
Yesterday, My Program Worked.
Today, It Does Not. Why?

Andreas Zeller

Universitlt Passau
Lehrstuhl fiir Software-Systeme

Innstral3e 33, D-94032 Passau, Germany
zeller@acm.org

Abstract. Imagine some program and a number of changes. If none of these
changes is applied (“yesterday”), the program works. If all changes are applied
(“today”), the program does not work. Which change is responsible for the fail-
ure? We present an efficient algorithm that determines the minimal set of failure-
inducing changes. Our delta debugging prototype tracked down a single failure-
inducing change from 178,000 changed GDB lines within a few hours.

1 A True Story

The GDB people have done it again. The new release 4.17 of the GNU debugger [6]
brings several new features, languages, and platforms, but for some reason, it no longer
integrates properly with my graphical front-end DDD [lo]: the arguments specified
within DDD are not passed to the debugged program. Something has changed within
GDB such that it no longer works for me. Something? Between the 4.16 and 4.17 re-
leases, no less than 178,000 lines have changed. How can I isolate the change that
caused the failure and make GDB work again?

The GDB example is an instance of the “worked yesterday, not today” problem:
after applying a set of changes, the program no longer works as it should. In finding the
cause of the regression, the differences between the old and the new configuration (that
is, the changes applied) can provide a good starting point. We call this technique delta
debugging-determining the causes for program behavior by looking at the differences
(the deltas).

Delta debugging works the better the smaller the differences are. Unfortunately,
already one programmer can produce so many changes in a day such that the differences
are too large for a human to trace-let alone differences between entire releases. In
general, conventional debugging strategies lead to faster results.

However, delta debugging becomes an alternative when the differences can be nar-
rowed down automatically. Ness and Ngo [5] present a method used at Cray research
for compiler development. Their so-called regression containment is activated when the
automated regression test fails. The method takes ordered changes from a configuration
management archive and applies the changes, one after the other, to a configuration
until its regression test fails. This narrows the search space from a set of changes to a
single change, which can be isolated temporarily in order to continue development on
a working configuration.

254

Regression containment is an effective delta debugging technique in some settings,
including the one at Cray research. But there are several scenarios where linear search
is not sufficient:

Interference. There may be not one single change responsible for a failure, but a com-
bination of several changes: each individual change works fine on its own, but
applying the entire set causes a failure. This frequently happens when merging the
products of parallel development-and causes enormous debugging work.

Inconsistency. In parallel development, there may be inconsistent configurations-
combinations of changes that do not result in a testable program. Such configu-
rations must be identified and handled properly.

Granularity. A single logical change may affect several hundred or even thousand
lines of code, but only a few lines may be responsible for the failure. Thus, one
needs facilities to break changes into smaller chunks-a problem which becomes
evident in the GDB example.

In this paper, we present automated delta debugging techniques that generalize re-
gression containment such that interference, inconsistencies, and granularity problems
are dealt with in an effective and practical manner. In particular, our dd+ algorithm

- detects arbitrary interferences of changes in linear time
- detects individual failure-inducing changes in logarithmic time
- handles inconsistencies effectively to support fine-granular changes.

We begin with a few definitions required to present the basic dd algorithm. We
show how its extension G!& handles inconsistencies from fine-granular changes. Two
real-life case studies using our WYNOT prototype’ highlight the practical issues: in par-
ticular, we reveal how the GDB failure was eventually resolved automatically. We close
with discussions of future and related work, where we recommend delta debugging as
standard operating procedure after any failing regression test.

2 Configurations, Tests, and Failures

We first discuss what we mean by configurations, tests, and failures. Our view of a
configuration is the broadest possible:

Definition 1 (Configuration). Let C = {Al, AZ, . . . , A,,) be the set of all possible
changes Ai. A change set c C C is called a configuration.

A configuration is constructed by applying changes to a baseline.

Definition 2 (Baseline). An empty configuration c = 0 is culled a baseline.

Note that we do not impose any constraints on how changes may be combined; in
particular, we do not assume that changes are ordered. Thus, in the worst case, there are
2” possible configurations for n changes.

To determine whether a failure occurs in a configuration, we assume a testing func-
tion. According to the POSIX 1003.3 standard for testing frameworks [3], we distinguish
three outcomes:

* WYNOT = “Worked Yesterday, NOt Today”

255

- The test succeeds (PASS, written here as d)
- The test has produced the failure it was indented to capture (FAIL, X)
- The test produced indeterminate results (UNRESOLVED, ?),2

Definition 3 (Test). The function test : 2c + {X, d, ?) determines for a configuru-
tion c E C whether some given failure occurs (X) or not (/) or whether the test is
unresolved (?).

In practice, test would construct the configuration from the given changes, run a
regression test on it and return the test outcome.3

Let us now model our initial scenario. We have some configuration “yesterday” that
works fine and some configuration “today” that fails. For simplicity, we only consider
the changes present “today”, but not “yesterday”. Thus, we model the “yesterday” con-
figuration as baseline and the “today” configuration as set of all possible changes.

Axiom 1 (Worked yesterday, not today). test(0) = (/ (“yesterday”) and test(C) = X
(“today “) hold.

What do we mean by changes that cause a failure? We are looking for a specific
change set-those changes that make the program fail by including them in a configu-
ration. We call such changes failure-inducing.

Definition 4 (Failure-inducing change set). A change set c G C is failure-inducing if

Vc’ (c E c’ G C --f test(c’) # ti)

holds.

The set of all changes C is failure-inducing by definition. However, we are more
interested in finding the minimal failure-inducing subset of C, such that removing any
of the changes will make the program work again:

Definition 5 (Minimal failure-inducing set). A failure-inducing change set B G C is
minimal if

holds.

Vc c B (test(c) # X)

And exactly this is our goal: For a configuration C, to find a minimal failure-inducing
change set.

3 Configuration Properties

If every change combination produced arbitrary test results, we would have no choice
but to test all 2” configurations. In practice, this is almost never the case. Instead, con-
figurations fulfill one or more specific properties that allow us to devise much more
efficient search algorithms.

2 POSIX 1003.3 also lists UNTESTED and UNSUPPORTED outcomes, which are of no relevance here.
3 A single test case may take time. Recompilation and re-execution of a program may be a matter

of several minutes, if not hours. This time can be considerably reduced by smart recompilation
techniques [7] or caching derived objects [4].

256

The first useful property is monotony: once a change causes a failure, any configu-
ration that includes this change fails as well.

Definition 6 (Monotony). A configuration C is monotone if

Vc G C (test(c) = Y + Vc’ 2 c (test(c’) f d)) (1)

holds.

Why is monotony so useful? Because once we know a change set does not cause a
failure, so do all subsets:

Corollary 1. Let C be a monotone con.guration. Then,

Vc E C (test(c) = cf -+ V c’ G c(test(c’) + X)) (2)

holds.

Proofi By contradiction. For all configurations c C C with test(c) = (/, assume that
3’ E c(test(c’) = W) holds. Then, definition 6 implies test(c) # (/, which is not the
case.

Another useful property is unambiguity: a failure is caused by only one change
set (and not independently by two disjoint ones). This is mostly a matter of economy:
once we have detected a failure-inducing change set, we do not want to search the
complement for more failure-inducing change sets.

Definition 7 (Unambiguity). A configuration C is unambiguous if

Vq, c2 s C (test(q) = X A test(c2) = X + test(cl flc2) # (/)

holds.

(3)

The third useful property is consistency: every subset of a configuration returns an
determinate test result. This means that applying any combination of changes results in
a testable configuration.

Definition 8 (Consistency). A con$guration C is consistent if

Vc C_ C (test(c) # ?)

holds.

If a configuration does not fulfill a specific property, there are chances that one of
its subsets fulfills them. This is the basic idea of the divide-and-conquer algorithms
presented below.

4 Finding Failure-Inducing Changes

For presentation purposes, we begin with the simplest case: a configuration c that is
monotone, unambiguous, and consistent. (These constraints will be relaxed bit by bit in
the following sections.) For such a configuration, we can design an efficient algorithm

257

based on binary search to find a minimal set of failure-inducing changes. If c contains
only one change, this change is failure-inducing by definition. Otherwise, we partition c
into two subsets cl and c2 and test each of them. This gives us three possible outcomes:

Found in cl. The test of cl fails--cl contains a failure-inducing change.
Found in ~2. The test of c2 fails-c;! contains a failure-inducing change.
Interference. Both tests pass. Since we know that testing c = cl U c2 fails, the failure

must be induced by the combination of some change set in cl and some change set
in ~2.

In the first two cases, we can simply continue the search in the failing subset, as
illustrated in Table 1. Each line of the diagram shows a configuration. A number i
stands for an included change Ai; a dot stands for an excluded change. Change 7 is the
one that causes the failure-and it is found in just a few steps.

Step cj Configuration test
1 Cl 1234.. . . v'
2 c2 5 6 7 a K
3q....56.. d
4 c2 7 a x
5 Cl * . * * . . 7 . X 7 is found

Result 7 ,

Table 1. Searching a single failure-inducing change

But what happens in case of interference ? In this case, we must search in both
halves-with all changes in the other half remaining applied, respectively. This variant
is illustrated in Table 2. The failure occurs only if the two changes 3 and 6 are applied
together. Step 3 illustrates how changes 5-7 remain applied while searching through l-
4; in step 6, changes l-4 remain applied while searching in 5-7.4

Step
1
2
3
4
5
6
7

Rest

Ci

G

c2
Cl
c2
Cl
Cl
Cl -

Configuration
1234.. . .
1 . . . 5 6 7 a
1 2 . . 5 6 7 a
1 . 345678
. * 3 . 5 6 7 a
123456..
12345a.e
. . 3..6..

test
r/
d
d
K
X 3 is found
x
V’ 6 is found

Table 2. Searching two failure-inducing changes

We can now formalize the search algorithm. The function &L!(C) returns all failure-
inducing changes in c; we use a set Y to denote the changes that remain applied.

4 Delta debugging is not restricted to programs alone. On this I&T$ document, 14 iterations of
manual delta debugging had to be applied until Table 2 eventually re-appeared on the same
page as its reference.

258

Algorithm 1 (Automated delta debugging). The automated delta debugging algo-
rithm dd(c) is

d(c) = d&(c, 0) where

&(c, r) = let cl, c2 g c with cl U c2 = c, cl II c2 = 0, ICI 1 X 1~21 X ICI/;?

C if ICI = 1 (“found”)

. dd2(cl, r>
In dd2Cc2, r>

i

else if test(c1 U r) = X (“in cl”)

else if test(c2 U r) = X (“in ~2”)

d&(cr , c2 U r) U d&(c2, cl U r) otherwise (“interference”)

The recursion invariant (and thus precondition) for dd2 is test(r) = cf A test(c U r) = X.

The basic properties of dd are discussed and proven in [9]. In particular, we show
that dd(c) returns a minimal set of failure-inducing changes in c if c is monotone, un-
ambiguous, and consistent.

Since dd is a divide-and-conquer algorithm with constant time requirement at each
invocation, dd’s time complexity is at worst linear. This is illustrated in Table 3, where
only the combination of all changes is failure-inducing, and where dd requires less than
two tests per change to find them. If there is only one failure-inducing change to be
found, dd even has logarithmic complexity, as illustrated in Table 1.

Step
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Resu

ci
K
c2

Cl

c2

Cl

c2

Cl

c2

Cl

c2

Cl

c2

Cl

c2 -

Configuration
1234.. . .
* . . * 5 6 7 8
1 2 . . 5 6 7 8
. . 345678
1 . 345678
32345678
123. 5 6 7 8
1 2 .45678
123456..
1234..78
12345.78
1234.678
1234567.
123456.8
12345678

test
v
d
d
d
I/ 2 is found
(/ 1 is found
d 4is found
(/ 3 is found
(/
d
ti 6 is found
(/ 5 is found
(/ 8is found
(/ 7 is found

Table 3. Searching eight failure-inducing changes

Let us now recall the properties dd requires from configurations: monotony, unam-
biguity, and consistency. How does dd behave when c is not monotone or when it is
ambiguous? In case of interference, dd still returns a failure-inducing change set, al-
though it may not be minimal. But maybe surprisingly, a single failure-inducing change
(and hence a minimal set) is found even for non-monotone or ambiguous configura-
tions:

- If a configuration is ambiguous, multiple failure-inducing changes may occur; dd
returns one of them. (After undoing this change set, rerun dd to find the next one.)

259

- If a configuration is not monotone, then we can devise “undoing” changes that,
when applied to a previously failing configuration c, cause c to pass the test again.
But still, today’s configuration is failing: hence, there must be another failure-
inducing change that is not undone and that can be found by dd.

5 Handling Inconsistency

The most important practical problem in delta debugging is inconsistent configurations.
When combining changes in an arbitrary way, such as done by dd, it is likely that several
resulting configurations are inconsistent-the outcome of the test cannot be determined.
Here are some of the reasons why this may happen:

Integration failure. A change cannot be applied. It may require earlier changes that
are not included in the configuration. It may also be in conflict with another change
and a third conflict-resolving change is missing.

Construction failure. Although all changes can be applied, the resulting program has
syntactical or semantical errors, such that construction fails.

Execution failure. The program does not execute correctly; the test outcome is unre-
solved.

Since it is improbable that all configurations tested by dd have been checked for
inconsistencies beforehand, tests may well outcome unresolved during a dd run. Thus,
dd must be extended to deal with inconsistent configurations.

Let us begin with the worst case: after splitting up c into subsets, all tests are
unresolved-ignorance is complete. How we increase our chances to get a resolved
test? We know two configurations that are consistent: 0 (“yesterday”) and C (“today”).
By applying less changes to “yesterday’s” configuration, we increase the chances that
the resulting configuration is consistent-the difference to “yesterday” is smaller. Like-
wise, we can remove less changes from “today’s” configuration and decrease the differ-
ence to “today”.

In order to apply less changes, we can partition c into a larger number of subsets.
The more subsets we have, the smaller they are, and the bigger are our chances to get
a consistent configuration-until each subset contains only one change, which gives us
the best chance to get a consistent configuration. The disadvantage, of course, is that
more subsets means more testing.

To extend the basic dd algorithm to work on an arbitrary number n of subsets
cl>--* rcnr we must distinguish the following cases:

Found. If testing any q fails, then ci contains a failure-inducing subset. This is just as
in dd.

Interference. If testing any ci passes and its complement Fi passes as well, then the
change sets ci and & form an interference, just as in dd.

Preference. If testing any ci is unresolved, and testing Ei passes, then ci contains a
failure-inducing subset and is preferred. In the following test cases, Ci must remain
applied to promote consistency.

260

As a preference example, consider Table 4. In Step 1, testing cl turns out unre-
solved, but its complement Cl = c2 passes the test in Step 2. Consequently, c2 can-
not contain a bug-inducing change set, but cl can-possibly in interference with ~2,
which is why c2 remains applied in the following test cases.

Step Ci Configuration test

1 Cl 1234.. . . ? Testing cl, c2
2 c2 . * . . 5 6 7 8 d + Prefer cl
3 cl 1 2 . . 5 6 7 8 . . .

Table 4. Preference

Try again. In all other cases, we repeat the process with 2n subsets-resulting with
twice as many tests, but increased chances for consistency.
As a “try again” example, consider Table 5. Change 8 is failure-inducing, and
changes 2, 3 and 7 imply each other-that is, they only can be applied as a whole.
Note how the test is repeated first with n = 2, then with n = 4 subsets.

Step ci
1 x
2 c2 =?1
3 Cl
4 c2
5 c3
6 c4
7 51
8 52
9 E3

10 E4

, Configuration
1234....
. . . 5 6 7 8
12..
. . 34.. .
. . . . 56..
. , . . . 7 8
. . 345678
12.. 5 6 7 8
1234..78
123456..

test
? Testing cl, c2
? + Try again
? Testing cl,. . . , c4
?
tf
?
? Testing complements
?
x
? =+ Try again

Table 5. Searching failure-inducing changes with inconsistencies

In each new run, we can do a little optimizing: all ci that passed the test can be ex-
cluded from c, since they cannot be failure-inducing. Likewise, all ci whose com-
plements Ci failed the test can remain applied in following tests. In our example,
this applies to changes 5 and 6, such that we can continue with y1 = 6 subsets.
After testing each change individually, we finally find the failure-inducing change,
as shown in Table 6.

Step 1 ci 1 Configuration
llIc,ll , . . 5 6 . .
12c2.2,.56..
13c3..3.56..
14q...456..
15~~. . . . 567.
16c6....56.8

Result 8

test
ti Testingc1,... ,cg
?
?
(/
?
K 8 is found

Table 6. Searching failure-inducing changes with inconsistencies (continued)

261

Note that at this stage, changes 1, 4, 5 and 6 have already been identified as not
failure-inducing, since their respective tests passed. If the failure had not been in-
duced by change 8, but by 2, 3, or 7, we would have found it simply by excluding
all other changes.

To summarize, here is the formal definition of the extended d& algorithm:

Algorithm 2 (Delta debugging with unresolved test cases).
The extended delta debugging algotithm dd+ (c) is

d&(c) = dd3(c, 0,2) where

dd3(c, T, n) =

letcl,... , cn G c such that u ci = c, all ci are pairwise disjoint,

andVci (Ic~I x ICI/~);

let E; = c - (ci U r), ti = test(ci U r), t;: = test(Zi U r),

c’ = c II nrci I& = X}, r’ = r U lJ{Ci I ti = (/), n’ = min(lc’l, 2n),

di =ddJ(ci,Ci Ur,2),and& =dd3(Ci,ci Ur,2)

C if ICI = 1 (“found”)

dd3 (ci, r, 2) else if ti = X for some i (“found in ci”)

di U di else if ti = d A 5 = 4 for some i (“interference”)

4 else if ti = ? A t;: = d for some i (“preference”)

dd3(c’, r’, n’) else if n < ICI (“try again”)

C' otherwise (“nothing left”)

The recursion invariant for dd3 is rest(r) + X A test(c U r) # d A n (ICI.

Apart its extensions for unresolved test cases, the dd3 function is identical to dd2
with an initial value of n = 2. Like dd, dd+ has linear time complexity (but requires
twice as many tests).

Eventually, dd+ finds a minimal set of failure-inducing changes, provided that they
are safe-that is, they can either be applied to the baseline or removed from today’s
configuration without causing an inconsistency. If this condition is not met, the set
returned by dd+ may not be minimal, depending on the nature of inconsistencies en-
countered. But at least, all changes that are safe and not failure-inducing are guaranteed
to be excluded.5

6 Avoiding Inconsistency

In practice, we can significantly reduce the risk of inconsistencies by relying on spe-
cific knowledge about the nature of the changes. There are two ways to influence the
dd+ algorithm:

5 True minimal&y can only be achieved by testing all 2” configurations. Consider a hypothetic
set of changes where only three configurations are consistent: yesterday’s, today’s, and one
arbitrary configuration. Only by trying all combinations can we find this third configuration;
inconsistency has no specific properties like monotony that allow for more effective methods.

Grouping Related Changes. Reconsider the changes 2, 3, and 7 of Table 5. If we
had some indication that the changes imply each other, we could keep them in a
common subset as long as possible, thereby reducing the number of unresolved test
cases. To determine whether changes are related, one can use

- process criteria, such as common change dates or sources,
- location criteria, such as the affected file or directory,
- lexical criteria, such as common referencing of identifiers,
- syntactic criteria, such as common syntactic entities (functions, modules) af-

fected by the change,
- semantic criteria, such as common program statements affected by the changed

control flow or changed data flow.
For instance, it may prove useful to group changes together that all affect a specific
function (syntactic criteria) or that occurred at a common date (process criteria).

Predicting Test Outcomes. If we have evidence that specific configurations will be
inconsistent, we can predict their test outcomes as unresolved instead of carrying
out the test. In Table 5, if we knew about the implications, then only 5 out of 16
tests would actually be carried out.
Predicting test outcomes is especially useful if we can impose an ordering on the
changes. Consider Table 7, where each change Ai implies all “earlier” changes
Al,..., Ai-1. Given this knowledge, we can predict the test outcomes of steps
2 and 4; only three tests would actually carried out to find the failure-inducing
change.

Step ci Configuration test

1 Cl 1234.. . . r/
2 c2 5 6 7 8 (?) predicted outcome
3 Cl 123456.. d
4 c2 1234.. 7 8 (3) predicted outcome
5 cl 1 2 3 4 5 6 7 . X 7 is found

Result . . _ _ . 7 _

Table 7. Searching failure-inducing changes in a total order

We see that when changes can be ordered, predicting test outcomes makes ddf act
like a binary search algorithm.

Both grouping and predicting will be used in two case studies, presented below.

7 First Case Study: DDD 3.1.2 Dumps Core

DDD 3.1.2, released in December, 1998, exhibited a nasty behavioral change: When
invoked with a the name of a non-existing file, DDD 3.1.2 dumped core, while its pre-
decessor DDD 3.1.1 simply gave an error message. We wanted to find the cause of this
failure by using WYNOT.

The DDD configuration management archive lists 116 logical changes between the
3.1.1 and 3.1.2 releases. These changes were split into 344 textual changes to the DDD
source.

263

Delta Debugging Log

i ..-........... t . . ~ ..,....,.. i .,..,......_. ..,.....,........,..,......,.... /,,......
i .: j : ;... : : I _.:.. i

j /
1 I I I I I 1 I I a I I t

5 10 15 20 25 30 35 0 5 10 t5 20 25 30 35
Tests executed Tests executed

(a) with random clustering (b) with date clustering

Table 8. Searching a failure-inducing change in DDD

In a first attempt, we ignored any knowledge about the nature or ordering of the
changes; changes were ordered and partitioned at random. Table 8(a) shows the re-
sult of the resulting WYNOT run. After test #4, WYNOT has reduced the number of
remaining changes to 172. The next tests turn out unresolved, so WYNOT gradually
increases the number of subsets; at test #16, WYNOT starts using 8 subsets, each con-
taining 16 changes. At test #23, the 7th subset fails, and only its 16 changes remain.
Eventually, test #31 determines the failure-inducing change.

We then wanted to know whether knowledge from the configuration management
archive would improve performance. We used the following process criteria:

1. Changes were grouped according to the date they were applied.
2. Each change implied all earlier changes. If a configuration would not satisfy this

requirement, its test outcome would be predicted as unresolved.

As shown in Table 8(b), this resulted in a binary search with very few inconsisten-
cies. After only 12 test runs and 58 minute@, the failure-inducing change was found:

diff -r1.30 -r1.30.4.1 ddd/gdbinit.C
295,296c296
< string classpath =
< getenv("CLASSPATH") != 0 ? getenv("CLASSPATH") : 'I.";

> string classpath = source-view-xlass-patho;

When called with an argument that is not a file name, DDD 3.1.1 checks whether
it is a Java class; so DDD consults its environment for the class lookup path. As an
“improvement”, DDD 3.1.2 uses a dedicated method for this purpose. Unfortunately,
the source-view pointer used is initialized only later, resulting in a core dump. This
problem has been fixed in the current DDD release.

8 Second Case Study: GDB 4.17 Does Not Integrate

Let us now face greater challenges. As motivated in Section 1, we wanted to track
down a failure in 178,000 changed GDB lines. In contrast to the DDD setting from

6 All times were measured on a Linux PC with a 200 MHz AMD K6 processor.

264

Section 7, we had no configuration management archive from which to take ordered
logical changes.

The 178,000 lines were automatically grouped into 8721 textual changes in the
GDB source, with any two textual changes separated by at least two unchanged lines
(“context”). The average reconstruction time after applying a change turned out to be
370 seconds. This means that we could run 233 tests in 24 hours or 8721 changes
individually in 37 days.

Again, we first ignored any knowledge about the nature of the changes. The result
of this WYNOT run is shown in Table 9(a). Most of the first 457 tests turn out unre-
solved, so WYNOT gradually increases the number of subsets, reducing the number of
remaining changes. At test #458, each subset contains only 36 changes, and it is one of
these subsets that turns out to be failure-inducing. After this breakthrough, the remain-
ing 12 tests determine a single failure-inducing change.

Running the 470 tests still took 48 hours. Once more, we decided to improve perfor-
mance. Since process criteria were not available, we used location criteria and lexical
criteria to group changes:

1. At top-level, changes were grouped according to directories. This was motivated
by the observation that several GDB directories contain a separate library whose
interface remains more or less consistent across changes.

2. Within one directory, changes were grouped according to common files. The idea
was to identify compilation units whose interface was consistent with both “yester-
day’s” and “today’s” version.

3. Within a file, changes were grouped according to common usage of identifiers.
This way, we could keep changes together that operated on common variables or
functions.

Finally, we added a failure resolution loop: After a failing construction, WYNOT
scans the error messages for identifiers, adds all changes that reference these identifiers
and tries again. This is repeated until construction is possible, or until there are no more
changes to add.

The result of this WYNOT run is shown in Table 9(b). At first, WYNOT split the
changes according to their directories. After 9 tests with various directory combinations,
WYNOT has a breakthrough: the failure-inducing change is to be found in one specific
directory. Only 2547 changes are left.

A long period without significant success follows: WYNOT partitions changes into
an increasing number of subsets. The second breakthrough occurs at test #280, where
each subset contains only 18 changes and where WYNOT narrows down the number
of changes to a subset of two files only. The end comes at test #289, after a total of
20 hours. We see that the lexical criteria reduced the number of tests by 38% and the
total running time by more than 50%.

In both cases, WYNOT broke down the 178,000 lines down to the same one-line
change line that, being applied, causes DDD to malfunction:

diff -r gdb-4.16/gdb/infcmd.c gdb-4.17/gdb/infcmd.c
1239c1278
c "Set arguments to give program being debugged when it is started.\n\

> "Set argument list to give program being debugged when it is started.\n\

265

Delta Debugging Log
10000 :::.:::..:.::.+..:.::::::::::::::+.: ..: :.::.:.: :..:,~:::::::.:::::::::.*:::::.::::::::::::.,::.:.:..::~..::~.~ , ::.: .:::.:::::::::I:.i:ii:::::::::::::,::::::::iiii!:ii::i:~:~::.~::~::::::ii

__ <.!.(. ?. ! (... h!. :::.::.:::::ii~iiiii:iii~cr;fstia~~6~~clust~ii~gii___li
ssz---- ... ~~:.~..~~.~........~.~~~.~.~~.~.~~~~.....~~~..~~.~~~~.~.~~.~..~.~.~~~~~....~.~.~~~.~

1000 o:li:i:iiii:iiil.ij.::i:i:iiiiii::iii:ij~~~~~~~~~~.~~.~~~~~~~:~~~~:~~~~ i:iiiiliiii:iiiiii;iiiiiiiiiiiiilii:::ii:;iiilijiiiii:iiii::ii:i:ii~~iiiiiiiiiliiiliii
-:.................:..........:::::::::::::;::~::::::::;::~~.~:::~~~::::::::;.::::::::~:..~:~~~;::~::::::;:::: : :::.::i::::::::::::::::::::i:::::;.::::.::::::.::.:::::::.::::::::::i::::::::::::::::: _ _. __ <.:;.,.__;:.
_ i.. i.. i.. i.. j.. i.. i. i

100 giiiiiiiiiiiiiiiiiiliiiiiiiiiliiiiiiiiijii:::ii.ili::iliiiijiiiiiiiiiiiii:i.:ii.ili:iliiiiiiiiiiiiiiii:iiiiiiiii- i:iii:i.iiiiiiiiiiii~~~~~~~~~~~~~~~~~~~~:~~~~~~~~~~~~~~~~~~~~:~~~~~~~~~~~~~~~~~~~~~~~~ _ _
.................................... : _. _:_

~::::,:::::-:::::::::::.:1:::::::::::::::::::i:::::::::::::-:::::~::::~:~::::’
10 n.::li:((:iiiiii:ii.:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:::~~~~~~~~~~~~~~~~~~~~~~.~:~~:::~~~~:~~~~~~~~~~~~~~~~:~:~~ iii:i’ii:iiiiiiiiii’iiiiiiiiiiiiii::liiii’iiijiiii!Iiii:liiiiii;iiii’iiiiiiiiiiiiiiiR

0 50 100 150 200 250 300 350 400 450 500
Tests executed

(b) with hybrid clustering

Table 9. Searching a failure-inducing change in GDB

This change in a string constant from arguments to argument 1 ist was
responsible for GDB 4.17 not interoperating with DDD. Given the command show
args, GDB 4.16 replies

Arguments to give program being debugged when it is started is "a b c"

but GDB 4.17 issues a slightly different (and grammatically correct) text:

Argument list to give program being debugged when it is started is "a b c”

which could not be parsed by DDD! To solve the problem here and now, we simply
reversed the GDB change; eventually, DDD was upgraded to make it work with the new
GDB version, too.

9 Related Work

There is only one other work on automated delta debugging we have found: the paper on
regression containment by Ness and Ngo [5], presented in Section 1 .7 Ness and Ngo use
simpIe linear and binary search to identify a single failure-inducing change. Their goal,
however, lies not in debugging, but in isolating (i.e. removing) the failure-inducing

7 Ness and Ngo cite no related work, so we assume they found none either.

266

change such that development of the product is not delayed by resolving the failure.
The existence of a configuration management archive with totally ordered changes is
assumed; issues like interference, inconsistencies, granularity, or non-monotony are nei-
ther handled nor discussed.

Consequently, the failure-inducing change in GDB from Section 8 would not be
found at all since there is no configuration management archive from which to take
logical changes; in the DDD setting from Section 7, the logical change would be found,
but could not have been broken down into this small chunk.

10 Conclusions and Future Work

Delta debugging resolves regression causes automatically and effectively. If configu-
ration information is available, delta debugging is easy; otherwise, there are effective
techniques that indicate change dependencies. Although resource-intensive, delta de-
bugging requires no manual intervention and thus saves valuable developer time.

We recommend that delta debugging be an integrated part of regression testing;
each time a regression test fails, a delta debugging program should be started to resolve
the regression cause. The algorithms presented in this paper provide successful delta
debugging solutions that handle difficult details such as interferences, inconsistencies,
and granularity.

Our future work will concentrate on avoiding inconsistencies by exploiting domain
knowledge. Most simple configuration management archives enforce that each change
implies all earlier changes; we want to use full-fledged constraint systems instead [l 11.
Another issue is to use syntactic criteria in order to group changes by affected func-
tions and modules. The most complicated, but most promising approach are semantic
criteria: Given a change and a program, we can determine a slice of the program where
program execution may be altered by applying the change. Such slices have been suc-
cessfully used for semantics-preserving program integration [2] as well as for determin-
ing whether a regression test is required after applying a specific change [11. The basic
idea is to determine two program dependency graphs (PDGs)-one for “yesterday’s”
and one for “today’s” configuration. Then, for each change c and each PDG, we deter-
mine the forward slice from the nodes affected by c. We can then group changes by the
common nodes contained in their respective slices; two changes with disjoint slices end
up in different partitions.

Besides consistency issues, we want to use code coverage tools in order to exclude
changes to code that is never executed. The intertwining of changes to construction
commands, system models, and actual source code must be handled, possibly by multi-
version system models [S]. Further case studies will validate the effectiveness of all
these measures, as of delta debugging in general.

Acknowledgments. Carsten Schulz contributed significantly to the current WYNOT

implementation. The first delta debugging prototype was implemented by Ulrike Heuer.
Jens Krinke, Christian Lindig, Kerstin Reese, Torsten Robschink, Gregor Snelting, and
Paul Strooper provided valuable comments on earlier revisions of this paper.

Further information on delta debugging, including the full WYNOT implementation,
isavailableathttp://www.fmi.uni-passau.de/st/wynot/.

267

References

1. BINKLEY, D. Semantics guided regression test cost reduction. IEEE Transactions on Soft-
ware Engineering 23,8 (Aug. 1997), 498-5 16.

2. BINKLEY, D., HORWITZ, S., AND REPS, T. Program integration for languages with proce-
dure calls. ACM Transactions on Software Engineering and Methodology 4, 1 (Jan. 1995),
3-35.

3. IEEE. Test Methods for Measuring Conformance to POSIX. New York, 199 1. ANSI/lEEE
Standard 1003.3-1991, ISOlIEC Standard 13210-1994.

4. LEBLANG, D. B. The CM challenge: Configuration management that works. In Config-
uration Management, W. F. Tichy, Ed., vol. 2 of Trends in Software. John Wiley & Sons,
Chichester, UK, 1994, ch. I, pp. l-37.

5. NESS, B., AND NGO, V. Regression containment through source code isolation. In Pro-
ceedings of the 2ist Annual International Computer Software 8z Applications Conference
(COMPSAC ‘97) (Washington, DC., Aug. 1997), IEEE Computer Society Press, pp. 616-
621.

6. STALLMAN, R. M., AND PESCH, R. H. Debugging with GDB, 5th ed. Free Software
Foundation, Inc., Apr. 1998. Distributed with GDB 4.17.

7. TICHY, W. F. Smart recompilation. ACM Transactions on Software Engineering and
Methodology 8,3 (July 1986), 273-291.

8. ZELLER, A. Versioning system models through description logic. In Proc. 8th Symposium
on System Configuration Management (Brussels, Belgium, July 1998). B. Magnusson, Ed.,
vol. 1349 of Lecture Notes in Computer Science, Springer-Verlag, pp. 127-132.

9. ZELLER, A. Yesterday, my program worked. Today, it does not. Why? Computer Science
Report 99-01, Technical University of Braunschweig, Germany, Feb. 1999.

IO. ZELLER, A., AND L~TKEHAUS, D. DDD-A free graphical front-end for UNIX debuggers.
ACM SIGPLAN Notices 31, 1 (Jan. 1996), 22-27.

11. ZELLER, A., AND SNELTING, G. Unified versioning through feature logic. ACM Transac-
tions on Software Engineering and Methodology 6,4 (Oct. 1997), 398-441.

