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ABSTRACT
Erroneous string manipulations are a major source of soft-
ware defects in C programs yielding vulnerabilities which are
exploited by software viruses. We present C String Static
Verifyer (CSSV), a tool that statically uncovers all string
manipulation errors. Being a conservative tool, it reports
all such errors at the expense of sometimes generating false
alarms. Fortunately, only a small number of false alarms are
reported, thereby proving that statically reducing software
vulnerability is achievable. CSSV handles large programs by
analyzing each procedure separately. To this end procedure
contracts are allowed which are verified by the tool.

We implemented a CSSV prototype and used it to ver-
ify the absence of errors in real code from EADS Airbus.
When applied to another commonly used string intensive
application, CSSV uncovered real bugs with very few false
alarms.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—Assertion checkers, Reliability, Validation; F.3.1
[Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—Assertions, Pre-
and post-conditions; F.3.2 [Logics and Meanings of Pro-
grams]: Semantics of Programming Languages—Operational
semantics, Program analysis

General Terms
Algorithms, Reliability, Experimentation, Security, Languages,
Verification
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1. INTRODUCTION
String manipulation errors are a common source of soft-

ware defects and lead to many security vulnerabilities. CERT
advisories report on many security holes that result from
buffer overflow, i.e., updates beyond the bounds of a buffer [37].
Furthermore, 60% of the UNIX failures reported in the 1995
FUZZ study [28] are due to runtime string manipulation er-
rors, such as buffer overflow, access beyond the bounds of a
string and misuse of the null-termination byte.

Our goal is to perform static analysis that detects all
string runtime errors with just a few false alarms. A false
alarm is a reported error that can never occur at runtime.
This goal is ambitious. Existing methods either: (i) miss
errors (e.g., LCLint [23], Eau Claire [4], and [37]); (ii) yield
many false alarms (e.g., [23, 37]); or (iii) cannot handle com-
plex aspects of C, such as multi-level pointers and structures
(e.g., [13, 35]). Moreover, the cost of static analysis is con-
sidered prohibitive when it comes to large programs.

This paper presents C String Static Verifyer (CSSV for
short) — a tool that demonstrates that uncovering all string
problems in C is achievable. CSSV is capable of analyzing
realistic procedures and produces rather precise results. Be-
ing a conservative static-analysis tool it can never miss a
runtime string error. It therefore guarantees the absence
of all errors at the expense of sometimes generating false
alarms.

For every procedure, CSSV allows the programmer to pro-
vide a contract including (i) a precondition, (ii) a post-
condition, and (iii) the potential side-effects of the proce-
dure. Contracts may refer to normal C expressions (includ-
ing pointers) and can also refer to properties, (such as the
number of allocated bytes) that are defined by instrumented
concrete semantics.

1.1 Analysis of String Errors: CSSV
Fig. 1 shows how CSSV operates. Each procedure is an-

alyzed separately. In the first phase, a source-to-source
semantic-preserving transformation is applied to the ana-
lyzed procedure P. This transformation exposes the behav-
ior of the procedures invoked by P by essentially inlining
their contracts. The generated program yields a runtime
error when a contract is violated. In addition, the inliner
normalizes the C code to only include statements in a C
subset called CoreC [38] which simplifies the task of imple-
menting CSSV.

In the second phase, CSSV analyzes pointer interactions.
Conducting pointer analysis in a language like C is a non-
trivial task. Moreover, it is difficult for programmers to de-

155



program �� inliner �� annotated
program

��
��

Pointer
Analysis

�� procedural
points-to

�� C2IP ����
��

integer
program

�� Integer
Analysis

�� potential
errors

contracts

���������

Figure 1: High-level structure of CSSV.

fine contracts in terms of pointer behavior. Fortunately, sev-
eral flow-insensitive algorithms have been shown to run on
whole applications of considerable size, e.g., [8, 18]. There-
fore, CSSV does not require contract information regard-
ing pointers. Instead, CSSV applies a whole-program flow-
insensitive pointer analysis to detect statically which point-
ers may point-to the same base address. CSSV then applies
an algorithm that extracts procedural points-to information
for the analyzed procedure P. Our algorithm benefits from
the fact that memory locations inaccessible from visible vari-
ables of P cannot affect the postcondition of P. In many
cases this allows subsequent analyses to perform strong up-
dates [3] when analyzing the procedure’s body. We also
compute certain must-aliases to improve the precision of the
global flow-insensitive pointer analysis.

In the third phase, the procedure code and points-to infor-
mation are fed into the C2IP transformer. C2IP generates a
procedure that manipulates integers. C2IP guarantees that
if there is a runtime string manipulation error in a procedure
invocation then either (i) the procedure’s precondition did
not hold on this invocation, or (ii) an assert statement in
the resultant integer program is violated on a correspond-
ing input. In addition, C2IP checks pointer assertions if
specified in the contracts.

In the fourth phase, the resultant integer program is ana-
lyzed using a conservative integer-analysis algorithm to de-
termine all potential violations of assert statements. Be-
cause the integer and pointer analyses are sound and because
contracts are verified both at call sites and at the procedu-
ral level, all string errors are reported. In particular, the
integer analysis reports an error when the specified post-
condition is not guaranteed to hold. For minimizing the
number of false alarms, CSSV uses a rather precise integer
analysis that represents linear relationships on integer vari-
ables. The final result is a list of potential errors. For every
error, a counter-example is generated that can assist the
programmer in determining if a message is a real error or a
false alarm. False alarms may occur due to (i) erroneous or
overly weak contracts, (ii) abstractions conducted by C2IP,
or (iii) imprecision of the pointer or integer analyses.

As opposed to alternative interprocedural program analy-
sis techniques, CSSV’s approach has important advantages:
(i) Each potentially recursive procedure can be analyzed sep-
arately, exactly once. (ii) The tool is applicable even if the
source code is not available in its entirely. (ii) Contracts of-
fer user control in a way similar to “design by contract” [30].
In particular, it enables CSSV to more effectively locate the
actual source location in which the error occurs. (iii) Con-
tracts can improve the precision of the analysis by providing
information which can be hard to statically infer via an inter-
procedural analysis. (iv) By using the contracts to analyze
procedure calls, CSSV applies a rather precise intraproce-
dural algorithm to reduce false alarms.

1.2 The Burden of Contracts
Contracts exert additional burden on the programmer.

In the case of CSSV, this deficiency is minimized because
the pre- and post-conditions need not describe the proce-
dure’s complete behavior. Moreover, unlike tools such as
Eau Claire and LCLint, CSSV does not require annotations
within the code itself such as loop invariants. Also, un-
like these unsound approaches, since CSSV is sound, with
any given contract, runtime errors cannot go undetected.
Depending on the contracts, errors will be identified when
analyzing the body of the procedure or at the procedure in-
vocations. Clearly, when a procedure code is omitted as in
the case of library functions, CSSV assumes its contract is
correct and cannot verify it.

Pointer information is automatically collected by CSSV,
and therefore contracts usually omit information about how
pointers are used. In addition, interprocedural modifica-
tion side-effect analysis algorithms already exist (e.g., [34]).
They can generate automatically the modification clause.
Therefore, it is always possible to run CSSV with vacuous
contracts including only the side-effect information and a
true pre- and post-condition.

This paper presents preliminary algorithms for automati-
cally strengthening the pre- and post-conditions. The effec-
tiveness of these algorithms is measured by comparing the
number of false alarms obtained: (i) with the vacuous con-
tracts, (ii) when using automatically derived contracts, and
(iii) when using manually provided contracts.

The derivation procedure uses a forward sound integer-
analysis algorithm called ASPost to compute an Approxi-
mation to the Strongest Postcondition of the integer pro-
gram. Similarly, a backward sound integer-analysis algo-
rithm called AWPre is used to compute an Approximation
to the Weakest liberal Precondition [11]. The generated
postcondition (precondition) is not necessarily the strongest
(weakest) because information is lost during the static in-
teger analysis. Both ASPost and AWPre yield integer con-
ditions. Therefore, the process can be repeated iteratively
by running the derivation process given the generated in-
teger con and further restricting the existing postcondition
(precondition).

We also present a conservative method that uses the pro-
cedural points-to information to convert an integer expres-
sion for postcondition (precondition) into a C expression
that can be used to strengthen the initial contract.

1.3 Main Results
The contributions of this paper can be summarized in the

following way:

• A conservative static-analysis algorithm for detecting
string runtime errors is presented. The algorithm re-
duces the problem of checking string manipulation to
that of checking integer manipulations—a problem for
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which well-known solutions exist. In comparison to
our previous algorithm, presented in [13], it handles
the full spectrum of C language constructs, including
dynamically allocated structures, multi-level arrays,
multi-level pointers, function pointers, and casting. In
addition, this algorithm is an order of magnitude bet-
ter in its asymptotic time and space requirements.

• An algorithm that computes procedural pointer infor-
mation from a given whole-program flow-insensitive
pointer information is presented. The goal is to re-
duce the number of false alarms when analyzing well-
behaved programs. Specifically, the algorithm can in-
fer that a formal parameter points to a single loca-
tion throughout the procedure and that a local vari-
able must be aliased to a formal parameter. Obtain-
ing procedural pointer information is a fundamental
problem that clients of whole-program flow-insensitive
pointer information face. The problem stems from
the fact that a formal parameter may point to differ-
ent abstract locations. Thus, a naive implementation
will perform weak updates which may lead to many
false alarms. Hence, we believe that our algorithm
can be used to improve the precision of other clients
of whole-program flow-insensitive algorithms, such as
slicing tools and program optimizers (e.g., [15, 25]).

• Preliminary program-analysis algorithms for strength-
ening pre- and post-conditions are presented. The al-
gorithms reduce the burden on the programmer. They
analyze the input procedure using existing (potentially
vacuous) contracts and yield a new, more restrictive,
contract for this procedure.

• We have implemented CSSV using the AST-Tooklit [32],
CoreC, the Golf pointer analysis [8, 9], and the poly-
hedra integer analysis of [6] from [19]. We have ap-
plied the implementation to real-life programs. CSSV
verified an intricate string library from EADS Air-
bus yielding only 6 false alarms. In the application
fixwrites, part of web2c, CSSV uncovered 8 errors with
2 false alarms. Finally, we implemented the derivation
algorithms and applied them to automatically gener-
ate pre- and post-conditions. The results show that in
some cases this brought about contracts equivalent to
the manually specified ones.

1.4 Outline of the Rest of this Paper
The rest of the paper is organized as follows: Section 2

introduces CoreC, a contract language, a running exam-
ple, and our instrumented concrete sem Section 3 describes
CSSV. Section 4 describes the contract derivation algorithms.
Section 5 describes the prototype implementation and the
experimental results. Section 6 discusses related work.

2. BACKGROUND

2.1 CoreC
CoreC is a subset of C with the following restrictions:

(i) Control-flow statements are either if, goto , break, or
continue; (ii) expressions are side-effect free and cannot be
nested; (iii) all assignments are statements; (iv) declarations
do not have initializations; (v) address-of formal variables is
not allowed. An algorithm for transforming C programs to

Attribute Intended Meaning

exp.base The base address of exp
exp.offset The offset of exp, i.e., exp - exp.base
exp.is nullt Is exp pointing to a null-terminated string?
exp.strlen The length of the string pointed-to by exp
exp.alloc The number of bytes allocated from exp

Table 1: Attributes in the contract language.

exp.offset exp.strlen
exp.alloc

exp.base
exp

... ... 0 ...

Figure 2: Graphical representation of the contract-
language attributes.

CoreC is presented in [38]. Given a C program, it generates
an equivalent CoreC program by adding new temporaries.
CSSV is defined and implemented for CoreC. In the rest of
this paper, CoreC is used instead of C.

2.2 Contracts
Contracts are used to describe expected inputs, side-effects,

and expected output of functions. In this paper, we write
contracts in the style of Larch [24]. Our implementation ac-
tually supports a more general executable language similar
to [29], which can include loops. Contracts are specified in
the .h file. Every prototype declaration of a function f has
the form:

〈type〉 f (· · · ) requires 〈e〉
modifies 〈e〉, 〈e〉, . . . , 〈e〉
ensures 〈e〉;

defining the precondition required to hold whenever f is
invoked, the side-effects of the function f, i.e., the objects
that may be modified during invocations of f, and the post-
condition that is guaranteed to hold on the modified ob-
jects. Here, 〈e〉 is a C expression, without function calls,
over global variables and the formal parameters of f. We
allow attributes of the form defined in Table 1 and displayed
in Fig. 2. A designated variable return value denotes the
return value of f. The special syntax �〈e〉�pre denotes the
value of 〈e〉 when f is invoked. Although not required, the
contract mechanism enables specifying pointer values. In
addition a shorthand expression is within bounds(arg) is
allowed to indicate that arg points within the bounds of a
buffer.

2.3 Running Example
The CoreC version of the function RTC Si SkipLine from

EADS Airbus (SkipLine for short) is shown in Fig. 3. SkipLine
inserts NbLine newline characters starting at the location
pointed-to by *PtrEndText, appends a null-termination char-
acter and sets *PtrEndText to point to the end of the string.

A contract for SkipLine is shown in Fig. 4. The pre-
condition demands that upon entry: *PtrEndText points to
within the bounds of a buffer; the allocation size from the
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void SkipLine(int NbLine, char** PtrEndText) {
int indice;
char* PtrEndLoc;

[1] indice=0;
[2] begin loop:
[3] if (indice>=NbLine) goto end loop;
[4] PtrEndLoc = *PtrEndText;
[5] *PtrEndLoc = ’\n’;
[6] *PtrEndText = PtrEndLoc + 1;
[7] indice = indice + 1;
[8] goto begin loop;
[9] end loop:
[10] PtrEndLoc = *PtrEndText
[11] *PtrEndLoc = ’\0’; }

void main() {
char buf[SIZE];
char *r, *s;

[1] r = buf;
[2] SkipLine(1,&r);
[3] fgets(r,SIZE-1,stdin);
[4] s = r + strlen(r);
[5] SkipLine(1,&s); }

Figure 3: SkipLine, a string manipulation function
from EADS Airbus with a toy main function.

location *PtrEndText is greater than NbLine; and, NbLine
is at greater or equal to zero. The function may mod-
ify the *PtrEndText pointer and the buffer pointed-to by
*PtrEndText. The postcondition indicates that *PtrEndText
points to a null-terminated string of length zero, and its
value is advanced by NbLine bytes.

Due to multi-level pointer indirections, destructive up-
dates, and pointer arithmetic, it is rather challenging to ver-
ify the absence of errors in this function. CSSV is able to
statically verify the absence of string errors in this function,
without reporting any false alarm.

The toy main procedure, shown in Fig. 3, calls SkipLine

to insert a newline character, reads input from the stan-
dard input, and concatenates an additional newline by call-
ing SkipLine again. This procedure has an off-by-one error.
In the case of a user input of length SIZE-1, buf is full and
there is no space for the additional newline. CSSV detects
this error in main without reporting any false alarm.

There is a strong correlation between the provided set of
contracts and the messages reported. However, errors do
not go undetected. For example, omitting NbLine >= 0

from the precondition of SkipLine yields an error message
during the analysis of the procedure. The message indicates
that the postcondition

*PtrEndText == �*PtrEndText�pre + NbLine

may not hold. Interestingly, the counter-example produced
by CSSV for this message shows that this postcondition does
not hold when the value of NbLine is negative.

Providing a precondition which is stronger than the weak-
est precondition can yield error messages on a procedure
invocation. For example, requiring in the precondition of

void SkipLine(int NbLine, char** PtrEndText)
requires is within bounds(*PtrEndText) &&

*PtrEndText.alloc > NbLine && NbLine >= 0
modifies *PtrEndText

*PtrEndText.is nullt *PtrEndText.strlen
ensures *PtrEndText.is nullt &&

*PtrEndText.strlen == 0 &&
*PtrEndText == �*PtrEndText�pre + NbLine ;

Figure 4: A contract for SkipLine.

SkipLine that *PtrEndText points-to a null-terminated string
will cause an error message regarding the call to SkipLine

at line [2] of main.

2.4 Instrumented Concrete Semantics
The C programming language does not define semantics

for C programs. In the ANSI-C standard there is an in-
formal notion of defined and undefined behaviors. However,
the exact behavior can change, and often does, from one im-
plementation of a compiler to another. Due to the following
features of the language, it is not trivial to define semantics
for C:

• Address-of operation enables changing the value of
a variable without assigning to the variable. It also
permits pointers to invisible variables.

• Allocation library functions (e.g., malloc) provide an
unformatted contiguous memory locations, while from
the logic point of view there is a “hierarchy” of ob-
jects where one object may contain objects of different
types. Moreover, objects are type-less, thus providing
flexibility, and allowing accesses to a location accord-
ing to different types. Therefore, it is difficult to define
and check the legitimacy of an access.

• Pointer arithmetic is frequently used and has a
defined result. However, checking its validity is im-
possible without additional instrumented information.

• Cast operation exposes the internal memory layout
e.g., by allowing casting from integer to pointer type.

In this section, we sketch an instrumented operational se-
mantics for C that verifies the absence of out-of-bound vi-
olations while allowing pointer arithmetic, destructive up-
dates and casting. The general idea is to define a non-
standard low-level semantics that explicitly represents the
base address of every memory location and the allocated
size starting from the base address. This semantics is rigor-
ous. It forbids programs with undefined ANSI-C behavior
but it also checks additional requirements reflecting good
programming styles such as dereferences beyond the null-
termination byte. This semantics provides the foundation
of CSSV’s abstract interpretation, i.e., the abstract interpre-
tation conservatively represents the states of this semantics.
In addition, CSSV statically verifies the absence of string
errors by conservatively checking the preconditions of this
semantics. The reader is referred to [12] for a discussion on
this semantics and refinements for checking the validity of
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Figure 5: A concrete state arising at entry to
SkipLine invoked by the second call from main. For
clarity, the allocation size of buf is only shown sym-
bolically.

accesses to general arrays and multi-level structures. There,
the soundness of CSSV is proved with respects to the oper-
ational semantics.

Definition 2.1. A concrete state at a procedure P
is a tuple: state� = (L�,BA�, aSize�, loc�, st�,numBytes�, base�)
where:

• L� is a finite set of all static, stack, and dynamically
allocated locations.

• BA� ⊆ L� is the set of base addresses in L�.

• aSize� : BA� → N defines the allocation size in bytes of
the memory region starting at a base address.

• loc� : visvarP → BA� maps visible variables into their
assigned global or stack locations (which is always a
base address).

• st� : L� → val defines the memory content, where

val = {uninit , undefined} ∪ primitive ∪ L�

is the set of possible values. The value uninit repre-
sents uninitialized values; undefined represents results
from illegal memory access; primitive refers to the set
of C primitive type (char, int, etc.) values.

• numBytes� : L� → N defines for each location the num-
ber of bytes of the value stored starting at the location.

• base� : L� → BA� maps every location to its base ad-
dress.

A concrete state that arises at entry to SkipLine when in-
voked by the second call in main is shown in Fig. 5. We draw
contiguous memory locations as boxes and display their al-
location sizes underneath the boxes. Here, we assume that
integers and pointers are four bytes long and a character is
one byte long. We draw a variable v above a box whose
base address is loc�(v). The value inside each box shows the
corresponding store content. Pointer values are drawn as
edges.

Intuitively, the state keeps track of the set of allocated
locations (L�). The origin location of each memory region
that is guaranteed to be contiguous is in BA�. In order to
handle destructive update to a variable via the address-of
operation, loc� represents the address of variables, and st�

maps locations into their values. For example, the pointer
to s is described as a pointer to a location which is loc�(s).
Our concrete example contains, among others, the following
interesting mappings:

st�(loc�(PtrEndText)) = loc�(s)
numBytes�(loc�(PtrEndText)) = 4
st�(loc�(buf) + 1) = ’h’
numBytes�(loc�(buf) + 1) = 1

indicating that PtrEndText points-to the stack location of s
which is a four-byte value, and that the second byte of buf
contains the character ’h’.

The association of the number of bytes with locations en-
ables us to handle cases where a location is accessed through
different types. Specifically, writing a location as one type
and later reading it as a different size type results in the
undefined value.
L-value and R-value of C expressions can be defined by

straightforward structural induction. In particular for a
variable v, we define the L-value and the R-value, denoted
as lv�

v and rv�
v, respectively, as follows:

lv�
v

def
= loc�(v)

rv�
v

def
= st�(lv�

v) = st�(loc�(v))

We define a function, index �, to reason about the displace-
ment of a location from its base. Formally,

index � : L� → N

index �(l�)
def
= l� − base�(l�)

With the additional information of aSize� and base� the R-
value of an attribute is easily defined. In particular the R-
value of the attribute p.offset is index �(rv�

p). In addition,
the use of the instrumented mappings allows the seman-
tics to validate that pointer arithmetic and dereferences are
within bounds. For example, a pointer expression p + i is
within the bounds of the buffer pointed-to by p when the
following condition holds:

0 ≤ index �(rv�
p) + rv�

i ≤ aSize�(base�(rv�
p))

We follow [20, pp.205] and check that the result of pointer
arithmetic is either before or at the first location beyond the
upper bound.

3. CSSV
CSSV analyzes each procedure separately. We refer to the

analyzed procedure as P . CSSV checks for three kinds of er-
rors: (i) ANSI-C violations related to strings, such an access
out of bounds. (ii) Violations of pre- and post-conditions of
procedures as required by the provided contracts. When a
procedure is invoked, the callee’s precondition is checked.
At the end of P , the postcondition of P is checked. (iii) Our
analysis checks certain cleanness conditions that correspond
to good programming style. In particular, it validates that
all accesses are before the null-termination byte, if it exists.

3.1 Technical Overview
Pointers and integers interact in a non-trivial way, espe-

cially in the C programming language. For example, it is
non-trivial to check the safety of the expression

*PtrEndText = ’\n’
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in line [5] of SkipLine, i.e., that the pointer *PtrEndText is
within bounds. CSSV infers the relationships between the
offset of *PtrEndText, the allocation size of its base address,
and the integer variables indice and NbLine needed to ver-
ify the safety of this destructive update. As we shall see,
our algorithm statically verifies such inequalities by com-
bining a pointer-analysis algorithm that detects pointers to
the same base address, with an integer-analysis algorithm
that detects offset relationships among pointers. The offset
of a pointer is the index of the location it points to. Of
course, in contrast to the concrete semantics, the abstract
semantics summarizes many concrete locations by a single
abstract location. It also maintains the potential points-to
relationships between these addresses.

CSSV applies a whole program flow-insensitive pointer
analysis to detect statically which pointers may point to
the same base address. In particular, for every function,
it provides a summary of all of its calling contexts. In
principle, a conservative analysis can utilize this informa-
tion and analyze a function with all possible calling con-
texts. However, this can yield many false alarms. For ex-
ample, the whole-program analysis of SkipLine yields that
PtrEndText may point to either s or r. Conservatively an-
alyzing the function’s body with the two calling contexts,
requires treating updates to integer properties such as the
offset of *PtrEndText as weak updates. Therefore, the anal-
ysis will fail to show that the postcondition holds. As a
result, a false alarm will be issued. CSSV avoids this false
alarm by performing strong updates in certain cases. The
main idea is to precompute procedural points-to informa-
tion that guarantees that strong updates to the offset of
*PtrEndText can be performed. In general, it guarantees
that in well-behaved programs direct updates through the
formal parameters can be interpreted as strong updates.

The procedural points-to information is used by C2IP to
generate an integer program. Integer constraint variables
summarize the semantic properties (e.g., allocated size) of
the represented locations. Finally, a conservative integer
analysis determines potential values of the semantic proper-
ties and verifies the constraints upon them.

The rest of this section is organized as follows: Section 3.2
describes the procedure that inlines contracts in P . Sec-
tion 3.3 formalizes the procedural points-to information for
P . Section 3.4 describes the C2IP transformation applied
to P . Section 3.5 sketches the integer-analysis algorithm.

3.2 Exposing the Behavior of Procedures
The first step of CSSV takes as input the C program and

the provided set of contracts, and generates a new C pro-
cedure inline(P ) by exposing the contracts of P and of the
invoked procedures. Since inline(P ) contains assert state-
ments that verify contracts, the behavior of inline(P ) differs
from the behavior of P on inputs which violate the contracts.

We extend C as follows:

• The construct assume(〈e〉) that indicates that 〈e〉 holds
after this statement, i.e., if 〈e〉 does not hold the exe-
cution is aborted without any message. It is used to
reflect commitments of other procedures.

• Additional temporary variables named “〈e〉” used to
store the value of a subexpression �〈e〉�pre at the pro-
cedure entry.

• The contract-language attributes which have a well-
defined meaning in our instrumented concrete seman-
tics.

Most of the C statements remain intact. Table 2 shows the
scheme for translating the affected statements. Procedure
entry is encountered before the first executable statement.
In this case, the additional variables are initialized and the
precondition of P is assumed to hold. The designated vari-
able return value is set at every return statement. At every
exit point (including return), the postcondition of P is ver-
ified.

On a call to g we verify that g’s precondition holds and
assume that the postcondition holds. The original call to g
is in the emitted code. This is essential for inline(P ) to have
the same interpretation as P .

3.3 Pointer Analysis
The second step of CSSV computes an abstraction of all

potential pointer relationships between locations in concrete
states that may occur during the execution of P . However,
only locations that can be accessed during the execution of P
are of interest. Therefore, we define the notion of reachable
locations.

Definition 3.1. In a concrete state, a location l� is
reachable if there exists a visible variable whose content
can (indirectly) include l� (i.e., there is an expression whose
L-value is l�).

Computing procedural pointer information allows us to
infer the pointer relationships among reachable locations of
P . Moreover, the procedural pointer information aims at
representing the location a formal points to at the procedure
entry as a single location. This section describes the abstract
state representing pointer relationships and an algorithm to
compute this state.

3.3.1 Procedural Points-to Information
We formalize an abstract state that regards pointer rela-

tionships among reachable locations of P as follows:

Definition 3.2. A procedural abstract points-to state
of P (PPT) is a quadruple stateP = (BAP , locP , ptP , smP )
where:

• BAP is a set of abstract locations that represent all
reachable concrete base addresses.

• locP : visvarP → 2BAP maps variables into set of ab-
stract locations representing the variable’s global or stack
locations.

• ptP : BAP → 2BAP abstract the possible pointers. A
concrete pointer is represented by a ptP relationship
between the abstract locations representing the base ad-
dresses of the source and target locations of the pointer.

• smP : BAP → {1,∞} is an abstract count of the num-
ber of concrete base addresses represented by an ab-
stract location, i.e., sm(ba) = ∞ when ba may repre-
sent more than one base address in a given concrete
store, and 1 when it is guaranteed to represent at most
one base address. An abstract location having sm = ∞
is a summary abstract location. Summary abstract
locations can be used to represent unbounded sets of
base addresses.
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Event Emitted Code

entry of P (f1, f2, . . . , fn)
“〈ei〉” = 〈ei〉; for every �〈ei〉�pre in post [P ]
assume(pre [P ](f1, f2, . . . , fn));

return 〈e〉 return valueP = 〈e〉;
exit P assert(post [P ](f1, f2, . . . , fn));

〈e〉 = g(a1, a2, . . . , am)

{ “〈ei〉” = 〈ei〉; for every �〈ei〉�pre in post [g]
assert(pre[g](a1, a2, . . . , am));
return valueg = g(a1, a2, . . . , am);
assume(post [g](a1, a2, . . . , am));
〈e〉 = return valueg; }

Table 2: The emitted C code for affected statements. The notation pre [x](e1, e2, . . . , em) stands for the precon-
dition of procedure x where formal fi is replaced with the expression ei. The expression post [x] is obtained in
a similar way, however each of the �〈ei〉�pre expression is replaced with the variable “〈ei〉”. return valuex is a
designated variable representing the return value in the postcondition of procedure x.

We say that a PPT (BAP , locP , ptP , smP ) is a sound ap-
proximation of a concrete state (L�,BA�, aSize�, loc�, st�,
numBytes�, base�) in a procedure P if there exists a function
α : BA� → BAP satisfying the following requirements:

Base For all reachable b� ∈ BA�: α(b�) ∈ BAP .

Stack For all v ∈ visvarp: α(loc�(v)) ∈ locP (v).

Pointer For all l1
�, l2

� ∈ L� s.t., l1
� and l2

� are reach-
able, and satisfying st�(l1

�) = l2
�: α(base�(l2

�)) ∈
ptP (α(base�(l1

�))).

Summary For all b ∈ BAp, s.t., smP (b) = 1, and b1
�, b2

� ∈
BA� having α(b1

�) = α(b2
�) = b: b1

� = b2
�.

Definition 3.3. A stateP is a sound approximation
of P if it is a sound approximation of all the concrete states
that may arise during the execution of P .

L-values and R-values are generalized to return sets of
abstract locations. In particular for a visible pointer variable
q:

lvq
def
= locP (q)

rvq
def
=

S
l∈lvq

ptP (l) =
S

l∈locP (q) ptP (l)

3.3.2 Constructing Procedural Information
CSSV computes a sound approximation statep in two stages.

First, a whole-program analysis is applied to compute a
global abstract points-to state of the whole program Gstate =
(BA, loc, pt, sm) where:

• BA includes all abstract locations.

• loc : var→ 2BA.

• pt : BA → 2BA.

• sm : BA → {1,∞}.
This global state is guaranteed to be a sound approxima-
tion of all procedures. Second, this global state is used to
construct a sound approximation for P . It is possible to
construct different sound PPTs for P with different abstract
locations and points-to relationships. We decided to bias to-
wards precise representation of formal parameters, with the
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Figure 6: The whole-program points-to informa-
tion for the running example (a), and the PPT for
SkipLine (b).

intention of conducting strong updates on their properties
in many cases.

Fig. 6 demonstrates the process. Fig. 6(a) shows the
whole-program points-to information of our running exam-
ple. Boxes represent abstract locations. When possible we
denote abstract locations as either L-value (e.g., lvs) or as
R-value of a unique pointer variable. Otherwise, we pro-
vide an arbitrary name (e.g., N). Edges represent the pt
relationship. There are no summary abstract locations in
this example. The final result of computing the PPT for
SkipLine is shown in Fig. 6(b). A new abstract location
rvPtrEndText represents the (unique) concrete location which
holds the value of *PtrEndText.

Given a global abstract pointer state of the whole pro-
gram Gstate = (BA, loc, pt, sm), let us construct a PPT
for P stateP = (BAP , locP , ptP , smP ). The mapping locP

is computed by projecting loc to the visible variables of P .
Similarly, BAP and smP are computed by including abstract
locations reachable from visible variables of P .

An initial value for ptP is obtained by projection. In our
running example, this yields the same state as the global
points-to information shown in Fig. 6(a) without the lvbuf

abstract location. We aim at a potentially more precise rep-
resentation. A conservative algorithm which checks whether
it is sound to merge the nodes l1, l2, . . . , lm pointed-to by a
formal f without creating a new summary node, is presented
in Fig. 7. This algorithm checks that for every concrete store
at most one concrete location is represented by rvf (the set
of abstract locations pointed-to by a formal parameter f).
The correctness of the algorithm is established in [12].

Whenever possible, merging is done by (i) replacing the
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Boolean parameterizable( PPT stateP , formal f )
{

let stateP = (BAP , locP , ptP , smP )
let lf = locP (f) // the L-value of f
if smP (lf ) = ∞ return false
let {l1, l2, . . . , lm} = pt(lf ) // the R-values of f
for i = 1 to m

if smP (li) = ∞ return false
remove from pt edges from lf to lj where j �= i,
and let pt′ be the resultant points-to map.
if exists a reachable node lj , j �= i in pt′ then

return false
// at most one of the concrete locations pointed-to by f
// is reachable in a concrete state represented by stateP

return true;
}

Figure 7: Algorithm to conservatively check that at
most one concrete location is represented by the set
pointed-to by a formal parameter f.

abstract locations l1, l2, . . . , lm by a single non-summary ab-
stract location rvf. (ii) setting pt(rvf) to

Sm
i=1 pt(li). This

may improve the precision of destructive updates through
f , but may decrease the precision of other updates.

3.4 C2IP
The C2IP transformation takes the inline(P ) procedure

with its PPT as input, and produces an integer program
(IP for short) as output. The generated IP tracks the string
and integer manipulations of P and of the invoked proce-
dures. The IP is nondeterministic, reflecting the fact that
not all values are known. The symbol unknown stands for
an undetermined value. In particular, we use the following
expressions:

x := unknown; Assigns any value to x.

if (unknown) Either the true or the false branch
can be taken.

The semantics of the assume construct in the integer pro-
gram is to restrict the behavior of nondeterministic pro-
grams. Finally, for clarity, we use mathematical constructs
in the IP.

The IP includes constraint variables used to denote se-
mantic properties of interest such as offsets. C2IP generates
statements which assign new values to constraint variables,
reflecting the changes in the semantic properties. Assert

statements over the constraint variables are generated. They
check for the safety of basic C expressions and for verifying
contracts. In addition, C2IP can validate pointer assertions
if specified in the contracts. Due to the flow insensitivity of
our pointer analysis, this capability is rather weak in terms
of precision. When a precondition may not hold, an error
message is reported.

3.4.1 Constraint Variables
For every abstract location, l, C2IP generates the follow-

ing constraint variables:

• l.val to represent potential primitive values stored in
the locations represented by l.

C Exp. Generated IP Condition

*p
lvp.offset ≥ 0∧
((rvp.is nullt ∧ lvp.offset ≤ rvp.len)∨
(¬rvp.is nullt ∧ lvp.offset < rvp.aSize))

p + i 0 ≤ lvp.offset + lvi.val ≤ rvp.aSize

Table 3: Asserted IP conditions for C expressions.

• l.offset to represent potential offsets of the pointers
represented by l, i.e., l.offset conservatively represents
index �(st�(l�)) for every location l� represented by l.

• l.aSize, l.is nullt and l.len to describe the allocation
size, whether the base address contains a null termi-
nated string, and the length of the string (excluding
the null byte) of all locations represented by l.

3.4.2 Translating Expressions
Transforming C expressions involves querying the PPT to

obtain the abstract locations a pointer may point-to. For the
sake of simplicity, in this subsection we assume that every
pointer may only point to a single non-summary abstract
location. Thus, lvp (representing the global or stack location
of p), and rvp (representing the location pointed-to by p)
are both singletons for every pointer p. In Section 3.4.2.3,
general PPTs are considered.

3.4.2.1 Safety Checks.
For every C expression, there is a condition that verifies

the validity of the expression. Table 3 lists the generated
assert expressions. On every dereference to an address, a
check that the address is within bounds is generated. The
upper bound is checked depending on whether the buffer is
null-terminated. If it is, the dereferenced location is checked
to be at or before the null-termination byte. For pointer
arithmetic, the generated assert statement checks the re-
quirement that the resultant reference is within or at the
upper bound of the buffer. The generated assert resem-
bles the requirement defined in the concrete semantics for
pointer arithmetic. This emphasizes that CSSV abstracts
the properties needed to statically verify pointer arithmetic.

3.4.2.2 Statements.
C2IP generates statements to reflect semantic changes re-

garding the properties tracked. The core rules for translat-
ing C constructs into IP is shown in Table 4.

On allocation, the resultant pointer always points to a
base address. Therefore, its offset is always zero. We set
the allocation size of the abstract location that represents
the newly allocated location. Destructive updates are sepa-
rated into two cases: (i) The assignment of the null charac-
ter, which sets the buffer to a null-terminated string. The
length of the string is the location of the first zero byte.
C2IP generates a check that all dereferences are before the
null-termination byte (if it exists). We can therefore safely
assume that when assigning a null-termination byte it is the
first one. (ii) In the assignment of a non-zero character,
it is checked whether an existing null-termination byte is
overwritten.

The generated IP does not contain function calls. Because
C2IP transforms the inline(P ) procedure, the pre- and post-
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C Construct IP Statements

p = Alloc(i);
lvp.offset := 0;
rvp.aSize := lvi.val ;
rvp.is nullt := false;

p = q + i; lvp.offset := lvq.offset + lvi.val ;

*p = c;

if c = 0 {
rvp.len := lvp.offset ;
rvp.is nullt := true; }

else
if rvp.is nullt ∧ lvp.offset = rvp.len
lvp.is nullt := unknown;

c = *p;
if rvp.is nullt ∧ lvp.offset = rvp.len
lvc.val := 0;

else lvc.val := unknown;
g(a1, a2, . . . , am); mod[g](a1, a2, . . . , am);

*p == 0 rvp.is nullt ∧ rvp.len = lvp.offset
p > q lvp.offset > lvq.offset

p.alloc rvp.aSize − lvp.offset
p.offset lvp.offset
p.is nullt rvp.is nullt
p.strlen rvp.len − lvp.offset

Table 4: The generated transformation for C state-
ments, conditional expressions and for contract-
language attributes. p and q are variables of type
pointer to char. i and c are variables of int type.
Alloc is a memory allocation routine, e.g., malloc

and alloca.

conditions of an invoked procedure g are transformed too.
However, the call to a procedure needs to be analyzed con-
servatively. C2IP converts the call to g with the modifica-
tion clause of g and substitutes actual for formal parame-
ters. The modification clause is interpreted as assignments
of unknown to the constraint variables of the abstract loca-
tions that represent potentially modified objects.

To increase precision, certain program conditions are in-
terpreted. The second part of Table 4 shows the interpreted
conditions. When checking for null-termination, C2IP re-
places the condition with a condition over constraint vari-
ables that track the existence of a null-character and the
length. Pointer comparisons are replaced by expressions
over the appropriate offset constraint variables.

For convenient use, the contract language allows speci-
fying attributes on pointers instead of on base addresses.
For example, p.alloc represents the allocation size start-
ing at the location pointed to by p. The last part of Table 4
lists the transformation of contract’s attributes to constraint
variables by referring to the abstract locations pointed to by
the specified pointer.

3.4.2.3 Other C Constructs.
In the case that an L-value (R-value) in the abstract points-

to state includes more than one abstract location or a sum-
mary abstract location, the translation rules of Table 4 need
to be changed to guarantee sound results. To reflect the fact
that a base address represented by l may or may not be mod-
ified, C2IP generates every statement (shown in Table 4)
as a nondeterministic assignment, under an if (unknown)

statement. In addition, the analysis must take into account

all possible values of a pointer, and verify expressions on all
possible pointer values. This applies to all generated assert
statements and program conditions.

To handle casting and unions, C2IP generates for an as-
signment to one type of constraint variable assignments of
unknown to the other constraint variables of the same ab-
stract location. For example, an assignment of an integer to
a concrete location represented by abstract location l yields
an assignment to l.val . In addition, C2IP generates the as-
signment l.offset := unknown. In particular, a cast to and
from pointer type is conservatively handled by an assign-
ment to unknown.

The pointer analysis determines which functions may be
invoked at a call statement via a function pointer. Then,
CSSV generates a non-deterministic statement that selects
an arbitrary function call.

It is difficult to write general contracts for the format
functions, such as sprintf() and printf(). Therefore, for
the format functions, C2IP generates automatically pre- and
post-condition according to the exact calling context. CSSV
warns in cases where the format parameter is not a constant.

3.4.2.4 The Complexity of C2IP.
The number of constraint variables in the IP is O(V )

where V is the number of variables and allocation sites in
the C program. Because a pointer may point to V abstract
locations, the translation of a C expression that contains
one pointer generates O(V ) IP statements. Therefore, the
size of the IP is O(S ∗ V ), where S is the number of C ex-
pressions. This is an order-of-magnitude improvement over
the transformation in [13], which generates O(V 2) variables
and O(S ∗ V 2) statements.

3.5 Integer Analysis
In the final step, CSSV analyzes the IP and reports poten-

tial assert violations. In theory, any sound integer analysis
can be used. Because many of the tracked semantic prop-
erties are external to the procedure, and sometimes even to
the whole application, it is essential to track relationships
between constraint variables and not just possible values.
Furthermore, many of the conditions to infer involve three
and more properties, e.g., the postcondition of SkipLine re-
garding the new offset of *PtrEndText.

Given that our goal is to generate as few as possible
false messages, we apply the a linear-relation analysis [6,
17] which discovers linear inequalities among numerical vari-
ables. This method identifies linear inequalities of the form:
Σn

i=1cixi + b ≥ 0, where xi is an integer variable and ci and
b are constants. In our case, xi are the constraint variables.
Upon termination of the integer analysis, the information
at every control-flow node conservatively represents the in-
equalities that are guaranteed to hold whenever the control
reaches the respective point. The reader is referred to [6,
17, 13] for information about integer analysis.

3.5.1 Assert Checking
During integer analysis, each assert statement is veri-

fied. This is done by checking if the asserted integer ex-
pression is implied by the linear inequalities that hold at
the corresponding control-flow node. If the assertion can-
not be verified then a counter-example is generated. The
counter-example describes the values of the constraint vari-
ables where a string error in the C program may arise.
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rvbuf.aSize = SIZE
rvbuf.len ≥ 1
rvbuf.aSize ≥ rvbuf.len + 1
lvs.offset = rvbuf.len

(a)

[5] SkipLine(1,&s);
require(rvbuf.aSize − lvs.offset > 1 )
error: the requirement may be violated when:

rvbuf.aSize = rvbuf.len + 1
(b)

Figure 8: A report on the error in line [5] of main.
The derived inequalities before execution of line [5]
of main (a), and a counter example (b).

Fig. 8 demonstrates how the static integer-analysis algo-
rithm identifies the error in the call to SkipLine in line [5] of
main. The algorithm discovers that the inequalities shown
in Fig. 8 (a) hold before the execution of line [5], and that
when the equality shown in Fig. 8 (b) holds a violation of
SkipLine’s precondition occurs.

4. DERIVING CONTRACTS
This section presents integer-analysis algorithms to strengthen

pre- and post-conditions. The following process is applied
to a procedure P :

1. Compute side-effect information for P.

2. Run the inliner and C2IP with vacuous true pre- and
post-condition which produces an integer program IP0.

3. Run ASPost, a forward integer analysis of [6] on IP0

which computes a safe approximation of the strongest
postcondition. Obtain a new IP program IP1 by strength-
ening the postcondition with the set of linear inequali-
ties generated by the integer analysis at the procedure
exit.

4. Run AWPre, a backward integer analysis on IP1 which
computes an approximation to the weakest liberal pre-
condition. Obtain a new IP program IP2 by strength-
ening the precondition with a set of linear inequalities
generated by the analysis at the procedure entry.

5. Writeback — by using the PPT, convert the pre- and
the post-conditions of IP2 to C expressions over the
formal parameters and global variables of P .

The derivation process can also start with manually given
contracts. For applications with acyclic call graphs, the
above process can be automatically applied in a bottom-up
fashion, starting with the leaf procedures.

4.1 Integer Analysis
The ASPost algorithm is essentially the algorithm of Sec-

tion 3.5 without issuing messages. It computes linear in-
equalities that hold at the exit point. Local variables are
eliminated. The resulting inequalities are added to the in-
put postcondition.

To improve the effectiveness of the derivation, the inliner
phase is allowed to add designated variables to record values

of properties that may be modified by P. For every poten-
tially modified integer property expressed as a C expression
〈e〉, the inline(P ) procedure includes a new variable “〈e〉”
with an additional C statement

assume(“〈e〉” == 〈e〉);
During the writeback process, this variable is replaced by
an appropriate �〈e〉�pre expression in the postcondition. In
this example, since *PtrEndText may be modified, variables
are used to record all its properties. In particular, a variable
“*PtrEndText.offset” records the value of the expression
*PtrEndText.offset at the entry.

The linear relationships obtained by ASPost when applied
to SkipLine in the running example with a true precondi-
tion are:

N.is nullt = true

N.len = rvPtrEndText.offset
rvPtrEndText.offset ≥ “*PtrEndText.offset” + lvNbLine.val

(1)
The existence of a null-termination byte and the new

length of the base address points to-by *PtrEndText is com-
puted by ASPost precisely. ASPost finds a relationship be-
tween the old and new offsets of *PtrEndText. However,
this relationship is weaker than the manually provided one
on which the inequality is an equality. Both ASPost and
AWPre may lose information due to joins of control-flow
paths and due to the widening operation.

AWPre is similar to the forward algorithm in the sense
that it uses the same abstract domain and abstract opera-
tions. The main difference is the treatment of assignments,
which are handled by substitutions.

4.2 Write Back
The pre- and post-conditions generated by AWPre and

ASPost are converted into C expressions over the formal
parameters and global variables of P . These expressions are
added to the input contracts using logical-and operator.

4.2.1 Obtaining Postconditions
Recall that the integer analysis computes properties of ab-

stract locations. Each such abstract location corresponds to
a set of L-value expressions over global and formal variables
of P. Consider an abstract location l and assume, for simplic-
ity, that there is a unique expression, say e, whose L-value is
l. In this case, every constraint variable in the inequalities
that occur in the exit are replaced by substituting e for l.
Each occurrence of a designated formal parameter “〈e〉” is
replaced by �〈e〉�pre. Finally, the semantic properties are
converted to the contract-language attributes.

For the equations in (1), the writeback algorithm yields:

**PtrEndText.is nullt &&
**PtrEndText.strlen = 0 &&
*PtrEndText.offset >= �*PtrEndText.offset�pre + NbLine

When an abstract location corresponds to a set of L-
value expressions, we generate a weaker postcondition using
logical-or operator. An alternative would be to ignore some
of these expressions, which may lead to false alarms when
the procedure is analyzed by CSSV.
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4.2.2 Obtaining Preconditions
Generating C expressions for preconditions from the en-

try inequalities is similar to the process of generating post-
conditions. The main difference is that we use logical-and
instead of logical-or when multiple expressions correspond
to the same abstract location.

5. EMPIRICAL RESULTS
Implementing the CSSV tool is non-trivial because of the

complicated aspects of C and program analysis. We have im-
plemented a prototype of CSSV with significant help from
the Semantics Based Tools group at Microsoft Research and
from Greta Yorsh from Tel-Aviv university. The compiler
from C to CoreC is built upon the AST-Toolkit. CSSV uses
Golf, a flow-insensitive context-sensitive points-to analysis
technique, as the underlying whole program pointer analy-
sis. Golf uses flow edges to represent assignments. Partial
must information on pointer aliases is extracted from these
edges. Both the integer analysis and the automatic deriva-
tion of pre- and post-condition were implemented using the
Polyhedra library.

We applied CSSV to procedures from the following: (i) A
string-manipulation library from EADS Airbus with a total
of 400 lines and 11 procedures. (ii) fixwrites — part of web2c
a converter from TeX, Metafont, and other related WEB
programs to C. fixwrites consist of 460 lines and eight
procedures. We have manually written contracts for the
analyzed procedures.

Table 5 describes the benchmark characteristics and the
analysis results. The column LOC displays the number
of source lines in the original source. Column SLOC dis-
plays the number of source lines after the source-to-source
transformation. The Contract column investigates the dif-
ficulty of manually providing a contract. We use the char-
acters ‘S’,‘B’ and ‘I’ as follows: (S) for simple specification,
such as string and is within bounds, (B) for specifying
the boundaries of buffers, and (I) for other integer relations.
There was no need to provide pointer specification for the
analyzed code.

Columns IP Vars and IP size report the number of
variables and statements in the integer program produced
by C2IP. Columns CPU and Space display the running
time and total allocated space of CSSV. All experiments
were conducted on a 900 MHz Intel Pentium-III CPU with
512MB of memory, running Windows 2000.

TheMsg columns classify the messages reported by CSSV.
Messages are classified as errors for cases where there is an
input to the application on which the error occurs. The
errors detected are due to unsafe calls to library functions,
such as strcpy(), unsafe assumptions that an input contains
a specific character, or unsafe pointer arithmetic.

There are six false messages on Airbus’s code. The pro-
gram destructively assigns a non-zero character to a certain
place in a buffer. CSSV fails to infer that this character is
non zero. The function skip balanced safely assumes that
the input parameter contains a balanced number of paren-
theses. This is verified by the whole function which is called
prior to skip balanced. This example demonstrates that
in some cases it is hard to separate safety from correctness.
To show that this function is safe, we need to verify cor-
rectness, i.e., that the implementation correctly checks that
the input string contains a balanced number of parentheses.

Fortunately, in most of the analyzed examples, this is not
the case, i.e., the safety does not depend on correctness.

The Deriving columns provide information about the ef-
fectiveness of the AWPre and ASPost algorithms. It is not
trivial to measure the result in terms of precision. A new
contract for a function P can change the result of the anal-
ysis of P itself and of procedures invoking P . We provide a
simple measurement that is independent of the calling con-
text. We run ASPost to generate a postcondition, AWPre
to generate a precondition, and then run CSSV. Columns
CPU and Space display the running time and total allo-
cated space of both ASPost and AWPre. Column Vacu-
ous displays the number of false-alarm messages reported
by CSSV when a vacuous contract for the analyzed pro-
cedure is provided. Column Auto displays the number of
false alarms reported by CSSV when using the automati-
cally derived contracts. On average, the manually provided
contracts reduce the number of false alarms by 93% as com-
pared to the vacuous contracts’ false alarms, while the au-
tomatic derivation algorithm reduces the number of mes-
sages by 25%. The derived preconditions are in many cases
weaker than the manually provided ones. Our initial study
indicates that this happens when the integer analysis joins
two different procedure behaviors. One potential remedy to
this imprecision is by using sets of linear inequalities that
allow to precisely represent logical-or.

6. RELATED WORK
Many academic and commercial projects produce practi-

cal tools that detect string manipulation errors at runtime,
e.g., [31, 1, 26, 7]. The main disadvantage of runtime check-
ing is that its effectiveness strongly depends on the input
tested, and it does not ensures against future bugs on other
inputs. Our goal is a conservative static tool that detects
all string errors and provides an assurance against all such
errors.

6.1 Static Detection of String Errors
Although the problem of string manipulation safety check-

ing is to verify that accesses are within bounds [21, 2, 33],
the domain of string programs requires that the analysis be
capable of tracking the following features of the C program-
ming language: (i) handling standard C functions, such as
strcpy() and strlen(), which perform an unbounded num-
ber of loop iterations; (ii) statically estimating the length of
strings (in addition to the sizes of allocated base addresses);
this length is dynamically changed based on the index of
the first null character; and (iii) simultaneously analyzing
pointer and integer values is required in order to precisely
handle pointer arithmetic and destructive updates.

Many academic projects produce unsound tools to stati-
cally detect string manipulation errors. In [23] an extension
to LCLint is presented. Unsound lightweight techniques,
heuristics, and in-code annotations are employed to check for
buffer overflow vulnerabilities. Eau claire [4], a tool based
on ESC-Java, checks for security holes in C programs by
translating a subset of C to guarded commands. Its annota-
tion language is similar in sense to CSSV. In [37] Wagner et
al. present an algorithm that statically identifies string er-
rors by performing a flow insensitive unsound analysis. The
main disadvantage of all of these unsound tools is that they
miss errors while CSSV does not miss any error. Further-
more, none of them can track effects of pointer arithmetic,
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RTC Si SkipLine 13 260 SBI 39 109 2.6 12 0 0 0.3 3 5 5
RTC Se CopieEtFiltre 66 773 SB 127 812 206 347 6 0 95 433 24 24
RTC Si FiltrerCarNonImp 19 114 S 13 151 0.3 2 0 0 0.2 2 4 4
RTC Si Find 26 820 SI 108 476 2.7 24 0 0 1.4 54 4 1
RTC Si StrNCat 8 299 SBI 54 182 0.9 6 0 0 0.2 3 2 0
RTC Si CalculerStringTime 33 567 SBI 86 529 76 127 0 0 131 173 21 4
RTC Si FormatMcduTo- 18 273 SB 58 323 6.9 28 0 0 6.8 27 9 9
Formatprinter
RTC Si StoreIntInBuffer 35 222 SBI 59 346 9.8 43 0 0 3.3 22 15 15
RTC Se ComposerEntete 10 550 SI 77 352 3.4 23 0 0 1.3 12 2 0

fi
x
w
ri
te
s

remove newline 12 260 S 35 203 0.1 2 0 0 0.61 1 1 0
insert long 14 367 SB 138 571 13 99 0 2 23.4 86 5 0
join 15 701 SB 95 443 2.1 23 0 2 6.7 15 2 2
whole 30 423 S 46 352 1.2 20 0 1 0.6 4 9 9
skip balanced 20 258 SB 29 215 0.3 5 2 0 0.6 3 6 6
bare 26 333 S 41 319 0.6 12 0 3 0.4 9 11 11

Table 5: The experimental results.

a widely used method for string manipulation. Sound al-
gorithms for statically detecting string errors are presented
in [13, 35]. However, they cannot handle all C, in particu-
lar multi-level pointers and structures. As far as we know,
CSSV is the first sound tool to handle all C and in a rather
precise manner.

6.2 Procedural Points-to Information
Many algorithms compute procedural pointer information

to improve the cost and precision of interprocedural analy-
sis, e.g., [27, 22, 10, 5]. In contrast, we focus on the prob-
lem of representing procedure points-to information in a way
which allows us to perform strong updates in well-behaved
programs. In [25] a modular parameterized pointer anal-
ysis (MoPPA) is described. MoPPA computes procedural
pointer information during the process of computing global
pointer information. In contrast, our algorithm utilizes ex-
isting whole-program scalable pointer analysis and trans-
forms the global information to the procedural information.
Our technique thus is more general since it applies to many
pointer analysis algorithms and not just to Steensgaard’s
analysis [36] which serves as the basis for MoPPA.

6.3 The Automatic Derivation Process
The Houdini annotation-derivation tool [14] tries ESC/Java

with different annotations. Such an approach is inadequate
in our case because the number of potential annotations is
unbounded. In contrast, we derive a contract by forward
and backward analyses of the integer program [16].

7. CONCLUSIONS
Buffer overflow is one of the most harmful sources of de-

fects in C programs. Moreover, it makes software vulnerable
to hacker attacks. We believe that CSSV provides evidence
that sound analysis can be applied to statically verify the
absence of all string errors in realistic applications.
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