
Dynamic Program Slicing 

Hiralal Agrawal 
Department of Computer Sciences 

Purdue University 
West Lafayette, IN 47907-2004 

Joseph R. Horgan 
Bell Communications Research 

Morristown, NJ 07960-1910 

Abstract 

Program slices are useful in debugging, testing, main- 
tenance, ar.d understanding of programs. The con- 
ventional notion of a program slice, the static slice, is 
the set of all statements that might affect the value of 
a given variable occurrence. In this paper, we investi- 
gate the concept of the dynamic slice consisting of all 
statements that actually affect the value of a variable 
occurrence for a given program input. The sensitivity 
of dynamic slicing to particular program inputs makes 
it more useful in program debugging and testing than 
static slicing. Several approaches for computing dy- 
namic slices are examined. The notion of a Dynamic 
Dependence Graph and its use in computing dynamic 
slices is discussed. The Dynamic Dependence Graph 
may be unflounded in length; therefore, we introduce 
the economical concept of a Reduced Dynamic De- 
pendence Graph, which is proportional in size to the 
number of dynamic slices arising during the program 
execution. 

I Introduction 

Finding all statements in a program that directly or 
indirectly affect the value of a variable occurrence is 
referred to as Program Slicing [Wei84]. The state- 
ments selecl;ed constitute a slice of the program with 
respect to the variable occurrence. A slice has a sim- 
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ple meaning: it should evaluate the variable occur- 
rence identically to the original program for all test- 
cases. 

Uses of program slicing have been suggested in 
many applications, e.g., program verification, test- 
ing, maintenance, automatic parallelization of pro 
gram execution, automatic integration of program 
versions, etc. (see, e.g., [wei84, HPR89]). In this 
paper we are primarily concerned with its use in pro- 
gram debugging [Wei82]. Often during debugging the 
value of a variable, var, at some program statement, 
S, is observed to be incorrect. Program slicing with 
respect to ear and S gives that relevant subset of the 
program where one should look for the possible cause 
of the error. But the above notion of program slic- 
ing does not make any use of the particular inputs 
that revealed the error. It is concerned with finding 
all statements that could influence the value of the 
variable occurrence for any inputs, not all statements 
that did affect its value for the current inputs. Unfor- 
tunately, the size of a slice so defined may approach 
that of the original program, and the usefulness of a 
slice in debugging tends to diminish as the size of the 
slice increases. Therefore, in this paper we examine 
a narrower notion of “slice,” consisting only of state- 
ments that influence the value of a variable occurrence 
for specific program inputs.’ We refer to this problem 
as Dynamic Progmm Slicing to distinguish it from the 
original problem of Static Program Slicing. 

Conceptually a program may be thought of as a 
collection of threads, each computing a value of a pro 
gram variable. Several threads may compute values 
of the same variable. Portions of these threads may 
overlap one-another. The more complex the control 
structure of the program, the more complex the in- 
termingling of these threads. Static program slicing 
isolates all possible threads computing a particular 
variable. Dynamic slicing, on the other hand, iso 

‘A slice with respect to a set of variables may be obtained 
by taking the union of slices with respect to individual variables 
in the set. 
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lates the unique thread computing the variable for 
the given inputs. 

During debugging programmers generally analyze 
the program behavior under the test-case that re- 
vealed the error, not under any generic test-case. 
Consider, for example, the following scenario: A 
friend while using a program discovers an error. He 
finds that the value of a variable printed by a state- 
ment in the program is incorrect. After spending 
some time trying to find the cause without luck, he 
comes to you for help. Probably the first thing you 
would request from him is the test-case that revealed 
the bug. If he only tells you the variable with the in- 
correct value and the statement where the erroneous 
value is observed, and doesn’t disclose the particular 
inputs that triggered the error, your debugging task 
would clearly be much more difficult. This suggests 
that while debugging a program we probably try to 
find the dynamic slice of the program in our minds. 
The concrete test-case that exercises the bug helps us 
focus our attention to the “cross-section” of the pro 
gram that contains the bug.’ This simple observation 
also highlights the value of automatically determin- 
ing dynamic program slices. The distinction between 
static and dynamic slicing and the advantages of the 
latter over the former are further illustrated in Sec- 
tion 3. 

In this paper we sketch several approaches to com- 
puting dynamic program slices. A more detailed dis- 
cussion with precise algorithmic definitions of these 
approaches may be found in [AH89]. In Section 2 
we briefly review the program representation called 
the Program Dependence Graph and the static slic- 
ing algorithm. Then we present two simple extensions 
to the static slicing algorithm to compute dynamic 
slices in Sections 3.1 and 3.2. But these algorithms 
may compute overlarge slices: they may include ex- 
tra statements in the dynamic slice that shouldn’t 
be there. In Section 3.3 we present a data-structure 
called the Dynamic Dependence Graph and an algo- 
rithm that uses it to compute accurate dynamic slices. 
Size of a Dynamic Dependence Graph depends on the 
length of the program execution, and thus, in gen- 
eral, it is unbounded. In Section 3.4, we introduce 
a mechanism to construct what we call a Reduced 
Dynamic Dependence Graph which requires limited 
space that is proportional to the number of distinct 
dynamic slices arising during the current program ex- 

2When we say the slice contains the bug, we do not nec- 
essarily mean that the bug is textually contained in the slice; 
the bug could correspond to the absence of something from the 
slice-a missing if statement, a statement outside the slice that 
should have been inside it, etc. We can discover that something 
is missing from the slice only after we have found the slice. In 
this sense, the bug still “lies in the slice.” 

Sl: 
s2: 

s3: 
s4: 

s5: 

S6: 
s7: 

523: 
s9: 

SlO: 
Sll: 

begin 
read(X); 
if (X < 0) 
then 

else 

if(X= 0) 
then 

Y := fz(X); 
z := gz(X); 

else 

end-if; 
end2, 
write(Y); 
write(Z); 

end. 

Figure 1: Example Program 1 

ecution, not to the length of the execution. The four 
approaches to dynamic slicing presented here span a 
range of solutions with varying space-time-accuracy 
trade-offs. 

2 Program Dependence Graph 
and Static Slicing 

The program dependence graph of a program 
[FOW87,0084, HRB88J has one node for each simple 
statement (assignment, read, write etc., as opposed 
to compound-statements like if-then-else, while-do 
etc.) and one node for each control predicate expres- 
sion (the condition expression in if-then-else, while- 
do etc.). It has two types of directed edges-data- 
dependence edges and control-dependence edges.3 A 
data-dependence edge from vertex vi to vertex vj im- 
plies that the computation performed at vertex vi di- 
rectly depends on the value computed at vertex vj.4 
Or more precisely, it means that the computation at 
vertex vi uses a variable, var, that is defined at vertex 
vjui, and there is an execution path from vj to vi along 
which var is never redefined; A control-dependence 

31n other applications like vectorizing compilers program 
dependence graphs may include other types of edges besides 
data and control dependence, e.g., anti-dependence, output- 
dependence etc., but for the purposes of program slicing, the 
former two &lice. 

‘At other places in the literature, particularly that related 
to vectorizing compilers, e.g., [KKL+Sl, FOW87], direction of 
edges in Data Dependence Graphs is reversed, but for the pur- 
poses of program slicing our definition is more suitable. 
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Figure 2: Program Dependence Graph of the Program in Figure 1. The solid edges denote data dependencies 
and the dashed edges denote control dependencies. Nodes in bold denote the Static Slice with respect to variable 
Y at statement 10 in the program. 

edge from vi to vj means that node vi may or may 
not be executed depending on the boolean outcome 
of the predicate expression at node vj.5 Consider, for 
example, the program in Figure 1. Symbols fi and 
gi in the assignment statements are used to denote 
some unspecified side-effect-free functions with which 
we are not presently concerned. Figure 2 shows the 
Program Dependence Graph of this program. Solid 
edges denote data dependencies and dashed edges de- 
note control dependencies. We do not distinguish be- 
tween the two types of edges from now on; both are 
drawn as solid edges. 

The static slice of a program with respect to a vari- 
able, var, at a node, n, consists of all nodes whose 
execution could possibly u#ect the value of var at n. 
The static slice can be easily constructed by finding 
all reaching definitions of var at node n [ASUSS], and 
traversing .the Program Dependence Graph beginning 
at these nodes. The nodes visited during the traver- 
sal constitute the desired slice [0084, HRB88]. For 
example, to find the static slice of the program in 
Figure 1 with respect to variable Y at statement 10, 
we first find all reaching definitions of Y at node 10. 
These are nodes 3, 6, and 8. Then we find the set 
of all reachable nodes from these three nodes in the 
Program Dependence Graph of the program shown 
in Figure :!. This set, (1, 2, 3, 5, 6, 81, gives us the 
desired slice. These nodes are shown in bold in the 
figure. 

5This definition of control-dependence is for programs with 
structured control flow. For such programs, the control- 
dependence subgraph essentially reflects the n,Aing structure 
of statements in the program. In programs wita arbitrary con- 
trol flow, a control-dependence edge @om vertex u; to vertex 
uj implies that V$ is the nearest inverse dominator of vi in the 
control flow paph of the program (see [FOW87] for details). 

3 Dynamic Slicing 

As we saw above the static slice for the program in 
Figure 1 with respect to variable Y at statement 10 
contains all three assignment statements, namely, 3, 
6 and 8, that assign a value to Y. We know that for 
any input value of X only one of these three state- 
ments may be executed. Consider the test-case when 
X is -1. In this case only the assignment at state- 
ment 3 is executed. So the dynamic slice, with re- 
spect to variable Y at statement 10, will contain only 
statements 1, 2, and 3, as opposed to the static slice 
which contains statements 1; 2, 3, 5, 6, and 8. If the 
value of Y at statement 10 is observed to be wrong 
for the above test-case, we know that either there is 
an error in fl at statement 3 or the if predicate at 
statement 2 is wrong. Clearly, the dynamic slice, (1, 
2, 3}, would help localize the bug much more quickly 
than the static slice, (1, 2, 3, 5, 6, 8). 

In the next few sections, we examine some ap- 
proaches to computing dynamic slices. We denote 
the execution history of the program under the given 
test-case by the sequence <VI, ~2, . . . , v,> of ver- 
tices in the program dependence graph appended in 
the order in which they are visited during execution. 
We use superscripts 1, 2, etc. to distinguish between 
multiple occurrences of the same node in the execu- 
tion history. For example, the program in Figure 3 
has the execution history ~1, 2, 3, 4, 5l, 6l, 7l, 8l, 
52, 62, 72, 82, 53, 9> when N is 2. 

Given an execution history hisl of a program P for 
a test-case test, and a variable var, the dynamic slice 
of P with respect to hist and var is the set of all state- 
ments in hist whose execution had some effect on the 
value of var as observed at the end of the execution. 
Note that unlike static slicing where a slice is defined 
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Sl: 
s2: 
s3: 
s4: 
s5: 

S6: 
s7: 
S8: 

s9: 

begin 
read(N); 
z := 0; 
Y := 0; 
I := 1; 
while (I <= N) 
do 

z := fl(Z, Y); 
Y := fz(Y); 
I:=I+ 1; 

end-while; 
write(Z); 

end. 

Figure 3: Example Program 2 

with respect to a given location in the program, we 
define dynamic slicing with respect to the end of ex- 
ecution history. If a dynamic slice with respect to 
some intermediate point in the execution is desired, 
then we simply need to consider the partial execution 
history up to that point. 

3.1 Dynamic Slicing: Approach 1 

We saw above that the static slice with respect to 
variable Y at statement 10 for the program in Figure 1 
contains all three assignment statements-3, 6, and 
8; although for any given test-case, only one of these 
statements is executed. If we mark the nodes in the 
Program Dependence Graph that get executed for the 
current test-case, and traverse only the marked nodes 
in the graph, the slice obtained will contain only nodes 
executed for the current test-case. So our first simple 
approach to determining dynamic slices is informally 
stated as follows: 

To obtain the dynamic slice with respect to 
a variable for a given execution history, first 
take the “projection” of the Program Depen- 
dence Graph with respect to the nodes that 
occur in the execution history, and then use 
the static slicing algorithm on the projected 
Dependence Graph to find the desired dy- 
namic slice. 

Figure 4 shows the application of this approach for 
the program in Figure 1 for test-case X = -1, which 
yields the execution history <I, 2, 3, 4, 10, ll>. All 
nodes in the graph are drawn dotted in the beginning. 
As statements are executed, corresponding nodes in 
the graph are made solid. Then the graph is traversed 
only for solid nodes, beginning at node 3, the last 
definition of Y in the execution history. All nodes 
reached during the traversal are made bold. The set 

of all bold nodes, (1, 2, 3) in this case, gives the 
desired slice. 

Unfortunately, the above naive approach does not 
always yield precise dynamic slices: It may sometimes 
include extra statements in the slice that did not af- 
fect the value of the variable in question for the given 
execution history. To see why, consider the program 
in Figure 3 and the test-case N = 1, which yields the 
execution history <I, 2, 3, 4, 5l, 6, 7, 8, 52, 9>. Fig- 
ure 5 shows the the result of using the above approach 
to obtain the dynamic slice of this program with re- 
spect to the variable Z at the end of the execution. 
Looking at the execution history we find that state- 
ment 7 assigns a value to Y which is never used later, 
for none of the statements that appear after 7 in the 
execution history, namely, 8, 5, and 9, uses variable 
Y. So statement 7 should not be in the dynamic slice. 
It is included in the slice because statement 9 depends 
on statement 6 which has a data dependence edge to 
statement 7 in the Program Dependence Graph, In 
the next section we present a refinement to the above 
approach that avoids this problem. 

3.2 Dynamic Slicing: Approach 2 

The problem with Approach 1 lies in the fact that 
a statement may have multiple reaching definitions 
of the same variable in the program flow-graph, and 
hence it may have multiple out-going data depen- 
dence edges for the same variable in the Program De- 
pendence Graph. Selection of such a node in the dy- 
namic slice, according to that approach, implies that 
all nodes to which it has out-going data-dependence 
edges also be selected if the nodes have been executed, 
even though the corresponding data-definitions may 
not have affected the current node. In the example 
above (Figure 3), statement 6 has multiple reaching 
definitions of the same variables: two definitions of 
variable Y from statements 3 and 7, and two of vari- 
able Z from statements 2 and 6 itself. So it has two 
outgoing data dependence edges for each of variables 
Y and Z: to statements 3 and 7, and 2 and 6 respec- 
tively (besides a control dependence edge to node 5). 
For the test-case N = 1, each of these four statements 
is executed, so inclusion of statement 6 in the slice 
leads to the inclusion of statements 3, 7, and 2 as 
well, even though two of the data dependencies of 
statement 6-on statement 7 for variable Y and on 
itself for variable Z-are never activated for this test- 
case. 

In general, a statement may have multiple reaching 
definitions of a variable because there could be multi- 
ple execution paths leading up to that statement, and 
each of these paths may have different statements as- 
signing a value to the same variable. For any single 
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Figure 4: Dynamic Slice using Approach 1 for the program in Figure 1, test-case X = -1, with respect to variable 
Y at the end of the execution. All nodes are drawn as dotted in the beginning. A node is made solid if it is ever 
executed; ;md is made bold if it gets traversed while determining the slice. 

Figure 5: Dynamic slice using Approach 1 for the program in Figure 3, test-case N = 1, for vakiable Z, at the end 
of execution. Node 7 should not belong to the slice! 

path, there can be at most one reaching definition 
of any variable at any statement; and since, in dy- 
namic slicing, we are interested in examining depen- 
dencies for the single execution path under the given 
inputs, inclusion of a statement in the dynamic slice 
should lead to inclusion of only those statements that 
actually defined values used by it under the current 
test-case. This suggests our Approach 2 to computing 
dynamic s:.ices: 

Mark the edges of the Program Dependence 
Graph as the corresponding dependencies 
arise during the program execution; then 
traverse the graph only along the marked 
edges to find the slice. 

Consider again the program in Figure 3 and the 
test-case TJ = 1. Using Approach 2 on its execu- 
tion history <l, 2, 3, 4, 5l, 6, 7, 8, 5’, 9> for vari- 
able Z yie:.ds the dynamic slice (1, 2, 3, 4, 5, 6, 8). 
This is depicted in Figure 6. Imagine all edges to be 
drawn as dotted lines in the beginning. As statements 
are execut Ed, edges corresponding to the new depen- 

dencies that occur are changed to solid lines. Then 
the graph is traversed only along solid edges and the 
nodes reached are made bold. The set of all bold 
nodes at the end gives the desired slice. Note that 
statement 7 that was included by Approach 1 in the 
slice is not included under this approach. 

If a program has no loops then the above approach 
would always find accurate dynamic slices of the pro- 
gram (see [AH891 for details). In the presence of 
loops, the slice may sometimes include more state- 
ments than necessary. Consider the program in Fig- 
ure 7 and the test-case where N = 2 and the two val- 
ues of X read are -4 and 3. Then, for the first time 
through the loop statement 6, the then part of the if 
statement, is executed and the second time through 
the loop statement 7, the else part,, is executed. Now 
suppose the execution has reached just past state- 
ment 9 second time through the loop and the second 
value of Z printed is found to be wrong. The execu- 
tion history thus far is <l, 2, 3l, 4l, 5l, 6, @, 9l, 101, 
32, 42, 52, 7, e2, g2>. If we used Approach 2 to find 
the slice for variable Z for this execution history, we 
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Figure 6: Dynamic Slice using Approach 2 for the program in Figure 3, test-case N = 1, for variable Z, at the 
end of execution. All edges are drawn as dotted at the beginning. An edge is made solid if the corresponding 
dependency is ever activated during execution. Only solid edges are traversed while slicing; nodes in the bold 
denote the slice obtained. 

Sl: 
s2: 
s3: 

s4: 
s5: 

S6: 

s7: 

S8: 
s9: 
SlO: 

begin 
read(N); 
I:= 1; 
while (I <= N) 
do 

read(X); 
if(X< 0) 
then 

Y := f1(X); 
else 

Y := fg(X); 
endif; 
z := fa(Y); 
WRITE(Z); 
I := I + 1; 

end-while; 
end. 

Figure 7: Example Program 3 

would have both statements 6 and 7 included in the 
slice, even though the value of Z in this case is only 
dependent on statement 7. Figure 8 shows a segment 
of the Program Dependence Graph (only statements 
4, 6, 7, 8, and 9) along with the effect of using Ap- 
proach 2. The data dependence edge from 8 to 6 is 
marked during the first iteration, and that from 8 to 
7 is marked during the second iteration. Since both 
these edges are marked, inclusion of statement 8 leads 
to inclusion of both statements 6 and 7, even though 
the value of Z observed at the end of second iteration 
is only affected by statement 7. 

It may seem that the difficulty with the above ap- 
proach will disappear if, before marking the data- 
dependence edges for a new occurrence of a statement 
in the execution history, we first unmarked any out- 
going dependence edges that are already marked for 

this statement. This scheme wiil work for the above 
example, but unfortunately it may lead to wrong dy- 
namic slices in other situations. Consider, for ex- 
ample, the program in Figure 9. Consider the case 
when the loop is iterated twice, first time through 
statements 7 and 11, and second time through state- 
ment 8 but skipping statement 11. If we obtain the 
dynamic slice for A at the end of execution, we will 
have statement 8 in the slice instead of statement 7’. 
This is because when statement 9 is reached second 
time through the loop, the dependence edge from 9 
to 7 (for variable Y) is unmarked and that from 9 
to 8 is marked. Then, while finding the slice for A at 
statement 13, we will include statement 11, which last 
defined the value of A. Since statement 11 used the 
value of Z defined at statement 9, 9 is also included 
in the slice. But inclusion of 9 leads to inclusion of 8 
instead of 7, because the dependence edge to the lat- 
ter was unmarked during the second iteration. Value 
of Z at statement 11, however, depends on value of Y 
defined by statement 7 during the first iteration, so 
7 should be in the slice, not 8. Thus the scheme of 
unmarking previously marked edges with every new 
occurrence of a statement in the execution history 
does not work. 

3.3 Dynamic Slicing: Approach 3 

Approach 2 discussed above sometimes leads to over- 
large dynamic slices because a statement may have 
multiple occurrences in an execution history, and dif- 
ferent occurrences of the statement may have differ- 
ent reaching definitions of the same variable used by 
the statement. The Program Dependence Graph does 
not distinguish between these different occurrences, 
so inclusion of a statement in the dynamic slice by 
virtue of one occurrence may lead to the inclusion 
of statements on which a different occurrence of that 



Figure 8: IL subset of the dynamic slice obtained using Approach 2 for the program in Figure 7, test-case (N = 2, 
X = -4, 3’1, for Variable Z. Node 6 should not be in the slice! 

Sl: 
s2: 
s3: 
s4: 

s5: 
S6: 

s7: 

S8: 

s9: 
SlO 

Sll 

s12. 

s13: 

begin 
read(N); 
A := 0; 
I := 1; 
while (I <= N) 
do 

read(X); 
if (X < 0) 
then 

Y := f1(X); 
else 

Y := fz(X); 
endif; 

; i; f.$‘; 

then 
A := fd(A, 2); 

else 
endif; 
I := I + 1; 

end-while; 
write(A); 

end. 

Figure 9: Example Program 4 

statement is dependent. In other words, different oc- 
currences ‘of the same statement may have different 
dependencies, and it is possible that one occurrence 
contribute.3 to the slice and another does not. In- 
clusion of one occurrence in the slice should lead to 
inclusion of only those statements on which this oc- 
currence is dependent, not those on which some other 
occurrences are dependent. This suggests our third 
approach l,o dynamic slicing: 

Creak a separate node for each occurrence 
of a si.atement in the execution history, with 
outgoing dependence edges to only those 
statements (their specific occurrences) on 
which this statement occurrence is depen- 
dent. 

Every node in the new dependence graph will have at 
most one out-going edge for each variable used at the 
statement. We call this graph the Dynamic Depen- 
dence Graph. A program will have different dynamic 
dependence graphs for different execution histories, 
Miller and Choi also define a similar dynamic depen- 
dence graph in [MC88]; however, their approach dif- 
fers from ours in the way the graph gets constructed 
(see Section 4). 

Consider, for example, the program in Figure 7, 
and the test-case (N = 3, X = -4, 3, -2) which 
yields the execution history <l, 2, 3l, 4l, 5l, 6r, 8l, 
9l, 101, 3’, 4’, 5’, 7l, 82, 9’, IO’, 33, 43, 53, 62, 83, 
g3, 103, 34>. Figure 10 shows the Dynamic Depen- 
dence Graph for this execution history. The middle 
three rows of nodes in the figure correspond to the 
three iterations of the loop. Notice the occurrences of 
node 8 in these rows. During the first and third iter- 
ations, node 8 depends on node 6 which corresponds 
to the dependence of statement 8 for the value of Y 
assigned by node 6, whereas during the second itera- 
tion, it depends on node 7 which corresponds to the 
dependence of statement 8 for the value of Y assigned 
by node 7. 

Once we have constructed the Dynamic Depen- 
dence Graph for the given execution history, we can 
easily obtain the dynamic slice for a variable, var, by 
first finding the node corresponding to the last defini- 
tion of var in the execution history, and then finding 
all nodes in the graph reachable from that node. Fig- 
ure 10 shows the effect of using this approach on the 
Dynamic Dependence Graph of the program in Fig- 
ure 7 for the test-case (N = 3, X = -4, 3, -2), for 
variable Z at the end of the execution. Nodes in bold 
belong to the slice. Note that statement 6 belongs to 
the slice whereas statement 7 does not. Approach 2, 
on the other hand, would have included statement 7 
as well. 

3.4 Dynamic Slicing: Approach 4 

The size of a Dynamic Dependence Graph (total num- 
ber of nodes and edges) is, in general, unbounded. 
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Figure 10: Dynamic Dependence Graph for the Program in Figure 7 for the test-case (N = 3, X = -4, 3, 
Nodes in bold give the Dynamic Slice for this test-case with respect to variable Z at the end of execution. 

This is because the number of nodes in the graph is 
equal to the number of statements in the execution 
history, which, in general, may depend on values of 
run-time inputs. For example, for the program in Fig- 
ure 3 the number of statements in its execution his- 
tory, and hence the size of its Dynamic Dependence 
Graph, depends on the value read by variable N at 
statement 1. On the other hand, we know that every 
program can have only a finite number of possible dy- 
namic slices - each slice being a subset of the (finite) 
program. This suggests that we ought to be able to 
restrict the number of nodes in a Dynamic Depen- 
dence Graph so its size is not a function of the length 
of the corresponding execution history. Our fourth 
approach exploits the above observation: 

Instead of creating a new node for every oc- 
currence of a statement in the execution his- 
tory, create a new node only if another node 
with the same transitive dependencies does 
not already exist. 

We call this new graph the Reduced Dynamic Depen- 
dence Graph. To build it without having to save the 
entire execution history we need to maintain two ta- 
bles called DebNode and PredNode. DefnNode maps 
a variable name to the node in the graph that last 
assigned a value to that variable. PredNode maps a 
control predicate statement to the node that corre- 
sponds to the last occurrence of this predicate in the 

-2). 

execution history thus far. Also, we associate a set, 
ReachableStmts, with each node in the graph. This 

set consists of all statements one or more of whose oc- 
currences can be reached from the given node. Every 
time a statement, Si, gets executed, we determine the 
set of nodes, D, that last assigned values to the vari- 
ables used by Si, and the last occurrence, C, of the 
control predicate node of the statement. If a node, 
n, associated with Si already exists whose immediate 
descendents are the same as DUG’, we associate the 
new occurrence of 5’; with n. Otherwise we create a 
new node with outgoing edges to all nodes in DUC. 
The DefiNode table entry for the variable assigned 
at Si, if any, is also updated to point to this node. 
Similarly, if the current statement is a control predi- 
cate, the corresponding entry in PredNode is updated 
to point to this node. 

If there were no circular dependencies in the de- 
pendence graph then the above scheme of looking 
for a node with the same set of immediate descen- 
dents would work fine. But in presence of circular de- 
pendencies (i.e., in presence of loops in the program 
dependence graph), the graph reduction described 
above won’t occur: for every iteration of a loop in- 
volving circular dependencies we will have to create 
new node occurrences. We can avoid this problem, if 
whenever we need to create a new node, say for state- 
ment Si, we first determine if any of its immediate 
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descendents, say node v, already has a dependency 
on a previous occurrence of Si and if the other imme- 
diate desce ndents of the new occurrence of Si are also 
reachable from v. This is easily done by checking if 
the ReachableStmts set to be associated with the new 
occurrence is a subset of the ReachableStmts set asso- 
ciated with v. If so, we can merge the new occurrence 
of Si with $7. After this merge, during subsequent it- 
erations of the loop the search for a node for Si with 
same immediate descendents will always succeed. 

Consider again the program in Figure 7, and test- 
case (N = .3, X = -4, 3, -2), which yields the exe- 
cution history <l, 2, 3r, 4l, 5i, 6l, 8l, 9r, 10’) 32 
42, 52, 7r, Ei2, g2, 102, 33, 43, 53, 62, 83, g3, 103, 34,1 
Figure 11 shows the Reduced Dynamic Dependence 
Graph for t.his execution history. Every node in the 
graph is annotated with the set of all reachable state- 
ments from that node. Note that there is only one 
occurrence of node 10 in this graph, as opposed to 
three occurrences in the Dynamic Dependence Graph 
for the same program and the same test-case. Also 
note that the second occurrence of node 3 is merged 
with its immediate descendent node 10 because the 
ReachableS-rmts set, (1, 2, 3, lo), of the former was 
a subset of that of the latter. The third occurrence 
of node 3 in the execution history has node 1 and 
node 10 as i:mmediate descendents. Since these imme- 
diate dependencies are also contained in the merged 
node (10,3), the third occurrence of node 3 is also 
associated with this node. 

Once we have the Reduced Dynamic Dependence 
Graph for the given execution history, to obtain the 
dynamic slice for any variable var we first find the 
entry for v~ar in the DefnNode table. The Reach- 
ablestmts set associated with that entry gives the de- 
sired dynamic slice. So we don’t even have to traverse 
the Reduced Dynamic Dependence Graph to find the 
slice. For example, the dynamic slice for variable Z in 
case of the .Reduced Dynamic Dependence Graph in 
Figure 7 is given by the ReachableStmts set, (1, 2, 3, 
4, 5, 6, 8, lC}, associated with node 8 in the last row, 
as that was the last node to define value of Z. 

4 Relisted Work 

The concept of program slicing was first proposed by 
Weiser [Wei84, WeiSZ]. His solution for computing 
static program slices was based on iteratively solving 
data-flow equations representing inter-statement in- 
fluences. Ottenstein and Ottenstein later presented 
a much neal;er solution for static slicing in terms of 
graph reachability in the Program Dependence Graph 
[0084], but they only considered the intra-procedural 
case. Horwitz, Reps, and Binkley have proposed ex- 

tending the Program Dependence Graph represen- 
tation to what they call System Dependence Graph 
to find inter-procedural static slices under the same 
graph-reachability framework [HRB88]. Dependence 
Graph representation of programs was first proposed 
by Kuck et al. [KKL+81]; several variations of this 
concept have since been used in optimizing and par- 
allelizing compilers [FOW87] besides their use in pro- 
gram slicing. 

Korel and Laski extended Weiser’s static slicing 
algorithms based on data-flow equations for the dy- 
namic case [KL88]. Their definition of a dynamic slice 
may yield unnecessarily large dynamic slices. They 
require that if any one occurrence of a statement in 
the execution history is included in the slice then all 
other occurrences of that statement be automatically 
included in the slice, even when the value of the vari- 
able in question at the given location is unaffected 
by other occurrences. The dynamic slice so obtained 
is executable and produces the same value(s) of the 
variable in question at the given location as the orig- 
inal program. For our purposes, the usefulness of a 
dynamic slice lies not in the fact that one can execute 
it, but in the fact that it isolates only those state- 
ments that affected a particular value observed at a 
particular location. For example, in the program of 
Figure 7 each loop iteration computes a value of Z, 
and each such computation is totally independent of 
computation performed during any other iteration. If 
the value of variable Z at the end of a particular iter- 
ation is found be incorrect and we desire the dynamic 
slice for Z at the end of that iteration, we would like 
only those statements to be included in the slice that 
affected the value of Z observed at the end of that 
iteration, not during all previous iterations, as the 
previous iterations have no effect on the current iter- 
ation. It is interesting to note that our Approach 2 
(which may yield an overlarge dynamic slice) would 
obtain the same dynamic slice as obtained under their 
definition. So our algorithm for dynamic slicing based 
on the graph-reachability framework may be used to 
obtain dynamic slices under their definition, instead 
of using the more expensive algorithm based on iter- 
ative solutions of the data-flow equations. 

Miller and Choi also use a dynamic dependence 
graph, similar to the one discussed in Section 3.3, 
to perform flow-back analysis [Ba169] in their Paral- 
lel Program Debugger PPD [MC88]. Our approach, 
however, differs from theirs in the way the graph is 
constructed. Under their approach, separate data- 
dependence graphs of individual basic blocks are con- 
structed. The dynamic dependence graph is build 
by combining, in order, the data-dependence graphs 
of all basic blocks reached during execution and in- 
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4~5~6~8~9) (10.3 I 

(1.2,3.4,5,6.8,10) 

Figure 11: The Reduced Dynamic Dependence Graph for the Program in Figure 7 for the test-case (N = 3, 
x = -4, 3, -2), obtained using Approach 4. Each node is annotated with ReachableStmts, the set of all 
statements reachable from that node. 

serting appropriate control dependence edges among 
them. They use a notion of incremental tracing where 
portions of the program state are checkpointed at the 
start and the end of segments of program-code called 
emulation-blocks. Later these emulation blocks may 
be reexecuted to build the corresponding segments of 
the dynamic dependence graph. The size of their dy- 
namic dependence graph may not be bounded for the 
same reason as that discussed in Section 3.4. 

5 Summary 

In this paper we have examined four approaches for 
computing dynamic program slices. The first two are 
extensions of static program slicing using Program 
Dependence Graph. They are simple and efficient; 
however, they may yield bigger slices than necessary. 
The third approach uses Dynamic Dependence Graph 
to compute accurate dynamic slices but the size of 
these graphs may be unbounded, as it depends on 
the length of execution history. Knowing that every 
program execution can have only a finite number of 
dynamic slices it seems unnecessary having to create 
a separate node in the Dynamic Dependence Graph 
for each occurrence of a statement in the execution 
history. We then proposed the notion of a Reduced 
Dynamic Dependence Graph where a new node is cre- 
ated only if it can cause a new dynamic slice to be 
introduced. The size of the resulting graph is pro- 
portional to the actual number of dynamic slices that 

arose during the execution and not to the length of 
the execution. 
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