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ABSTRACT
CCured is a program transformation system that adds mem-
ory safety guarantees to C programs by verifying statically
that memory errors cannot occur and by inserting run-time
checks where static verification is insufficient.
This paper addresses major usability issues in a previ-

ous version of CCured, in which many type casts required
the use of pointers whose representation was expensive and
incompatible with precompiled libraries. We have extended
the CCured type inference algorithm to recognize and verify
statically a large number of type casts; this goal is achieved
by using physical subtyping and pointers with run-time type
information to allow parametric and subtype polymorphism.
In addition, we present a new instrumentation scheme that
splits CCured’s metadata into a separate data structure
whose shape mirrors that of the original user data. This
scheme allows instrumented programs to invoke external
functions directly on the program’s data without the use
of a wrapper function.
With these extensions we were able to use CCured on real-

world security-critical network daemons and to produce in-
strumented versions without memory-safety vulnerabilities.
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D.2 [Software]: Software Engineering; D.2.4 [Software
Engineering]: Software/Program Verification

General Terms
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1. INTRODUCTION
CCured is a program transformation system that adds

memory-safety guarantees to C programs. It first attempts
to find a simple proof of memory safety for the program,
essentially by enforcing a strong type system. Then, the
portions of the program that do not adhere to the CCured
type system are checked for memory safety at run time.
Since CCured enforces memory safety, which is an implicit

requirement of every C program, it is a good debugging aid.
We were able to find several bugs in the Spec95 benchmark
suite and in network daemons simply by running the instru-
mented programs on inputs included with them. Memory
safety is also beneficial in extensible systems such as the
Apache web server or an operating system kernel, which
support pluggable modules and device drivers. By instru-
menting modules with CCured, the failure of an individual
component cannot contaminate the system as a whole.
Perhaps the greatest potential impact of CCured is in the

domain of security-critical software. Memory safety is an
absolute prerequisite for security, and it is the failure of
memory safety that is most often to blame for insecurity in
deployed software [26]. Further, CCured’s relatively mod-
est performance cost makes it plausible for security-critical
production systems to use binaries compiled with CCured’s
run-time checks enabled.
In a previous paper [15] we described an early version of

the CCured system. The fundamental concept in CCured is
the pointer qualifier, which is used to classify each pointer
into one of three categories according to how it can be used.
First, pointers with the qualifier SAFE can be dereferenced
but cannot be subject to pointer arithmetic or to type casts.
They require only a null-pointer check and are as cheap to
use as a reference in a type-safe language such as Java. The
second qualifier, SEQ (“sequence”), indicates that a pointer
can be used in pointer arithmetic but not in type casts.
Such a pointer requires bounds checks and is instrumented
to carry with it information about the bounds of the memory
area to which it is supposed to point. Finally, the CCured
type system has a third class of pointers with the qualifier
WILD. In the original CCured type system, WILD pointers
were the only ones that could be cast to other pointer types;
however, they are more expensive to use because they carry
type tags and require tag manipulation at run time, much
like references in a dynamically typed language like Lisp. We
review the CCured type system in more detail in Section 2.
The early version of CCured was already usable on exist-

ing C programs because of its ability to infer the best pointer
kinds in unannotated programs. However, that system also
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had some serious usability problems that made it very diffi-
cult to apply it to system software and large security-critical
network daemons. In this paper we describe extensions that
make it possible to apply CCured to these programs, and
we describe our experience in doing so.
The major usability problem in the original version of

CCured was due to incompatibilities between the CCured
representation of types and the standard C representation
used by precompiled libraries. One notable example is the
multi-word representation of the CCured SEQ and WILD point-
ers. Also, objects referenced by WILD pointers must contain
tags used to perform CCured’s run-time checks. Even a
small number of casts that CCured considers bad can re-
sult in a large number of WILD pointers, because any pointer
that is obtained from a WILD pointer through assignment or
dereference must be WILD as well.
In this paper we describe a three-point solution to allevi-

ating the incompatibility problem.
First, we observe that in the presence of structures and

unions, most of the type casts can be classified as either up-
casts (e.g., from a pointer to an object to a pointer to the
first subobject) or downcasts (in the opposite direction). To
avoid treating these casts as bad, and thus to reduce the
number of WILD pointers, we extend the CCured type system
with a physical subtyping mechanism for handling the up-
casts and with a special kind of pointer that carries run-time
type information for handling the downcasts. These two
mechanisms, described in detail in Section 3, allow CCured
to handle object-oriented techniques such as subtyping poly-
morphism, dynamic dispatch, and checked downcasts, which
are surprisingly common in large C programs.
Second, we have developed a notation that allows a pro-

grammer to specify the conversions and run-time checking
operations that must occur at the boundary between the
code processed with CCured and precompiled libraries. In
Section 4.1, we describe our technique for automatically in-
stantiating user-specified wrappers in many contexts.
Third and finally, to address the remaining compatibility

problems, we devised a new representation for wide pointers
in which CCured’s metadata is not interleaved with the pro-
gram data. Rather, the metadata is represented in a sepa-
rate data structure whose shape mirrors that of the program
data itself. Since this separation would incur a performance
penalty if used for all data, the CCured inference algorithm
has been extended to limit the use of this new represen-
tation to only those types where it is required in order to
preserve both soundness and compatibility. This mechanism
is described in more detail in Section 4.2.
The new capabilities of CCured have enabled us to ap-

ply it to a realistic sampling of security-critical applications.
We have produced CCured-transformed versions of several
popular network servers (ftpd, bind, openssl, sshd and
sendmail). We have verified that CCured prevents known
security exploits, and most importantly, we have produced
memory-safe versions of these applications that should elim-
inate any further vulnerabilities due to memory safety viola-
tions. We describe our experience in using CCured for these
applications in Section 5. Perhaps if these instrumented bi-
naries see wide adoption we might see an end to (or at least a
slower pace of) the cycle of vulnerability reports and patches
that has become all too common with security-critical infras-
tructure software.

Rep(int) = int

Rep(struct{...τifi; ...}) = struct{...Rep(τi)fi; ...}
Rep(τ ∗ SAFE) = struct{Rep(τ ) ∗ p; }
Rep(τ ∗ SEQ) = struct{Rep(τ ) ∗ p, ∗ b, ∗ e; }
Rep(τ ∗ WILD) = struct{Rep(τ ) ∗ p, ∗ b; }

Figure 1: CCured representations. Given a CCured
type τ (with pointer qualifiers), Rep(τ ) gives its lay-
out and representation.

2. CCURED TYPES AND CHECKS
In this section we review in more detail the typing rules

and the run-time checks used in the original CCured imple-
mentation [15]. The CCured type system can be viewed as
two universes that coexist soundly. On one hand we have
statically-typed pointers for which we maintain the invariant
that the static type of the pointer is an accurate description
of the contents of the referenced memory area. On the other
hand we have untyped pointers, for which we cannot count
on the static type; instead, we rely on run-time tags to dif-
ferentiate pointers from non-pointers.
CCured provides three pointer kinds with varying capa-

bilities and costs. Most pointers in C programs are used
without casts or pointer arithmetic. We call such pointers
SAFE, and they are either null or valid references. Pointers
that are involved in pointer arithmetic but are not involved
in casts are called SEQ (“sequence”) pointers. SEQ pointers
carry with them the bounds of the array into which they are
supposed to point. The SAFE and SEQ pointers are statically
typed.
The original CCured required equal types on both sides

of an assignment statement involving SAFE or SEQ pointers.
Type casts between unequal pointer types are called bad
casts, and we consider the pointers involved to be untyped,
or WILD. Such pointers have all the capabilities of C pointers;
however, the static type of a WILD pointer is not necessarily
an accurate description of the contents of the memory to
which it refers.
Since CCured pointers must carry bounds and type in-

formation, they are represented differently from normal C
pointers. The representation for a CCured type τ is given
by the function Rep(τ ), defined in Figure 1. We refer to the
pointer, base, and end parts of a sequence pointer x as x.p,
x.b, and x.e, respectively. We store the “base” and “end”
fields, which contain metadata information, with the pointer
itself, thus turning C’s one-word pointer representation into
a multi-word structure. An area referenced by WILD pointers
contains additional metadata that indicates the size of the
area and whether each word in the area is a pointer.
Reads and writes through CCured pointers require run-

time checks. Reads through SAFE pointers require merely
a null check, whereas reads through SEQ pointers require
a check that the pointer is in bounds (i.e., x.b ≤ x.p ≤
x.e − sizeof(τ ), where τ is the type being read). Reading
through a WILD pointer requires bounds checks similar to
the checks performed on SEQ pointers, although the upper
bound for a WILD pointer is stored in the memory area itself.
In addition, WILD pointer reads require run-time tag checks
to ensure that the program never reads a pointer from a
location that contains an integer. Memory writes perform
the same checks as memory reads, but writes must also verify
that a stack pointer is not being stored in the heap and, for
WILD pointers, they must update the tags.
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2.1 Pointer Kind Inference
The CCured type system assumes that pointers are al-

ready annotated with pointer qualifiers. In order to use
CCured on existing C programs without such annotations,
we use a whole-program pointer-kind inference. We as-
sociate a qualifier variable with each syntactic occurrence
of the * pointer-type constructor, with the address of ev-
ery variable, and with the address of every structure field.
The inference algorithm then assigns a pointer kind to ev-
ery qualifier variable such that the resulting program type
checks in the CCured system.
The CCured inference finds the best kind for a pointer

and assigns SAFE and SEQ qualifiers whenever possible. In
CCured’s algorithm, every occurrence of pointer arithmetic
produces a constraint that the pointer involved must be SEQ
or WILD. Also, every occurrence of a bad cast produces a
constraint that the pointers involved must be WILD. Pointers
without any such constraints are inferred SAFE.
To ensure soundness in CCured, we cannot allow both an

untyped and a statically-typed pointer to refer to the same
location, for otherwise the untyped pointer could write ar-
bitrary data in the referenced location and invalidate the
assumptions of its statically-typed alias. The other sound-
ness condition is that we cannot allow an untyped pointer to
point to a statically-typed pointer, or else we could alter the
value of the statically-typed pointer in a way that violates
its invariant. These conditions mean that if a pointer quali-
fier becomes WILD then all qualifiers in its base type become
WILD as well. Similarly, the qualifiers of pointers that are
assigned to or from a WILD pointer become WILD as well.
This linear-time inference algorithm, restricted to the case

of a language without structured types, is described in detail
and proved to be both correct and optimal in a previous
paper [15]. However, the trivial extension of the algorithm to
structured types has some serious limitations. In particular,
there are many casts between pointers to structured types
that our algorithm considers bad. In the next section, we
describe two new extensions to the CCured type system that
we have found to be very effective in reducing the number
of bad casts.

3. COPING WITH CASTS
Many C programs make heavy use of casts between pointer

types. In the original CCured, all pointer qualifiers involved
in non-trivial casts must become WILD, which creates perfor-
mance and compatibility problems. Notice that WILD point-
ers create more challenging compatibility problems than the
other pointer kinds because the memory area to which they
point requires a special layout. This problem is exacerbated
by the extensive spreading of the WILD qualifiers. For exam-
ple, if a FILE * value is involved in a bad cast, it becomes
WILD and also requires the return value of the fopen function
to become WILD. To support this kind of fopen we would
need to change the layout of the statically allocated FILE

structures in the standard C library to include the neces-
sary tags.
As an easy escape hatch, CCured allows the programmer

to assert that an otherwise bad cast can be trusted. This
mechanism is a controlled loss of soundness and assumes
an external review of those casts. Still, this approach has
practical value in focusing a code review when the number
of such casts is relatively small. One standard application of

such a trusted cast is a custom allocator in which a portion
of an array of characters is cast to an object.
Fortunately, there are many situations in which we can

reason effectively about casts between unequal types. For
example, consider the following code fragment, which con-
tains object-oriented style subtype polymorphism.

struct Figure {
double (*area)(struct Figure * obj); };

struct Circle {
double (*area)(struct Figure * obj);

int radius; } *c;

double Circle area(Figure *obj) {
Circle *cir = (Circle*)obj; // downcast

return PI * cir->radius * cir->radius;

}
c->area((struct Figure *)c); // upcast
Circle is meant to be a subtype of Figure. Both struc-

tures include a function pointer, which is set to Circle area

in the case of circles. The program can compute the area
of any figure by invoking the function pointer as shown at
the end of the above code fragment (a form of dynamic
dispatch). According to the strict classification of types
from before, there are two bad casts: one in the body of
Circle area where the input argument is cast to Circle *

(a downcast in the subtype hierarchy), and one in the invo-
cation of the area method at the end of the code fragment
(an upcast).
Siff et al. [22] observe that a large fraction of the casts

between unequal types in real programs are either upcasts
or downcasts, and our experiments support this observation.
In particular, we have observed that around 63% of casts
are between identical types. The remaining 37% were bad
casts in the original CCured. Of these bad casts, about
93% are safe upcasts and 6% are downcasts. Less than 1%
of all casts fall outside of these categories, and must still
be considered bad even in the presence of mechanisms that
handle downcast and upcasts. In the rest of this section
we describe two mechanisms, one for dealing with upcasts
and one for downcasts, with the overall goal of reducing
drastically the number of casts that CCured considers bad.

3.1 Upcasts and Physical Subtyping
An upcast is a cast from type τ ∗ to type τ ′ ∗ when the

aggregate τ ′ is laid out in memory exactly as a prefix of the
layout of the aggregate τ . This relationship between types τ
and τ ′ is called physical subtyping and has been shown previ-
ously to be important for understanding the typing structure
of C programs [6, 22].
We define the physical subtyping relation τ . τ ′ by requir-

ing that the aggregate τ be physically equal to the concate-
nation of the aggregate τ ′ and some other (possibly empty)
aggregate τ ′′:

τ . τ ′ def⇐⇒ ∃τ ′′. τ ≈ struct{τ ′; τ ′′; }
Physical type equality ≈ is defined as the smallest equiva-
lence relation generated by the following equations:

τ ∗ WILD ≈ τ ′ ∗ WILD

τ [1] ≈ τ
τ [n1 + n2] ≈ struct{τ [n1]; τ [n2]; }

struct{τ1; void; } ≈ τ1

struct{τ1; struct{τ2; τ3; }; } ≈ struct{struct{τ1; τ2; }; τ3; }
Note that care must be taken to account for structure

padding when using the structure associativity rule; we omit
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Expression Typing Premises Run-time checks and translation

(τ ′ ∗ RTTI)x x : τ ∗ SAFE, τ . τ ′ {p = x, t = rttiOf(τ )}
(τ ′ ∗ RTTI)x x : τ ∗ RTTI, τ . τ ′ x
(τ ′ ∗ RTTI)x x : τ ∗ RTTI, τ ′ . τ assert(isSubtype(x.t, rttiOf(τ ′)); x
(τ ′ ∗ SAFE)x x : τ ∗ RTTI assert(isSubtype(x.t, rttiOf(τ ′)); x.p

Figure 2: CCured typing rules for casts involving RTTI pointers. For an expression in the left column, the
middle column shows the typing premises, and the right column shows the instrumentation that is added.

the details. With these definitions the more relaxed CCured
typing rules for casts are the following:

e : τ ′ ∗ SAFE τ ′ . τ

(τ ∗ SAFE)e : τ ∗ SAFE
e : τ ′ ∗ SEQ ∃n, n′. τ ′[n′] ≈ τ [n]

(τ ∗ SEQ)e : τ ∗ SEQ
Our notion of physical subtyping for SAFE pointers is dif-

ferent from that of previous work; specifically, CCured dif-
fers in its handling of void* and of pointer arithmetic. In
previous work [6, 22], void* is allowed in the smaller aggre-
gate in any position where a regular pointer is present in the
larger one. This approach is unsound; instead, void should
be considered to be the empty structure and any type should
be considered a physical subtype of void. As a result, we
can safely cast a pointer to any type into void*. However,
when we try to use the resulting void* we have to cast it
to some other pointer type first; this downcast operation is
handled later in this section.
Physical subtyping must also be modified in the presence

of pointer arithmetic; we cannot use simple width subtyping
as with SAFE pointers. For example, it is not safe to cast
a pointer cs of type struct Circle * SEQ to type struct

Figure * SEQ, because then the memory word residing at
address cs→radius can be accessed as a double and also
as a function pointer using ((struct Figure * SEQ)cs +

1)→area.
To fix this soundness problem we require for each type cast

on SEQ pointers that τ ′[n′] ≈ τ [n] where n, n′ > 0 are the
smallest integers such that n · sizeof(τ ) = n′ · sizeof(τ ′).
Notice that when changing the type of a SEQ pointer into
another SEQ pointer, the representation does not change.
Casting between SEQ pointers also allows for a robust treat-
ment of multi-dimensional arrays (in which case one of the
n or n′ is typically 1) and is necessary for handling many
non-trivial C programs.

Changes to the Inference Algorithm. In order to
handle structures and physical subtyping, the original CCured
inference algorithm [15] must be extended to pay special at-
tention to casts. If there is a cast from τ1 ∗ to τ2 ∗, we
examine τ1 and τ2 in tandem using the physical type equal-
ity rules, and we emit pointer kind constraints to make sure
that τ1 is a subtype of τ2. Basically, if τ2’s representation
is a prefix of τ1’s representation, the qualifiers can remain
SAFE. Otherwise, they must be WILD. For reasons of space we
omit many details here; a complete discussion of inference
is available as a technical report [27].

3.2 Downcasts and Run-Time Type Info.
A downcast is a cast from a type τ ∗ to τ ′ ∗ when τ ′

is a physical subtype of τ . One example of a downcast is
the cast in the body of the Circle area function shown in
the previous section. Such examples seem to arise often
in large programs when C programmers try to use subtype

polymorphism and dynamic dispatch to achieve an object-
oriented structure for their programs.
Another frequent occurrence of a downcast is a cast from

void* to any other pointer type. An interesting result of
our experiments is that only a small percentage of uses of
void* can be attributed to implementations of parametric
polymorphism (e.g., arrays whose elements all have the same
dynamic type). More often it seems void* is used for imple-
menting the more expressive subtype polymorphism (e.g.,
arrays whose elements have distinct types that are all sub-
types of void*).
If we classify all downcasts as bad casts, we essentially

ignore static type information, which is undesirable. In-
stead, we extend the CCured type system with a new pointer
kind, RTTI, that allows checked downcasts using run-time
type information in a manner similar to the checked down-
casts in typed object-oriented languages. In the context
of CCured, however, we have to answer several questions.
First, how should the run-time type information be encoded,
and should it be carried with the pointer or stored with the
referenced object? Second, what changes are necessary to
the CCured inference mechanism to use RTTI pointers in
existing C programs?
We represent the run-time type information as nodes in a

global tree data structure that encodes the physical subtyp-
ing hierarchy of a program. There is a compile-time func-
tion, rttiOf, that maps a type to its node in the hierarchy
data structure, and a run-time function, isSubtype, that
checks whether one node is a physical subtype of another.
In addition, we have decided to store the run-time type infor-
mation with the pointer and not with the referenced object,
as it is done in object-oriented languages. The main reason
in favor of this choice is that C allows pointers to point into
the interior of an allocation unit (e.g., to a field of a struc-
ture or to an element of an array). In such cases it would
have been hard or impossible to insert the run-time type
information at a statically known offset in the referenced
object. Furthermore, we have observed experimentally with
other pointer kinds in CCured that if we change the layout
of pointers to objects rather than that of the objects them-
selves, we increase the likelihood that the transformed code
will be compatible with external libraries.
The representation of a pointer of type τ ∗ RTTI consists

of two words, one encoding the pointer value and the other
encoding the node in the subtype hierarchy that corresponds
to its actual run-time type:

Rep(τ ∗ RTTI) = struct{Rep(τ ) ∗ p,RttiNode ∗ t}
CCured maintains the invariant that such a pointer is either
null or otherwise points to a valid object of some type that
is a physical subtype of τ . This invariant means that such a
pointer can be safely dereferenced just like a τ ∗ pointer if
needed; alternatively, it can be cast to some physical subtype
of τ with a run-time check.

235



In Figure 2 we show the necessary changes to the CCured
type system and instrumentation. Notice that a cast from
SAFE to RTTI must be an upcast and that the original type is
recorded in the newly created pointer. Among RTTI pointers
we allow both upcasts or downcasts, but in the latter case
we check at run-time that the representation invariant is
preserved. A similar check is performed when we cast from
RTTI to SAFE. The rules for dereferencing RTTI pointers are
the same as for SAFE pointers.

Changes to the Inference Algorithm. The inference
algorithm considers each cast from type τ ∗ q to type τ ′ ∗ q′

and collects constraints on the pointer kind variables q and
q′ as follows:

• If this cast is a downcast (τ ′ . τ ) then q = RTTI.

• If the base types are physically equal (τ ≈ τ ′) then the
RTTI kind propagates against the data flow:
q′ = RTTI =⇒ q = RTTI.

• If this cast is an upcast (τ . τ ′) and the source type
has subtypes, then the RTTI pointer kind propagates
against the data flow:
q′ = RTTI ∧ (∃τ ′′. τ ′′ . τ ) =⇒ q = RTTI.

• Otherwise, this cast is a bad cast and q = q′ = WILD

The first two rules identify the downcasts and propagate
the requirement for run-time type information to the origin
of the pointer. The third inference rule attempts to restrict
the backwards propagation of the RTTI kind to those types
that have subtypes (the existential quantifier ranges over the
types actually occurring in the program). If a pointer type
does not have subtypes in the program, then the represen-
tation invariant of RTTI pointers ensures that its static type
is the same as its run-time type, and thus the RTTI pointer
kind is not necessary; instead, we use the pointer kind SAFE,
which saves both space and time.
For example, consider the following sequence of casts,

which uses the types introduced before:

Circle∗ q1 −→ Figure∗ q2 −→ void∗ q3 −→ Circle∗ q4

The new inference rules generate constraints that require
q3 to be RTTI (due to the downcast from void* to Circle*)
and then will propagate the RTTI kind to q2. However, the
RTTI kind does not propagate to q1 since Circle * does not
have subtypes in the program. The variable q4 is uncon-
strained and thus remains SAFE.
The RTTI pointer kind naturally supports the paramet-

ric polymorphism discipline as well as other programming
practices common in C programs, such as various flavors of
dynamic dispatch and generic data structures. The infer-
ence rules associated with this pointer kind are simple, and
the results of inference are predictable.

4. COMPATIBILITY WITH LIBRARIES
It is often necessary to link cured programs with libraries

that were not compiled by CCured. Doing so allows users to
avoid recompiling these libraries with each program. More
importantly, this feature allows CCured’s output to be linked
with binaries written in assembly code or other languages,
and it allows programmers to use libraries for which the
source code is unavailable.

#pragma ccuredWrapperOf("strchr_wrapper", "strchr")

char* strchr_wrapper(char* str, int chr) {

__verify_nul(str); // check for NUL termination

// call underlying function, stripping metadata

char *result = strchr(__ptrof(str), chr);

// build a wide CCured ptr for the return value

return __mkptr(result, str);

}

Figure 3: A wrapper for strchr.

4.1 Library Wrappers
One approach to the problem of library compatibility is

to write wrapper functions for external library functions.
CCured has been structured so that a program that tries
to communicate with a non-CCured library using multi-
word pointers will fail to link rather than crash at run time.
To link correctly with a function that is not instrumented,
CCured must:

1. Determine what constraints the external function places
on its inputs to ensure safe operation. Although there
is no way to guarantee that the external function is
memory-safe, CCured can validate assumptions on which
the function relies, such as the size of an input buffer.

2. Perform appropriate run-time actions to check that
these constraints are met and pack or unpack multi-
word pointers.

We accomplish these tasks by requiring the programmer
to provide a small wrapper specification for each external
function called by a program.1 For example, Figure 3 shows
a wrapper specification for strchr, a function that returns
a pointer to the first occurrence of a given character in a
string. CCured replaces all calls to strchr with the body
of this wrapper, in which the helper functions verify nul,
ptrof, and mkptr are replaced with specialized code de-

pending on the pointer kinds of their arguments and results.
A single wrapper function works with any set of inferred
qualifiers. Notice that the wrapper specification can also
include checks of preconditions of the library functions.
We have implemented wrappers for about 100 commonly-

used functions from the C Standard Library. The wrappers
are packaged with CCured so that calls to these functions
are correctly handled with no further intervention required.

4.2 Compatible Metadata Representations
The wrapper specifications described above have proved

useful for relatively simple external functions such as the
core of C’s standard library. However, C programs often
make use of library interfaces that are much more complex.
Consider, for example, the library function gethostbyname(),
which is used to perform DNS queries in some of the net-
work servers on which we want to use CCured. This function
returns a pointer to the following structure (omitting some
fields for clarity):

struct hostent {
char *h name; // String

char **h aliases; // Array of strings

int h addrtype;

};
1In practice, this specification is only necessary for functions
whose actual arguments contain multi-word pointers.
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p p pb b be e e

h_addrtypeh_aliasesh_name

Figure 4: Interleaved representation for struct

hostent. Array-bounds metadata (gray) is inter-
spersed with data (white).

p p p b e b e b e

p p

h_addrtypeh_name
h_aliases

h_name h_aliases

b eb e m

Figure 5: Non-interleaved representation for struct

hostent. Metadata (gray) has been separated into
a parallel data structure so that the data (white,
boxed) has the format expected by the C library.
The m field is a pointer to the array’s metadata.

Since the library that creates this structure is not instru-
mented by CCured, it returns data in exactly this format.
However, CCured needs to store metadata (b and e fields)
with each string and with the array of strings itself; in other
words, CCured expects a representation in which all pointers
are wide pointers, as shown in Figure 4. In order to convert
the library’s data representation to CCured’s data represen-
tation, we would have to do a deep copy of the entire data
structure. Since deep copies require expensive allocations
and destroy sharing, such a conversion is undesirable. Con-
versions can be avoided if the metadata is not interleaved
with the normal data; however, merely moving the metadata
to the beginning or the end of the structure is insufficient
in a number of cases (e.g., an array of structures used by a
library).
Our solution is to split the data and metadata into two

separate structures with a similar shape; for example, a
linked list is transformed into two parallel linked lists, one
containing data and the other containing metadata. Cre-
ating and maintaining these data structures is quite easy.
For every data value in the original program, our trans-
formed program has a data value and a metadata value.
Every operation on a value with metadata is split into two
such operations, one on the data and one on the correspond-
ing metadata. Figure 5 shows the representation of struct
hostent using this new approach.
We will now make our informal notion of separated data

and metadata more precise by specifying the types of these
values. The data value’s type must be identical to the origi-
nal C type, since we intend to pass it directly to an external

C(int) = int

C(struct{. . . τi fi; . . .}) = struct{. . . C(τi) fi; . . .}
C(τ ∗ SAFE) = C(τ ) ∗
C(τ ∗ SEQ) = C(τ ) ∗
Meta(int) = void

Meta(struct{. . . τi fi; . . .}) = struct{. . . Meta(τi) fi; . . .}
Meta(τ ∗ SAFE) = struct{Meta(τ ) ∗ m; }†
Meta(τ ∗ SEQ) = struct{C(τ ) ∗ b, ∗ e;

Meta(τ ) ∗ m; }†
† The m field is omitted if Meta(τ ) = void.

Figure 6: The C and Meta functions define the data
and metadata types (respectively) in the compatible
representation. Together, these functions define a
compatible alternative to the Rep function.

library (or obtain it directly from a library). For a given
CCured type τ , we express this original C type (without
pointer kinds) as C(τ ). Similarly, we write the type of the
separated metadata value as Meta(τ ). Together, the types
C(τ ) and Meta(τ ) provide a complete representation for the
CCured type τ ; thus, they can be used in place of the rep-
resentation given by Rep(τ ) in Figure 1.
Formal definitions for the functions C and Meta are given

in Figure 6. The definition for C recursively strips off all
pointer qualifiers; for example, C(int ∗ SEQ ∗ SEQ) = int ∗∗.
The definition of the function Meta is slightly more complex,
but it adheres to the following rule of thumb: the metadata
for a type τ must include the metadata required by τ itself
(e.g., a SEQ pointer’s b and e fields) as well as the metadata
for any base types. Thus, the metadata for a SEQ pointer
includes a base pointer, an end pointer, and a pointer to
the metadata of its base type, if such metadata exists. A
SAFE pointer has no metadata of its own, so it only needs to
maintain a pointer to the metadata of its base type, if the
base type requires metadata. Likewise, a structure requires
no metadata in and of itself, so its metadata is simply a
structure containing the metadata of each of its fields, as
necessary. Note that we currently do not support this com-
patible representation for WILD pointers.
An important property of the Meta function is that meta-

data is only introduced by pointers that have metadata in
their original CCured representation as given by the Rep
function (e.g., SEQ pointers); if a type does not contain
any of these pointers, its metadata type will be void. On
the other hand, any type that is composed from a pointer
that needs metadata must itself have metadata, since at the
bare minimum it must maintain a pointer to the component
pointer’s metadata. This case illustrates the disadvantage
of using the separated metadata representation: pointers re-
quire more metadata than before, and in some cases, even
SAFE pointers require metadata.
Because this new representation is less efficient than the

original one, we restrict its use to those parts of a program
that require it for compatibility. To indicate which represen-
tation should be used for a given type, we add two new type
qualifiers: SPLIT and NOSPLIT. Note that unlike the SAFE

and SEQ qualifiers, which apply only to pointer types, these
new qualifiers apply to all types. A value of type τ SPLIT is
represented using data of type C(τ ) and metadata of type
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Rep(struct{...τi SPLIT fi; ...}) =
struct{...C(τi) fi; Meta(τi) mi; ...}

Rep(τ SPLIT ∗ SAFE) =
struct{C(τ ) ∗ p; Meta(τ ) ∗ m; }

Rep(τ SPLIT ∗ SEQ) =
struct{C(τ ) ∗ p, ∗ b, ∗ e; Meta(τ ) ∗ m; }

Figure 7: The Rep function can be extended to han-
dle NOSPLIT types that contain SPLIT types. This defi-
nition extends the definition given in Figure 1, which
considers only NOSPLIT types.

Meta(τ ). Correspondingly, a value of type τ NOSPLIT is rep-
resented using the type Rep(τ ), which contains interleaved
data and metadata.
SPLIT pointers cannot point to NOSPLIT types; otherwise,

they would be incompatible with external libraries. How-
ever, NOSPLIT pointers are allowed to point to SPLIT types.
The representation of such “boundary” pointers is given in
Figure 7, which extends the previous definition of Rep to
handle this case. For example, a SAFE NOSPLIT pointer to a
SPLIT type τ consists of pointers to τ ’s data and metadata,
which are represented using C(τ ) and Meta(τ ). SEQ pointers
and structures are handled in a similar manner.

Example. The following example demonstrates the trans-
formation applied when using CCured’s compatible repre-
sentation.

struct hostent SPLIT * SAFE SPLIT h1;

struct hostent SPLIT * SAFE NOSPLIT h2;

char * SEQ SPLIT * SEQ SPLIT a;

a = h1->h aliases;

h2 = h1;

In this program, struct hostent uses the compatible rep-
resentation as shown in Figure 5. We declare two pointers
to this structure, one SPLIT and one NOSPLIT. We copy h1’s
h aliases field into the local variable a of the same type,
and then we assign the SPLIT pointer h1 to the NOSPLIT

pointer h2. The instrumented program is as follows:
struct meta seq char { char * b, * e; };
struct meta seq seq char {

char * * b, * * e;

struct meta seq char *m; };
struct hostent * h1;

struct meta hostent {
struct meta seq char h name;

struct meta seq seq char h aliases;

} * h1m;

struct { struct hostent * p;

struct meta hostent * m; } h2;

char * * a;

struct meta seq seq char am;

a = h1->h aliases; am = h1m->h aliases;

h2.p = h1; h2.m = h1m;
In the transformed program, the SPLIT pointers h1 and

a are now represented using two pointers each: h1, h1m, a,
and am. In these variable names, the “m” designates a meta-
data value. The type of h1m is as shown in the right-hand
side of Figure 5. The NOSPLIT pointer to a SPLIT struct

hostent is represented as a structure containing pointers to
the data and metadata of the underlying SPLIT structure.
The assignment to a becomes two assignments, one for the

data part stored in a and one for the metadata part stored
in am. Note that we dereference h1m in the same way that
we dereference h1; the metadata structure is traversed in
parallel with the data structure. The conversion from the
SPLIT pointer h1 to the NOSPLIT pointer h2 simply copies
the data and metadata pointers into h2.

Changes to the Inference Algorithm. CCured re-
quires that the programmer identify places in the program
where this compatible representation should be used. To
assist the programmer, CCured provides an inference algo-
rithm that spreads the SPLIT qualifier as far as necessary
based on the programmer’s annotations.
Initially, all types are assumed to be NOSPLIT unless the

programmer indicates otherwise. Starting from user-supplied
SPLIT annotations, SPLIT qualifiers flow down from a pointer
to its base type and from a structure to its fields in order to
ensure that SPLIT types never contain NOSPLIT types.
In addition, if there is a cast from a SPLIT type to a

NOSPLIT type (or vice versa), we ensure that all types con-
tained within the NOSPLIT type are SPLIT; that is, a cast be-
tween pointers requires that both base types be SPLIT, and
a cast between structures requires that all fields be SPLIT.
This restriction corresponds directly to a restriction in the
pointer qualifier inference algorithm; in both cases, convert-
ing between pointer types whose base types have different
representations is unsound. To obtain the type qualifiers in
the above example, the programmer would only have to an-
notate the top-level type of h1 and a to be SPLIT (possibly
because they are being passed to or from library functions).
The remaining SPLIT and NOSPLIT qualifiers are then in-
ferred based on the rules we described above.

Limitations. This compatible metadata representation
significantly eases the burden of communicating with exter-
nal libraries, but unfortunately, it does not solve the entire
problem. In particular, if a library makes changes to a data
structure that require corresponding changes to the associ-
ated metadata, then the metadata will be invalid upon re-
turn from the external library. Also, CCured must generate
new metadata when the library returns a newly allocated
object. Thus, CCured must validate any new or potentially
modified data structures after calling into an external library
function. We are currently evaluating a number of strategies
for coping with this problem. However, experience suggests
that this compatible representation is useful even in the ab-
sence of such mechanisms. Many data structures are read-
only for either the application or the library, which simplifies
or eliminates this problem; for instance, applications rarely
modify the struct hostent returned by gethostbyname(),
which simplifies the problem of generating metadata for its
return value. In other cases, such as the function recvmsg(),
the library only modifies a character buffer that has no as-
sociated metadata.

5. EXPERIMENTS
We tested our system on many real-world C programs

ranging in size from several hundred lines of code to sev-
eral hundred thousand. These experiments allowed us to
measure both the performance cost of the run-time checks
inserted by CCured and the amount of manual intervention
required to make existing C programs work with our system.
In general, computationally expensive tasks like the Spec95
benchmarks and the OpenSSL cryptography library showed
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the greatest slowdown (ranging from 0–87% overhead). Sys-
tem software like Linux kernel modules and FTP daemons
showed no noticeable performance penalty; the cost of run-
time checks is dwarfed by the costs of input/output oper-
ations. Our experiments allowed us to detect a number of
bugs in existing programs and enable us to run safety-critical
code without fear of memory-based security errors such as
buffer overruns.

We first tested CCured with the Spec95 [24], Olden [3],
and Ptrdist-1.1 [2] benchmark suites. Using CCured re-
quired minor changes to some of these programs, such as
correcting function prototypes, trusting a custom allocator,
or moving to the heap some local variables whose address is
itself stored into the heap. These changes resulted in modi-
fications to about 1 in 100 lines of source code. In the pro-
cess we discovered a number of bugs in these benchmarks,
including several array bounds violations and a printf that
is passed a FILE* when expecting a char* [15].
CCured’s safety checks added between 7 and 56% to the

running times of these tests. For comparison, we also tried
these tests with Purify version 2001A [8], which increased
running times by factors of 25–100. Purify modifies C bina-
ries directly to detect memory leaks and access violations by
keeping two status bits per byte of allocated storage. Purify
has an advantage over CCured in that it does not require
the source code to a program (or any source code changes),
so it is applicable in more situations. However, without the
source code and the type information it contains, Purify can-
not statically remove checks as CCured does. Also, Purify
does not catch pointer arithmetic between two separate valid
regions [11], a property that Fischer and Patil [17] show to
be important. We commented on some of these experiments
in a previous paper [15].
We also ran comparisons against Valgrind [20], an open-

source tool for finding memory-related bugs. Valgrind checks
all reads, writes, and calls to allocation functions via JIT in-
strumentation, as well as maintaining 9 status bits per bit of
program memory. Like Purify, it does not require the pro-
gram source but entails a steep run-time overhead; Valgrind
slows down instrumented programs by factors of 9–130, as
shown in Figure 9. Both Purify and Valgrind miss many
memory errors that CCured catches; in particular, these
other tools do not catch out-of-bounds array indexing on
stack-allocated arrays.
For the remainder of this section, we focus on experiments

that we were able to perform only after extending CCured
as explained in this paper.

Interacting with C Code. As we began to tackle larger
programs that relied heavily on the C Standard Library and
on other preexisting C binaries, we found that CCured had
no convenient way to link with such code. Our first solution
to this problem was the system of wrappers described in
Section 4.1.

These wrappers helped us use CCured to make memory-
safe versions of a number of Apache 1.2.9 modules. Buffer
overruns and other security errors with Apache modules
have led to a least one remote security exploit [19]. In
addition to writing CCured wrappers for Apache’s array-
handling functions, we annotated data structures that are
created by Apache and passed to the module so that they
would be inferred as having SAFE pointers. The physical sub-

Module Lines % CCured
Name of code sf/sq/w/rt Ratio
asis 149 72/28/0/0 0.96
expires 525 77/23/0/0 1.00
gzip 11648 85/15/0/0 0.94
headers 281 90/10/0/0 1.00
info 786 86/14/0/0 1.00
layout 309 82/18/0/0 1.01
random 131 85/15/0/0 0.94
urlcount 702 87/13/0/0 1.02
usertrack 409 81/19/0/0 1.00
WebStone n/a n/a 1.04

Figure 8: Apache Module Performance. The
“sf/sq/w/rt” column show the percentage of (static)
pointer declarations which were inferred SAFE, SEQ,
WILD and RTTI, respectively. A ratio of 1.04 means
that the CCured module was 4% slower than the
original.

typing described in Section 3.1 was necessary for CCured to
determine that some casts were safe.
Figure 8 shows the performance of these modules on tests

consisting of 1,000 requests for files of sizes of 1, 10, and
100K. The WebStone test consists of 100 iterations of the
WebStone 2.5 manyfiles benchmark with every request af-
fected by the expires, gzip, headers, urlcount and usertrack

modules.

We also used CCured on two Linux kernel device drivers:
pcnet32, a PCI Ethernet network driver, and sbull, a ramdisk
block device driver. Both were compiled and run using
Linux 2.4.5. We used wrapper functions for Linux assem-
bly code macros, which has the advantage of allowing us to
insert appropriate run-time checks into otherwise opaque as-
sembly (e.g., we perform bounds checks for the Linux inter-
nal memcpy routines). Some Linux macros (like INIT REQUEST)
and low-level casts were assumed to be part of the trusted
interface. Porting sbull to CCured involved changing about
20 lines of code, and pcnet32 required only 5 changes.
The performance measurements are shown in Figure 9.

pcnet32 measures maximal throughput, and “ping” indi-
cates latency. sbull measures blocked reads (writes and
character I/O were similar), and “seeks” indicates the time
to complete a set number of random seeks.

Finally, we ran ftpd-BSD 0.3.2-5 through CCured. This
version of ftpd has a known vulnerability (buffer overflow)
in the replydirname function, and we verified that CCured
prevents this error. The biggest hurdle was writing a 70-line
wrapper for the glob function. As Figure 9 shows, we could
not measure any significant performance difference between
the CCured version and the original. With both ftpd and
Apache modules, the client and server were run on the same
machine to avoid I/O latency.

Run-time Type Information. In one of the first uses
of the new RTTI pointer kind, we revisited a previous exper-
iment. With the original version of CCured the ijpeg test
in Spec95 had a slowdown of 115% due to about 60% of the
pointers being WILD. (We also had to write a fair number
of wrappers to address the compatibility problems.) This
benchmark is written in an object-oriented style with a sub-
typing hierarchy of about 40 types and 100 downcasts. With
RTTI pointers we eliminated all bad casts and WILD pointers
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Lines % CCured Valgrind
Name of code sf/sq/w/rt Ratio Ratio
pcnet32 1661 92/8/0/0 0.99
ping 1.00

sbull 1013 85/15/0/0 1.00
seeks 1.03

ftpd 6553 79/12/9/0 1.01 9.42
OpenSSL 177426 67/27/0/6 1.40 42.9
cast 1.87 48.7
bn 1.01 72.0

OpenSSH 65250 70/28/0/3
client 1.22 22.1
server 1.15

sendmail 105432 65/34/0/1 1.46 122
bind 336660 79/21/0/0 1.81 129
tasks 1.11 81.4
sockaddr 1.50 110

Figure 9: System software performance. A ratio of
1.03 means the CCured version is 3% slower than
the original. Not all tests were applicable to Val-
grind.

with only 1% of the pointers becoming RTTI instead. This
result shows how far the WILD qualifier can spread from bad
casts. Overall, the slowdown is reduced to 45%.

We modified OpenSSL 0.9.6e, a cryptographic library and
implementation of the Secure Sockets Layer protocol, to
compile under CCured. Because of the structure of OpenSSL,
this task required changing many function signatures so that
they match the types of the function pointers to which they
were assigned. We used RTTI pointers extensively to handle
OpenSSL’s many uses of polymorphic pointers and container
types. Because OpenSSL uses char* as the type for its poly-
morphic pointers, we were also forced to change the type
of each of these pointers to void* to avoid unsound casts.2

These changes allowed us to compile OpenSSL with only two
“trusted” casts, which were needed for pseudorandom num-
ber seeds; thus, CCured should guarantee memory safety for
this program with a minute trusted computing base. While
running OpenSSL’s test suite after compiling with CCured,
we found one array bounds violation in the processing of
rulestrings. We also found a bounds error in the test suite
itself and two programming errors in the library that do not
affect program behavior.
Figure 9 shows the performance of OpenSSL’s test suite

after compiling with CCured, compared to the original C
code. We show specific results for a test of the “cast” cipher
and the big number package (“bn”). Note that the baseline
C version is itself 20% slower than a default installation of
OpenSSL, which uses assembly code implementations of key
routines. CCured, of course, cannot analyze assembly code.

We also ran CCured on OpenSSH 3.5p1, an ssh client and
server that links with the OpenSSL library. Not counting
that library, we made 109 small changes and annotations to
the 65,000 lines of code in OpenSSH. We use several trusted
casts to deal with casts between different types of sockaddr
structs, since CCured also adds bounds information to guar-
antee that these are used safely. We are using an instru-

2With the adoption of ANSI C, void* replaces char* as the
standard notation for an undetermined pointer type.

mented version of the OpenSSH daemon in our group’s login
server with no noticeable difference in performance. In doing
so we have found one bug in the daemon’s use of open().

We used CCured to make a type-safe version of sendmail
8.12.1. CCured is capable of preventing security-related er-
rors in sendmail, including two separate buffer overrun vul-
nerabilities that have been found recently [5]. Using CCured
with sendmail required annotating variable argument func-
tions and replacing inline assembly with equivalent C code.
To avoid WILD pointers, we modified several places in the
code that were not type safe: unions became structs, and
unsound casts needed for a custom allocator were marked as
trusted. We also used RTTI for polymorphic pointers that
were used with dynamic dispatch. Finally, several stack al-
located buffers were moved to the heap. In all, about 200
changes were required for the approximately 105,000 lines of
code in sendmail. We found 2 bugs, both at compile time:
a debug printf was missing an argument, and a (currently
unused) section of code had a memory error due to a miss-
ing dereference operator. Figure 9 shows the results of a
performance test in which messages were sent to a queue on
the same host, using instrumented versions of sendmail for
both client and daemon.

Finally, we ran CCured on bind 9.2.2rc1, a 330,000-line
network daemon that answers DNS requests. CCured’s qual-
ifier inference classifies 30% of the pointers in bind’s unmod-
ified source as WILD as a result of 530 bad casts that could
not be statically verified. (bind has a total of 82000 casts
of which 26500 are upcasts handled by physical subtyping.)
Once we turn on the use of RTTI, 150 of the bad casts (28%)
proved to be downcasts that can be checked at run time.
We instructed CCured to trust the remaining 380 bad casts
rather than use WILD pointers, therefore trading some safety
for the ability to use the more efficient SAFE and SEQ point-
ers. A security code review of bind should start with these
380 casts.
Figure 9 provides performance results for experiments in-

volving name resolution; the “tasks” trial measured multi-
ple workers and the “sockaddr” trial measured IPv4 socket
tasks. bind was the one of the most CPU-intensive pieces of
systems software we instrumented, and its overhead ranged
from 10% to 80%.

Compatible Pointer Representations. When curing
bind, it was necessary to deal with networking functions
that pass nested pointers to the C library, such as sendmsg
and recvmsg. To demonstrate the benefit of our compatible
pointer representation, we instructed CCured to use split
types when calling such functions. By doing so, we elimi-
nated the need to perform deep copies on the associated data
structures, and we relieved the programmer of the burden
of writing complex wrapper functions. The inference algo-
rithm described in Section 4.2 determined that 6% of the
pointers in the program should have split types and that
31% of these pointers need a metadata pointer. The large
number of metadata pointers is a result of the trusted casts
used when curing bind; in order to preserve soundness when
using these casts, we had to add metadata pointers to places
where they would not normally be necessary.
We also used our compatible pointer representation when

curing OpenSSH. As with bind, split types were used when
calling the sendmsg function. In addition, we used split
types when reading the environ variable, which holds the
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program’s current environment. Less than 1% of all pointers
in the program required a split type or a metadata pointer.
The nature of the call sites allowed us to take advantage of
split types without spreading them to the rest of the pro-
gram.
To demonstrate the usefulness of our compatible pointer

representation when linking with libraries that have compli-
cated interfaces, we applied CCured to the ssh client pro-
gram without curing the underlying OpenSSL library. The
ssh program uses 56 functions from the OpenSSL library, and
many of these functions have parameters or results that con-
tain pointers to pointers (and even pointers to functions). It
would have been difficult to write wrappers for such a com-
plex interface, but our compatible representation required
the user to add only a handful of annotations (e.g., the user
must identify places where results are returned via a func-
tion parameter). Even when using split types for all of these
interfaces, our compatible representation was only needed in
a limited number of places in the cured program: only 3%
of pointers had split types, and only 5% of pointers required
metadata pointers.
To determine the overhead of our compatible represen-

tation, we ran the olden, ptrdist, and ijpeg tests with
all types split. In most cases, the overhead was negligi-
ble (less than 3% slowdown); however, execution times in-
creased in a few cases. The em3d program (part of olden)
was slowed down by 58%, and the anagram program (part
of ptrdist) was slowed down by 7%. While split types are
relatively lightweight, these outliers suggest that it is impor-
tant to minimize the number of split types used, which can
be achieved by applying our inference algorithm. Unfortu-
nately, the performance impact of our compatible represen-
tation is difficult to predict at compile time; the slowdown
appears to depend heavily on how the program uses pointers
at run time.

Summary of Experiments
We have used CCured on several large, widely-used pro-
grams for which reliability and security are critically impor-
tant, including ftpd, bind, sendmail, OpenSSL, OpenSSH,
and several Apache modules. Modifications and annotations
were required to deal with unsound behavior in these pro-
grams. The performance of the instrumented code is far
better than the performance when using existing tools such
as Valgrind or Purify for adding memory safety to C. As a
result, it is possible to use instrumented programs in day-to-
day operations so that memory errors can be detected early
and many security holes can be prevented. Finally, we have
detected several bugs in the programs we tested.

6. RELATED WORK
There have been many attempts to design C-like lan-

guages or language subsets that are provably type safe. The
Cyclone language [10] is expressive, gives programmers a
high degree of control, and has been used on similar types
of programs (e.g., device drivers). Smith et al. [23] present
a type-safe polymorphic dialect of C that includes most of
C’s features (and higher-order functions, which our current
system handles weakly) but lacks casts and structures. How-
ever, these approaches work only for programs written in the
given dialect.
Ramalingam et al. [18] have presented an algorithm for

finding the coarsest acceptable type for structures in C pro-

grams. Chandra and Reps [6] present a method for physical
type checking of C programs based on structure layout in
the presence of casts. Siff et al. [22] report that many casts
in C programs are safe upcasts and present a tool to check
such casts. Each of these approaches requires programs to
adhere to their particular subset; otherwise, the program is
rejected. CCured’s static type system has comparable ex-
pressiveness, but CCured can fall back on its flexible RTTI

or WILD pointers to handle the corner cases. Our notion
of physical subtyping extends this line of work to include
pointer arithmetic (see Section 3.1).
Another common approach is to add run-time checks to C

programs. Kaufer et al. [12] present an interpretive scheme
called Saber-C that can detect a rich class of errors (includ-
ing uninitialized reads and dynamic type mismatches but
not all temporal access errors) but runs about 200 times
slower than normal. Austin et al. [2] store extra information
with each pointer and achieve safety at the cost of a large
overhead (up to 5 times slower) and a lack of library compat-
ibility. Jones and Kelly [11] store extra information for run-
time checks in a splay tree, allowing safe code to work with
unsafe libraries. This approach results in a slowdown factor
of 5 to 6. Fischer and Patil have presented a system that
uses a second processor to perform the bounds checks [16].
Loginov et al. [14] store type information with each memory
location, incurring a slowdown factor of 5 to 158. This extra
information allows them to perform more detailed checks
than CCured can, and they can detect when stored types
do not match declared types or when union members are
accessed out of order. The approaches of Austin et al. and
Jones and Kelly are comparable to the implementation of
CCured’s WILD pointers. However, beyond array bounds
check elimination, none of these techniques use type-based
static analysis to aggressively reduce the overhead of the
instrumented code.
The global splay tree used by Jones and Kelly [11] pro-

vides an alternative approach to the problem of library com-
patibility; however, we found that looking up metadata in
a global data structure was prohibitively expensive. Also,
Patil and Fischer [16] maintain shadow data using a tech-
nique that resembles our compatible metadata representa-
tion. However, CCured’s representation handles different
kinds of metadata for different pointer kinds, requires less
overhead, and allows run-time checking to be done in the
same processor and address space as the main program. Fur-
thermore, in CCured it is possible for both the compatible
representation and the more efficient incompatible represen-
tation to coexist in a given program.
The pointer kind qualifiers used in CCured are a spe-

cial case of type qualifiers [7]. The CCured inference al-
gorithm bears some resemblance to Henglein’s inference al-
gorithm [9], but we also consider physical subtyping, pointer
arithmetic, updates and multiple pointer kinds. Henglein’s
algorithm has the nice feature that it does not require any
type information to be present in the program. However,
we believe that his algorithm does not extend to the more
complex language we consider here and also that existing C
types contain valuable information that should be used to
make inference both simpler and more predictable.
An entire body of research [4, 9, 13, 21, 25, 28] examines

the notion of a Dynamic type whose values are 〈type,ptr〉
packages. Such a value can only be used by first extracting
and checking the type. In particular, one can only write val-
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ues that are consistent with the packaged type. Because the
underlying value’s static type is carried within the Dynamic
package and checked at every use, there is no problem with
Dynamic aliases for statically-typed data. Abadi et al. [1]
study the theoretical aspects of adding a Dynamic type to
the simply-typed λ-calculus and discuss extensions to poly-
morphism and abstract data types. CCured’s RTTI qualifier
is similar, but we combine it with an inference algorithm
based on physical subtyping.

7. CONCLUSIONS
CCured is a C program analysis and transformation sys-

tem that ensures memory safety. It first analyzes the pro-
gram and attempts to find safe portions of it that adhere to
a strong type system. The remainder of the program is in-
strumented with run-time checks. Parts of the program that
cannot be proved safe statically are often slow and incom-
patible with external libraries. The techniques in this paper
improve the usability of CCured by increasing the amount
of the program that can be verified statically and the ease
with which instrumented code can interface with the outside
world.
Physical subtyping prevents many type casts from re-

quiring the use of WILD pointers. We incorporate physical
subtyping with pointer arithmetic, allowing upcasts (which
make up about 33% of all casts) to be statically verified
as safe. This approach improves the analysis portion of
CCured.
We describe a system for run-time type information that

handles downcasts, and we provide an inference algorithm
that uses physical subtyping to decide which pointers require
this information. As a result, CCured can reason about
the common idioms of parametric and subtype polymor-
phism. Using this mechanism improves the analysis portion
of CCured and adds additional run-time checks. When run-
time type information is combined with physical subtyping,
more than 99% of all program casts can be verified without
resorting to WILD pointers.
CCured’s pointers are often incompatible with external

libraries. One way to bridge this gap is by writing wrap-
pers, and we have extended CCured to include support for
writing wrappers that ensure memory safety. In addition,
we presented a scheme for splitting CCured’s metadata into
separate data structures, allowing instrumented programs
to invoke external functions directly. This mechanism could
also be useful for any run-time instrumentation scheme that
must maintain metadata with pointers while remaining com-
patible with precompiled libraries.
We verified the utility of these extensions while working

on a number of real-world security-critical network daemons,
device drivers and web-server modules. Without these ex-
tensions, these programs would have been quite difficult to
make safe using CCured. Equipped with the mechanisms
described in this paper, we can build tools, such as CCured,
that are better able to analyze and instrument real-world
software systems, thereby improving their reliability and se-
curity.
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APPENDIX

A. CCURED RUN-TIME CHECKS
This appendix provides concrete details about CCured

run-time invariants and checks. In order to describe the
CCured typing rules and the run-time checks we shall use
a simplified presentation of C. Since the array indexing op-
eration e1[e2] is just syntactic sugar for ∗(e1 + e2), we will
only consider pointer arithmetic. Comparison operations on
pointer values are performed after converting the pointers to
integers. We shall not describe the operations on integers
since they are not interesting for memory safety.
CCured run-time invariants are shown in Figure 10. If

the static type of a value is τ ∗ SAFE, that value is either
null or a valid pointer to a τ in memory. If the static type
of a value is τ ∗ SEQ, that value is either null or its b and

e metadata fields delimit a valid array of τ s in memory. In
the SAFE and SEQ cases the type of the referent is known
statically. If the static type of a value is τ ∗ WILD, we must
check the type at run time. We maintain the invariant that
either the value is null or it has a valid b field that points
to the beginning of a WILD object. The associated tags give
the type of the last value stored in that object. As a special
case of SEQ and WILD pointers, if the base field is null then
the pointer actually represents an integer that was cast to a
pointer.
The CCured typing rules and the run-time checks are

shown in Figure 11. For each form of expression shown
in the left column of the figure there are a number of alter-
native typing premises (shown in the middle column) under
which the expression is well typed. The right column shows
what run-time checks CCured adds in each case and how it
translates the left-column expression.
In the case of memory reads we first check whether the

pointer is null. In the case of SEQ and WILD pointers this
check also verifies that the pointer was not obtained by cast-
ing from an integer. For SEQ and WILD pointers we perform
a bounds check, using the notation len(x.b) to refer to the
length of a dynamically-typed area pointed to by the base
field of x. Finally, when reading a pointer through a WILD

pointer we must check the tag bits to verify that the stored
pointer has not been altered. The notation tag(b, p) denotes
the tag corresponding to the word pointed to by p inside the
dynamically-typed area pointed to by b.
For memory writes (not shown), we perform the same

checks as for reads, and additionally, we check that we do
not store a stack pointer. This restriction is a conservative
approximation that prevents the program from dereferenc-
ing the address of a local variable after its parent function
has returned. When writing into dynamically typed areas,
the tag bits must be updated to reflect the type of what is
written; when a pointer is written into such an area we set
the bits corresponding to the stored base and pointer fields
to one and zero respectively. When an integer is written,
we clear the tag bit for the written word, thus invalidating
any previously stored base field. This scheme maintains the
invariant that the tag bit for a word is set to one if and only
if the word contains a valid base pointer.
The first three lines in the “Type Casts” section of Fig-

ure 11 show that any kind of pointer can be cast to an in-
teger, but the reverse direction prevents integers (except 0)
from being cast to SAFE pointers. Note that even though we
can disguise an integer as a SEQ or a WILD pointer, the base
field will be null, meaning that we cannot use the pointer
in a memory operation. The necessary restrictions for han-
dling arithmetic and physical subtyping are shown in the
last three lines under “Type Casts.”
Finally, true pointer arithmetic is allowed only for SEQ

and WILD pointers. Accessing a structure field can be viewed
as a combination of casts and pointer arithmetic, however.
CCured supports the creation of pointers to substructures
starting from a pointer to the host structure. The represen-
tative case of x → f2 is shown. If x is a SAFE pointer to
a structure, then it must be non-null; otherwise, we would
obtain a SAFE pointer that is neither valid nor null. In the
case of a SEQ pointer we must first convert the pointer to a
SAFE one (hence the bounds check) and then we can obtain
a SAFE pointer to the second field.
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Pointer Qualifier Representation Invariants

x : τ ∗ SAFE struct{τ ∗ p; } x.p �= null =⇒ IsAValid(x.p, τ )
x : τ ∗ SEQ struct{τ ∗ p, ∗ b, ∗ e; } x.b �= null ∧ x.b ≤ x.p ≤ x.e − sizeof(τ ) =⇒ IsAValid(x.p, τ )
x : τ ∗ WILD struct{τ ∗ p, ∗ b; } x.b �= null ∧ x.b ≤ x.p ≤ x.b + len(x.b)− 4 =⇒ IsAValid(x.p, int)

x.b �= null ∧ x.b ≤ x.p ≤ x.b + len(x.b)− 8
∧ tag(x.b, x.p) = 1 ∧ tag(x.b, x.p + 4) = 0 =⇒ ∀τ ′.IsAValid(x.p, τ ′ ∗ WILD)

Figure 10: CCured pointer qualifier invariants. Whenever a value x of the given type exists in a well-typed
CCured program, the associated invariant will hold for that value. IsAValid(x, τ ) means that x is a valid address
in memory and that the last value stored there is a physical subtype of τ (see Section 3.1).

Expression Typing Premises Run-time checks and translation

Memory Reads
∗x x : τ ∗ SAFE assert(x.p �= null); ∗(x.p)
∗x x : τ ∗ SEQ assert(x.b �= null); assert(x.b ≤ x.p ≤ x.e − sizeof(τ )); ∗(x.p)
∗x x : int ∗ WILD assert(x.b �= null); assert(x.b ≤ x.p ≤ x.b+ len(x.b)− 4); ∗(x.p)
∗x x : τ ∗ WILD ∗ WILD assert(x.b �= null); assert(x.b ≤ x.p ≤ x.b+ len(x.b)− 8);

assert(tag(x.b, x.p) == 1); assert(tag(x.b, x.p + 4) == 0); ∗(x.p)
Type Casts
(int)x x : τ ∗ SAFE x.p
(int)x x : τ ∗ SEQ x.p
(int)x x : τ ∗ WILD x.p
(τ ′ ∗ SAFE)x x = 0 {p = null}
(τ ′ ∗ SEQ)x x : int {b = null, p = x, e = null}
(τ ′ ∗ WILD)x x : int {b = null, p = x}
(τ ′ ∗ WILD)x x : τ ∗ WILD x
(τ ′ ∗ SAFE)x x : τ ∗ SAFE, τ . τ ′ x
(τ ′ ∗ SEQ)x x : τ ∗ SEQ, τ [n] ≈ τ ′[n′] x
(τ ′ ∗ SAFE)x x : τ ∗ SEQ, τ [n] . τ ′ assert(x.p = null || x.b �= null);

assert(x.b ≤ x.p ≤ x.e − sizeof(τ ′)); x.p
(τ ′ ∗ SEQ)x x : τ ∗ SAFE, τ ′[n′] . τ {b = x.p, p = x.p, e = x.p + sizeof(τ )}

Miscellaneous
x1 + x2 x1 : τ ∗ SEQ, x2 : int {b = x1.b, p = x1.p + x2 ∗ sizeof(τ ), e = x1.e}
x1 + x2 x1 : τ ∗ WILD, x2 : int {b = x1.b, p = x1.p + x2 ∗ sizeof(τ )}
&(x → f2) : τ2 ∗ SAFE x : struct{τ1f1; τ2f2; } ∗ SAFE assert(x.p �= null); &(x.p → f2)
&(x → f2) : τ2 ∗ SAFE x : struct{τ1f1; τ2f2; } ∗ SEQ assert(x.b �= null);

assert(x.b ≤ x.p ≤ x.e − sizeof(τ1)− sizeof(τ2)); &(x.p → f2)
&(x → f2) : τ2 ∗ WILD x : struct{τ1f1; τ2f2; } ∗ WILD {b = x.b, p = &(x.p → f2)}

Figure 11: CCured typing rules for reads, casts, arithmetic and aggregate accesses. For each kind of expression
shown in the left column, the middle column shows the typing premises that make the expression well-typed
in CCured, and the right column shows the instrumentation that is added. For simplicity word size is assumed
to be 4. All arithmetic in the right column is integer arithmetic.
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