
Dynamic Program Slicing

Hiralal Agrawal
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907-2004

Joseph R. Horgan
Bell Communications Research

Morristown, NJ 07960-1910

Abstract

Program slices are useful in debugging, testing, main-
tenance, ar.d understanding of programs. The con-
ventional notion of a program slice, the static slice, is
the set of all statements that might affect the value of
a given variable occurrence. In this paper, we investi-
gate the concept of the dynamic slice consisting of all
statements that actually affect the value of a variable
occurrence for a given program input. The sensitivity
of dynamic slicing to particular program inputs makes
it more useful in program debugging and testing than
static slicing. Several approaches for computing dy-
namic slices are examined. The notion of a Dynamic
Dependence Graph and its use in computing dynamic
slices is discussed. The Dynamic Dependence Graph
may be unflounded in length; therefore, we introduce
the economical concept of a Reduced Dynamic De-
pendence Graph, which is proportional in size to the
number of dynamic slices arising during the program
execution.

I Introduction

Finding all statements in a program that directly or
indirectly affect the value of a variable occurrence is
referred to as Program Slicing [Wei84]. The state-
ments selecl;ed constitute a slice of the program with
respect to the variable occurrence. A slice has a sim-

Part of the work described here was done while the first
author worked at Bell Communications Research, Morristown,
New Jersey, during the summer of 1989. Other support was
provided by a grant from the Purdue University/University of
Florida Software Engineering Research Center, and by the Na-
tional Science Foundation grant 8910306CCR.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advanta,se, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@1990 ACM 0-8979L364-7/90/0006/0246 $1.50

ple meaning: it should evaluate the variable occur-
rence identically to the original program for all test-
cases.

Uses of program slicing have been suggested in
many applications, e.g., program verification, test-
ing, maintenance, automatic parallelization of pro
gram execution, automatic integration of program
versions, etc. (see, e.g., [wei84, HPR89]). In this
paper we are primarily concerned with its use in pro-
gram debugging [Wei82]. Often during debugging the
value of a variable, var, at some program statement,
S, is observed to be incorrect. Program slicing with
respect to ear and S gives that relevant subset of the
program where one should look for the possible cause
of the error. But the above notion of program slic-
ing does not make any use of the particular inputs
that revealed the error. It is concerned with finding
all statements that could influence the value of the
variable occurrence for any inputs, not all statements
that did affect its value for the current inputs. Unfor-
tunately, the size of a slice so defined may approach
that of the original program, and the usefulness of a
slice in debugging tends to diminish as the size of the
slice increases. Therefore, in this paper we examine
a narrower notion of “slice,” consisting only of state-
ments that influence the value of a variable occurrence
for specific program inputs.’ We refer to this problem
as Dynamic Progmm Slicing to distinguish it from the
original problem of Static Program Slicing.

Conceptually a program may be thought of as a
collection of threads, each computing a value of a pro
gram variable. Several threads may compute values
of the same variable. Portions of these threads may
overlap one-another. The more complex the control
structure of the program, the more complex the in-
termingling of these threads. Static program slicing
isolates all possible threads computing a particular
variable. Dynamic slicing, on the other hand, iso

‘A slice with respect to a set of variables may be obtained
by taking the union of slices with respect to individual variables
in the set.

246

lates the unique thread computing the variable for
the given inputs.

During debugging programmers generally analyze
the program behavior under the test-case that re-
vealed the error, not under any generic test-case.
Consider, for example, the following scenario: A
friend while using a program discovers an error. He
finds that the value of a variable printed by a state-
ment in the program is incorrect. After spending
some time trying to find the cause without luck, he
comes to you for help. Probably the first thing you
would request from him is the test-case that revealed
the bug. If he only tells you the variable with the in-
correct value and the statement where the erroneous
value is observed, and doesn’t disclose the particular
inputs that triggered the error, your debugging task
would clearly be much more difficult. This suggests
that while debugging a program we probably try to
find the dynamic slice of the program in our minds.
The concrete test-case that exercises the bug helps us
focus our attention to the “cross-section” of the pro
gram that contains the bug.’ This simple observation
also highlights the value of automatically determin-
ing dynamic program slices. The distinction between
static and dynamic slicing and the advantages of the
latter over the former are further illustrated in Sec-
tion 3.

In this paper we sketch several approaches to com-
puting dynamic program slices. A more detailed dis-
cussion with precise algorithmic definitions of these
approaches may be found in [AH89]. In Section 2
we briefly review the program representation called
the Program Dependence Graph and the static slic-
ing algorithm. Then we present two simple extensions
to the static slicing algorithm to compute dynamic
slices in Sections 3.1 and 3.2. But these algorithms
may compute overlarge slices: they may include ex-
tra statements in the dynamic slice that shouldn’t
be there. In Section 3.3 we present a data-structure
called the Dynamic Dependence Graph and an algo-
rithm that uses it to compute accurate dynamic slices.
Size of a Dynamic Dependence Graph depends on the
length of the program execution, and thus, in gen-
eral, it is unbounded. In Section 3.4, we introduce
a mechanism to construct what we call a Reduced
Dynamic Dependence Graph which requires limited
space that is proportional to the number of distinct
dynamic slices arising during the current program ex-

2When we say the slice contains the bug, we do not nec-
essarily mean that the bug is textually contained in the slice;
the bug could correspond to the absence of something from the
slice-a missing if statement, a statement outside the slice that
should have been inside it, etc. We can discover that something
is missing from the slice only after we have found the slice. In
this sense, the bug still “lies in the slice.”

Sl:
s2:

s3:
s4:

s5:

S6:
s7:

523:
s9:

SlO:
Sll:

begin
read(X);
if (X < 0)
then

else

if(X= 0)
then

Y := fz(X);
z := gz(X);

else

end-if;
end2,
write(Y);
write(Z);

end.

Figure 1: Example Program 1

ecution, not to the length of the execution. The four
approaches to dynamic slicing presented here span a
range of solutions with varying space-time-accuracy
trade-offs.

2 Program Dependence Graph
and Static Slicing

The program dependence graph of a program
[FOW87,0084, HRB88J has one node for each simple
statement (assignment, read, write etc., as opposed
to compound-statements like if-then-else, while-do
etc.) and one node for each control predicate expres-
sion (the condition expression in if-then-else, while-
do etc.). It has two types of directed edges-data-
dependence edges and control-dependence edges.3 A
data-dependence edge from vertex vi to vertex vj im-
plies that the computation performed at vertex vi di-
rectly depends on the value computed at vertex vj.4
Or more precisely, it means that the computation at
vertex vi uses a variable, var, that is defined at vertex
vjui, and there is an execution path from vj to vi along
which var is never redefined; A control-dependence

31n other applications like vectorizing compilers program
dependence graphs may include other types of edges besides
data and control dependence, e.g., anti-dependence, output-
dependence etc., but for the purposes of program slicing, the
former two &lice.

‘At other places in the literature, particularly that related
to vectorizing compilers, e.g., [KKL+Sl, FOW87], direction of
edges in Data Dependence Graphs is reversed, but for the pur-
poses of program slicing our definition is more suitable.

247

Figure 2: Program Dependence Graph of the Program in Figure 1. The solid edges denote data dependencies
and the dashed edges denote control dependencies. Nodes in bold denote the Static Slice with respect to variable
Y at statement 10 in the program.

edge from vi to vj means that node vi may or may
not be executed depending on the boolean outcome
of the predicate expression at node vj.5 Consider, for
example, the program in Figure 1. Symbols fi and
gi in the assignment statements are used to denote
some unspecified side-effect-free functions with which
we are not presently concerned. Figure 2 shows the
Program Dependence Graph of this program. Solid
edges denote data dependencies and dashed edges de-
note control dependencies. We do not distinguish be-
tween the two types of edges from now on; both are
drawn as solid edges.

The static slice of a program with respect to a vari-
able, var, at a node, n, consists of all nodes whose
execution could possibly u#ect the value of var at n.
The static slice can be easily constructed by finding
all reaching definitions of var at node n [ASUSS], and
traversing .the Program Dependence Graph beginning
at these nodes. The nodes visited during the traver-
sal constitute the desired slice [0084, HRB88]. For
example, to find the static slice of the program in
Figure 1 with respect to variable Y at statement 10,
we first find all reaching definitions of Y at node 10.
These are nodes 3, 6, and 8. Then we find the set
of all reachable nodes from these three nodes in the
Program Dependence Graph of the program shown
in Figure :!. This set, (1, 2, 3, 5, 6, 81, gives us the
desired slice. These nodes are shown in bold in the
figure.

5This definition of control-dependence is for programs with
structured control flow. For such programs, the control-
dependence subgraph essentially reflects the n,Aing structure
of statements in the program. In programs wita arbitrary con-
trol flow, a control-dependence edge @om vertex u; to vertex
uj implies that V$ is the nearest inverse dominator of vi in the
control flow paph of the program (see [FOW87] for details).

3 Dynamic Slicing

As we saw above the static slice for the program in
Figure 1 with respect to variable Y at statement 10
contains all three assignment statements, namely, 3,
6 and 8, that assign a value to Y. We know that for
any input value of X only one of these three state-
ments may be executed. Consider the test-case when
X is -1. In this case only the assignment at state-
ment 3 is executed. So the dynamic slice, with re-
spect to variable Y at statement 10, will contain only
statements 1, 2, and 3, as opposed to the static slice
which contains statements 1; 2, 3, 5, 6, and 8. If the
value of Y at statement 10 is observed to be wrong
for the above test-case, we know that either there is
an error in fl at statement 3 or the if predicate at
statement 2 is wrong. Clearly, the dynamic slice, (1,
2, 3}, would help localize the bug much more quickly
than the static slice, (1, 2, 3, 5, 6, 8).

In the next few sections, we examine some ap-
proaches to computing dynamic slices. We denote
the execution history of the program under the given
test-case by the sequence <VI, ~2, . . . , v,> of ver-
tices in the program dependence graph appended in
the order in which they are visited during execution.
We use superscripts 1, 2, etc. to distinguish between
multiple occurrences of the same node in the execu-
tion history. For example, the program in Figure 3
has the execution history ~1, 2, 3, 4, 5l, 6l, 7l, 8l,
52, 62, 72, 82, 53, 9> when N is 2.

Given an execution history hisl of a program P for
a test-case test, and a variable var, the dynamic slice
of P with respect to hist and var is the set of all state-
ments in hist whose execution had some effect on the
value of var as observed at the end of the execution.
Note that unlike static slicing where a slice is defined

248

Sl:
s2:
s3:
s4:
s5:

S6:
s7:
S8:

s9:

begin
read(N);
z := 0;
Y := 0;
I := 1;
while (I <= N)
do

z := fl(Z, Y);
Y := fz(Y);
I:=I+ 1;

end-while;
write(Z);

end.

Figure 3: Example Program 2

with respect to a given location in the program, we
define dynamic slicing with respect to the end of ex-
ecution history. If a dynamic slice with respect to
some intermediate point in the execution is desired,
then we simply need to consider the partial execution
history up to that point.

3.1 Dynamic Slicing: Approach 1

We saw above that the static slice with respect to
variable Y at statement 10 for the program in Figure 1
contains all three assignment statements-3, 6, and
8; although for any given test-case, only one of these
statements is executed. If we mark the nodes in the
Program Dependence Graph that get executed for the
current test-case, and traverse only the marked nodes
in the graph, the slice obtained will contain only nodes
executed for the current test-case. So our first simple
approach to determining dynamic slices is informally
stated as follows:

To obtain the dynamic slice with respect to
a variable for a given execution history, first
take the “projection” of the Program Depen-
dence Graph with respect to the nodes that
occur in the execution history, and then use
the static slicing algorithm on the projected
Dependence Graph to find the desired dy-
namic slice.

Figure 4 shows the application of this approach for
the program in Figure 1 for test-case X = -1, which
yields the execution history <I, 2, 3, 4, 10, ll>. All
nodes in the graph are drawn dotted in the beginning.
As statements are executed, corresponding nodes in
the graph are made solid. Then the graph is traversed
only for solid nodes, beginning at node 3, the last
definition of Y in the execution history. All nodes
reached during the traversal are made bold. The set

of all bold nodes, (1, 2, 3) in this case, gives the
desired slice.

Unfortunately, the above naive approach does not
always yield precise dynamic slices: It may sometimes
include extra statements in the slice that did not af-
fect the value of the variable in question for the given
execution history. To see why, consider the program
in Figure 3 and the test-case N = 1, which yields the
execution history <I, 2, 3, 4, 5l, 6, 7, 8, 52, 9>. Fig-
ure 5 shows the the result of using the above approach
to obtain the dynamic slice of this program with re-
spect to the variable Z at the end of the execution.
Looking at the execution history we find that state-
ment 7 assigns a value to Y which is never used later,
for none of the statements that appear after 7 in the
execution history, namely, 8, 5, and 9, uses variable
Y. So statement 7 should not be in the dynamic slice.
It is included in the slice because statement 9 depends
on statement 6 which has a data dependence edge to
statement 7 in the Program Dependence Graph, In
the next section we present a refinement to the above
approach that avoids this problem.

3.2 Dynamic Slicing: Approach 2

The problem with Approach 1 lies in the fact that
a statement may have multiple reaching definitions
of the same variable in the program flow-graph, and
hence it may have multiple out-going data depen-
dence edges for the same variable in the Program De-
pendence Graph. Selection of such a node in the dy-
namic slice, according to that approach, implies that
all nodes to which it has out-going data-dependence
edges also be selected if the nodes have been executed,
even though the corresponding data-definitions may
not have affected the current node. In the example
above (Figure 3), statement 6 has multiple reaching
definitions of the same variables: two definitions of
variable Y from statements 3 and 7, and two of vari-
able Z from statements 2 and 6 itself. So it has two
outgoing data dependence edges for each of variables
Y and Z: to statements 3 and 7, and 2 and 6 respec-
tively (besides a control dependence edge to node 5).
For the test-case N = 1, each of these four statements
is executed, so inclusion of statement 6 in the slice
leads to the inclusion of statements 3, 7, and 2 as
well, even though two of the data dependencies of
statement 6-on statement 7 for variable Y and on
itself for variable Z-are never activated for this test-
case.

In general, a statement may have multiple reaching
definitions of a variable because there could be multi-
ple execution paths leading up to that statement, and
each of these paths may have different statements as-
signing a value to the same variable. For any single

249

Figure 4: Dynamic Slice using Approach 1 for the program in Figure 1, test-case X = -1, with respect to variable
Y at the end of the execution. All nodes are drawn as dotted in the beginning. A node is made solid if it is ever
executed; ;md is made bold if it gets traversed while determining the slice.

Figure 5: Dynamic slice using Approach 1 for the program in Figure 3, test-case N = 1, for vakiable Z, at the end
of execution. Node 7 should not belong to the slice!

path, there can be at most one reaching definition
of any variable at any statement; and since, in dy-
namic slicing, we are interested in examining depen-
dencies for the single execution path under the given
inputs, inclusion of a statement in the dynamic slice
should lead to inclusion of only those statements that
actually defined values used by it under the current
test-case. This suggests our Approach 2 to computing
dynamic s:.ices:

Mark the edges of the Program Dependence
Graph as the corresponding dependencies
arise during the program execution; then
traverse the graph only along the marked
edges to find the slice.

Consider again the program in Figure 3 and the
test-case TJ = 1. Using Approach 2 on its execu-
tion history <l, 2, 3, 4, 5l, 6, 7, 8, 5’, 9> for vari-
able Z yie:.ds the dynamic slice (1, 2, 3, 4, 5, 6, 8).
This is depicted in Figure 6. Imagine all edges to be
drawn as dotted lines in the beginning. As statements
are execut Ed, edges corresponding to the new depen-

dencies that occur are changed to solid lines. Then
the graph is traversed only along solid edges and the
nodes reached are made bold. The set of all bold
nodes at the end gives the desired slice. Note that
statement 7 that was included by Approach 1 in the
slice is not included under this approach.

If a program has no loops then the above approach
would always find accurate dynamic slices of the pro-
gram (see [AH891 for details). In the presence of
loops, the slice may sometimes include more state-
ments than necessary. Consider the program in Fig-
ure 7 and the test-case where N = 2 and the two val-
ues of X read are -4 and 3. Then, for the first time
through the loop statement 6, the then part of the if
statement, is executed and the second time through
the loop statement 7, the else part,, is executed. Now
suppose the execution has reached just past state-
ment 9 second time through the loop and the second
value of Z printed is found to be wrong. The execu-
tion history thus far is <l, 2, 3l, 4l, 5l, 6, @, 9l, 101,
32, 42, 52, 7, e2, g2>. If we used Approach 2 to find
the slice for variable Z for this execution history, we

250

Figure 6: Dynamic Slice using Approach 2 for the program in Figure 3, test-case N = 1, for variable Z, at the
end of execution. All edges are drawn as dotted at the beginning. An edge is made solid if the corresponding
dependency is ever activated during execution. Only solid edges are traversed while slicing; nodes in the bold
denote the slice obtained.

Sl:
s2:
s3:

s4:
s5:

S6:

s7:

S8:
s9:
SlO:

begin
read(N);
I:= 1;
while (I <= N)
do

read(X);
if(X< 0)
then

Y := f1(X);
else

Y := fg(X);
endif;
z := fa(Y);
WRITE(Z);
I := I + 1;

end-while;
end.

Figure 7: Example Program 3

would have both statements 6 and 7 included in the
slice, even though the value of Z in this case is only
dependent on statement 7. Figure 8 shows a segment
of the Program Dependence Graph (only statements
4, 6, 7, 8, and 9) along with the effect of using Ap-
proach 2. The data dependence edge from 8 to 6 is
marked during the first iteration, and that from 8 to
7 is marked during the second iteration. Since both
these edges are marked, inclusion of statement 8 leads
to inclusion of both statements 6 and 7, even though
the value of Z observed at the end of second iteration
is only affected by statement 7.

It may seem that the difficulty with the above ap-
proach will disappear if, before marking the data-
dependence edges for a new occurrence of a statement
in the execution history, we first unmarked any out-
going dependence edges that are already marked for

this statement. This scheme wiil work for the above
example, but unfortunately it may lead to wrong dy-
namic slices in other situations. Consider, for ex-
ample, the program in Figure 9. Consider the case
when the loop is iterated twice, first time through
statements 7 and 11, and second time through state-
ment 8 but skipping statement 11. If we obtain the
dynamic slice for A at the end of execution, we will
have statement 8 in the slice instead of statement 7’.
This is because when statement 9 is reached second
time through the loop, the dependence edge from 9
to 7 (for variable Y) is unmarked and that from 9
to 8 is marked. Then, while finding the slice for A at
statement 13, we will include statement 11, which last
defined the value of A. Since statement 11 used the
value of Z defined at statement 9, 9 is also included
in the slice. But inclusion of 9 leads to inclusion of 8
instead of 7, because the dependence edge to the lat-
ter was unmarked during the second iteration. Value
of Z at statement 11, however, depends on value of Y
defined by statement 7 during the first iteration, so
7 should be in the slice, not 8. Thus the scheme of
unmarking previously marked edges with every new
occurrence of a statement in the execution history
does not work.

3.3 Dynamic Slicing: Approach 3

Approach 2 discussed above sometimes leads to over-
large dynamic slices because a statement may have
multiple occurrences in an execution history, and dif-
ferent occurrences of the statement may have differ-
ent reaching definitions of the same variable used by
the statement. The Program Dependence Graph does
not distinguish between these different occurrences,
so inclusion of a statement in the dynamic slice by
virtue of one occurrence may lead to the inclusion
of statements on which a different occurrence of that

Figure 8: IL subset of the dynamic slice obtained using Approach 2 for the program in Figure 7, test-case (N = 2,
X = -4, 3’1, for Variable Z. Node 6 should not be in the slice!

Sl:
s2:
s3:
s4:

s5:
S6:

s7:

S8:

s9:
SlO

Sll

s12.

s13:

begin
read(N);
A := 0;
I := 1;
while (I <= N)
do

read(X);
if (X < 0)
then

Y := f1(X);
else

Y := fz(X);
endif;

; i; f.$‘;

then
A := fd(A, 2);

else
endif;
I := I + 1;

end-while;
write(A);

end.

Figure 9: Example Program 4

statement is dependent. In other words, different oc-
currences ‘of the same statement may have different
dependencies, and it is possible that one occurrence
contribute.3 to the slice and another does not. In-
clusion of one occurrence in the slice should lead to
inclusion of only those statements on which this oc-
currence is dependent, not those on which some other
occurrences are dependent. This suggests our third
approach l,o dynamic slicing:

Creak a separate node for each occurrence
of a si.atement in the execution history, with
outgoing dependence edges to only those
statements (their specific occurrences) on
which this statement occurrence is depen-
dent.

Every node in the new dependence graph will have at
most one out-going edge for each variable used at the
statement. We call this graph the Dynamic Depen-
dence Graph. A program will have different dynamic
dependence graphs for different execution histories,
Miller and Choi also define a similar dynamic depen-
dence graph in [MC88]; however, their approach dif-
fers from ours in the way the graph gets constructed
(see Section 4).

Consider, for example, the program in Figure 7,
and the test-case (N = 3, X = -4, 3, -2) which
yields the execution history <l, 2, 3l, 4l, 5l, 6r, 8l,
9l, 101, 3’, 4’, 5’, 7l, 82, 9’, IO’, 33, 43, 53, 62, 83,
g3, 103, 34>. Figure 10 shows the Dynamic Depen-
dence Graph for this execution history. The middle
three rows of nodes in the figure correspond to the
three iterations of the loop. Notice the occurrences of
node 8 in these rows. During the first and third iter-
ations, node 8 depends on node 6 which corresponds
to the dependence of statement 8 for the value of Y
assigned by node 6, whereas during the second itera-
tion, it depends on node 7 which corresponds to the
dependence of statement 8 for the value of Y assigned
by node 7.

Once we have constructed the Dynamic Depen-
dence Graph for the given execution history, we can
easily obtain the dynamic slice for a variable, var, by
first finding the node corresponding to the last defini-
tion of var in the execution history, and then finding
all nodes in the graph reachable from that node. Fig-
ure 10 shows the effect of using this approach on the
Dynamic Dependence Graph of the program in Fig-
ure 7 for the test-case (N = 3, X = -4, 3, -2), for
variable Z at the end of the execution. Nodes in bold
belong to the slice. Note that statement 6 belongs to
the slice whereas statement 7 does not. Approach 2,
on the other hand, would have included statement 7
as well.

3.4 Dynamic Slicing: Approach 4

The size of a Dynamic Dependence Graph (total num-
ber of nodes and edges) is, in general, unbounded.

252

Figure 10: Dynamic Dependence Graph for the Program in Figure 7 for the test-case (N = 3, X = -4, 3,
Nodes in bold give the Dynamic Slice for this test-case with respect to variable Z at the end of execution.

This is because the number of nodes in the graph is
equal to the number of statements in the execution
history, which, in general, may depend on values of
run-time inputs. For example, for the program in Fig-
ure 3 the number of statements in its execution his-
tory, and hence the size of its Dynamic Dependence
Graph, depends on the value read by variable N at
statement 1. On the other hand, we know that every
program can have only a finite number of possible dy-
namic slices - each slice being a subset of the (finite)
program. This suggests that we ought to be able to
restrict the number of nodes in a Dynamic Depen-
dence Graph so its size is not a function of the length
of the corresponding execution history. Our fourth
approach exploits the above observation:

Instead of creating a new node for every oc-
currence of a statement in the execution his-
tory, create a new node only if another node
with the same transitive dependencies does
not already exist.

We call this new graph the Reduced Dynamic Depen-
dence Graph. To build it without having to save the
entire execution history we need to maintain two ta-
bles called DebNode and PredNode. DefnNode maps
a variable name to the node in the graph that last
assigned a value to that variable. PredNode maps a
control predicate statement to the node that corre-
sponds to the last occurrence of this predicate in the

-2).

execution history thus far. Also, we associate a set,
ReachableStmts, with each node in the graph. This

set consists of all statements one or more of whose oc-
currences can be reached from the given node. Every
time a statement, Si, gets executed, we determine the
set of nodes, D, that last assigned values to the vari-
ables used by Si, and the last occurrence, C, of the
control predicate node of the statement. If a node,
n, associated with Si already exists whose immediate
descendents are the same as DUG’, we associate the
new occurrence of 5’; with n. Otherwise we create a
new node with outgoing edges to all nodes in DUC.
The DefiNode table entry for the variable assigned
at Si, if any, is also updated to point to this node.
Similarly, if the current statement is a control predi-
cate, the corresponding entry in PredNode is updated
to point to this node.

If there were no circular dependencies in the de-
pendence graph then the above scheme of looking
for a node with the same set of immediate descen-
dents would work fine. But in presence of circular de-
pendencies (i.e., in presence of loops in the program
dependence graph), the graph reduction described
above won’t occur: for every iteration of a loop in-
volving circular dependencies we will have to create
new node occurrences. We can avoid this problem, if
whenever we need to create a new node, say for state-
ment Si, we first determine if any of its immediate

253

descendents, say node v, already has a dependency
on a previous occurrence of Si and if the other imme-
diate desce ndents of the new occurrence of Si are also
reachable from v. This is easily done by checking if
the ReachableStmts set to be associated with the new
occurrence is a subset of the ReachableStmts set asso-
ciated with v. If so, we can merge the new occurrence
of Si with $7. After this merge, during subsequent it-
erations of the loop the search for a node for Si with
same immediate descendents will always succeed.

Consider again the program in Figure 7, and test-
case (N = .3, X = -4, 3, -2), which yields the exe-
cution history <l, 2, 3r, 4l, 5i, 6l, 8l, 9r, 10’) 32
42, 52, 7r, Ei2, g2, 102, 33, 43, 53, 62, 83, g3, 103, 34,1
Figure 11 shows the Reduced Dynamic Dependence
Graph for t.his execution history. Every node in the
graph is annotated with the set of all reachable state-
ments from that node. Note that there is only one
occurrence of node 10 in this graph, as opposed to
three occurrences in the Dynamic Dependence Graph
for the same program and the same test-case. Also
note that the second occurrence of node 3 is merged
with its immediate descendent node 10 because the
ReachableS-rmts set, (1, 2, 3, lo), of the former was
a subset of that of the latter. The third occurrence
of node 3 in the execution history has node 1 and
node 10 as i:mmediate descendents. Since these imme-
diate dependencies are also contained in the merged
node (10,3), the third occurrence of node 3 is also
associated with this node.

Once we have the Reduced Dynamic Dependence
Graph for the given execution history, to obtain the
dynamic slice for any variable var we first find the
entry for v~ar in the DefnNode table. The Reach-
ablestmts set associated with that entry gives the de-
sired dynamic slice. So we don’t even have to traverse
the Reduced Dynamic Dependence Graph to find the
slice. For example, the dynamic slice for variable Z in
case of the .Reduced Dynamic Dependence Graph in
Figure 7 is given by the ReachableStmts set, (1, 2, 3,
4, 5, 6, 8, lC}, associated with node 8 in the last row,
as that was the last node to define value of Z.

4 Relisted Work

The concept of program slicing was first proposed by
Weiser [Wei84, WeiSZ]. His solution for computing
static program slices was based on iteratively solving
data-flow equations representing inter-statement in-
fluences. Ottenstein and Ottenstein later presented
a much neal;er solution for static slicing in terms of
graph reachability in the Program Dependence Graph
[0084], but they only considered the intra-procedural
case. Horwitz, Reps, and Binkley have proposed ex-

tending the Program Dependence Graph represen-
tation to what they call System Dependence Graph
to find inter-procedural static slices under the same
graph-reachability framework [HRB88]. Dependence
Graph representation of programs was first proposed
by Kuck et al. [KKL+81]; several variations of this
concept have since been used in optimizing and par-
allelizing compilers [FOW87] besides their use in pro-
gram slicing.

Korel and Laski extended Weiser’s static slicing
algorithms based on data-flow equations for the dy-
namic case [KL88]. Their definition of a dynamic slice
may yield unnecessarily large dynamic slices. They
require that if any one occurrence of a statement in
the execution history is included in the slice then all
other occurrences of that statement be automatically
included in the slice, even when the value of the vari-
able in question at the given location is unaffected
by other occurrences. The dynamic slice so obtained
is executable and produces the same value(s) of the
variable in question at the given location as the orig-
inal program. For our purposes, the usefulness of a
dynamic slice lies not in the fact that one can execute
it, but in the fact that it isolates only those state-
ments that affected a particular value observed at a
particular location. For example, in the program of
Figure 7 each loop iteration computes a value of Z,
and each such computation is totally independent of
computation performed during any other iteration. If
the value of variable Z at the end of a particular iter-
ation is found be incorrect and we desire the dynamic
slice for Z at the end of that iteration, we would like
only those statements to be included in the slice that
affected the value of Z observed at the end of that
iteration, not during all previous iterations, as the
previous iterations have no effect on the current iter-
ation. It is interesting to note that our Approach 2
(which may yield an overlarge dynamic slice) would
obtain the same dynamic slice as obtained under their
definition. So our algorithm for dynamic slicing based
on the graph-reachability framework may be used to
obtain dynamic slices under their definition, instead
of using the more expensive algorithm based on iter-
ative solutions of the data-flow equations.

Miller and Choi also use a dynamic dependence
graph, similar to the one discussed in Section 3.3,
to perform flow-back analysis [Ba169] in their Paral-
lel Program Debugger PPD [MC88]. Our approach,
however, differs from theirs in the way the graph is
constructed. Under their approach, separate data-
dependence graphs of individual basic blocks are con-
structed. The dynamic dependence graph is build
by combining, in order, the data-dependence graphs
of all basic blocks reached during execution and in-

254

4~5~6~8~9) (10.3 I

(1.2,3.4,5,6.8,10)

Figure 11: The Reduced Dynamic Dependence Graph for the Program in Figure 7 for the test-case (N = 3,
x = -4, 3, -2), obtained using Approach 4. Each node is annotated with ReachableStmts, the set of all
statements reachable from that node.

serting appropriate control dependence edges among
them. They use a notion of incremental tracing where
portions of the program state are checkpointed at the
start and the end of segments of program-code called
emulation-blocks. Later these emulation blocks may
be reexecuted to build the corresponding segments of
the dynamic dependence graph. The size of their dy-
namic dependence graph may not be bounded for the
same reason as that discussed in Section 3.4.

5 Summary

In this paper we have examined four approaches for
computing dynamic program slices. The first two are
extensions of static program slicing using Program
Dependence Graph. They are simple and efficient;
however, they may yield bigger slices than necessary.
The third approach uses Dynamic Dependence Graph
to compute accurate dynamic slices but the size of
these graphs may be unbounded, as it depends on
the length of execution history. Knowing that every
program execution can have only a finite number of
dynamic slices it seems unnecessary having to create
a separate node in the Dynamic Dependence Graph
for each occurrence of a statement in the execution
history. We then proposed the notion of a Reduced
Dynamic Dependence Graph where a new node is cre-
ated only if it can cause a new dynamic slice to be
introduced. The size of the resulting graph is pro-
portional to the actual number of dynamic slices that

arose during the execution and not to the length of
the execution.

Acknowledgements

We would like to thank Rich DeMillo, Stu Feldman,
Gene Spafford, Ryan Stansifer, and Venky Venkatesh
for their many helpful comments on an earlier draft
of this paper.

References

[AH891

[ASUSS]

[Ba169]

[FOW87]

Hiralal Agrawal and Joseph R. Horgan.
Dynamic program slicing. Technical Re-
port SERC-TR-56-P, Software Engineer-
ing Research Center, Purdue University,
West Lafayette, Indiana, November 1989.

Alfred V. Aho, Ravi Sethi, and Jeffrey D.
Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.

R. M. Balzer. Exdams-extendable de-
bugging and monitoring system. In AFIPS
Proceedings, Spring Joint Computer Con-
ference, 1969, volume 34, pages 567-580.

Jeanne Ferrante, Karl J. Ottenstein, and
Joe D. Warren. The program dependence
graph and its uses in optimization. ACM
Transactions on Programming Languages
and Systems, 9(3):319-349, July 1987.

255

[HPR89] Susan Horwitz, Jan Prins, and Thomas
Reps. Integrating noninterfering ver-
sions of programs. ACM l’kansactions
on Programming Languages and Systems,
1.1(3):345-387, July 1989.

[HRB88] Susan Horwitz, Thomas Reps, and David
13inkeley. Interprocedural slicing us-
ing dependence graphs. In Proceeff-
ings of the ACM SIGPLAN’88 Conference
on Programming Language Design and
l’mplementation, Atlanta, Georgia, June
1988. SIGPLAN Notices, 23(7):3546,
July 1988.

[KKL+81] I). J. Kuck, R. H. Kuhn, B. Leasure, D. A.
Padua, and M. Wolfe. Dependence graphs
and compiler optimizations. In Confer-
once Record of the Eighth ACM Sympo-
sium on Principles of Programming Lan-
quages, Williamsburg, Virginia, January
198 1. pages 207-218.

[KL88]

[MC881

[0084]

[Wei82]

[Wei84]

Bogdan Korel and Janusz Laski. Dynamic
program slicing. Information Processing
Letters, 29:155-163, October 1988.

Barton P. Miller and Jong-Deok Choi.
fr mechanism for efficient debugging of
parallel programs. In Proceedings of the
ACM SIGPLAN’88 Conference on Pro-
gramming Language Design and Imple-
mentation, Atlanta, Georgia, June 1988.
SIGPLAN Notices, 23(7):135-144, July
1988.

Karl J. Ottenstein and Linda M. Ot-
tenstein. The program dependence
graph in a software development environ-
ment. In Proceedings of the ACM SIG-
$OFT/SIGPLAN Symposium on Practi-
cal Software Development Environments,
E’ittaburgh, Pennsilvania, April 1984.
SIGPLAN Notices, 19(5):177-184, May
1984.

Mark Weiser. Programmers use slices
when debugging. Communications of the
1iCM, 25(7):446452, July 1982.

Mark Weiser. Program slicing. IEEE
l’ransactions on Soflware Engineering,
SE-10(4):352-357, July 1984.

256

