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ABSTRACT
Program verification is a promising approach to improving program
quality, because it can search all possible program executions for
specific errors. However, the need to formally describe correct be-
havior or errors is a major barrier to the widespread adoption of
program verification, since programmers historically have been re-
luctant to write formal specifications. Automating the process of
formulating specifications would remove a barrier to program ver-
ification and enhance its practicality.

This paper describes specification mining, a machine learning
approach to discovering formal specifications of the protocols that
code must obey when interacting with an application program in-
terface or abstract data type. Starting from the assumption that a
working program is well enough debugged to reveal strong hints
of correct protocols, our tool infers a specification by observing
program execution and concisely summarizing the frequent inter-
action patterns as state machines that capture both temporal and
data dependences. These state machines can be examined by a pro-
grammer, to refine the specification and identify errors, and can be
utilized by automatic verification tools, to find bugs.

Our preliminary experience with the mining tool has been
promising. We were able to learn specifications that not only cap-
tured the correct protocol, but also discovered serious bugs.

1. INTRODUCTION
It is difficult to imagine software without bugs. The richness

and variety of errors require an equally diverse set of techniques
to avoid, detect, and correct them. Testing currently is the detec-
tion method of choice. However, the high cost and inherent limita-
tions of testing has lead to a renewed interest in other approaches
to finding bugs. One of the most promising directions is tools that
systematically detect important classes of errors [1–3, 5, 6, 9, 10].

While program verification tools do not prevent programming
errors, they can quickly and cheaply identify oversights early in
the development process, when an error can be corrected by a pro-
grammer familiar with the code. Moreover, unlike testing, some
verification tools can provide strong assurances that a program is
free of a certain type of error.
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These tools, in general, statically compute an approximation of
a program’s possible dynamic behaviors and compare it against a
specification of correct behavior. These specifications often are
easy to develop for language-specific properties—such as avoid-
ing null dereferences and staying within array bounds. Even when
language properties are more difficult to express and check, they
potentially apply to every program written in the language, so an
investment in a verification tool can be amortized easily.

On the other hand, specifications particular to a program, say of
its abstractions or datatypes, may be difficult and expensive to de-
velop because of the complexity of these mechanisms and the lim-
ited number of people who understand them. Also, as these spec-
ifications may apply to only one program, their benefits are corre-
spondingly reduced. Program verification is unlikely to be widely
used without cheaper and easier ways to formulate specifications.

This paper explores one approach to automating much of the pro-
cess of producing specifications. This approach, called specifica-
tion mining, discovers some of the temporal and data-dependence
relationships that a program follows when it interacts with an ap-
plication programming interface (API) or abstract datatype (ADT).
A specification miner observes these interactions in a running pro-
gram and uses this empirical data to infer a general rule about how
programs should interact with the API or ADT. These rules are con-
cisely summarized as state machines that capture both temporal and
data dependences. These state machines can be both examined by
a programmer, to refine the specification and identify errors, and
utilized by automatic verification tools, to find bugs.

Mining proceeds under the assumption that an executing pro-
gram, which presumably has passed some tests, generally uses an
API or ADT correctly, so that if a miner can identify the common
behavior, it can produce a correct specification, even from pro-
grams that contain errors. Rather than start from the program’s text,
in which feasible and infeasible paths are intermixed and correct
paths are indistinguishable from buggy paths, mining begins with
traces of a program’s run-time interaction with an API or ADT.
These traces are not only limited to feasible paths, but in general
do not contain errors.

The program in Figure 1 illustrates these points. The program
uses the server-side socket API [7]. It generally observes the cor-
rect protocol: create a new socket s through a call to socket,
prepare s to accept connections by calling bind and listen, call
accept for each connection, service each connection, and finally
call close to destroy s. Unfortunately, the program is buggy: if
the return statement on line 14 is executed, s is never closed.

Even though a program is buggy, individual interaction traces
can be correct. Figure 2 shows one such trace. If cond1 is rarely
true, it might be difficult to invent a test to force the program to
behave badly. On the other hand, correct traces enable a miner
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1 int s = socket(AF_INET, SOCK_STREAM, 0);
2 ...
3 bind(s, &serv_addr, sizeof(serv_addr));
4 ...
5 listen(s, 5);
6 ...
7 while(1) {
8 int ns = accept(s, &addr, &len);
9 if (ns < 0) break;

10 do {
11 read(ns, buffer, 255);
12 ...
13 write(ns, buffer, size);
14 if (cond1) return;
15 } while (cond2)
16 close(ns);
17 }
18 close(s);

Figure 1: An example program using the socket API.

1 socket(domain = 2, type = 1, proto = 0,
return = 7)

2 bind(so = 7, addr = 0x400120, addr_len = 6,
return = 0)

3 listen(so = 7, backlog = 5, return = 0)
4 accept(so = 7, addr = 0x400200,

addr_len = 0x400240, return = 8)
5 read(fd = 8, buf = 0x400320, len = 255,

return = 12)
6 write(fd = 8, buf = 0x400320, len = 12,

return = 12)
7 read(fd = 8, buf = 0x400320, len = 255,

return = 7)
8 write(fd = 8, buf = 0x400320, len = 7,

return = 7)
9 close(fd = 8, return = 0)

10 accept(so = 7, addr = 0x400200,
addr_len = 0x400240, return = 10)

11 read(fd = 10, buf = 0x400320, len = 255,
return = 13)

12 write(fd = 10, buf = 0x400320, len = 13,
return = 13)

13 close(fd = 10, return = 0)
14 close(fd = 7, return = 0)

Figure 2: Part of the input to our mining process: a trace of an
execution of the program in Figure 1.

to infer a specification of the correct protocol. A verification tool
that uses the specification to examine all program paths (such as
Bebop [2] or xgcc [10]) could then find the rare bug.

Our specification mining system is composed of four parts:
tracer, flow dependence annotator, scenario extractor, and automa-
ton learner (Figure 4). The tracer instruments programs so that they
trace and record their interactions with an API or ADT, as well as
compute their usual results. We implemented two tracers. One is
a replacement for the C stdio library, which requires recompiling
programs. The other is a more general executable editing tool that
allows arbitrary tracing code to be inserted at call sites. The tracers
produce traces in a standard form, so that the rest of the process is
independent of the tracing technology.

Flow dependence annotation is the first step in refining the traces
into interaction scenarios, which can be fed to the learner. It con-
nects an interaction that produces a value with the interactions that
consume the value. Next, the scenario extractor uses these depen-
dences to extract interaction scenarios—small sets of dependent

read(fd = y) write(fd = y)

close(fd = y)

socket(return = x)

bind(so = x)

listen(so = x)

accept(so = x, return = y)

close(fd = x)

Figure 3: The output of our mining process: a specification
automaton for the socket protocol.

interactions—and puts the scenarios into a standard, abstract form.
The automaton learner is composed of two parts: an off-the-shelf

probablistic finite state automaton (PFSA) learner and a postpro-
cessor called the corer. The PFSA learner analyzes the abstract
scenario strings and generates a PFSA, which should be both small
and likely to generate the scenarios. A PFSA is a nondeterministic
finite automaton (NFA) in which each edge is labelled by an ab-
stract interaction and weighted by how often the edge is traversed
while generating or accepting scenario strings. Rarely-used edges
correspond to infrequent behavior, so the corer removes them. The
corer also discards the weights, leaving an NFA. A human can val-
idate the NFA by inspection, at which point the NFA specification
can be used for program verification. Figure 1 shows a specification
for the socket protocol of the program in Figure 1.

This paper makes the following contributions:

• We introduce a new approach, called specifications mining,
for learning formal correctness specifications. Since specifi-
cation is the portion of program verification still dependent
primarily on people, automating this step can improve the
appeal of verification and help improve software quality.

• We use the observation that common behavior is often cor-
rect behavior to refine the specifications mining problem into
a problem of probabilistic learning from execution traces.

• We develop and demonstrate a practical technique for prob-
abilistic learning from execution traces. Our technique re-
duces specification mining to the problem of learning regular
languages, for which off-the-shelf learners exist.

The rest of the paper is organized as follows. Section 2 develops
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Figure 4: Overview of our specification mining system.

a formal statement of the specification mining problem. Section 3
discusses tracers and the flow dependence annotator. Section 4 de-
scribes the scenario extractor and the automaton learner. Section 5
discusses verification of the mined specifications and presents a
trace verification tool. Section 6 discusses the results of an ex-
periment with the mining and trace verification tools . Section 7
discusses related work and Section 8 concludes the paper.

2. THE PROBLEM
This section develops a formal statement of the specification

mining problem. At its most ambitious, specification mining at-
tempts to solve an unsolvable problem:

PROBLEM 2.1. Let I be the set of all traces of interactions with
an API or ADT, and C ⊆ I be the set of all correct traces of in-
teractions with the API or ADT. Given an unlabelled training set T
of interaction traces1 from I , find an automaton A that generates
exactly the traces in C. A is called a specification. An algorithm
that finds A is called a specification miner.

The rest of this section examines successive restrictions of this
problem, which lead to a problem that can be attacked with the
methods of this paper. These simplifications were choosen to acco-
modate our techniques, and other restatements of the specification
mining problem are certainly possible.

Problem 2.1 can not be solved because it places no restrictions
on the set C. If C is not recursively enumerable, then A does not
exist. In this paper, we require that C be generated by a finite-
state automaton (that is, C is a regular language). This decision
is forced by two practical considerations. First, model checkers re-
quire finite-state specifications. Second, the algorithms for learning
finite-state automata are relatively well-developed.

It is not enough to simply say that C must be regular, because
traces of most programs are not regular. For example, consider
a C program (LinkedList) that takes a number n on the com-
mand line, constructs a linked list of size n (allocating the nodes
1By an “unlabelled training set”, we mean that no information is
provided as to which of the elements in T are also in C.

with malloc), and then destroys the linked list, deallocating the
nodes with free in first-allocated, last-freed order. Ignoring the
finite arithmetic, the traces do not form a regular language. First,
a regular language must be defined over a finite alphabet, but
LinkedList can make an unbounded number of distinct mal-
loc and free calls. Second, LinkedList always makes a num-
ber of malloc calls followed by an equal number of free calls,
which is the canonical non-regular language.

Although LinkedList’s traces do not form a regular language,
its traces contain subtraces that do. Given a trace and an object o
mentioned in that trace, consider the subtrace of the trace contain-
ing calls to malloc that return o and calls to free that are passed
o. The subtrace is simply a malloc call, followed by a free call.
If the trace mentions n objects, there is one such subtrace for each
object. Each subtrace is exactly like all of the others, except for
the particular object that it allocates and frees. Now replace that
object in each subtrace with a standard name, say ostd . Now, all
of the subtraces are identical, and the learner has a very strong hint
that free should always follow malloc. We call the renamed
subtraces interaction scenarios.

Our approach simplifies Problem 2.1 in two ways. First, the
learner does not learn directly from traces. Instead, a preprocessor
extracts interaction scenarios from the traces. The scenarios manip-
ulate no more than k data objects, for some k; in the LinkedList
example, k = 1. Second, the set CS of correct scenarios is required
to be regular. The simplified specification mining problem can now
be defined:

PROBLEM 2.2. Let IS be the set of all interaction scenarios
with an API or ADT that manipulate no more than k data objects.
Let CS ⊆ IS be the regular set of all correct scenarios. Given an
unlabelled training set TS of interaction scenarios from IS , find a
finite-state automaton AS that generates exactly the scenarios in
CS .

Problem 2.2 is also impossible to solve. The careful reader may
have noticed that the training set TS does not depend on CS . That
is, no matter what CS is, any subset of IS is a valid training set!
Obviously, under these conditions, there is no basis on which to
choose AS . The definition of Problem 2.2 allowed the training
sets to be chosen so liberally in order to allow “noisy” training sets
that contain bad examples (that is, bugs) that are not in CS . A
satisfactory definition of noise must wait until the problem has been
simplified further. For now, we simplify the problem by assuming
that the training “set” is in fact an infinite sequence of scenarios
from CS alone, such that each element of CS occurs at least once:

PROBLEM 2.3. Let IS be the set of all interaction scenarios
with an API or ADT that manipulate no more than k data objects.
Let CS ⊆ IS be the regular set of all such correct scenarios. Fi-
nally, let TS = c0, c1, . . . be an infinite sequence of elements from
CS in which each element of CS occurs at least once.

For each n > 0, examine the first n elements of TS and produce
a finite-state automaton ASn , such that the sequence of finite-state
automata AS0

, AS1
, . . . has this property: for some N ≥ 0, ASN

generates exactly the scenarios in CS and ASn = ASN
for all

n ≥ N . We say that the sequence AS0
, AS1

, . . . identifies CS in
the limit.

Perhaps surprisingly, Problem 2.3 is also undecidable. Our def-
inition of Problem 2.3 is inspired by E Mark Gold’s seminal paper
on language identification in the limit [14], in which Gold shows
that regular languages can not be identified in the limit [14, The-
orem I.8]. His proof is too long to repeat here, but the idea of
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the proof is to present the members of an infinite regular language
to the learner in such a way that the learner is forced to change
its guess infinitely often, cycling through a never ending sequence
of finite sublanguages of the infinite language. Intuitively, the
learner’s dilemma is that any finite sequence of examples from the
infinite language is also a sequence of examples from a finite lan-
guage, and the learner has no basis for preferring one of these over
the other. Since CS is a possibly infinite regular language, Gold’s
theorem applies to Problem 2.3.

Gold’s paper did not end work on learning regular languages
from examples. Subsequent work avoids the dilemma exploited
in Gold’s proof by providing the learner with extra information that
allows it to justify choosing a less general automaton over a more
general one (and vice versa). One class of approaches presents the
learner with examples generated according to a probability distri-
bution; this sort of approach is particularly interesting to us because
it also gives the learner a method for dealing with noise in its in-
put. The task of the learner is to learn a close approximation of the
probability distribution:

Let IS be the set of all interaction scenarios with an
API or ADT that manipulate no more than k data ob-
jects. Let P and

�

P be probability distributions over
IS . We say that

�

P is an ε-good approximation of P ,
for ε ≥ 0, if

D(P,
�

P ) ≤ ε

where D(P,
�

P ) is some measure of distance between
P and

�

P .

Just as Problem 2.2 restricted CS to be a regular set, P must be
restricted to a manageable class of distributions. We choose the
distributions generated by probabilistic finite state automata (PF-
SAs). A PFSA is a probabilistic analogue of a nondeterministic
finite state automaton. That is, a PFSA is a tuple (Σ, Q, qs, qf , p)
where

• Σ is an output alphabet.

• Q is a set of states.

• qs ∈ Q is the start state of the automaton.

• qf ∈ Q is the final state of the automaton.

• p(q, q′, a) is a probability function, giving the probability of
transitioning from q ∈ Q to q′ ∈ Q while outputting the
symbol a ∈ Σ. Note that p(qf , q′, a) = 0 for all q ∈ Q and
a ∈ Σ.

Thus, a PFSA generates a distribution that assigns positive prob-
abilities to the strings in a regular language. Basing our defini-
tion on the standard definition for learning probabilistic finite au-
tomata [20], we can now give our final formulation of the specifi-
cation mining problem:

PROBLEM 2.4. Let IS be the set of all interaction scenarios
with an API or ADT that manipulate no more than k data objects.
Let M be a target PFSA, and P M be the distribution over IS that
M generates. Intuitively, P M assigns high probabilities to correct
traces and low probabilities to incorrect traces.

Given a confidence parameter δ > 0 and an approximation pa-
rameter ε > 0, efficiently find with probability at least 1 − δ a
PFSA

�

M such that its distribution P
�

M is an ε-good approximation
of P M . “Efficiently” means that the mining algorithm must run in
time polynomial in 1/ε, 1/δ, an upper bound n on the number of
states of M , and the size of the alphabet Σ of I .

int instrumented_socket(int domain,
int type,
int proto)

{
int rc = socket(domain, type, proto);
fprintf(the_trace_fp,

"socket(domain = %d, type = %d, "
"proto = %d, return = %d)\n",
domain, type, proto, rc);

return rc;
}

Figure 5: Illustration of trace instrumentation (instrumented
version of socket).

Unfortunately, with reasonable distance metrics D, it has been
shown that Problem 2.4 is not efficiently learnable [16]. An ef-
ficient solution has been found for the case where M and

�

M are
required to be acyclic and deterministic [24]. Since many interest-
ing specifications of program behavior contain loops, we chose to
use a greedy PFSA learning algorithm that is not guaranteed to find
an ε-good approximation of M , but in practice generates succinct
specifications.

3. TRACING AND FLOW DEPENDENCE
ANNOTATION

This section describes the tracing and flow dependence annota-
tion that produce the input to the scenario extractor.
Tracing A tracer instruments a program, so that running it pro-
duces a trace of its interactions with an API or ADT, as well as its
usual results. This paper assumes that a tracer only records function
calls and returns, although depending on the API/ADT, the mining
system allows tracing other events, such as variable accesses or net-
work messages.

Figure 5 shows an illustration of the trace instrumentation,
specifically the C code for an instrumented version of the socket
call. This wrapper calls the real socket and records information
about the interaction: the name of the call (socket), arguments,
and return value. The entire socket API could be traced with an
instrumented version of each function.

Our system currently uses two tracers. The first instruments the
C stdio library, by capturing all library calls and macro invocations
in that API. The second consists of two parts: Perl scripts that au-
tomatically generate instrumented versions of the function calls in
the X11 API, and a tool that edits program executables to replace
calls on these routines with calls to instrumented versions. The lat-
ter tool is based on the EEL Executable Editing Library [17] and
is very general. It takes as input an executable, a library of in-
strumented functions, and a file specifying which calls in the exe-
cutable to replace with calls to instrumented functions. The most
time-consuming part of tracing an interface is writing the instru-
mented version of each API call, but we believe that this step is
easily automated.

All tracers record interactions in the same format, so that the rest
of the mining system is independent of the particular tracer used.
An interaction skeleton is of the form

interaction(attribute0, . . . , attributen)

where interaction names the interaction (that is, the name of a
function) and attribute i names the ith attribute of the interaction.
Skeletons are just a convenient way of grouping interactions. They
do not appear in traces. An interaction instantiates a skeleton by
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assigning values to the attributes:

interaction(attribute0 = v0, . . . , attributen = vn)

When tracing function calls, interaction attributes usually represent
function arguments and return values, as in Figure 2. Structured
data can be represented by flattening the structures. For example,
given this C code

struct S { int x; int y; };
void f(S* s);

the tracer could record interactions with f with instances of this
skeleton

f(s, s_x, s_y)

By convention, this paper names traces with the letter T and in-
teractions with variations of the letter t. The actual interactions in
a trace of length n + 1 are numbered from 0 to n; for example,
T = t0, . . . , tn. The notation t.a denotes the a attribute of the
interaction t.

Traces Dependence analysis

Type inference

Untyped trace
with dependences

Flow dependence annotator

Annotated
traces

Figure 6: Detailed view of the flow dependence annotator.

Flow dependence annotation Flow dependence annotation anno-
tates each input trace with flow dependences and type assignments.
The scenario extractor uses these annotations to extract scenarios—
small sets of dependent interactions—from the trace and to put each
scenario into a canonical form. The detailed view in Figure 6 shows
that flow dependence annotation is a two-step process. First, de-
pendence analysis marks the trace with flow dependences, which
constrain how interactions may be reordered and identify related
interactions that could form scenarios. Next, type inference assigns
a type to each interaction attribute in the trace. The scenario extrac-
tor uses the types to avoid naming conflicts when it puts a scenario
into standard form. Dependence analysis and type inference both
examine the entirety of each input trace, so their running time must
be nearly linear.

The miner treats all values as abstract objects whose underly-
ing representation is unknown. However, interactions can depend
on results from other interactions. For example, in Figure 2, the
bind call (line 2) depends on the socket call (line 1), because
the bind call uses file descriptor 7 returned by the socket call.
The order of these two interactions can not be reversed. By con-
trast, the interactions that manipulate file descriptor 8 (lines 4–9)
could be exchanged with the interactions that manipulate file de-
scriptor 10 (lines 10–13), since these groups of operations are in-
dependent of each other. More importantly, a scenario that contains
all interactions related to the close on line 13 should not include
the interactions on lines 4–9.

Definers: socket.return
bind.so
listen.so
accept.return
close.fd

Users: bind.so
listen.so
accept.so
read.fd
write.fd
close.fd

Figure 7: Attributes of socket interactions that define and use
their values.

Flow dependences connect attributes that change the state of an
abstract object (that is, attributes that define the object) to interac-
tion attributes that depend on the state of an abstract object (that
is, attributes that use the object). Ideally, the dependence analyzer
would annotate a trace with flow dependences using no information
beyond the trace itself. Our current system, however, relies on an
expert to tell the analyzer which attributes of interactions may de-
fine objects, and which attributes may use objects. This work must
be done once for each API/ADT. Extending the system to infer the
sets of definers and users automatically is future work.

For simplicity, the examples in this paper assume that only
socket-valued attributes of the interactions in Figure 2 carry depen-
dences. Figure 7 lists attributes of interactions in Figure 2 that de-
fine and use socket values. We constructed this table as follows. For
each socket, the kernel maintains a hidden data structure. Some of
the fields of that structure carry the state of the socket: whether the
socket is closed or open, whether or not it can accept connections,
and so on. Other fields simply hold data: bytes that are outstanding,
the port to which the socket is connected, and so on. Definers in
Figure 2 typically modify one or more of the state fields of the data
structure. Users typically read one or more of those fields. Fields
of the structure that merely hold data are ignored.

Creating Figure 7 required expert knowledge. In future work,
we hope to replace the expert with an automatic tool. The tool
would exploit the fact that whenever the state fields of a socket’s
data structure change, the set of API calls that may follow also
changes. For example, after a socket is closed, read and write
calls are no longer allowed. Thus, the fact that close changes the
state of the socket can be inferred from the trace: before a close,
there are reads and writes; after a close, there are no reads
and writes.

Given the lists of attributes that define or use objects, dependence
analysis is a dynamic version of the reaching definitions problem.
The analyzer traverses the trace T = t0, . . . , tn in order from t0
to tn, maintaining a table M that maps values to attributes of in-
teractions. Initially, M is empty. If ti.a defines an object o, the
annotator updates M to map o to ti.a. If ti′ .a

′ uses an object o and
M maps o to ti.a, then the analyzer places a flow dependence from
ti.a to ti′ .a

′. The running time of the algorithm scales linearly in
the length of the trace. The space required scales linearly in the
number of different values referenced by the trace.

For notational convenience, we introduce a relation df such that
df (ti.a, ti′ .a

′) if and only if there is a flow dependence from ti.a
to ti′ .a

′. The relation is extended from interaction attributes to
interactions in the natural way: df (ti, ti′ ) holds if and only if there
is some f and f ′ such that df (ti.a, ti′ .a

′).
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Type(socket.return) = T0
Type(bind.so) = T0
Type(listen.so) = T0
Type(accept.so) = T0
Type(accept.return) = T0
Type(read.fd) = T0
Type(write.fd) = T0
Type(close.fd) = T0

Figure 8: The only valid typing for the skeleton attributes used
by the trace in Figure 2.

Type inference is the next step in the flow dependence annota-
tor. Type inference assigns a monomorphic type to each skeleton
attribute that is involved in dependences. If a value never flows
between an instance of one skeleton attribute and an instance of
another skeleton attribute, then type inference assigns the skeleton
attributes separate types. Strictly speaking, flow dependences alone
give the scenario extractor enough information to extract scenarios
and put them into a standard form. However, as Section 4 explains,
the scenario extractor can use the assurance that values will never
flow between certain attributes in a scenario to reduce naming con-
flicts. Type inference infers the most general typing that satisfies
this condition:

If df (ti.a, ti′ .a
′), then the typing gives the skeleton

attribute of ti.a and the skeleton attribute of ti′ .a
′ the

same type.

where a typing Γ0 is more general than a typing Γ1 iff some sub-
stitution for the type variables of Γ0 makes Γ0 = Γ1.

Figure 8 gives a typing for the skeleton attributes used by the
socket trace in Figure 2. In this example, every skeleton attribute
must have the same type because all socket attributes in the trace
are on some dependence chain with an instance of a close.fd
attribute.

The inference algorithm uses Tarjan’s union-find algorithm [26]
and requires time nearly linear in the trace. The type inferer
starts with an initial typing that gives each skeleton attribute
its own unique type. Then, the inferer visits each dependence
df (ti.a, ti′ .a

′) and unifies the types of the skeleton attribute of
ti.a and the skeleton attribute of ti′ .a

′. Type inference is complete
when all dependences have been visited.

4. SCENARIO EXTRACTION AND
AUTOMATON LEARNING

This section explains how the scenario extractor and automaton
learner work. The first tool extracts interaction scenarios—small
sets of interdependent interactions—from annotated traces and pre-
pares them for the automaton learner. The second tool infers spec-
ifications from scenarios, not complete traces, for two reasons.

The primary reason is that scenarios are much shorter than traces
and the running time of our PFSA learner increases as the third
power of the length of its input—this is typical for automaton learn-
ers.

Also, we restrict scenarios to refer to a small number of objects
by bounding the size of the scenario. Section 2 argues that bound-
ing the number of objects makes specification mining tractable.
Bounding the number of objects is not a severe limitation because
verification tools can verify that the specification holds for multiple
bindings of program objects to specification objects. For example,
although the protocol specified in Figure 1 mentions two objects, x

and y, a tool that attempts to verify the program in Figure 1 might
bind y to more than one instance of ns as it simulates the loop in
lines 7–17.

The scenario extractor simplifies and standardizes the scenarios
before passing them to the automaton learner, because our speci-
fication mining system uses an off-the-shelf PFSA learner. An al-
ternative, which we have not tried, is to design a special-purpose
learner for scenarios. Both schemes have benefits and costs.

There are several off-the-shelf learners that learn PFSAs and
similar automata from strings. Since our design transforms sce-
narios to strings, a new learner can be substituted for the learner
currently used. If the new learner learns PFSAs, no changes to the
mining system are necessary. If the learner does not learn PFSAs,
the corer may need to be changed, but none of the components be-
fore the automaton learner in Figure 4 would require modification.
In our experience, this flexible design was helpful. Before settling
on the PFSA learner as use it now, we tried and rejected one other
PFSA learner [21].

On the other hand, a special-purpose learner could defer deci-
sions that our mining system now must make before invoking the
off-the-shelf learner. For example, when the scenario extractor re-
places the concrete values in a scenario with abstract names, it does
so without regard to the names given to values in other scenarios.
Although the extractor always names equivalent scenarios in the
exact same way (see below for details), when two scenarios are
“close” but not equivalent, the extractor’s choice of names can pre-
vent the PFSA learner from merging states that it would be able to
merge with a different naming.

4.1 Scenario extraction

Extraction

Standardization

Simplification

Scenario extractor

scenarios

simplified scenarios

Annotated
traces

Scenario seeds

Abstract
scenario strings

Figure 9: Detailed view of the scenario extractor.

Figure 9 is a detailed view of the scenario extractor. It receives
two inputs. The first is a set of traces, annotated as described in
Section 3. In addition, the user controls which scenarios will be
extracted by supplying a set of scenario seeds. Each seed is an
interaction skeleton. The extractor searches the input traces for
interactions that match the seeds and extracts a scenario from each
interaction. For example, suppose the extractor was given the trace
of socket interactions in Figure 2 and accept(so, return) as
the seed. The extractor would produce two scenarios, one around
the accept on line 4 and the other around the accept on line
10.
Extraction Producing scenarios from input traces is the first step of
the extraction process. Informally, a scenario is a set of interactions
related by flow dependences. Formally, given an annotated trace
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1 socket(domain = 2, type = 1, proto = 0,
return = 7)

2 bind(so = 7, addr = 0x400120, addr_len = 6,
return = 0)

3 listen(so = 7, backlog = 5, return = 0)
4 accept(so = 7, addr = 0x400200,

addr_len = 0x400240,
return = 8) [seed]

5 read(fd = 8, buf = 0x400320, len = 255,
return = 12)

6 write(fd = 8, buf = 0x400320, len = 12,
return = 12)

7 read(fd = 8, buf = 0x400320, len = 255,
return = 7)

8 write(fd = 8, buf = 0x400320, len = 7,
return = 7)

9 close(fd = 8, return = 0)

Figure 10: A scenario extracted from around line 4 of Figure 2,
with N = 10

T = t0, . . . , tn, a scenario is a set S ⊆ {t0, . . . , tn} with the
property:

If ti0 ∈ S, tin ∈ S, and ti0 , . . . , tin is a chain of
flow dependent interactions in T , then tij

∈ S for any
0 ≤ j ≤ n.

The extractor builds a scenario around each interaction in the trace
that matches a scenario seed. For any scenario S, seed (S) ∈ S is
the interaction that initially matches the seed.

A user-tunable parameter N restricts the number of interactions
in the extracted scenarios. Each scenario contains at most N an-
cestors and at most N descendants of the seed interaction. The
extractor prefers ancestors and descendants whose position in the
input trace is close to the position of seed interaction.

Once an interaction ts matching a seed is found, the extractor
uses a two-step algorithm to produce a scenario. First, the extractor
constructs the sets:

Sa = {N closest ancestors of ts}

Sd = {N closest descendants of ts}

Sad = {ts} ∪ Sa ∪ Sd

The extractor uses a simple prioritized worklist algorithm to con-
struct the set of ancestors (descendants). The initial worklist is the
set of immediate ancestors (descendants) of ts. Repeatedly, un-
til the worklist is empty or N ancestors (descendants) are found,
the extractor removes from the worklist the ancestor (descendant)
whose position in the trace is nearest ts, adds it to the set of ances-
tors (descendants), and adds its immediate ancestors (descendants)
to the worklist.

The result, Sad , is not necessarily a scenario, because interac-
tions along some flow dependence chains from ancestors of ts to
descendants of ts might be missing. Any such interactions must
lie in the trace between the earliest ancestor ta in Sad and the lat-
est descendant td in Sad , and must be reachable both by following
flow dependences from some ancestor of ts and by following flow
dependences in reverse from some descendant of ts. Thus, the ex-
tractor searches depth-first forwards from each element of Sa and
backwards from each element of Sd to construct

Sar = {t ∈ [ta, td] | ∃t′ ∈ Sa. t′ reaches t}

Sdr = {t ∈ [ta, td] | ∃t′ ∈ Sd. t′ reaches in reverse t}

The final scenario is S = Sad ∪ (Sar ∩ Sdr ). Figure 10 shows a
scenario extracted from the trace in Figure 2 with N = 10, around

1 socket(return = 7)
2 bind(so = 7)
3 listen(so = 7)
4 accept(so = 7, return = 8) [seed]
5 read(fd = 8)
6 write(fd = 8)
7 read(fd = 8)
8 write(fd = 8)
9 close(fd = 8)

Figure 11: The simplification of the scenario in Figure 10.

1 socket(return = x0:T0) (A)
2 bind(so = x0:T0) (B)
3 listen(so = x0:T0) (C)
4 accept(so = x0:T0, return = x1:T0) [seed] (D)
5 read(fd = x1:T0) (E)
7 read(fd = x1:T0) (E)
6 write(fd = x1:T0) (F)
8 write(fd = x1:T0) (F)
9 close(fd = x1:T0) (G)

Figure 12: Scenario string for the simplified scenario from Fig-
ure 11.

the accept on line 4. The seed is marked. Also note that the
interactions in S inherit the dependences from the annotated trace.
Simplification Given the extracted scenarios, simplification elimi-
nates all interaction attributes that do not carry a flow dependence
in any training traces. The typing inferred by the dependence an-
notator (see Section 3) assigns a type to an skeleton attribute if and
only if an instance of that attribute is involved in a flow dependence
somewhere in a trace. So, simplification preserves an interaction at-
tribute if and only if the corresponding skeleton attribute is typed.
Figure 11 is the simplified version of the scenario in Figure 10.
Standardization Standardization converts a scenario into a sce-
nario string for the PFSA learner. Standardization improves the
performance of the PFSA learner by producing scenario strings so
that similar scenarios receive similar strings.

Figure 12 shows the result of standardizing the scenario in Fig-
ure 11. Standardization applies two transformations: naming and
reordering.

Naming replaces attribute values with symbolic variables. In
Figure 12, value 7 is replaced with the symbolic name x0:T0, and
value 8 is replaced with the symbolic name x1:T0. Naming ex-
poses similarities between different scenarios by naming flow de-
pendences. For example, a scenario extracted around line 10 of
Figure 2 manipulates different socket values (7 and 10 instead of
7 and 8), but naming still calls one of these values x0:T0 and the
other x1:T0.

When a value flows from one attribute to another, naming indi-
cates the dependence by assigning the same name to both attributes.
The dependence annotation typing (section 3) guarantees that, if
two skeleton attributes are assigned different types, values never
flow between instances of those attributes. Thus, naming uses a
separate namespace for attributes of each type. Figure 13 illus-
trates how separate namespaces help expose more similarities to
the PFSA learner. Lines 2 and 3 of S0 and S1 are the same, but
line 1 differs in each scenario. Assume that naming assigns names
to each interaction in turn, starting at the seed interaction. Without
types, naming treats lines 2 and 3 differently.

Reordering standardizes the order of scenario interactions. A
scenario contains interactions that are partially ordered by flow,
anti, and output dependences. That is, each scenario corresponds to
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Original S0 S1

1 A(x=0, y=0) [seed] E(x=0, v=1) [seed]
2 B(x=0, y=0) B(x=0, y=0)
3 C(x=0, y=0) C(x=0, y=0)

Untyped
1 A(x=x0, y=x1) E(x=x0, v=x1)
2 B(x=x0, y=x1) B(x=x0, y=x2)
3 C(x=x0, y=x1) C(x=x0, y=x2)

Typed
1 A(x=x0:T0, y=x0:T1) E(x=x0:T0, v=x0:T2)
2 B(x=x0:T0, y=x0:T1) B(x=x0:T0, y=x0:T1)
3 C(x=x0:T0, y=x0:T1) C(x=x0:T0, y=x0:T1)

Figure 13: Two nearly equivalent scenarios and their scenario
strings, with untyped and typed naming.

Equivalent
scenarios

Simplified scenarios Scenario strings

Standardization

Figure 14: Standardization, as a many-to-one mapping.

a directed acyclic graph (DAG). The order in which the interactions
appear in the original traces is just one legal total order. Reorder-
ing puts two scenarios with the same DAG into the same total order,
even when their trace order differs, so that a PFSA learner is pre-
sented with fewer distinct strings. In Figure 12, reordering swapped
the write on line 6 with the read on line 7.

To a PFSA learner, each interaction in a scenario string is merely
an atomic letter. To emphasize this point, the right-hand side of
Figure 12 replaces each interaction with a shorthand letter. Stan-
dardization uses a small number of letters to represent a given set
of scenarios. Using a small alphabet increases the PFSA learner’s
opportunities to find similarities in the scenario strings. Also, PFSA
learners run more slowly with large alphabets.

The rest of this section discusses our standardization algorithm in
detail. At a high level, standardization is a many-to-one mapping
from simplified scenarios to scenario strings (Figure 14). Under
this mapping, the preimage of a scenario string is a set of equiva-
lent scenarios. Intuitively, equivalent scenarios manipulate abstract
objects in the same way. In the following, we define equivalence,
present our standardization algorithm, and show that equivalence
characterizes the scenarios that standardization maps to the same
scenario string.

Let S = s0, . . . , sn be a simplified scenario. A dependence-
preserving permutation of S is a permutation σ of S such that if
d(si, si′ ), then σ(i) < σ(i′). That is, the permutation does not
swap the source and sink of any dependence. Figure 12 illustrates
a dependence-preserving permutation that swaps the read on line
6 with the write on line 7.

A naming Γ of S replaces each value in S with a symbolic name,
taken from a set X . If si.a is an attribute in S, Γ(si.a) is the
symbolic name given to that attribute in Γ(S). We say that Γ is
dependence-preserving if, for any si.a and si′ .a

′, d(si.a, si′ .a
′) ≡

Γ(si.a) = Γ(si.a
′).

S0 S1

Γ0 Γ1

σ0 σ1

Figure 15: Equivalent scenarios.

Naive(S)
MaxSize := maximum size of a scenario
X := a totally ordered set of MaxSize symbolic names
AllStrings := ∅
Permutes := all dependence-preserving permutations of S

Foreach σ ∈ Permutes
Namings := all dependence-preserving namings of σ(S) from X
Foreach Γ ∈ Namings

Add Γ(σ(S)) to AllStrings
Return the lexicographically smallest element of AllStrings

Figure 16: Naive standardization algorithm.

Now let S0 = s0,0, . . . , s0,n and S1 = s1,0, . . . , s1,n be
two simplified scenarios. S0 and S1 are equivalent iff there are
dependence-preserving permutations σ0 of S0 and σ1 of S1 and
dependence-preserving namings Γ0 of σ0(S0) and Γ1 of σ1(S1)
such that Γ0(σ0(S0)) = Γ1(σ1(S1)) (Figure 15). In fact, the
choice of σ0 and Γ0 is not important. We assert that if S0 and
S1 are equivalent, then for any dependence-preserving σ0 of S0

and dependence-preserving Γ0 of σ0(S0), there is a dependence-
preserving σ1 of S1 and a dependence-preserving Γ1 of σ1(Γ1)
such that Γ0(σ0(S0)) = Γ1(σ1(S1)).

Figure 16 presents a naive standardization algorithm. Naive
tries all dependence-preserving permutations of S and all
dependence-preserving namings of each permutation and returns
the scenario string that comes first in lexicographic order. If Naive
assigns S0 and S1 the same scenario string, then S0 and S1 are
equivalent, since the algorithm has found permutations and nam-
ings that make them equal. And, if S0 and S1 are equivalent, then
Naive generates the same AllStrings set for both of them.
So, equivalence characterizes the preimage of Naive, as promised.
However, the running time of the algorithm is exponential in |X|
and |S|.

The algorithm in Figure 17 removes the exponential behavior in
|X| by considering only one standard naming for each permuted
scenario. This optimization is safe because if S0 and S1 are equiv-
alent up to a dependence-preserving naming, then they differ only
in their values, and StandardName does not depend on the iden-
tities of the values at attributes, but only on their types and the
dependences that they carry.
StandardName draws names from separate name spaces for

separate types. The GetNextName operation returns the next
available name in a name space in some fixed order, and resetting a
name space causes it to begin again with the first name in the space.
StandardName names the seed interaction first, and then works
outward. Because the name of a value must be chosen consistently,
the constraints on naming increase as interactions are named. In-
teractions near seeds are most likely to be similar across scenarios,
so they are named first.

The worst-case running time of Better is still exponential in
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NameInteraction(s)
Foreach attribute s.a

Type := the type of s.a’s skeleton attribute
Value := the value at s.a

NameSpace := name space for Type
If NameSpace[Value] has not been set
NameSpace[Value] := GetNextName(NameSpace)

Replace Value with NameSpace[Value] in s.a

StandardName(S = s0, . . . , sn)
is := index of the seed in S

NameInteraction(sis)
dist := 1
While is − dist ≥ 0 or is + dist ≤ n

If is − dist ≥ 0 NameInteraction(sis−dist)
If is + dist ≤ n NameInteraction(sis+dist)
dist := dist+ 1

Better(S)
Reset all name spaces
AllStrings := ∅
Permutes := all dependence-preserving permutations of S

Foreach σ ∈ Permutes
Snamed := StandardName(σ(S))
Add Snamed to AllStrings

Return the lexicographically smallest element of AllStrings

Figure 17: Better standardization algorithm.

|S|. We can not expect to do better in the worst-case, because
Better can be used to solve the DAG-isomorphism problem by
encoding arbitrary DAGs as scenarios, and DAG-isomorphism is
NP-complete. However, better performance is possible in the com-
mon case, since trace scenarios are not arbitrary DAGs. In particu-
lar, the interactions in a scenario have names and named attributes.
Our final standardization algorithm (Figure 18) uses those names
to reduce the number of permutations it considers.
Standardize considers only dependence-preserving permu-

tations that put the skeletons of the interactions in the smallest pos-
sible lexicographic order. Although there can be an exponential
number of such orderings, there is often only one. In that case, the
set of interactions Selected (line *) always has one element, and
the recursion never branches. With an appropriate implementation
of OfLeastKinds (which sorts the interactions), the algorithm
runs in that case in time proportional to n log n. In our experience,
the time spent running Standardize is an insignificant part of
the scenario extraction time.

4.2 Automaton learning
This section presents the algorithms and data structures used in

learning the specification automaton. The automaton A is an NFA
with edges labelled by standardized interactions, whose language
includes the most common substrings of the scenario strings ex-
tracted from the training traces, plus other strings that the PFSA
learner adds as it generalizes. Automaton learning has two steps.
First, an off-the-shelf learner learns a PFSA. Then, the corer re-
moves infrequently traversed edges and converts the PFSA into an
NFA.

The PFSA learner is an off-the-shelf learner [22] that learns a
PFSA that accepts the training strings, plus other strings. The
learner is a variation on the classic k-tails algorithm [4]. Briefly,
the k-tails algorithm works as follows. First, a retrieval tree is con-
structed from the input strings. The algorithm then computes all
strings of length up to k (k-strings) that can be generated from each
state in the trie. If two states qa and qb generate the same k-strings,

OfLeastSkeletons(S)
Return {s ∈ S | ¬∃s′. skeleton of s′ precedes

skeleton of s lexicographically}

RestrictedPermutations(S, Pos)
Permutes := ∅
Ready := {s ∈ S | ¬∃s′ ∈ S. d(s′, s)}

* Selected := OfLeastSkeletons(Ready)
Foreach s ∈ Selected

Rest := RestrictedPermutations(S − {s},Pos + 1)
Foreach σr ∈ Rest

σ := σr ∪ {Pos → s}
Permutes := Permutes ∪ {σ}

Return Permutes

Standardize(S)
Reset all name spaces
AllStrings := ∅
Permutes := RestrictedPermutations(S, 0)
Foreach σ ∈ Permutes

Snamed := StandardName(σ(S))
Add Snamed to AllStrings

Return the lexicographically smallest element of AllStrings

Figure 18: Final standardization algorithm.
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Figure 19: A PFSA for which dropping edges with low weights
does not identify the hot core. Edge labels are omitted.

they are merged. The process repeats until no more merges are pos-
sible. The PFSA learner modifies k-tails by comparing how likely
two states are to generate the same k-strings.

The resulting PFSA accepts a superset of all the strings in the
training scenarios, due to the generalizations performed by the
learner. The parameter N that controls the size of the training sce-
narios is chosen by the user to be large enough to include all of
the interesting behavior. It is therefore very likely that the ends of
the training scenarios contain uninteresting behavior. This is in fact
what we see experimentally: the typical PFSA has a “hot” core with
a few transitions that occur frequently, with the core surrounded by
a “cold” region with many transitions, each of which occurs infre-
quently. The corer whittles away the “cold” region, leaving just the
“hot” core.

The corer can not simply drop edges with low weights. Consider
the PFSA in Figure 19 (edge labels are not important and are omit-
ted). Four edges have a weight of 5, which is low compared to the
three edges with a weight of 10000. However, any string through
this PFSA must traverse the edge out of the start state and the edge
into the end state. Despite their low weight, a string is more likely
to traverse these edges than it is to traverse the edges with a weight
of 10000. Thus, a better measure of an edge’s “heat” is its likeli-
hood of being traversed while generating a string from the PFSA.
The problem of computing this measure is known as the Markov
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satisfying A
Scenario strings

Language of A Simplified scenarios
satisfying A
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Concrete scenarios
satisfying A

Standardization-1

Figure 20: Scenarios that satisfy A.

chain problem [15]. The problem reduces to inverting a square ma-
trix with the number of rows and columns equal to the number of
transitions in the PFSA.

After computing the heat of each edge, the corer removes all
edges below a cutoff parameter, removes unreachable states from
the PFSA, and drops the frequencies on the edges. The result is an
NFA, which a human can validate by inspection.

5. VERIFICATION
This section discusses how verification tools can use the miner’s

specifications. Program verification tools distinguish programs that
satisfy a specification from programs that do not. Before we can
discuss these tools, we must clarify what we mean by “satisfying a
specification”.

Let A be a specification. By construction, the language of A con-
tains a set of scenario strings (Figure 20). The containment might
be strict since the automaton learner can introduce strings into A
that are not scenario strings. Because standardization is a many-
to-one mapping (see Figure 14), each scenario string corresponds
to a set of simplified scenarios. In turn, each scenario string corre-
sponds to a set of concrete scenarios. Figure 20 shows the chain of
mappings. We say that the scenarios of Figure 20 satisfy A.

Now let T be an interaction trace. We say that T satisfies A if for
every seed interaction is ∈ T , there is an interaction scenario Sis

seeded by is such that Sis satisfies A. We say that a program P sat-
isfies a specification A if any interaction trace T of P ’s execution
satisfies A.

Constructing program verification tools for specifications is out-
side the scope of this paper, but is the subject of ongoing research.
There are two ways that such a tool could work. First, the tool
could construct a scenario that satisfies A for each interaction seed
encountered while simulating some abstraction of P , reporting an
error if no such scenario can be constructed for some seed. Al-
ternatively, the tool could first translate A into an automaton that
generates traces instead of scenario strings. The trace automaton
generates all traces that satisfy A. The verification tool would then
exhaustively search for a trace that is not in A, reporting an error if
one is found. Both sorts of tools must be able to simulate simplifi-
cation and standardization.

Figure 21 shows a trace verification algorithm (not a program
verification algorithm) that works in the first way. This is the al-
gorithm used in our experiments (see Section 6). Verify takes
a trace, a specification, and a maximum scenario size. It attempts
to verify that the trace satisfies the specification by extracting suc-
cessively larger scenarios until it finds a satisfactory one or until
it reaches the maximum scenario size. Because interactions in the
trace are not necessarily ordered as they were in the training traces,
the algorithm does not use exactly the same extraction algorithm
as the learner. Instead, Extract∗(ti,Size) returns all scenarios
seeded by ti with a total of exactly Size ancestors and descen-
dants. The distance between the seed and its ancestors and descen-
dants is not important.

Satisfies(S, Spec)
If S is in the language of Spec

Return true
Else Return false

Verify(T = t0, . . . , tn, Spec, MaxSize)
Loop:
Foreach ti ∈ SeedsOf(T )

Size := 0
While Size ≤ MaxSize
Scenarios := Extract∗(ti, Size)
Foreach S ∈ Scenarios

Sstd := Standardize(S)
If Satisfies(Sstd, Spec)

Next Loop
Size := Size+ 1

Return Fails(ti)

Figure 21: Trace verification algorithm.

Name Source Static seeds Scenarios
bitmap distrib 1 6
xclipboard distrib 2 2
xconsole distrib 1 1
xcutsel distrib 1 4
xterm distrib 1 6
clipboard contrib 1 2
cxterm contrib 1 9
display contrib 4 16
e93 contrib 1 2
kterm contrib 1 4
nedit contrib 2 2
pixmap contrib 1 11
rxvt contrib 1 4
ted contrib 3 9
test canvas contrib 1 4
ups contrib 1 3
xcb contrib 1 11

Table 1: X11 client programs studied in the experiment.

6. EXPERIMENTAL RESULTS
This section presents the results of an experiment in mining spec-

ifications from traces of X11 programs.
We analyzed traces from programs that use the Xlib and X Toolkit

Intrinsics libraries for the X11 windowing system. The traces record
an interaction for each X library call and callback from the X library
to client code. The interaction attributes include all arguments and
return values of calls, plus the fields of the structures that represent
X protocol events. The tracing tool uses the Executable Editing
Library (EEL) [17] to instrument Solaris/SPARC executables.

Traces were collected from full runs of widely distributed pro-
grams that use the X11 selection mechanism. We studied the selec-
tion mechanism since the Interclient Communication Conventions
Manual (ICCCM) [25] gives English descriptions of several rules
for how well-behaved programs should use the mechanism. The
experiment concentrated on a rule that specifies how programs ob-
tain ownership of the selection: the rule says that a client calling
XtOwnSelection or XSetSelectionOwner must pass in a
timestamp derived from the X event that triggered the call.

Table 1 lists each program studied, its origin (either the X11 dis-
tribution or the X11 contrib directory), the number of static calls
to the X library routines chosen as seeds, and the number of training
scenarios extracted from each trace. One of the authors gathered
the traces by running each program for a few minutes, while trying
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to exercise the selection code by doing cut-and-paste operations, as
well as exercising as much other functionality as possible in a short
time.

Specification mining depends on a sizable training set of well-
debugged traces. In our case, the number of training traces was
small, and as it turned out, several contained violations of the rule.
As a result, the miner was not able to discover the rule when trained
on all of the programs. In order to learn the rule, we needed to
remove the buggy traces from the training set. We hypothesized
that our miner could help find the bugs, even with a poor training
set. Identifying the buggy traces without the miner would require
inspecting each trace manually for bugs.

Using the miner, we predicted that, while we would have to in-
spect the first few traces, once a few correct traces had been col-
lected, the miner’s rule could be used to automatically validate the
remaining traces. In this experiment, we arranged the client pro-
grams in random order and went through the following iterative
process:

Run the first program and gather a trace
Mine a specification from the trace
Expert examines the specification
Expert extracts hot core
If the specification is not correct

Select another random order and start over
For each remaining client program in order

Run the program and gather a trace
Verify the trace against the specification
If verification succeeds

Add the trace to the training set
Generate a new specification

Else
Examine the scenarios that failed
If no scenario violates the ICCCM rule

Add the trace to the training set
Generate a new, more general specification

Else
Report the bug

For each trace that fails to verify, the expert either marks it as
buggy or includes it in the training set. The expert decides whether
the initial specification is correct: in our experiment, we accepted
the initial specification if we did not see any obvious bugs in the
first set of training scenarios. The expert also needs to extract the
hot core, since the training set is too small to use the corer.

The experiment tested three hypotheses:

Hypothesis 1 The process will find bugs and reduce the number of
traces that the expert must inspect.

Hypothesis 2 The miner’s final specification will match the rule in
the ICCCM.

Hypothesis 3 The corer and the human will agree on which states
in the final PFSA belong in the final specification.

Table 2 lists the client programs in the order in which they were
processed. Out of the first six traces accepted (not including the ini-
tial trace), five were rejected by an overly narrow specification. At
this point, the specification seemed to stabilize: out of the next four
accepted, only one was initially rejected by the dynamic verifier.
The expert did not have to inspect 4 out of the 16 the traces, which
supports the second part of Hypothesis 1. We conjecture that if the
process had continued, the false rejection rate would have contin-
ued to drop.

Name Verifies? Reason for failure Action
xcb n/a n/a accept
bitmap no spec. too narrow accept
ups no bug! reject
ted no spec. too narrow accept
rxvt yes n/a accept
xterm no spec. too narrow accept
display no spec. too narrow accept
xcutsel no spec. too narrow accept
kterm yes n/a accept
pixmap yes n/a accept
cxterm yes n/a accept
xconsole no benign violation reject
nedit no spec. too narrow accept
e93 no bug! reject
xclipboard no benign violation reject
clipboard no benign violation reject

Table 2: Results of processing each client program, in the order
in which they were processed.

  = XNextEvent(time = X21_0)

         = XIfEvent(time = X21_0)
  = XtDispatchEvent(time = X21_0)      = XtEventHandler(time = X21_0)

  = XtOwnSelection(time = X21_0)
  = XSetSelectionOwner(time = X21_0)
  = XGetSelectionOwner

  = XtActionHookProc(time = X21_0)
  = XInternAtom

  = XNextEvent(time = X21_0)      = XtDispatchEvent(time = X21_0)
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Figure 22: The NFA from the selection ownership specification.

Five of the programs violated the rule in the ICCCM. We found
three programs with benign violations of the specification and two
programs with bugs. The specification applies to programs that use
the selection mechanism to do cut-and-paste, while the programs
with benign violations used the selection mechanism to implement
their own communication protocol. These violations indicate that
the rule described by the ICCCM is not universally applicable and
that the document should be clarified. Thus, the specification miner
helped find bugs and a documentation omission (an unexpected
benefit).

Figure 22 is the specification from the experiment. For legibil-
ity’s sake, the figure omits some arguments. These arguments did
not participate in dependences within the core of the specification.
The specification is compact, with six states and nine edges. It also
matches the English rule very closely, with most complexity aris-
ing from the several ways in which the X API receives an event. In
addition, the specification exposes a common pattern in which the
client calls XSetSelectionOwner repeatedly until XGetSe-
lectionOwner indicates that the call was successful.

Our final hypothesis was that the corer and the expert would
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agree on which states in the final PFSA should be thrown out. The
final PFSA had 27 states. The expert, who did not have access to the
corer’s results, threw out 15 of these and retained 12; the remaining
twelve were merged to form the NFA in Figure 22. The corer and
the expert disagreed on five out of the 27 states, or 19%. The corer
assigned likelihoods lower than 6% to 13 of the 15 deleted states,
and likelihoods higher than 13% to 9 of the 12 retained states. The
other 2 deleted states had likelihoods of 13% and 20%, while the
remaining retained states had likelihoods of 5%, 6%, and 9%.

7. RELATED WORK
Ernst et al. also proposed automatic deduction of formal specifi-

cations [11]. Their Daikon tool works by learning likely invariants
involving program variables from dynamic traces. The resulting
formal specifications is the key difference between their approach
and ours. Daikon’s specifications are arithmetic relationships that
hold at specific program points (e.g., a precondition x < y at entry
to a procedure f ). By contrast, our specifications express temporal
and data-dependence relationships among calls to an API. Our tem-
poral specifications capture a different aspect of program behavior
than Daikon’s predicates on values and structures. The two forms
of specifications are complementary, but naturally require radically
different learning algorithms.

Recently, Ernst et al. presented techniques for suppressing parts
of their learned specifications that are not useful to a program-
mer [19]. In the context of our temporal specifications, this result
corresponds to appropriately selecting the heavy core of the initial
PFSA.

Another related tool is Houdini [12], an annotation assistant
for ESC/Java. Starting from an initial (guessed) candidate set of
annotations, which are similar to those of Daikon, Houdini uses
ESC/Java to refute invalid annotations. The focus of Houdini is on
annotating points of a single program with true properties, while
the focus of our tool is on discovering temporal properties that hold
across all programs that use an interface.

Other authors have described tools that extract automaton-based
models. Cook and Wolf describe a tool for extracing FA models
of software development processes from traces of events [8]. Our
work differs in that we extract specifications from program traces,
which must be reduced to a simpler form before they are palat-
able for an FA learner. Ghosh et al. describe several techniques
for learning the typical behavior of programs that make system
calls [13, 18]. Since they intend their models for intrusion detec-
tion, the models need only characterize a particular program’s be-
havior, while our miner finds rules that are generally applicable and
understandable by humans. Wagner and Dean’s intrusion detection
system also extracts automaton models, but from source code, not
traces [27]. Their system also extracts models that apply only to
a single program. Finally, Reiss and Renieris also extract struc-
ture from traces [23], but they model the sequence of operations on
individual objects, not the data and temporal dependences across
several objects.

8. CONCLUSION
This paper addresses an important problem in the program-

verification tool chain, namely the problem of semi-automatic for-
mulation of correctness specifications that could be accepted by
model checkers and other similar tools. We have formulated the
problem as a machine learning problem and provided an algorithm
based on a reduction to finite automaton learning. While some
more experimental work remains ahead of us, initial experience is
promising.
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