
Identifying the Semantic and Textual Differences
Between Two Versions of a Program

Susan Howitz
University of Wisconsin-Madison

Abstract

Text-based file comparators (e.g., the Unix utility diff), are
very general tools that can be applied to arbitrary files.
However, using such tools to compare programs can be
unsatisfactory because their only notion of change is based
on program text rather than program behavior. This paper
describes a technique for comparing two versions of a pro-
gram, determining which program components represent
changes, and classifying each changed component as
representing either a semantic or a textual change.

1. INTRODUCTION

A tool that detects and reports differences between versions
of programs is of obvious utility in a software-development
environment. Text-based tools, such as the Unix utility
dzy, have the advantage of being applicable to arbitrary
files; however, using such tools to compare programs can
be unsatisfactory because no distinction can be made
between textual and semantic changes.

This paper describes a technique for comparing two pro-
grams, Old and New, determining which components of
New represent changes from Old, and classifying each
changed component as representing either a textual or a
semantic change. It is, in general, undecidable to deter-
mine precisely the set of semantically changed components
of New; thus, the technique described here computes a safe
approximation to (i.e., possibly a superset of) this set. This
computation is performed using a graph representation for

This work was supported in pad by the Defense Advanced Research Pro-
jects Agency, monitored by the Office of Naval Research under contract
NOOO14-88-K, by the National Science Foundation under grant CCR-
8958530, and by grants from Xerox, Kodak, and Gay.

Author’s address: Computer Sciences Department, Univ. of Wisconsin.
1210 W. Dayton St., Madison, WI 53706.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@1990 ACM 0-89791-364-7/90/0006/0234 $1.50
Proceedings of the ACM SIGPLAN’SO Conference on
Programming Language Design and Implementation.
White Plains, New York, June 20-22, 1990.

programs and a partitioning operation on these graphs first
introduced in Tyang89], and summarized in Section 2. The
partitioning algorithm is currently limited to a language
with scalar variables, assignment statements, conditional
statements, while loops, and output statements. Because
the partitioning algorithm is fundamental to the program-
comparison algorithm described here, the program-
comparison algorithm is also currently limited to the
language described above. However, research is under
way to expand the language; in particular, we are studying
extensions for procedures and procedure calls, pointers,
and arrays.

A precise definition of semantic change is given in Sec-
tion 2; informally, a component c of New represents a
semantic change either if there is no corresponding com-
ponent of Old (hecause component c was added to Old to
create New), or if a different sequence of values might be
produced at c than at the corresponding component of Old.
By “the sequence of values produced at c” we mean: if c is
an assignment statement, the sequence of values assigned
to the left-hand-side variable when the program is exe-
cuted; if c is a predicate, the sequence of true-false values
to which c evaluates when the program is executed; if c is
an output statement, the sequence of values output when
the program is executed.

Figure 1 shows a program Old and three different New
programs; each New program is annotated to show its
changes with respect to Old.

It is worthwhile to consider whether other approaches to
program comparison could be used to detect the kinds of
changes illustrated in Figure 1. In program New 1, the
assignment “x := 2” is flagged as a semantic change
because the value 2 is assigned to variable x whereas the
corresponding component of Old assigns the value 1 to x.
A text-based program comparator would also have flagged
this as a changed component; however, the other changes
flagged in New i would not have been detected by a text-
based program comparator. These components represent
semantic changes because they may use (directly or
indirectly) the new value assigned to x.

The second and third semantic changes of program
NewI could have been detected by following &f-use
chains [Ah0863 from the modified definition of x; however,

234

Old

x :=o
if P then

x := 1

6
y := x

OUtput

New1 New2 Nm3

x := 0 if P then a := 0 c TEXTUAL

if P then x := 1 If P then
x:=2 + SEMANTIC else a := 1 6 TEXTUAL

6 x:=0 e SEMANTIC fi
y := x t-SEhMNTIC Ii y := a e TEXTUAL
output(y) e SEMANTIC y := x ouww

OUtput

Figure 1. Program Old and three versions of New; each version of New is amrotated to show its changes with respect to Old.

program New2 illustrates a situation in which following
def-use chains leads to an erroneous detection of semantic
change. In Newz, component “x := 0” is flagged as a
semantic change because the sequence of values produced
there is empty if variable P is true,’ while the sequence of
values produced at the corresponding component in Old is
never empty (since the assignment is unconditional).
Although “x := 0” represents a semantic change, the
sequence of values produced at component “y :=x” in
New2 is identical to the sequence of values produced at the
corresponding component of Old; thus, “y := x0 is not
flagged as a change. Following defuse chains from
“x := 0” would (incorrectly) identify both “y := x” and
“output(y)” as semantic changes.

Finally, New3 illustrates purely textual changes; again,
following defuse chains from the changed component
‘,Y := a” would incorrectly identify “output(y)” as a seman-
tic change.

A technique for determining the semantic differences
between two versions of a program based on comparing
program slices [weiser84,Ottenstein84] is. used by the
program-integration algorithm of [Horwitz89]. This tech-
nique can be adapted to detect the kinds of changes illus-
trated in programs New 1 and News. However, slice com-
parison is less precise than the partitioning technique
described in this paper; for example, using slice com-
parison the components “y := x” and “output(y)” of New2
would be identified as semantic changes. Section 4 pro-
vides a more detailed discussion of the slice-comparison
technique, including more examples for which slice com-
parison is less precise than partitioning.

In discussing the examples of Figure 1 we have talked
about “corresponding components” in Old and the various

‘The language under consideration does not include explicit input state-
ments. However, variables can be used before being defined; these vati-
ables’ values uxne from the initial state.

New programs. How is this correspondence actually esta-
blished? One possibility is to rely on the editing sequence
used to create New from Old. For example, this correspon-
dence could be established and maintained by the editor
used to create New from Old as follows: Each component
of Old has a unique tag; when a component is added, it is
given a new tag, when a component is moved or modified it
maintains its tag, when a component is deleted, its tag is
never mused.

An algorithm for detecting the semantic and textual
changes between Old and New, assuming editor-supplied
tags, is given in Section 3.1; however, this approach has
two important disadvantages:
(1) A special editor that maintains tags is required.
(2) The set of changes in New with respect to Old

depends not only on the semantics of the two pro-
grams, but also on the particular editing sequence
used to create New from Old. For example, it
would be possible to use two different editing
sequences to create programs New and New’ from
Old, such that the two new programs were idenri-
cal, yet had different sets of changed components
with respect to Old.

Section 3.2 considers how to determine semantic and tex-
tual changes between Old and New in the absence of
editor-supplied tags; i.e., the problem of finding the
correspondence between the components of Old and New is
included as part of the program-comparison algorithm. A
reasonable criterion for determining the correspondence is
that it should minimize the difference between Old and
New; however, we show that it is not satisfactory to define
“difference between Old and New” as simply the number of
semantically or textually changed components of New with
respect to Old. Instead, we propose defining “difference
between Old and New” as the number of semantically or
textually changed components of New plus the number of
new fIow or control dependence edges in the graph
representation of New (flow and control dependence edges
are defined in Section 2). Finding a correspondence that

235

minimizes the difference between Old and New according
to this definition is shown to be NP-hard in the general
case; a study of real programs is needed to determine how
difficult the problem will be in practice.

2. PARTITIONING PROGRAM COMPONENTS
ACCORDING TO THEIR BEHAVIORS
The program-comparison algorithm described in this paper
relies on an algorithm for partitioning program components
(in one or more programs) so that two components are in
the same partition only if they have equivalent behaviors
CYang891. The Partitioning Algorithm uses a graph
representation of programs called a Program Represenru-
don Graph. This section summarizes the definitions of
Program Representation Graphs and partitioning given in
[Yang89].

2.1. The Program Representation Graph
Program Representation Graphs (PRGs) are currently
defined only for programs in a limited language with scalar
variables, assignment statements, conditional statements,
while loops, and output statements2

PRGs combine features of program dependence graphs
[Kuck8 1, Ferrante87, Horwitz89] and static single assign-
ment forms [Shapiro70, Alpem88, Cytron89,Rosen88]. A
program’s PRG is defined in terms of an augmented ver-
sion of the program’s control-flow graph. The standard
control-flow graph includes a special Entry vertex and one
vertex for each if or while predicate, each assignment state-
ment, and each output statement in the program. As in
static single assignment forms, the control-flow graph is
augmented by adding special “g vertices” so that each use
of a variable in an assignment statement, an output state-
ment, or a predicate is reached by exactly one definition.

One vertex labeled LL#if: x := x0 is added at the end of
each if statement for each variable x that is defined within
either (or both) branches of the if and is live at the end of
the if; one vertex labeled “Qrrtcr: x := x” is added inside
each while loop immediately before the loop predicate for
each variable x that is defined within the while loop, and is
live immediately after the loop predicate (i.e., may be used
before being redefined either inside the loop or after the
loop); one vertex labeled “$I~~,: x := x” is added immedi-
ately after the loop for each variable x that is defined within
the loop and is live after the loop. In addition, for each
variable x that may be used before being defined, a vertex
labeled ‘x := Initial (x)” is added at the beginning of the
control-flow graph. Figures 2(a) and 2(b) show a program
and its augmented control-flow graph.

The language used in [Yang891 is actually slightly more restrictive, in-
cluding only a limited kind of output statement called an end statement,
which cao appear only at the end of a program; however, it is clear that no
problems are introduced by allowing general output statements.

The vertices of a program’s Program Representation
Graph (PRG) are the same as the vertices in the augmented
control-fiow graph (an Entry vertex, one vertex for each
predicate, each assignment statement, and each output
statement, and for each Initial, @, $,&,, and eetir vertex).
The edges of the PRG represent control and flow depen-
dences. The source of a control dependence edge is always
either the Entry vertex or a predicate vertex; control depen-
dence edges are labeled either true or false. The intuitive
meaning of a control dependence edge from vertex v to
vertex w is the following: if the program component
represented by vertex v is evaluated during program execu-
tion and its value matches the label on the edge, then,
(assuming termination of all loops) the component
represented by w will eventually execute; however, if the
value does not match the label on the edge, then the com-
ponent represented by w may never execute. (By
definition, the Entry vertex always evaluates to true.)

Algorithms for computing control dependences in
languages with unrestricted control flow are given in
[Ferrante87, Cytron891. For the restricted language under
consideration here, control dependence edges reflect the
nesting structure of the program (i.e., there is an edge
labeled true from the vertex that represents a while predi-
cate to all vertices that represent statements inside the loop;
there is an edge labeled true from the vertex that represents
an jfpredicate to all vertices that represent statements in the
true branch of the if, and an edge labeled false to all ver-
tices that represent statements in the false branch; there is
an edge labeled true from the Entry vertex to all vertices
that represent statements that are not inside any while loop
or if statement). In addition, there is a control dependence
edge labeled true from every vertex that represents a while
predicate to itself.

Flow dependence edges represent possible flow of
values, i.e., there is a flow dependence edge from vertex v
to vertex w if vertex v represents a program component that
assigns a value to some variable x, vertex w represents a
component that uses the value of variable x, and there is an
x-definition clear path from v to w in the augmented
control-flow graph.

Figure 2(c) shows the Program Representation Graph of
the program of Figure 2(a). Control dependence edges are
shown using bold arrows and are unlabeled (in this exam-
ple, all control dependence edges would be labeled true);
data dependence edges are shown using arcs.

2.2. The Partitioning Algorithm
The Partitioning Algorithm of Wang891 can be applied to
the Program Representation Graphs of one or more pro-
grams. The algorithm partitions the vertices of the graph(s)
so that two vertices are in the same partition only if the pro-
gram components that they represent have equivalent
behaviors in the following sense:

Definition (equivalent behavior of program com-
ponents). Two components c1 and cp of (not necessarily

236

x:=0
lfP then

x:= 1
fi
y:=x
output69

(4 @I w

Figure 2. (a) A program; (b) its augmented control-flow graph; (c) its Program Representation Graph. In the Program Representation
Graph, control dependence edges are shown usinp: hold arrows and are unlabeled (m this example. all control dependence edges would he
labeled true); da& dependenckedges are shown using arcs.

distinct) programs P r and Pz respectively, have equivalent
behaviors iff all four of the following hold:
(1) For all initial states CT such that both P 1 and P, halt

when executed on cr, the sequence of values pro-
duced at component c r when PI is executed on CT
is identical to the sequence of values produced at
component c 2 when P 2 is executed on 6.

(2) For all initial states CT such that neither PI nor P2
halts when executed on o, either the sequence of
values produced at component c 1 is an initial sub-
sequence of the sequence of values produced at c2
or vice versa.

(3) For all initial states CJ such that PI halts on cr but
P, fails to halt on B, the sequence of values pro-
duced at c2 is an initial sub-sequence of the
sequence of values produced at c r .

(4) For all initial states cr such that P2 halts on cs but
P 1 fails to halt on (J, the sequence of values pro-
duced at c1 is an initial sub-sequence of the
sequence of values produced at c2.

By “the sequence of values produced at a component” we
mean: for an assignment statement (including Initiul state
ments and 41 statements), the sequence of values assigned to
the left-hand-side variable; for an output statement, the
sequence of values output; and for a predicate, the
sequence of boolean values to which the predicate evalu-

ates.
The Partitioning Algorithm uses a technique (which we

will call the Basic Partitioning Algorithm) adapted from
[Alpem88,Aho74] that is based on an algorithm of [Hop-
croft711 for minimizing a finite state machine. This tech-
nique finds the coarsest partition of a graph that is con-
sistent with a given initial partition of the graph’s vertices.
The algorithm guarantees that two vertices v and v’ are in
the same class after partitioning if and only if they are in
the same initial partition, and, for every predecessor u of v,
there is a corresponding predecessor U’ of v’ such that u
and u’ are in the same class after partitioning.

The Partitioning Algorithm operates in two passes. Both
passes use the Basic Partitioning Algorithm, but apply it to
different initial partitions, and make use of different sets of
edges. The first pass creates an initial partition based on
the operators that are used in the vertices; flow dependence
edges are used by the Basic Partitioning Algorithm to refine
this partition. The second pass starts with the final partition
produced by the first pass; control dependence edges are
used by the Basic Partitioning Algorithm to further refine
this partition. The time required by the Partitioning Algo-
rithm is 0 (N log N), where N is the size of the Program
Representation Graph(s) (i.e., number of vertices + number
of edges).

Example. Figure 3 illustrates partitioning using the pro-
grams from Figure 1. Figure 3 shows two of the partitions

237

created by the Partitioning Algorithm: the initial partition
and the final partition. Note that the components labeled
,‘Y := x” from Old and New2 are in the same final partition
(and thus have the same execution behaviors) even though
they are transitively flow dependent on components that are
not in the same final partition (namely, the components
labeled “x := 0” from Old and New2).

3. COMPUTING SEMANTIC AND TEXTUAL
DIFFERENCES
This section presents three different algorithms to compute
the semantic and textual differences between two versions
of a program. All three algorithms operate on the pro-
grams’ Program Representation Graphs; thus, in what fol-
lows, New and Old am Program Representation Graphs,
and “program component” and “Program Representation
Graph vertex” are used interchangeably.

Section 3.1 assumes that a special tag-maintaining editor
is used to create program New from program Old. Section
3.2 assumes that the correspondence between the com-
ponents of New and Old must be computed; Sections 3.2.1
and 3.2.2 use different criteria for determining the best
correspondence. In both cases the goal is to find a
correspondence that minimizes the size of the change
between Nau and Old. However, in Section 3.2.1 “size of
the change” is defined to be the number of semantically or

textually changed components of New, while in Section
3.2.2 “size of the change” is defined to be the number of
semantically or textually changed components, plus the
number of new flow or control dependence edges in New.

3.1. Component Correspondence is Maintained by the
Editor
If program New is created from program Old using an edi-
tor that maintains tags on program components, then deter-
mining which components of Nau represent changes from
Old and classifying each changed component as either a
textual or semantic change is quite straightforward. A pro-
cedure called ComputeChanges that classifies the com-
ponents of New is given in Figure 4. Procedure Compu-
techanges first partitions programs Old and New and then
considers each component c of Nau. If there is no com-
ponent of Old with the same tag, then c was added to Old
to create New, and thus represents a semantic change.
Similarly, if there is a component of Old with the same tag,
but the component is not in the same partition as c, then c
represents a semantic change. If there is a component of
Old with the same tag and in the same partition but with
different text, then c represents a textual change.

Procedure ComputeChanges can be illustrated by consid-
ering programs Old and Navz of Figure 1. Assume that
program Navz was created from Old by moving the state-

Initial Partition

New 1 New2 New3 Old

Final Partition

New 1 New2 New3

e
0 IfP

0 x:=0

{@I

e

0 y:=x

B

0 Entry
e

0 HP

0 x :=o

0 x := 1

a
0 y :=x

B

0 Entry 1

-1

0 ifP)

0 1:=0)

0 a:=1)

-1

0 y:=a)

-1

@
0 IfP

0 Entry 1

-1

0 ifp 1

0 a:=0)

Figure 3. Partitioning Example. The partitions created by the Partitioning Algorithm for the programs of Figure 1.

238

procedure ComputeChanges(Old, New: Program Representation Graphs)
returns two sets of components of New, representing semantic and textual changes, respectively

declare semanticChange, textualChange: sets of program components
begin

apply the Partitioning Algorithm to Old and New
semanticChange := 0
textualChange := 0
for each component c of New do

if (there is no component of Old with the same tag as c) or
(the component of Old with the same tag as c is not in the same partition as c)

then insert c into semanticChange
eke If the text of the component of Old that has the same tag as c z the text of c

then insert c into textualchange
fi

6
od
return(semanticchange. textualChange)

end

Figure 4. Procedure ComputeChanges classifies the components of New using editor-supplied tags..

ment “x := 0” into the else branch of the if statement. In
this case, for every component of New2 there is a com-
ponent of Ofd with the same tag, and (as illustrated in Fig-
ure 3) for every component of New2 other than component
“x := 0”, the component of Old with the same tag is in the
same final partition. Thus, the only component of Newz
identified by procedure ComputeChanges as representing a
change from Old is component “x := 0”. which is identified
as a semantic change.

3.2. Component Correspondence Must be Computed
In this section we consider how to compare programs Old
and New assuming that program components are nor tagged
by the editor. Instead, the correspondence between the
components of Old and New must be computed as part of
the program-comparison algorithm. Our goal is to find a
correspondence that minimizes the size of the change
between OZd and New. Sections 3.2.1 and 3.2.2 consider
two different definitions of “the size of the change.”

3.2.1. Size of change = the number of semantically or
textually changed components of New
If we define the size of the change between Old and New as
the number of semantically or textually changed com-
ponents of New, then it is possible to define an efficient
algorithm to find a correspondence that minimizes this size.
A procedure called MatchAndComputeChanges that com-
putes such a correspondence and simultaneously classifies
the components of New with respect to Old is given in Fig-
ure 5. Procedure MatchAndComputeChanges first tries to
match every component of New with a component of Old
that is both semantically and textually equivalent. Next,
the procedure considers alI unmatched components of New,
attempting to match them with unmatched components of
Old that are semantically equivalent but textually different.

These components of New are classilied as textual changes.
Components of New that remain unmatched are classified
as semantic changes.

Applying procedure MatchAndComputeChanges to pro-
grams Old and New;! of Figure 1 will produce the result
pictured in Figure 1 even if the components of the two pro-
grams are not tagged by the editor. All components of
New2 other than “x := 0” will be matched with a com-
ponent of Old that is both semantically and textually
equivalent; component “x := 0” will be unmatched, and so
will be classified as a semantic change.

Procedure MatchAndComputeChanges first partitions
Ofd and New, then makes two passes through New match-
ing and classifying its components. Assuming that it is
possible to determine in constant time whether there is an
unmatched component of Old in the same partition and
with the same text as a given component of New, the time
required for matching and classifying is linear in the size of
New; thus, the time required for procedure MatchAndCom-
putechanges is dominated by the time required for parti-
tioning, which is 0 (N log N), where N is the sum of the
sizes of Old and New.

3.2.2. Size of change includes the number of new edges
in New
Simply minimizing the number of semantically and textu-
ally changed components does not always produce a satis-
factory classification of the components of New; this is
illustrated in Figure 6. Figure 6 shows programs Old and
New, and four possible mappings from the components of
New to the components of Old. All four mappings induce
the same (minimal) number of changed components of New
with respect to Old, yet there is something intuitively more
satisfying about the first two mappings than the third and
fourth mappings. The problem with the third and fourth

239

procedure MatchAndComputeChsnges(Old, New: Program Dependence Graphs)
returns (1) a map from components of New to components of Ofd, and

(2) two sets of components of New. representing semantic and textual changes, respectively
declare map: a set of program component pairs; semanticChange, textualchange: sets of program components

begin
apply the Partitioning Algorithm to Old and New
map:=0
semanticChange := 0
textualChange := 0
for each component c of New do

if there is an unmatched component c’ of Old that is in the same partition as c and has the same text
then insert the pair (c. c’) into map; mark c “matched”, mark c’ “matched”
fi

od
for each unmatched component c of New do

if there is an unmatched component c’ of Old that is in the same partition as c
then insert the pair (c. c’) into map: mark c “matched”, mark c’ “matched”; insert c into textualChange
eke insert c into semanticChange
fi

od
return{ map, semanticC!hange, textualChange)

end

Figure 5. Procedure MatchAndComputeChanges computes a correspondence between New and Old that minimizes the number of changed
components of New.

Old NfDV Mapping Changed Components

[Ol] x := 1 [Nl] x := 1 (W’J1l-KWh (WI-P21)l N3, N4
1021 y := x PI21 y := x](~3]-]oli). (~41~~21)) Nl. N2

[N3] x := 1 ((Iw-WI), (~41~~23)) N2, N3
l-N41 y := x (UW-P21). (IN3l-D11)) Nl, N4

Figure 6. Programs Old and New, and four possible mappings from the components of New to the components of Old. Each mapping in-
duces a set of changed components of size 2; however, the first two mappings each induce only one new data dependence, while the second
two mappings each induce two new data dependences.

mappings is that they “separate” a use of variable x from
the corresponding definition of x.

We can avoid choosing mapping three or mapping four
of Figure 6 by redefining the “size of the change between
Old and New” to take into account PRG edges as well as
vertices.

Definition (a correspondence between New and Old). A
correspondence between New and Old is a l-to-l partial
function f from vertices of New to vertices of Old such that
(1) for all vertices v of New, f (v) is either a vertex of Old,
or is the special value 1 u(v) = _L means that there is no
vertex of Old that corresponds to vertex v of New), and (2)
If f (v) = v’, thzn vertices v and v’ are in the same final par-
tition.

Definition (unmatched edge). An edge v1 + v2 of New
is unmatched under the correspondence defined by f iff any
of the following hold: (1) f (v,) = 1; (2) f (v2) = L.; (3)
there is no edge f (v 1) + f (v2) in Ofd.

Definition (size of change between Old and New). The
size of the change between Old and New induced by the
correspondence defined by f is: (the number of vertices v of
New such that f(v) = I_) + (the number of vertices v of
New such that f (v) = v’ and the text of v is not identical to
the text of v’) + (the number of unmatched edges of New).

Figure 7 gives a procedure for computing a correspon-
dence between New and Old that minimizes the size of the
change between Old and New as defined above. However,
since the problem of finding such a correspondence is NP-
hard Hlorwitz89a] it is unlikely that an eficient procedure
can be defined.

The proccchtm of Figure 7 works as follows. First, all
“no-choice” vertices of New (i.e., those vertices in parti-
tions that include exactly one vertex of Old and one vertex
of New) are matched with the (single) vertex of Old that is
semantically equivalent. This is accomplished by pro-
cedure Match. Next, a backtracking scheme is used to try
all possible matchings of the remaining vertices of New

240

declare global bestSoFar: a correspondence between New and Old
smallestChangeSoFar: integer

procedure Match(Ofd. Nav: Program Representation Graphs)
returns: a correspondence between New and Old that minimizes the size of the change between Old and New

declare map: a correspondence between New and Oid
workingSet: a set of vertices of New

begin
apply the Partitioning Algorithm to Old and New
map := 0
/* match all “no-choice” vertices of New */

for each partition that includes exactly one vertex Y of New and one vertex v’ of Old do
insert (v, v’) into map; mark v “‘matched”, mark v’ “matched”

od
P put all remaining matchable vertices of New into the working set */

workingSet := 0
for all unmatched vertices v of New such that 3 an unmatched vertex of Old in the same partition do

insert v into workingSet
od

p try all possible correspondences; keep track of the best one found */
bestSoFar := 0; smallestChangeSoFar := Q); TryMatches(map, workingbet)

/* the best correspondence has been saved in global variable bestSoFar */
retum(bestSoFar)

end

procedure TryMatches(map: a correspondence between New and Old; workingSen a set of vertices of New)
begin

if workingset = 0
then P no more matchable vertices of New

* compute the size of the change induced by the current correspondence;
* save the current correspondence if its change size is smaller than the best so far */
if ChangeSize(map) c smallestChangeSoFar
then bestSoFar := map; smallestChangeSoFar := ChangeSixe(map)
e

elm /* try all remaining possible matches */
select and remove an arbitrary vertex v from workingSet
let P be v’s partition in

remove v from P
[Ll]: if (# of unmatched vertices of New in P) Z (# of unmatched vertices of Old in P)

then /* must try correspondences in which v is unmatched, too */ TryMatches(map, workingSet)
6

[L2]: for each unmatched vertex v’ of Old in partition P do
insert (v. v’) into map
mark v’ “‘matched”
TryMatches(map, workingset)
remove (v, v’) from map
mark v’ “‘unmatched’

od
/* put vertex v back into partition P and into workingset so that it will be there next time TryMatches is called */
add v to partition P
insert v into workingSet

ni
fi

end

Figure 7. Procedure Match 6nds a correspondence between New and Old that minimizes the difference between Old and New. Pro-
cedure Match first matches all “‘no-choice” vertices of New and then calls procedure TryMatches. If there are no more matchable ver-
tices of New, Procedure TryMatches computes the size of the change between Old and New induced by the current correspondence.
Otherwise, it ~rys all correspondences consistent with the given (incomplete) correspondence.

241

with the remaining vertices of Old. Each time a complete
correspondence is defined, its cost is computed, and if its
cost is the lowest found so far, the correspondence is saved.
This backtracking is performed by procedure TryMatches,
which is callecl from Match with an initial working set con-
taining all ml;!tchuble vertices of New (those vertices of
New that are unmatched and are in partitions with at least
one unmatche<l vertex of Old).

To understand procedure TryMatches, consider what it
does when the working set is empty, when the working set
contains exactly one vertex, and when the working set con-
tains more than one vertex.
The working set is empty.

When the working set is empty there are no partitions
that include both an unmatched vertex of New and an
unmatched vertex of Old, i.e., a complete correspon-
dence has been defined. In this case, procedure
TryMatches computes the size of the change induced
by the current correspondence; the current correspon-
dence and its change size are saved if it is the best
correspondence found so far. (Code for function
ChangeSize has been omitted. This function computes
the size of the change induced by the current correspon-
dence, which is the number of unmatched vertices of
New plus the number of vertices of New matched with
textually different vertices of Old plus the number of
unmatched edges of New.)

The working set contains one vertex v.
In this case, v is removed from the working set and
from its partition P. Now there are two subcases: (1)
partition P contains no unmatched vertex of Old; (2)
partition P contains one or more unmatched vertices of
Old. In thy: first case, the correspondence is complete;
the test at line [Ll] will succeed (because both the
number of unmatched vertices of New in P and the
number of unmatched vertices of Old in P are zero),
and a recursive call to TryMatches (with an empty
working set) will be made. This recursive call will
compute the cost of the current correspondence.

In the second case, the test at line [Ll] will fail, and the
for loop at line [L2] will be executed. Each time
around the loop the current correspondence is com-
pleted by matching vertex v with a different unmatched
vertex of Old in P, and a recursive call to TryMatches
(with an empty working set) is made.

The working set contains more than one vertex.
In this case, an arbitrary vertex v is selected and
removed from the working set. The test at line [Ll]
Serves twa (similar) purposes. First, if there are no
unmatched vertices of Old in v’s partition P, the test
will succeed, guaranteeing that the current conespon-
dence will be completed with v unmatched (the for loop
at line L2] will not serve this purpose since it will exe-
cute zero times). Second, if, after removing v from P
there are still at least as many unmatched vertices of
New as unmatched vertices of Old left in P, the test will

succeed, and the recursive call to TryMatches will com-
plete the current correspondence in all possible ways
with v unmatched. The for loop at line [L2] will take
care of completions in which v is matched with an
available vertex of OZd.

The time requirements of procedure TryMatches can be
analyzed as follows. Let M be 1 + the maximum number
of unmatched vertices of Old in a partition with at least one
unmatched vertex of New. Given a working set of size 1,
TryMatches will make at most M recursive calls, each with
an empty working set, so T(1) 5 M. Given a working set of
size n, TryMatches will make at most M recursive calls,
each with a working set of size n-l, so T(n) I M * T(n-1).
Solving this equation we find that the time required for a
call to TryMatches with a working set of size n is 0 (M”).

The value of n for the original call to TryMatches made
from procedure Match is the number of matchable vertices
of New that remain after all no-choice matches are made.
It remains to be seen how large this value, as well as the
value of M, are in practice An (unrealistic upper bound
for the time required by TryMatches is O(0 b), where 0 is
the number of vertices in Old, and N is the number of ver-
tices in New.

4. RELATED WORK

Related work falls into two categories: techniques for com-
puting texrual differences, and techniques for computing
semantic differences. The lirst category includes tech-
niques for comparing strings
[SankofflZ, Wagner74, Nakatsu82, Tichy84, Miller851 and
techniques for comparing
[Selkow77, Lu79, Tai79,Zhang891. Although such wzi
has a different goal than the technique described here, these
textual-differencing techniques might be useful in practice
as a compromise between requiring editor-supplied tags
and solving an NP-hard problem; i.e., one of these algo-
rithms might be used to compute tags for program com-
ponents. Once tags are available, the procedure Compu-
techanges of Section 3.1 can be used to classify the com-
ponents of New. In this case, no special editor is required,
and tags are not a function of the particular edit sequence
used to create program New from program Old; however,
there is no guarantee that the size of the change between
02d and New will be minimal in the sense of Section 3.2.2.

As mentioned in Section 1, an important part of the
program-integration algorithm of lJRirwitz89] is the
identification of the changed computations of a program
variant with respect to the original program. The technique
used by that algorithm involves comparing program slices
~eiscrM,OttensteinM]. (The slice of a program with
respect to a given component c is the set of program com-
ponents that might affect the values of the variables used at
component c.)

Slice comparison could be used in place of the Partition-
ing Algorithm to partition the components of programs Old
and New; any of the three techniques for matching com-

242

ponents of Old and New discussed in Section 3 could then
be applied. Using this approach, a component of New is
placed in the same partition as all components of Old and
all other components of New that have identical slices.

To compare partitioning using the Partitioning Algorithm
to partitioning using slice comparison we must consider:
(1) the times required for each of the two techniques, and
(2) the accuracy of the partitions computed by each of the
two techniques.

Slice equality for a pair of program components can be
determined in time linear in the size of the two slices; i.e..
given components cl and c2, it is possible to determine
whether the slices with respect to c1 and c2 are equal in
time linear in the number of vertices and edges in the two
slices [Horwitz90]. Given this result, a straightforward
technique for partitioning programs Old and New using
slice comparison is the following:
WorkingSet := (vertices of New u vertices of Old)
while WorkingSet # 0 do

create a new, empty partition class P
select and remove a vertex v from WorkingSet
insert v into P
for all vertices u in WorkingSet do

if slice(v) = slice(u) then
remove II from WorkingSet
insert u into P

6
cd

od

This technique requires time O(N3), where N is the sum of
the sizes of Old and New. An O(N2) algorithm for parti-
tioning using slice comparison is described in [Horwitz90];
the better time bound is achieved through the use of struc-
ture sharing.

Next we consider how the partitions produced by the
Partitioning Algorithm compare to those produced using
slice comparison. If two slices are considered to be equal
only if they have both identical structure and identical text,
then partitioning using slice comparison produces partitions
that are subsets of the partitions produced using the Parti-
tioning Algorithm, and it is not possible to use these parti-
tions to differentiate between textual and semantic changes.
For example, components “x := 2”, “y := x”, and
“output(y)” of program Newt of Figure 1, as well as com-
ponents “a := 0”, “a := l”, “y := a”, and “output(y)” of pro-
gram New3 would all be identified as changed, with no dis-
tinction made between the semantic changes of Newt and
the purely textual changes of New 3.

An algorithm that identifies as equal slices that are strut-
turally identical, and textually identical up to variable
renaming is given in [Horwitz90]. In this case, the parti-
tions for programs Old, New r, and News produced using
slice comparison would be the same as the partitions pro-
duced using the Partitioning Algorithm (and therefore the
same components of Newt and New3 would be identified
as semantic and textual changes). However, in general, the
partitions produced using slice comparison would be sub-
sets of the partitions produced using the Partitioning Algo-
rithm. This is illustrated in Figure 8, which shows an Old
program and three different New programs; components of
the New programs that are semantically equivalent to the
(obvious) corresponding component of Old (and that would
be placed in the same partitions as the corresponding com-
ponents of 02d by the Partitioning Algorithm) but whose
slices differ from the slices of the corresponding com-
ponents of Old are flagged with arrows. The three exam-
ples illustrated in Figure 8 can be characterized as follows:
(1) the component of Old uses a literal, and the correspond-
ing component of New4 uses a variable that has been
assigned the literal’s value; (2) the component of Old uses
a variable x, and the corresponding component of News

Old NW4 NW5 N.96

rad:=2 PI := 3.14 tad:=2 if DEBUG then
If DEBUG then rad:=2 If DEBUG then rad := 4

rad:=4 If DEBUG then rad := 4 else
6 rad:=4 6 rad := 2
area := 3.14*(rad**2) 6 area := 3.14*(rad**2) 6
vol := height*area area := PI*(rad**2) c- tmp := area area := 3.14*(&**2*

vol := height*area w vol := height*tmp f- vol := height*area e

Figure 8. Examples for which Yang et al’s partitioning algorithm is superior to partitioning using slice comparison. Statements flagged
with arrows are semantically equivalent to the corresponding statements in Old, but have different slices than the corresponding statements
in Old.

243

uses a different variable that has been assigned X’S value;
(3) the companents of Old and New6 use values assigned
using structurally different but semantically equivalent con-
structs involviilg conditional statements.

To summanlze: slice comparison could be used in place
of the Partitioning Algorithm to identify semantically
equivalent components of Old and New. The time required
for partitioning using slice comparison is O(N2) while the
time required for partitioning using the Partitioning Algo-
rithm is O(N log N); the partitions computexl using slice
comparison w’ould be subsets of the partitions computed
using the Partitioning Algorithm. It remains to be seen
how the two techniques compare in practice.

5. CONCLUSIONS

We have discussed three algorithms for comparing two ver-
sions of a program and identifying their semantic and tex-
tual differences. All three algorithms use the technique for
partitioning programs introduced in [Yang89]. Although
the partition& technique is currently applicable only to a
limited language, we believe that it can be extended to
include many standard programming language constructs.
Extensions to the partitioning algorithm translate directly
into extensions to the program-comparison algorithms;
thus, we believe that the algorithms described here will
soon be applicable to a reasonable language, for example,
Pascal without procedure parameters. After extending the
partitioning algorithm, we will be able D implement the
three program-comparison algorithms to determine how
well they work in practice. We will determine whether the
third algorithm, which in theory should provide a bettex
classification of changes than the second algorithm, does so
in practice, and whether or not the NP-hard matching prob-
lem that it incorporates makes it unusable on real programs.

References
Aho74.

Aho, A., HIopcroft, J.E., and UUman, J., The Design and
Analysis of Computer Algorithms, Addison-Wesley, Reading,
MA (1974).

Aho86.
Aho, A., S&i, R., and Ulhnan, J., Compilers: Principles,
Techniques and Tools, Addison-Wesley, Reading, MA
(1986).

Alpem88.
Alpem. B., Wegman, MN.. and Zadeck, F.K., “Detecting
equality of variables in programs,” pp. l-11 in Conference
Record of the Fifieenth ACM Symposium on Principles of
Programmirtg Languages, (San Diego. CA, January 13-15,
1988). ACM. New York (1988).

Cytron89.
Cytnm, R., Ferrante. J., Rosen, B.K., Wegman, M.N.. and
Zadeck, K., “An efficient method of computing static single
assignment form,” pp. 25-35 in Conference Record of the
Sixteenth ACM Symposium on Principles of Programming
Languages, (Austin, TX, Jan. 11-13, 1989). ACM, New

York, NY (1989).

Ferrante87.
Ferrante. J., Otten&&, K.. and Warren, J.. “The program
dependence graph and its use in optimization,” ACM Tran-
sactions on Programming Languages and Systems, (1987).

Hopzroft71.
Hopcroft, J.E.. “An n log n algorithm for minimizing the
states of a finite automaton,” The Theory of Machines and
Computations, pp. 189-196 (1971).

Honvitz89a.
Horwitz, S., %lentifying the semantic and textual differences
between two versions of a program,” Technical Report 895,
Department of Computer Sciences, University of
Wisconsin-Madison (November, 1989).

Horwitz89.
Horwitz, S., Prins, J.. and Reps, T., “Integrating non-
interfering versions of programs,” ACM Trawactions on
Programming Lunguages and Systems ll(3)pp. 345-387
(July, 1989).

Horwitz90.
Horwitz, S. and Reps, T., “Efficient comparison of program
slices,,, Report in preparation. (1990).

Kuck8 1.
Kuck, D.J., Kuhn, R.H., Leasure, B., Padua, D.A., and
Wolfe, M., “Dependence graphs and compiler optimiza-
tions,” pp. 207-218 in CovJerence Record of the Eighth ACM
Symposium on Principles of Programming Languages, (Wil-
liamsburg, VA, January 26-28, 1981). ACM, New York
(1981).

Lu79.
Lu, S.Y., “A tree-to-tree distance and its application to clus-
ter analysis,” IEEE Transactions on Pattern Analysis and
Machkae Intelligence PAMLl(2) pp. 219-224 (April, 1979).

Miller85
Miller, W. and Myers, E.W., “A file comparison program,”
S&ware - Practice and Eqerience 15(11) pp. 1025-1040
(November, 1985).

Nakatsu82.
Nakatsu, N., Kambayashi, Y., and Yajima, S., “A longest
common subsequence algorithm suitable for similar text
stigs,” Acta Informatica 18pp. 171-179 (1982). (as cited
in tMiller851)

OttenSteh84.
Ottenstein. K.J. and Ottenstein. L.M., ‘The program depen-
dence graph in a software development environment,”
Proceedings of the ACM SiGSOlWSIGPLAN Software
Engineering Symposium on Practical Sofrwore Development
Environments, (Pittsburgh, PA, April 23-25, 1984), ACM
SJGP~EJotices 19(5) pp. 177-184 (May, 1984).

Rosen88.
Rosen, B., Wegman, M.N., and Zadeck, F.K., “Global value
numbers and redundant computations,” pp. 12-27 in Con@-
ence Record of the Feeenth ACM Synrposium on Principles
of Programming Languages, (San Diego, CA, January 13-15,
1988), ACM, New York (1988).

sankom2.
Sankoff, D., “Matching sequences under deletion/insertion
ccmstraints,” Proc. Nat. Acad. Sci. 69(l) pp. 4-6 (January,
1972).

244

Selkow77.
Selkow. S.M.. ‘The tree-to-tree editing problem,” Informa-
rion Processing Lefrers 6(6) pp. 184-186 (December, 1977).

Shapiro70.
Shapiro, R. M. and Saint, H.. ‘The representation of algo-
rithms.” Technical Reprot CA-7002-1432, Massachusetts
Computer Associates (February, 1970). (aa cited in
[Alpem88. Rosen881)

Tai79.
Tai, K.C.. ‘The tree-to-tree correction problem,” JACM
26(3) pp. 422-433 (July, 1979).

Tichy84.
Tichy. W.. ‘“The string-to-string correction problem with
block moves.” ACM Transactions on Computer Systems
2(4) pp. 309-321 (November, 1984).

Wagner74.
Wagner. R.A. and Fischer. M.J.. “The string-to-string correc-
tion problem,” JACM 21(l) pp. 168-173 (January, 1974).

Weiser84.
Weiser, M.. “Program slicing.” IEEE Transactions on
Software Engineering SE-lO(4) pp. 352-357 (July, 1984).

Yang89.
Yang, W.. Horwitz, S.. and Reps, T.. “Detecting program
components with equivalent behaviors,” Technical Report
840, Department of Computer Sciences, University of
Wisconsin, Madison, WI (April, 1989).

Zhang89.
Zhang. K. and Shasha, D., “Simple fast algorithms for the
editing distance between trees and related problems,” to
appear in SIAM J. ofCompuring, (1989).

245

