster, and it 
also favors the selection of unusual executions, which tend to be 
placed in isolated clusters.  Failure-pursuit sampling is an 
adaptive extension of cluster filtering that is based on the 
observation that failed tests are often clustered together in small 
clusters [6].  Failure pursuit sampling calls for selecting the k 
nearest neighbors of any failures found by auditing the initial 
subset of tests.  If any additional failures are found, each of their k 
nearest neighbors is selected, and so on, until no additional 
failures are found.  (In the experiments reported in this paper, k = 
5 is used.) 

4. EMPIRICAL RESULTS 
In this section we describe the subject programs and test suites 
used in our experiments.  Then we describe the profile types that 
were used.  Finally, we present and discuss the experimental 
results. 

4.1 Subject Programs and Test Suites 
In our experiments we applied test-case filtering techniques with 
different profile types on test suites for three Java programs: the 
javac Java compiler, version 1.3.1_02-b02 [17]; the Xerces XML 
parser, version 2.1 [38]; and the JTidy HTML syntax checker and 
pretty printer, version 3 [18]. 

javac was tested with the Jacks test suite [15], which tests 
compliance with the Java Language Specification [16].  The Jacks 
test suite comprises 3,140 tests among which 223 caused javac to 
fail.  

Xerces was tested by using part of the XML Conformance Test 
Suite [39], which provides a set of metrics for determining 
conformance to the W3C XML Recommendation.  There are 
2000 tests in the XML TS contributed by several organizations 
such as Sun and IBM.  We used 1663 tests in our experiments 

resulting in 10 failures.  Note that we chose to exclude 337 tests 
because it was difficult to determine with certainty whether those 
tests were expected to pass or fail.  Xerces was configured to 
check only the syntax and not the semantics of the input XML 
files, i.e., to simply check whether the files were well-formed. 

JTidy was tested using 500 files downloaded from the Google 
Groups (groups.google.com) using a web crawler.  Out of the 500, 
5 were XML files and the rest were HTML files.  JTidy failed on 
24 of these test cases. 

The defects causing the failures were investigated manually and 
the failures were classified into groups believed to have been 
caused by the same defect.  For javac, 67 distinct defects were 
believed to have caused the 223 failures.  (The failure 
classification for javac was done as part of previous work in order 
to validate an automated technique for classifying failures; see 
[29] for details). For Xerces, 5 distinct defects were believed to 
have caused the 10 failures.  For JTidy, 5 distinct defects were 
identified, where 2 of them cause failures only in combination 
with another defect.  Therefore, in our analysis of the JTidy 
profiles we treated each distinct combination as a defect on its 
own.  This resulted in 6 defects for JTidy, 3 of which are 
combination defects. 

4.2 Profiling 
This section describes the profile types used in our experiments, 
then briefly describes the tools we built to generate them.  Finally, 
for each combination of subject program and profile type, we 
show the number of unique profile features encountered during 
test suite execution (unique execution counts).   

Program profiles identify the frequency of execution of certain 
program features that are thought to be relevant to whether 
executions succeed or fail.  Such program features vary in 
complexity and the cost of profiling them varies accordingly.  In 
our experiments, we profiled several program features of varying 
complexity.  The profile types we used are listed and described 
below:  

• Method calls (MC): Number of times each method was 
executed.  

• Method call pairs (MCP): Number of times each method M1 
calls another method M2, for every combination of M1 and 
M2 for which this count is nonzero. 
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Table 2 – Results for conducting basic coverage 
maximization. 

 

 Profile 
Type 

% Tests 
Selected 

% Defects Selected/ 
Defects 

javac MC 1.63 13.7 5.59 

 MCP 5.23 22.6 10.85 

 BB 7.8 28.5 12.83 

 BBE 10.05 32.8 14.40 

 DUP 18.22 62.5 13.64 

 ALL 19.3 63.2 14.30 

 IFP 18.77 68.1 12.92 

Javac700 MC 5.21 15.05 10.10 

 MCP 11.17 21.7 15.01 

 BB 13.95 35.95 11.32 

 BBE 17.17 46.12 10.85 

 DUP 31.87 69.19 13.43 

 ALL 32.66 72.85 13.07 

 IFP 30.24 60.53 14.57 

 SliceP 60.28 91.67 19.18 

Xerces MC 0.83 0 - 

 MCP 3.57 24.22 49.160 

 BB 9.78 40 81.51 

 BBE 11.73 46.98 83.25 

 DUP 15.94 60 88.58 

 ALL 16.72 60 92.911 

 IFP 10.43 70.28 49.51 

 SliceP 20.63 100 68.8 

JTidy MC 2.71 33.33 6.79 

 MCP 5.63 42.6 11.02 

 BB 9.26 50 15.44 

 BBE 11.45 83.33 11.45 

 DUP 18.33 66.67 22.91 

 ALL 19.04 83.33 19.04 

 IFP 13.25 66.67 16.56 

 SliceP 37.09 100.00 30.91 

 

• Basic-blocks (BB): Number of times a basic block was 
executed. 

• Basic-block edges (BBE):  Number of times control flows 
from basic-block B1 to basic-block B2, for every 
combination of B1 and B2 for which this count is nonzero. 

• Def-use pairs (DUP): Number of times a statement U uses a 
variable defined by statement D, for each combination of D 
and U for which the count is nonzero.  

• Information flow pairs (IFP): Number of times information 
from x flowed into y (as demonstrated by a sequence of 
dynamic data and/or control dependences leading from y to 
x), for each combination of x and y for which this count is 
nonzero.  Here x and y are local variables, global (static) 
variables, or fields of a class instance. Note that when 
computing the IFP profiles the inter-procedural control 
dependences were not tracked. 

• Slice pairs (SliceP): Number of times a statement s1 appears 
in a slice computed for statement s2, for each combination of 
s1 and s2 for which this count is nonzero.  

Note that if the above descriptions are used directly, the resulting 
profiles contain a large amount of redundant information.  For 
example, in the subject programs there are groups of basic blocks 
that were always executed together, and therefore their counts 
were the same in each execution. This redundant information was 
removed by replacing each group of profiles features that always 
had the same value (count) by a single feature.  For example, 
when Javac700 was tested, close to 3.6 million distinct slice pairs 
were detected.  These were replaced by 194,840 unique features.  
Table 1 shows for each program and profile type the number of 
unique profile features (unique counts) that were generated while 
running the test suites.  For example, there were 84,565 different 
combinations of statements making up the SliceP profiles for 
Xerces, where each combination is made up of two statements s1 
and s2, such that at least one slice computed at s2 contained s1.  
The column titled ALL shows the combined counts of MC, MCP, 
BB, BBE and DUP.  This combined count is less than the sum of 
its components counts because of the removal of duplicates 
described above.  As expected, Table 1 shows that profile types 
that characterize more complex program features have higher 
unique execution counts. 

In order to generate the IFP and SliceP profiles we extended our 
existing tool for dynamic information flow analysis and dynamic 
slicing [26], which we call DIFA.  The DIFA tool was originally 
designed to detect and debug insecure information flows in 
programs. It instruments the program’s byte code classes and/or 
jar files in order to monitor program execution and computes 
slices and information flows as the program runs.  For the purpose 
of our experiments, i.e., generating IFP and SliceP profiles, we 
added an optional capability that records the information flows 
and slices right after they get computed.   

In order to generate the MC, MCP, BB, BBE and DUP profiles we 
built a specialized tool.  Like the DIFA tool, this tool instruments 
the target byte code and then monitors program execution in order 
to profile the given program features.   

Note that because of memory requirements, the 3,140 SliceP 
profiles generated for javac could not be analyzed to completion.  
Therefore, we present two sets of results for javac: one set based 
on all 3,140 Jacks tests that does not include SliceP and another 
set based on the first 700 Jacks tests that does include SliceP.  
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Figure 1 - Basic coverage maximization and random 
sampling results for javac. 
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Figure 2 - Basic coverage maximization and random 
sampling results for java700. 
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Figure 3 - Basic coverage maximization and random 
sampling results for Xerces. 
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Figure 4 - Basic coverage maximization and random 
sampling results for JTidy. 

The former will be referred to as the javac data set; the latter will 
be referred to as the javac700 data set.  For javac700, 24 distinct 
defects were believed to have caused 128 failures.  A matrix of 
the SliceP counts for this data set uses about 1GB of memory. 

4.3 Basic Coverage Maximization 
Experiments 
The results of conducting basic coverage maximization are shown 
Table 2.  For example, in the case of Xerces/SliceP, the greedy 
selection algorithm demonstrated that no more than 20.63% of the 
original test suite was needed to exercise all of the dynamic slice 
pairs exercised by the original test suite, and these tests revealed 
all the defects revealed by the original test suite.  Note that the 
greedy algorithm can sometimes encounter ties (multiple tests that 
each cover the maximal number of program elements not covered 
by previously selected tests).  The way ties are broken affects the 
number of tests selected.  To address this, we ran 1000 

replications on each program/profile-type combination, first 
randomly shuffling the order of the tests.  For each replication we 
recorded how many tests were selected and how many failures 
and defects were found.  The data shown in Table 2 was obtained 
by averaging the results of 1000 different executions of the 
greedy coverage maximization algorithm, which explains why the 
columns showing the number of selected tests and the number of 
revealed defects contain fractions.  Figures 1, 2, 3 and 4 compare 
variations of basic coverage maximization (based on different 
types of profiles) to random sampling with respect to each 
technique’s average efficiency for revealing defects. 

Figure 1 shows that with the javac data set, coverage 
maximization revealed defects more efficiently than random 
sampling did for all profile types.  As expected, when the 
granularity of the elements being covered was finer, more tests 
were required and more defects were revealed.  A significant 
jump in efficiency was observed when def-use pairs and 
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Figure 5 - OPC sampling, coverage maximization and random sampling results for Xerces. 

information flow pairs were covered, although large numbers of 
tests were required to maximize coverage of these elements.  Note 
that maximizing coverage of these elements was about as efficient 
as maximizing coverage of ALL, that is, of MC, MCP, BB, BBE, 
and DUP combined. 

The results for javac700 shown in Figure 2 differ considerably 
from the ones for javac. For example, basic coverage 
maximization was more efficient than random sampling only for 
SliceP, DUP and ALL.  In addition, maximizing coverage of DUP 
and ALL revealed somewhat more defects than maximizing 
coverage of IFP.  The good performance of random sampling in 
this case may be attributable to the large proportion of failures in 
this data set (0.18). 

Figure 3 shows that with Xerces, basic coverage maximization 
performed better than random sampling except for with MC 
profiling. It also shows that maximizing SliceP coverage revealed 
all defects.  Note however that maximizing IFP coverage revealed 
about 70% of the defects with only half as many tests.  

Finally, Figure 4 shows that with JTidy, basic coverage 
maximization performed better than random sampling for all 
profile types.  Maximizing BBE coverage revealed more defects 
than maximizing IFP coverage.  This is possible because IFP 
profiles record only information flows between variables, while 
BBE profiles record branches involving basic blocks that do not 
include definitions of variables.  Maximizing IFP coverage 
revealed about as many defects as maximizing DUP coverage 

though the former required fewer tests.  Maximizing SliceP 
coverage revealed all defects but required 37% of all tests to be 
selected. 

It should be noted that both of the two rightmost columns of Table 
2 need to be considered when comparing the performance of one 
profile type to that of another.  For example, for javac the ratio of 
number of tests selected to number of defects revealed is smallest 
for maximization of MC coverage (a favorable finding), but the 
percentage of revealed defects is unacceptably small.  For JTidy 
on the other hand, maximizing SliceP coverage revealed all the 
defects but caused the aforementioned ratio to be considerably 
higher than for the other profile types. 

4.4 Distribution-based Filtering Experiments 
Previous experiments with cluster filtering and failure-pursuit 
sampling [5][6][24], which involved using only basic profiling 
techniques, suggested that it was most effective to use the 
proportional dissimilarity metric with javac and to use the 
proportional-binary dissimilarity metric with Xerces and JTidy.  
Hence, we did so in evaluating the usefulness of cluster filtering 
and failure-pursuit sampling with profiles reflecting complex 
information flows.  The proportional metric compares two 
profiles based on the number of times profile features were 
exercised.  It applies the n-dimensional Euclidean distance metric 
to profiles in which each feature value has been normalized to 
account for the range of values that the corresponding feature of 
the original profile took on.  The proportional-binary metric is 
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Figure 6 – Failure-pursuit sampling, coverage maximization and random sampling results for JTidy. 

similar, but it replaces each feature of a profile with two features: 
one normalized as above and another that is binary and takes on 
the value 1 if the original value was positive.  The second feature 
is included to increase the dissimilarity between executions that 
exercise particular program elements and those that do not.  

In our experiments with cluster filtering and failure pursuit the 
agglomerative hierarchical clustering method [5] was used to 
cluster executions.  The number of clusters was varied to 
correspond to the following percentages of the size of the test 
suite: 1%, 2.5%, 5%, 10%, 25%, and 30%.  In the case of one-
per-cluster sampling, for every program and profile type 
combination the experiments involved the following steps: (1) 
choosing k, (2) clustering executions, (3) randomly selecting a 
single test from each of the k clusters, and (4) recording the 
number of failures and defects revealed.  The process of selecting 
the tests was replicated 1000 times and the results were averaged, 
which explains why the results presented include fractions.  In the 
case of failure-pursuit sampling, steps (1)-(4) above were 
followed by the selection of additional tests as described in 
Section 3.2. 

In our experiments, distribution-based filtering produced better 
results than random sampling did, but its performance did not 
depend substantially on the type of profile used.  This is 
illustrated by Figure 5, which shows the one-per-cluster sampling 
results for Xerces, and by Figure 6, which shows the failure-
pursuit results for JTidy.  (For clarity, coverage maximization 
results obtained with different profile types are depicted with the 
same symbol.)  The results suggest that with distribution-based 

filtering, using coarser profiles such as MC profiles may be as 
effective as using more complex profiles and more economical. 
Finally, it is not clear whether distribution-based filtering 
techniques generally perform better than coverage maximization 
when the number of tests selected with the latter is increased by 
using profiles of finer granularity. 

5. ADDITIONAL RELATED WORK 
Bates and Horwitz define test data adequacy criteria based on the 
program dependence graph, and they propose techniques based on 
program slicing to identify components of the modified program 
that can be tested with existing test cases and to identify 
components that may have been affected by the modification [2].  
The adequacy criteria they define do not address indirect flows.  
Rothermel and Harrold present an approach to regression testing 
based on slicing, which uses a program dependence graph to 
identify changed def-use pairs [32].  Gupta et al present a similar 
approach that requires only partial data flow analysis following 
program changes and does not depend on a def-use history [12]. 

A number of empirical studies comparing different regression test 
selection or prioritization techniques in terms of their defect-
detection effectiveness have been reported recently.  (Note that 
the study reported in this paper does not address regression testing 
techniques in particular and does not make use of information 
about program changes.)  Wong et al [36][37] studied the 
effectiveness of several test-suite reduction techniques.  Graves et 
al examined the costs and benefits of several regression test 
selection techniques, including test suite minimization (greedy 
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coverage maximization), a dataflow technique, a safe technique, 
and random selection [11].  In separate studies, Elbaum, et al [7] 
and Rothermel et al [33] compared several test case prioritization 
techniques, including ones based on code coverage, estimated 
fault proneness, and other factors.  Kim and Porter evaluated 
several regression test selection techniques and a technique and a 
prioritization technique of their own invention that exploits 
historical execution data [19].  None of the selection or 
prioritization techniques considered in the aforementioned studies 
address complex information flows. 

Distribution-based filtering and prioritization techniques are 
examples of observation-based testing, which is described by 
Leon et al in [25] .  Cluster filtering and several variants of it are 
presented and evaluated empirically by Dickinson et al [5].  
Failure pursuit sampling is presented and compared empirically to 
cluster filtering by Dickinson et al [6].  Leon and Podgurski 
present an empirical comparison of four different techniques for 
filtering or prioritizing large test suites: test suite minimization, 
prioritization by additional coverage, cluster filtering with one-
per-cluster sampling, and failure pursuit sampling [24].  None of 
this work addresses complex information flows.  

6. CONCLUSIONS 
We have empirically evaluated several test case filtering 
techniques that are based on exercising complex information 
flows, including both coverage-based and profile-distribution-
based filtering techniques.  They were compared empirically to 
filtering techniques based on exercising basic blocks, branches, 
function calls, and def-use pairs, with respect to their 
effectiveness for revealing defects.  For three of the four data sets 
(javac, javac700, and JTidy), maximizing coverage of information 
flows between objects required about as many tests and revealed 
about as many defects as maximizing coverage of definition-use 
pairs.  On the remaining data set, the former technique required 
fewer tests and found more defects than the latter.   Maximizing 
coverage of slice pairs revealed more defects than other coverage-
based filtering techniques, at substantial additional cost in terms 
of test set and profile size.  No clear difference in effectiveness 
was found between distribution-based filtering techniques (one-
per-cluster and failure-pursuit sampling) and coverage 
maximization.  Moreover, the effectiveness of the distribution-
based techniques did not depend strongly on the type of profiling 
used.  Thus, we found little evidence to justify the use of 
distribution-based filtering techniques based on exercising 
complex information flows.  To confirm or refine these results, it 
will be necessary to conduct similar empirical studies with a 
variety of other subject programs and test sets. 
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