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Abstract 

Text-based file comparators (e.g., the Unix utility diff), are 
very general tools that can be applied to arbitrary files. 
However, using such tools to compare programs can be 
unsatisfactory because their only notion of change is based 
on program text rather than program behavior. This paper 
describes a technique for comparing two versions of a pro- 
gram, determining which program components represent 
changes, and classifying each changed component as 
representing either a semantic or a textual change. 

1. INTRODUCTION 

A tool that detects and reports differences between versions 
of programs is of obvious utility in a software-development 
environment. Text-based tools, such as the Unix utility 
dzy, have the advantage of being applicable to arbitrary 
files; however, using such tools to compare programs can 
be unsatisfactory because no distinction can be made 
between textual and semantic changes. 

This paper describes a technique for comparing two pro- 
grams, Old and New, determining which components of 
New represent changes from Old, and classifying each 
changed component as representing either a textual or a 
semantic change. It is, in general, undecidable to deter- 
mine precisely the set of semantically changed components 
of New; thus, the technique described here computes a safe 
approximation to (i.e., possibly a superset of) this set. This 
computation is performed using a graph representation for 
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programs and a partitioning operation on these graphs first 
introduced in Tyang89], and summarized in Section 2. The 
partitioning algorithm is currently limited to a language 
with scalar variables, assignment statements, conditional 
statements, while loops, and output statements. Because 
the partitioning algorithm is fundamental to the program- 
comparison algorithm described here, the program- 
comparison algorithm is also currently limited to the 
language described above. However, research is under 
way to expand the language; in particular, we are studying 
extensions for procedures and procedure calls, pointers, 
and arrays. 

A precise definition of semantic change is given in Sec- 
tion 2; informally, a component c of New represents a 
semantic change either if there is no corresponding com- 
ponent of Old (hecause component c was added to Old to 
create New), or if a different sequence of values might be 
produced at c than at the corresponding component of Old. 
By “the sequence of values produced at c” we mean: if c is 
an assignment statement, the sequence of values assigned 
to the left-hand-side variable when the program is exe- 
cuted; if c is a predicate, the sequence of true-false values 
to which c evaluates when the program is executed; if c is 
an output statement, the sequence of values output when 
the program is executed. 

Figure 1 shows a program Old and three different New 
programs; each New program is annotated to show its 
changes with respect to Old. 

It is worthwhile to consider whether other approaches to 
program comparison could be used to detect the kinds of 
changes illustrated in Figure 1. In program New 1, the 
assignment “x := 2” is flagged as a semantic change 
because the value 2 is assigned to variable x whereas the 
corresponding component of Old assigns the value 1 to x. 
A text-based program comparator would also have flagged 
this as a changed component; however, the other changes 
flagged in New i would not have been detected by a text- 
based program comparator. These components represent 
semantic changes because they may use (directly or 
indirectly) the new value assigned to x. 

The second and third semantic changes of program 
NewI could have been detected by following &f-use 
chains [Ah0863 from the modified definition of x; however, 
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Old 

x :=o 
if P then 

x := 1 

6 
y := x 

OUtput 

New1 New2 Nm3 

x := 0 if P then a := 0 c TEXTUAL 

if P then x := 1 If P then 
x:=2 + SEMANTIC else a := 1 6 TEXTUAL 

6 x:=0 e SEMANTIC fi 
y := x t-SEhMNTIC Ii y := a e TEXTUAL 
output(y) e SEMANTIC y := x ouww 

OUtput 

Figure 1. Program Old and three versions of New; each version of New is amrotated to show its changes with respect to Old. 

program New2 illustrates a situation in which following 
def-use chains leads to an erroneous detection of semantic 
change. In Newz, component “x := 0” is flagged as a 
semantic change because the sequence of values produced 
there is empty if variable P is true,’ while the sequence of 
values produced at the corresponding component in Old is 
never empty (since the assignment is unconditional). 
Although “x := 0” represents a semantic change, the 
sequence of values produced at component “y :=x” in 
New2 is identical to the sequence of values produced at the 
corresponding component of Old; thus, “y := x0 is not 
flagged as a change. Following defuse chains from 
“x := 0” would (incorrectly) identify both “y := x” and 
“output(y)” as semantic changes. 

Finally, New3 illustrates purely textual changes; again, 
following defuse chains from the changed component 
‘,Y := a” would incorrectly identify “output(y)” as a seman- 
tic change. 

A technique for determining the semantic differences 
between two versions of a program based on comparing 
program slices [weiser84,Ottenstein84] is. used by the 
program-integration algorithm of [Horwitz89]. This tech- 
nique can be adapted to detect the kinds of changes illus- 
trated in programs New 1 and News. However, slice com- 
parison is less precise than the partitioning technique 
described in this paper; for example, using slice com- 
parison the components “y := x” and “output(y)” of New2 
would be identified as semantic changes. Section 4 pro- 
vides a more detailed discussion of the slice-comparison 
technique, including more examples for which slice com- 
parison is less precise than partitioning. 

In discussing the examples of Figure 1 we have talked 
about “corresponding components” in Old and the various 

‘The language under consideration does not include explicit input state- 
ments. However, variables can be used before being defined; these vati- 
ables’ values uxne from the initial state. 

New programs. How is this correspondence actually esta- 
blished? One possibility is to rely on the editing sequence 
used to create New from Old. For example, this correspon- 
dence could be established and maintained by the editor 
used to create New from Old as follows: Each component 
of Old has a unique tag; when a component is added, it is 
given a new tag, when a component is moved or modified it 
maintains its tag, when a component is deleted, its tag is 
never mused. 

An algorithm for detecting the semantic and textual 
changes between Old and New, assuming editor-supplied 
tags, is given in Section 3.1; however, this approach has 
two important disadvantages: 
(1) A special editor that maintains tags is required. 
(2) The set of changes in New with respect to Old 

depends not only on the semantics of the two pro- 
grams, but also on the particular editing sequence 
used to create New from Old. For example, it 
would be possible to use two different editing 
sequences to create programs New and New’ from 
Old, such that the two new programs were idenri- 
cal, yet had different sets of changed components 
with respect to Old. 

Section 3.2 considers how to determine semantic and tex- 
tual changes between Old and New in the absence of 
editor-supplied tags; i.e., the problem of finding the 
correspondence between the components of Old and New is 
included as part of the program-comparison algorithm. A 
reasonable criterion for determining the correspondence is 
that it should minimize the difference between Old and 
New; however, we show that it is not satisfactory to define 
“difference between Old and New” as simply the number of 
semantically or textually changed components of New with 
respect to Old. Instead, we propose defining “difference 
between Old and New” as the number of semantically or 
textually changed components of New plus the number of 
new fIow or control dependence edges in the graph 
representation of New (flow and control dependence edges 
are defined in Section 2). Finding a correspondence that 
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minimizes the difference between Old and New according 
to this definition is shown to be NP-hard in the general 
case; a study of real programs is needed to determine how 
difficult the problem will be in practice. 

2. PARTITIONING PROGRAM COMPONENTS 
ACCORDING TO THEIR BEHAVIORS 
The program-comparison algorithm described in this paper 
relies on an algorithm for partitioning program components 
(in one or more programs) so that two components are in 
the same partition only if they have equivalent behaviors 
CYang891. The Partitioning Algorithm uses a graph 
representation of programs called a Program Represenru- 
don Graph. This section summarizes the definitions of 
Program Representation Graphs and partitioning given in 
[Yang89]. 

2.1. The Program Representation Graph 
Program Representation Graphs (PRGs) are currently 
defined only for programs in a limited language with scalar 
variables, assignment statements, conditional statements, 
while loops, and output statements2 

PRGs combine features of program dependence graphs 
[Kuck8 1, Ferrante87, Horwitz89] and static single assign- 
ment forms [Shapiro70, Alpem88, Cytron89,Rosen88]. A 
program’s PRG is defined in terms of an augmented ver- 
sion of the program’s control-flow graph. The standard 
control-flow graph includes a special Entry vertex and one 
vertex for each if or while predicate, each assignment state- 
ment, and each output statement in the program. As in 
static single assignment forms, the control-flow graph is 
augmented by adding special “g vertices” so that each use 
of a variable in an assignment statement, an output state- 
ment, or a predicate is reached by exactly one definition. 

One vertex labeled LL#if: x := x0 is added at the end of 
each if statement for each variable x that is defined within 
either (or both) branches of the if and is live at the end of 
the if; one vertex labeled “Qrrtcr: x := x” is added inside 
each while loop immediately before the loop predicate for 
each variable x that is defined within the while loop, and is 
live immediately after the loop predicate (i.e., may be used 
before being redefined either inside the loop or after the 
loop); one vertex labeled “$I~~,: x := x” is added immedi- 
ately after the loop for each variable x that is defined within 
the loop and is live after the loop. In addition, for each 
variable x that may be used before being defined, a vertex 
labeled ‘x := Initial (x)” is added at the beginning of the 
control-flow graph. Figures 2(a) and 2(b) show a program 
and its augmented control-flow graph. 

The language used in [Yang891 is actually slightly more restrictive, in- 
cluding only a limited kind of output statement called an end statement, 
which cao appear only at the end of a program; however, it is clear that no 
problems are introduced by allowing general output statements. 

The vertices of a program’s Program Representation 
Graph (PRG) are the same as the vertices in the augmented 
control-fiow graph (an Entry vertex, one vertex for each 
predicate, each assignment statement, and each output 
statement, and for each Initial, @, $,&,, and eetir vertex). 
The edges of the PRG represent control and flow depen- 
dences. The source of a control dependence edge is always 
either the Entry vertex or a predicate vertex; control depen- 
dence edges are labeled either true or false. The intuitive 
meaning of a control dependence edge from vertex v to 
vertex w is the following: if the program component 
represented by vertex v is evaluated during program execu- 
tion and its value matches the label on the edge, then, 
(assuming termination of all loops) the component 
represented by w will eventually execute; however, if the 
value does not match the label on the edge, then the com- 
ponent represented by w may never execute. (By 
definition, the Entry vertex always evaluates to true.) 

Algorithms for computing control dependences in 
languages with unrestricted control flow are given in 
[Ferrante87, Cytron891. For the restricted language under 
consideration here, control dependence edges reflect the 
nesting structure of the program (i.e., there is an edge 
labeled true from the vertex that represents a while predi- 
cate to all vertices that represent statements inside the loop; 
there is an edge labeled true from the vertex that represents 
an jfpredicate to all vertices that represent statements in the 
true branch of the if, and an edge labeled false to all ver- 
tices that represent statements in the false branch; there is 
an edge labeled true from the Entry vertex to all vertices 
that represent statements that are not inside any while loop 
or if statement). In addition, there is a control dependence 
edge labeled true from every vertex that represents a while 
predicate to itself. 

Flow dependence edges represent possible flow of 
values, i.e., there is a flow dependence edge from vertex v 
to vertex w if vertex v represents a program component that 
assigns a value to some variable x, vertex w represents a 
component that uses the value of variable x, and there is an 
x-definition clear path from v to w in the augmented 
control-flow graph. 

Figure 2(c) shows the Program Representation Graph of 
the program of Figure 2(a). Control dependence edges are 
shown using bold arrows and are unlabeled (in this exam- 
ple, all control dependence edges would be labeled true); 
data dependence edges are shown using arcs. 

2.2. The Partitioning Algorithm 
The Partitioning Algorithm of Wang891 can be applied to 
the Program Representation Graphs of one or more pro- 
grams. The algorithm partitions the vertices of the graph(s) 
so that two vertices are in the same partition only if the pro- 
gram components that they represent have equivalent 
behaviors in the following sense: 

Definition (equivalent behavior of program com- 
ponents). Two components c1 and cp of (not necessarily 
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x:=0 
lfP then 

x:= 1 
fi 
y:=x 
output69 

(4 @I w 

Figure 2. (a) A program; (b) its augmented control-flow graph; (c) its Program Representation Graph. In the Program Representation 
Graph, control dependence edges are shown usinp: hold arrows and are unlabeled (m this example. all control dependence edges would he 
labeled true); da& dependenckedges are shown using arcs. 

distinct) programs P r and Pz respectively, have equivalent 
behaviors iff all four of the following hold: 
(1) For all initial states CT such that both P 1 and P, halt 

when executed on cr, the sequence of values pro- 
duced at component c r when PI is executed on CT 
is identical to the sequence of values produced at 
component c 2 when P 2 is executed on 6. 

(2) For all initial states CT such that neither PI nor P2 
halts when executed on o, either the sequence of 
values produced at component c 1 is an initial sub- 
sequence of the sequence of values produced at c2 
or vice versa. 

(3) For all initial states CJ such that PI halts on cr but 
P, fails to halt on B, the sequence of values pro- 
duced at c2 is an initial sub-sequence of the 
sequence of values produced at c r . 

(4) For all initial states cr such that P2 halts on cs but 
P 1 fails to halt on (J, the sequence of values pro- 
duced at c1 is an initial sub-sequence of the 
sequence of values produced at c2. 

By “the sequence of values produced at a component” we 
mean: for an assignment statement (including Initiul state 
ments and 41 statements), the sequence of values assigned to 
the left-hand-side variable; for an output statement, the 
sequence of values output; and for a predicate, the 
sequence of boolean values to which the predicate evalu- 

ates. 
The Partitioning Algorithm uses a technique (which we 

will call the Basic Partitioning Algorithm) adapted from 
[Alpem88,Aho74] that is based on an algorithm of [Hop- 
croft711 for minimizing a finite state machine. This tech- 
nique finds the coarsest partition of a graph that is con- 
sistent with a given initial partition of the graph’s vertices. 
The algorithm guarantees that two vertices v and v’ are in 
the same class after partitioning if and only if they are in 
the same initial partition, and, for every predecessor u of v, 
there is a corresponding predecessor U’ of v’ such that u 
and u’ are in the same class after partitioning. 

The Partitioning Algorithm operates in two passes. Both 
passes use the Basic Partitioning Algorithm, but apply it to 
different initial partitions, and make use of different sets of 
edges. The first pass creates an initial partition based on 
the operators that are used in the vertices; flow dependence 
edges are used by the Basic Partitioning Algorithm to refine 
this partition. The second pass starts with the final partition 
produced by the first pass; control dependence edges are 
used by the Basic Partitioning Algorithm to further refine 
this partition. The time required by the Partitioning Algo- 
rithm is 0 (N log N), where N is the size of the Program 
Representation Graph(s) (i.e., number of vertices + number 
of edges). 

Example. Figure 3 illustrates partitioning using the pro- 
grams from Figure 1. Figure 3 shows two of the partitions 
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created by the Partitioning Algorithm: the initial partition 
and the final partition. Note that the components labeled 
,‘Y := x” from Old and New2 are in the same final partition 
(and thus have the same execution behaviors) even though 
they are transitively flow dependent on components that are 
not in the same final partition (namely, the components 
labeled “x := 0” from Old and New2). 

3. COMPUTING SEMANTIC AND TEXTUAL 
DIFFERENCES 
This section presents three different algorithms to compute 
the semantic and textual differences between two versions 
of a program. All three algorithms operate on the pro- 
grams’ Program Representation Graphs; thus, in what fol- 
lows, New and Old am Program Representation Graphs, 
and “program component” and “Program Representation 
Graph vertex” are used interchangeably. 

Section 3.1 assumes that a special tag-maintaining editor 
is used to create program New from program Old. Section 
3.2 assumes that the correspondence between the com- 
ponents of New and Old must be computed; Sections 3.2.1 
and 3.2.2 use different criteria for determining the best 
correspondence. In both cases the goal is to find a 
correspondence that minimizes the size of the change 
between Nau and Old. However, in Section 3.2.1 “size of 
the change” is defined to be the number of semantically or 

textually changed components of New, while in Section 
3.2.2 “size of the change” is defined to be the number of 
semantically or textually changed components, plus the 
number of new flow or control dependence edges in New. 

3.1. Component Correspondence is Maintained by the 
Editor 
If program New is created from program Old using an edi- 
tor that maintains tags on program components, then deter- 
mining which components of Nau represent changes from 
Old and classifying each changed component as either a 
textual or semantic change is quite straightforward. A pro- 
cedure called ComputeChanges that classifies the com- 
ponents of New is given in Figure 4. Procedure Compu- 
techanges first partitions programs Old and New and then 
considers each component c of Nau. If there is no com- 
ponent of Old with the same tag, then c was added to Old 
to create New, and thus represents a semantic change. 
Similarly, if there is a component of Old with the same tag, 
but the component is not in the same partition as c, then c 
represents a semantic change. If there is a component of 
Old with the same tag and in the same partition but with 
different text, then c represents a textual change. 

Procedure ComputeChanges can be illustrated by consid- 
ering programs Old and Navz of Figure 1. Assume that 
program Navz was created from Old by moving the state- 

Initial Partition 

New 1 New2 New3 Old 

Final Partition 

New 1 New2 New3 

e 
0 IfP 

0 x:=0 

{@I 

e 

0 y:=x 

B 

0 Entry 
e 

0 HP 

0 x :=o 

0 x := 1 

a 
0 y :=x 

B 

0 Entry 1 

-1 

0 ifP ) 

0 1:=0 ) 

0 a:=1 ) 

-1 

0 y:=a ) 

-1 

@ 
0 IfP 

0 Entry 1 

-1 

0 ifp 1 

0 a:=0 ) 

Figure 3. Partitioning Example. The partitions created by the Partitioning Algorithm for the programs of Figure 1. 

238 



procedure ComputeChanges( Old, New: Program Representation Graphs ) 
returns two sets of components of New, representing semantic and textual changes, respectively 

declare semanticChange, textualChange: sets of program components 
begin 

apply the Partitioning Algorithm to Old and New 
semanticChange := 0 
textualChange := 0 
for each component c of New do 

if (there is no component of Old with the same tag as c) or 
(the component of Old with the same tag as c is not in the same partition as c) 

then insert c into semanticChange 
eke If the text of the component of Old that has the same tag as c z the text of c 

then insert c into textualchange 
fi 

6 
od 
return( semanticchange. textualChange ) 

end 

Figure 4. Procedure ComputeChanges classifies the components of New using editor-supplied tags.. 

ment “x := 0” into the else branch of the if statement. In 
this case, for every component of New2 there is a com- 
ponent of Ofd with the same tag, and (as illustrated in Fig- 
ure 3) for every component of New2 other than component 
“x := 0”, the component of Old with the same tag is in the 
same final partition. Thus, the only component of Newz 
identified by procedure ComputeChanges as representing a 
change from Old is component “x := 0”. which is identified 
as a semantic change. 

3.2. Component Correspondence Must be Computed 
In this section we consider how to compare programs Old 
and New assuming that program components are nor tagged 
by the editor. Instead, the correspondence between the 
components of Old and New must be computed as part of 
the program-comparison algorithm. Our goal is to find a 
correspondence that minimizes the size of the change 
between OZd and New. Sections 3.2.1 and 3.2.2 consider 
two different definitions of “the size of the change.” 

3.2.1. Size of change = the number of semantically or 
textually changed components of New 
If we define the size of the change between Old and New as 
the number of semantically or textually changed com- 
ponents of New, then it is possible to define an efficient 
algorithm to find a correspondence that minimizes this size. 
A procedure called MatchAndComputeChanges that com- 
putes such a correspondence and simultaneously classifies 
the components of New with respect to Old is given in Fig- 
ure 5. Procedure MatchAndComputeChanges first tries to 
match every component of New with a component of Old 
that is both semantically and textually equivalent. Next, 
the procedure considers alI unmatched components of New, 
attempting to match them with unmatched components of 
Old that are semantically equivalent but textually different. 

These components of New are classilied as textual changes. 
Components of New that remain unmatched are classified 
as semantic changes. 

Applying procedure MatchAndComputeChanges to pro- 
grams Old and New;! of Figure 1 will produce the result 
pictured in Figure 1 even if the components of the two pro- 
grams are not tagged by the editor. All components of 
New2 other than “x := 0” will be matched with a com- 
ponent of Old that is both semantically and textually 
equivalent; component “x := 0” will be unmatched, and so 
will be classified as a semantic change. 

Procedure MatchAndComputeChanges first partitions 
Ofd and New, then makes two passes through New match- 
ing and classifying its components. Assuming that it is 
possible to determine in constant time whether there is an 
unmatched component of Old in the same partition and 
with the same text as a given component of New, the time 
required for matching and classifying is linear in the size of 
New; thus, the time required for procedure MatchAndCom- 
putechanges is dominated by the time required for parti- 
tioning, which is 0 (N log N), where N is the sum of the 
sizes of Old and New. 

3.2.2. Size of change includes the number of new edges 
in New 
Simply minimizing the number of semantically and textu- 
ally changed components does not always produce a satis- 
factory classification of the components of New; this is 
illustrated in Figure 6. Figure 6 shows programs Old and 
New, and four possible mappings from the components of 
New to the components of Old. All four mappings induce 
the same (minimal) number of changed components of New 
with respect to Old, yet there is something intuitively more 
satisfying about the first two mappings than the third and 
fourth mappings. The problem with the third and fourth 
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procedure MatchAndComputeChsnges( Old, New: Program Dependence Graphs ) 
returns (1) a map from components of New to components of Ofd, and 

(2) two sets of components of New. representing semantic and textual changes, respectively 
declare map: a set of program component pairs; semanticChange, textualchange: sets of program components 

begin 
apply the Partitioning Algorithm to Old and New 
map:=0 
semanticChange := 0 
textualChange := 0 
for each component c of New do 

if there is an unmatched component c’ of Old that is in the same partition as c and has the same text 
then insert the pair (c. c’) into map; mark c “matched”, mark c’ “matched” 
fi 

od 
for each unmatched component c of New do 

if there is an unmatched component c’ of Old that is in the same partition as c 
then insert the pair (c. c’) into map: mark c “matched”, mark c’ “matched”; insert c into textualChange 
eke insert c into semanticChange 
fi 

od 
return{ map, semanticC!hange, textualChange ) 

end 

Figure 5. Procedure MatchAndComputeChanges computes a correspondence between New and Old that minimizes the number of changed 
components of New. 

Old NfDV Mapping Changed Components 

[Ol] x := 1 [Nl] x := 1 (W’J1l-KWh (WI-P21)l N3, N4 
1021 y := x PI21 y := x ](~3]-]oli). (~41~~21)) Nl. N2 

[N3] x := 1 ((Iw-WI), (~41~~23)) N2, N3 
l-N41 y := x (UW-P21). (IN3l-D11)) Nl, N4 

Figure 6. Programs Old and New, and four possible mappings from the components of New to the components of Old. Each mapping in- 
duces a set of changed components of size 2; however, the first two mappings each induce only one new data dependence, while the second 
two mappings each induce two new data dependences. 

mappings is that they “separate” a use of variable x from 
the corresponding definition of x. 

We can avoid choosing mapping three or mapping four 
of Figure 6 by redefining the “size of the change between 
Old and New” to take into account PRG edges as well as 
vertices. 

Definition (a correspondence between New and Old). A 
correspondence between New and Old is a l-to-l partial 
function f from vertices of New to vertices of Old such that 
(1) for all vertices v of New, f (v) is either a vertex of Old, 
or is the special value 1 u(v) = _L means that there is no 
vertex of Old that corresponds to vertex v of New), and (2) 
If f (v) = v’, thzn vertices v and v’ are in the same final par- 
tition. 

Definition (unmatched edge). An edge v1 + v2 of New 
is unmatched under the correspondence defined by f iff any 
of the following hold: (1) f (v,) = 1; (2) f (v2) = L.; (3) 
there is no edge f (v 1) + f (v2) in Ofd. 

Definition (size of change between Old and New). The 
size of the change between Old and New induced by the 
correspondence defined by f is: (the number of vertices v of 
New such that f(v) = I_) + (the number of vertices v of 
New such that f (v) = v’ and the text of v is not identical to 
the text of v’) + (the number of unmatched edges of New). 

Figure 7 gives a procedure for computing a correspon- 
dence between New and Old that minimizes the size of the 
change between Old and New as defined above. However, 
since the problem of finding such a correspondence is NP- 
hard Hlorwitz89a] it is unlikely that an eficient procedure 
can be defined. 

The proccchtm of Figure 7 works as follows. First, all 
“no-choice” vertices of New (i.e., those vertices in parti- 
tions that include exactly one vertex of Old and one vertex 
of New) are matched with the (single) vertex of Old that is 
semantically equivalent. This is accomplished by pro- 
cedure Match. Next, a backtracking scheme is used to try 
all possible matchings of the remaining vertices of New 
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declare global bestSoFar: a correspondence between New and Old 
smallestChangeSoFar: integer 

procedure Match(Ofd. Nav: Program Representation Graphs) 
returns: a correspondence between New and Old that minimizes the size of the change between Old and New 

declare map: a correspondence between New and Oid 
workingSet: a set of vertices of New 

begin 
apply the Partitioning Algorithm to Old and New 
map := 0 
/* match all “no-choice” vertices of New */ 

for each partition that includes exactly one vertex Y of New and one vertex v’ of Old do 
insert (v, v’) into map; mark v “‘matched”, mark v’ “matched” 

od 
P put all remaining matchable vertices of New into the working set */ 

workingSet := 0 
for all unmatched vertices v of New such that 3 an unmatched vertex of Old in the same partition do 

insert v into workingSet 
od 

p try all possible correspondences; keep track of the best one found */ 
bestSoFar := 0; smallestChangeSoFar := Q); TryMatches(map, workingbet) 

/* the best correspondence has been saved in global variable bestSoFar */ 
retum( bestSoFar ) 

end 

procedure TryMatches( map: a correspondence between New and Old; workingSen a set of vertices of New ) 
begin 

if workingset = 0 
then P no more matchable vertices of New 

* compute the size of the change induced by the current correspondence; 
* save the current correspondence if its change size is smaller than the best so far */ 
if ChangeSize( map ) c smallestChangeSoFar 
then bestSoFar := map; smallestChangeSoFar := ChangeSixe( map ) 
e 

elm /* try all remaining possible matches */ 
select and remove an arbitrary vertex v from workingSet 
let P be v’s partition in 

remove v from P 
[Ll]: if (# of unmatched vertices of New in P) Z (# of unmatched vertices of Old in P) 

then /* must try correspondences in which v is unmatched, too */ TryMatches( map, workingSet ) 
6 

[L2]: for each unmatched vertex v’ of Old in partition P do 
insert (v. v’) into map 
mark v’ “‘matched” 
TryMatches( map, workingset ) 
remove (v, v’) from map 
mark v’ “‘unmatched’ 

od 
/* put vertex v back into partition P and into workingset so that it will be there next time TryMatches is called */ 
add v to partition P 
insert v into workingSet 

ni 
fi 

end 

Figure 7. Procedure Match 6nds a correspondence between New and Old that minimizes the difference between Old and New. Pro- 
cedure Match first matches all “‘no-choice” vertices of New and then calls procedure TryMatches. If there are no more matchable ver- 
tices of New, Procedure TryMatches computes the size of the change between Old and New induced by the current correspondence. 
Otherwise, it ~rys all correspondences consistent with the given (incomplete) correspondence. 
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with the remaining vertices of Old. Each time a complete 
correspondence is defined, its cost is computed, and if its 
cost is the lowest found so far, the correspondence is saved. 
This backtracking is performed by procedure TryMatches, 
which is callecl from Match with an initial working set con- 
taining all ml;!tchuble vertices of New (those vertices of 
New that are unmatched and are in partitions with at least 
one unmatche<l vertex of Old). 

To understand procedure TryMatches, consider what it 
does when the working set is empty, when the working set 
contains exactly one vertex, and when the working set con- 
tains more than one vertex. 
The working set is empty. 

When the working set is empty there are no partitions 
that include both an unmatched vertex of New and an 
unmatched vertex of Old, i.e., a complete correspon- 
dence has been defined. In this case, procedure 
TryMatches computes the size of the change induced 
by the current correspondence; the current correspon- 
dence and its change size are saved if it is the best 
correspondence found so far. (Code for function 
ChangeSize has been omitted. This function computes 
the size of the change induced by the current correspon- 
dence, which is the number of unmatched vertices of 
New plus the number of vertices of New matched with 
textually different vertices of Old plus the number of 
unmatched edges of New.) 

The working set contains one vertex v. 
In this case, v is removed from the working set and 
from its partition P. Now there are two subcases: (1) 
partition P contains no unmatched vertex of Old; (2) 
partition P contains one or more unmatched vertices of 
Old. In thy: first case, the correspondence is complete; 
the test at line [Ll] will succeed (because both the 
number of unmatched vertices of New in P and the 
number of unmatched vertices of Old in P are zero), 
and a recursive call to TryMatches (with an empty 
working set) will be made. This recursive call will 
compute the cost of the current correspondence. 

In the second case, the test at line [Ll] will fail, and the 
for loop at line [L2] will be executed. Each time 
around the loop the current correspondence is com- 
pleted by matching vertex v with a different unmatched 
vertex of Old in P, and a recursive call to TryMatches 
(with an empty working set) is made. 

The working set contains more than one vertex. 
In this case, an arbitrary vertex v is selected and 
removed from the working set. The test at line [Ll] 
Serves twa (similar) purposes. First, if there are no 
unmatched vertices of Old in v’s partition P, the test 
will succeed, guaranteeing that the current conespon- 
dence will be completed with v unmatched (the for loop 
at line L2] will not serve this purpose since it will exe- 
cute zero times). Second, if, after removing v from P 
there are still at least as many unmatched vertices of 
New as unmatched vertices of Old left in P, the test will 

succeed, and the recursive call to TryMatches will com- 
plete the current correspondence in all possible ways 
with v unmatched. The for loop at line [L2] will take 
care of completions in which v is matched with an 
available vertex of OZd. 

The time requirements of procedure TryMatches can be 
analyzed as follows. Let M be 1 + the maximum number 
of unmatched vertices of Old in a partition with at least one 
unmatched vertex of New. Given a working set of size 1, 
TryMatches will make at most M recursive calls, each with 
an empty working set, so T(1) 5 M. Given a working set of 
size n, TryMatches will make at most M recursive calls, 
each with a working set of size n-l, so T(n) I M * T(n-1). 
Solving this equation we find that the time required for a 
call to TryMatches with a working set of size n is 0 (M”). 

The value of n for the original call to TryMatches made 
from procedure Match is the number of matchable vertices 
of New that remain after all no-choice matches are made. 
It remains to be seen how large this value, as well as the 
value of M, are in practice An (unrealistic upper bound 
for the time required by TryMatches is O(0 b ), where 0 is 
the number of vertices in Old, and N is the number of ver- 
tices in New. 

4. RELATED WORK 

Related work falls into two categories: techniques for com- 
puting texrual differences, and techniques for computing 
semantic differences. The lirst category includes tech- 
niques for comparing strings 
[SankofflZ, Wagner74, Nakatsu82, Tichy84, Miller851 and 
techniques for comparing 
[Selkow77, Lu79, Tai79,Zhang891. Although such wzi 
has a different goal than the technique described here, these 
textual-differencing techniques might be useful in practice 
as a compromise between requiring editor-supplied tags 
and solving an NP-hard problem; i.e., one of these algo- 
rithms might be used to compute tags for program com- 
ponents. Once tags are available, the procedure Compu- 
techanges of Section 3.1 can be used to classify the com- 
ponents of New. In this case, no special editor is required, 
and tags are not a function of the particular edit sequence 
used to create program New from program Old; however, 
there is no guarantee that the size of the change between 
02d and New will be minimal in the sense of Section 3.2.2. 

As mentioned in Section 1, an important part of the 
program-integration algorithm of lJRirwitz89] is the 
identification of the changed computations of a program 
variant with respect to the original program. The technique 
used by that algorithm involves comparing program slices 
~eiscrM,OttensteinM]. (The slice of a program with 
respect to a given component c is the set of program com- 
ponents that might affect the values of the variables used at 
component c.) 

Slice comparison could be used in place of the Partition- 
ing Algorithm to partition the components of programs Old 
and New; any of the three techniques for matching com- 
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ponents of Old and New discussed in Section 3 could then 
be applied. Using this approach, a component of New is 
placed in the same partition as all components of Old and 
all other components of New that have identical slices. 

To compare partitioning using the Partitioning Algorithm 
to partitioning using slice comparison we must consider: 
(1) the times required for each of the two techniques, and 
(2) the accuracy of the partitions computed by each of the 
two techniques. 

Slice equality for a pair of program components can be 
determined in time linear in the size of the two slices; i.e.. 
given components cl and c2, it is possible to determine 
whether the slices with respect to c1 and c2 are equal in 
time linear in the number of vertices and edges in the two 
slices [Horwitz90]. Given this result, a straightforward 
technique for partitioning programs Old and New using 
slice comparison is the following: 
WorkingSet := (vertices of New u vertices of Old) 
while WorkingSet # 0 do 

create a new, empty partition class P 
select and remove a vertex v from WorkingSet 
insert v into P 
for all vertices u in WorkingSet do 

if slice(v) = slice(u) then 
remove II from WorkingSet 
insert u into P 

6 
cd 

od 

This technique requires time O(N3), where N is the sum of 
the sizes of Old and New. An O(N2) algorithm for parti- 
tioning using slice comparison is described in [Horwitz90]; 
the better time bound is achieved through the use of struc- 
ture sharing. 

Next we consider how the partitions produced by the 
Partitioning Algorithm compare to those produced using 
slice comparison. If two slices are considered to be equal 
only if they have both identical structure and identical text, 
then partitioning using slice comparison produces partitions 
that are subsets of the partitions produced using the Parti- 
tioning Algorithm, and it is not possible to use these parti- 
tions to differentiate between textual and semantic changes. 
For example, components “x := 2”, “y := x”, and 
“output(y)” of program Newt of Figure 1, as well as com- 
ponents “a := 0”, “a := l”, “y := a”, and “output(y)” of pro- 
gram New3 would all be identified as changed, with no dis- 
tinction made between the semantic changes of Newt and 
the purely textual changes of New 3. 

An algorithm that identifies as equal slices that are strut- 
turally identical, and textually identical up to variable 
renaming is given in [Horwitz90]. In this case, the parti- 
tions for programs Old, New r, and News produced using 
slice comparison would be the same as the partitions pro- 
duced using the Partitioning Algorithm (and therefore the 
same components of Newt and New3 would be identified 
as semantic and textual changes). However, in general, the 
partitions produced using slice comparison would be sub- 
sets of the partitions produced using the Partitioning Algo- 
rithm. This is illustrated in Figure 8, which shows an Old 
program and three different New programs; components of 
the New programs that are semantically equivalent to the 
(obvious) corresponding component of Old (and that would 
be placed in the same partitions as the corresponding com- 
ponents of 02d by the Partitioning Algorithm) but whose 
slices differ from the slices of the corresponding com- 
ponents of Old are flagged with arrows. The three exam- 
ples illustrated in Figure 8 can be characterized as follows: 
(1) the component of Old uses a literal, and the correspond- 
ing component of New4 uses a variable that has been 
assigned the literal’s value; (2) the component of Old uses 
a variable x, and the corresponding component of News 

Old NW4 NW5 N.96 

rad:=2 PI := 3.14 tad:=2 if DEBUG then 
If DEBUG then rad:=2 If DEBUG then rad := 4 

rad:=4 If DEBUG then rad := 4 else 
6 rad:=4 6 rad := 2 
area := 3.14*(rad**2) 6 area := 3.14*(rad**2) 6 
vol := height*area area := PI*(rad**2) c- tmp := area area := 3.14*(&**2* 

vol := height*area w vol := height*tmp f- vol := height*area e 

Figure 8. Examples for which Yang et al’s partitioning algorithm is superior to partitioning using slice comparison. Statements flagged 
with arrows are semantically equivalent to the corresponding statements in Old, but have different slices than the corresponding statements 
in Old. 
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uses a different variable that has been assigned X’S value; 
(3) the companents of Old and New6 use values assigned 
using structurally different but semantically equivalent con- 
structs involviilg conditional statements. 

To summanlze: slice comparison could be used in place 
of the Partitioning Algorithm to identify semantically 
equivalent components of Old and New. The time required 
for partitioning using slice comparison is O(N2) while the 
time required for partitioning using the Partitioning Algo- 
rithm is O(N log N); the partitions computexl using slice 
comparison w’ould be subsets of the partitions computed 
using the Partitioning Algorithm. It remains to be seen 
how the two techniques compare in practice. 

5. CONCLUSIONS 

We have discussed three algorithms for comparing two ver- 
sions of a program and identifying their semantic and tex- 
tual differences. All three algorithms use the technique for 
partitioning programs introduced in [Yang89]. Although 
the partition& technique is currently applicable only to a 
limited language, we believe that it can be extended to 
include many standard programming language constructs. 
Extensions to the partitioning algorithm translate directly 
into extensions to the program-comparison algorithms; 
thus, we believe that the algorithms described here will 
soon be applicable to a reasonable language, for example, 
Pascal without procedure parameters. After extending the 
partitioning algorithm, we will be able D implement the 
three program-comparison algorithms to determine how 
well they work in practice. We will determine whether the 
third algorithm, which in theory should provide a bettex 
classification of changes than the second algorithm, does so 
in practice, and whether or not the NP-hard matching prob- 
lem that it incorporates makes it unusable on real programs. 
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