
Concept Analysis - A New Framework for Program Understanding 

Gregor Snelting 

Technischc Universitat Braunschweig 

Abteilung Softwaretechnologie 

sneltingQips.cs.tu-bs.de 

Abstract 

Concept analysis transforms any relation between ‘lob- 
jects” and “attributes” into a complete lattice. This 
concept lattice can be studied by algebraic means and 
offers remarkable insight into properties and structure 
of the original relation. As relations between “objects” 
and “at,t,ributcs” occur all the time in software technol- 
ogy, concept analysis is an attractive foundat,ion for a 
new class of program analysis tools. The article presents 
a short overview of the underlying theory, as well as 
applications for software component retrieval, analysis 
of configuration spaces, and modularization of legacy 
code. 

1 Overview 

Concept analysis provides a way to identify groupings 
of objects that, have common attributes. The mathe- 
matical foundation was laid by G. Birkhoff in 1940 [l]. 
Birkhoff proved that for every binary relation between 
certain “objects” and “attributes”, a. lattice can be con- 
structed which allows remarkable insight into the struc- 
ture of the original relation. The relation can always be 
reconstructed from the lattice, hence concept analysis 
is similar t,o Fourier analysis. 

Later, R. Wille and B. Ganter elaborated Birkhoff’s 
result and transformed it into a data analysis method 
[15, 191. Since then, it has found a variety of applica- 
tions, such as analysis of Rembrandt’s paintings, classi- 
fication of algebraic structures, and behaviour of drug 
addicts. In 1993, work on the application of concept 
analysis in the area of program understanding and reengi- 
neering was initiated. Concept analysis has been used 
for finding interferences between configurations [5, 141, 

Q 1998 ACM l-681 13-0564/98/0006...$6.00 

improving software component retrieval [6, 71, learning 
from databases [4], and modularizat,ion of legacy code 
[8, 131. It is the aim of this article to demonstrate that 
concept analysis is an elegant and powerful tool, and 
a useful framework for a new class of program analysis 
algorithms. 

2 Mathematical Background 

2.1 Relations and their lattices 

Concept analysis starts with a relation, or boolean ta- 
ble, T between a set of objects 0 and a set of attributes 
A, hence T C 13 x A. The triple 

C = (O,d,T) 

is called a formal context. 
For any set of objects 0 5 0, their set of common 

attributes is defined by 

Similarly, for any set of attributes, their set of common 
objects is 

In fact, o and T form a Galois connection (a pair of two 
antimonotone functions), and both o o r and r o (r are 
closure operators: e.g., (T o r(O) determines the biggest 
set of objects which have the same attributes as 0. A 
pair (0, A) is called a concept, if 

A = a(O) and 0 = r(A) 

Informally, such a concept corresponds to a maximal 
rectangle in the table T. Note that concepts are invari- 
ant against row or column permutations. For a con- 
cept c = (0, A), 0 = e&(c) is called the extent and 
A = i&(c) is called the intent of c. 



SUBROUTINE Rl(...) 

COMMON /Cl/ V1,VZ 

. . . 

END 

SUBROUTINE R2(...) 

COMMON /C2/ V3,V4 
COMMON /C3/ V5 
. . . 

SUBROUTINE R3(...) 

COMMON /C2/ V3,V4 
COMMON /C4/ V6,V7,V8 

. . . 

END 

SUBROUTINE R4(...) 

COMMON /C2/ V3,V4 

COMMON /C3/ V5 
COMMON /C4/ V6,V7,V8 
. . . 

END 
END V6 --t V8V7 

V5 --f v4 v3 

V&V7 
R3 

xv8 

1 Vl V2 V3 V4 V5 V6 V7 V8 - 
Rl)x x 

Ix2 

R3 

It4 

x x x 
x X x x x 

X X x X X X 

V4 V3 V2 Vl t V8V7 V6 V5 

v4 --t v3 

v3 --f v4 

v2 -+ VI 

Vl -+ v2 

Figure 1: A formal context, its concept lattice, and its minimal implication base; extracted from a source text. 

The set of all concepts of a given table forms a partial 
order via 

(01, AI) L (G, AZ) u 01 C 02 u AI 2 A2 

G. Birkhoff discovered in 1940 that it is also a complete 
Iattice, the concept lattice 

L(C) = { (0, A) E 2” x 2A 1 A = o(O) A 0 = 7(A)} 

In this lattice, the infimum (or join) of two concepts is 
computed by intersecting their extents: 

(Ol,Al) A (OzrA2) = (01 nQ2,401 n02j) 

Note that Al u A2 2 g(O1 n 02), as 01 flO2 has at 
least common attributes Al U AZ. Thus an infimum 
describes the set of attributes common to two sets of 
objects. Similarly, the supremum (or meet) is computed 
by intersect,ing the intents: 

(01, ill) v (01, AZ) = @(Al n A2), Al n A2) 

Again, O1 u 0~ C 7(A1 n AZ). Thus a supremum de- 
scribes a set of common objects which fit to two sets of 
attributes. 

If the concepts are labelled with their extent and 
intent, the lattice is hard to understand. Fortunately, 
there is a much simpler way to indicate extent and in- 
tent of the concepts in a lattice. A lattice element is 
labelled with attribute a E A, if it is the largest con- 
cept having a in its intent; it is labelled with an object 

o E 0, if it is the smallest concept having o in its extent. 
The (unique) lattice element labelled with a is thus 

p(u) = V{c E C(C) ) a E int(c)} 

The element labelled with o is 

y(o) = A{c E C(C) 1 0 E ezt(c)} 

All concepts greater than y(o) have o in its extent, and 
all concepts smaller than ~(a) have a in its intent. 

The following remarkable property establishes the 
connection between a table and its lattice, a,nd shows 
that they can be reconstructed from each other: 

Hence the attributes of object o are just those which 
show up above o in the lattice, and the objects for at- 
tribute a are those which show up below a. 

Utilizing the labelling, suprema in the lattice in- 
dicate that certain objects have common a.ttributes, 
while infima show that certain attributes fit to com- 
mon objects. Another way to express this is to say that 
suprema factor out common attributes, and infima fac- 
tor out common objects. Thus the lattice uncovers a 
hierarchy of conceptional clusters implicit in the origi- 
nal table. This observation explains part of the power 
of concept lattices. 



2.2 Interpretation of concept lattices 

Figure 1 gives a very small example of a formal con- 
t,ttxt and its concept lattice. The context table is gener- 
ated from a (fict,ious) FORTRAN source file and captures 
the use of global variables by subroutines. The corre- 
sponding lattice shows t,hat all subroutines below p(V3) 
(namely R2, R.3, R4) use V3 (and no other subroutines 
use V3). All variables above y(R4) (namely V3, V4, V5, 

V6, V7, V8) arc used by R4 (and no other variables a.re 
used by R4). Thus the concept labelled R4 is in fact 

cl = y(R4) = ({R4}, {V:~,V4,VS,VS,V7,VS}) 

The concept, labelled V5/R2 is in fact 

c2 = p(V5) = y(R2) = ({R.2,R4}, {V3,V4,V5}) 

Hence cl < ~1, as cl has fewer procedures and more 
variables. This can bc read as an implication: “Any 
variable used by subroutine R2 is also used by R4”. 
Similarly, /h(V5) I p(V3) = p(V4), which translates 
to “All subroutines which use V5 will also use V3 and 
V4”. The infimum of V5/R2 and V6,V7,V8/R3 is la- 
belled R4, which means that R4 (and all subroutines be- 
low y(R4),] but no other) uses both V5 and V6,V7,V8. 
The supremum of the same concepts is labelled V3,V4, 
which means that V3 and V4 (and all variables above 
p(V2), but no other) are used by both R2 and R3. 
Such knowledge is not easy t,o obtain manually from 
big source files! 

The example already demonstrates several possibil- 
ities to interpret the lattice. Wille [18] presents the 
following list: 

1. 

2. 

3. 

4. 

Concepts determine maximal object sets with iden- 
tical att,ributes. E.g., procedures which use the 
same global variables, or students which solved the 
same exercises. 

The 1att)ice displays a hierarchical classification of 
(sets of) objects. E.g., R4 uses more variables than 
R2 or R3. 

Irreducible elements (i.e., not obtainable as infi- 
mum or supremum) in the lattice correspond to 
“fundamental” objects resp. attributes. In Figure 
1, all elements are either inf- or sup-irreducible. 

Repeated patterns (sublattices) in the lattice show 
that certain groups of attributes are in fact differ- 
ent instances of an “abstract” attribute. 

5. Congruences or weak congruences (so-called block 
relations) allow to partition the table into “inde- 
pendent” subtables. In the example, Rl, Vl,V2 

6. 

7. 

8. 

9. 

can be separated frorn the rest, of the table, as 
R,l,Vl,V2 and R2,R3,R4,V3,V4,V5,V6,V7,V8 are 
both congruence classes. 

Algebraic decompositions of the lattice, such as 
subdirect or subtensorial decomposition, reveal hid- 
den structure in the objects or attributes them- 
selves. 

The table is the “logarithm” of the lattice, as alge- 
braic operations on the lat,tice have a counterpart 
in the table. 

Table or lattice can also be represented by a com- 
plet,e, minimal set of implications between attributes. 
An implication between attribute sets, written A + 
B, means “any object which has all attributes in 
A also has all attributes in B”. In Figure 1, there 
is e.g., the implication V5 + V4 V3: which corre- 
sponds to an upward arc in the lattice. 

An implication base can also be constructed by 
an incremental, interactive knowledge aquisition 
process. 

In this overview, we cannot explain all these topics in 
detail. For a discussion of elementary concept analysis, 
see [2]. The book [19] treats the mathematical theory 
in depth. There are fast algorithms for the construction 
and algebraic decomposition of concept lattices. Con- 
struction of concept lattices and implication bases has 
typical time complexity O(n3) for an 71 x n table, but 
can be exponential in the worst case. 

3 Improving software component retrieval 

We will now turn to applications of concept analysis 
in software technology. Our first application is rather 
simple: we will demonstrate how to improve software 
component retrieval. We wish to state in advance that 
concept analysis should not replace other retrieval tech- 
niques, but should be considered an “amplifier”. 

We assume t,hat software components are indexed 
by keywords. It is not important how the indexing has 
been obtained, manually or automatically. The index- 
ing, written as a table, is of course a formal context, 
and the corresponding concept lattice can be computed 
(Figure 2). 

What do we get for our money, namely the compu- 
tational investment into the lattice? First of all, the 
lattice shows a hierarchy of keywords which is only im- 
plicit (or, more precisely, invisible) in the original table. 
For example, the lattice reveals that the keywords read 

and write have a common superattribute, namely the 
keyword file. As mentioned in the theory part, this 
can be read as an implication: “any component which 



access 
chdir 

ChmOd 
chown 

treat 

fork 

fstat 

mkdir 

open 

read 

rmdir 

write 

_ . 
x x X 

X X 
X X X X 
X x x X 

x x X 

X X X 

xx X 
xx x 
x x X X X 

X X X 
xx X 

X X X 

Figure 2: Components indexed by keywords 

is indexed with read or write is indexed with file as 
well”. write, in turn, is the superattribute for keywords 
output and open, and the lattice shows that component 
write is indexed by the keywords above write, namely 
input, write, and file. The reader should keep in mind 
that the hierarchy of keywords is solely derived from 
the table, and looks different if more entries are added 
to the table. 

The lattice can also be used to check or disprove 
background knowledge. If the user believes that every- 
thing which is created also is new, then the lattice 
shows that this believe is wrong, as new is a subconcept 
of create and not vice versa. 

How can the lattice support searching? Any set of 
keywords Q may be used as a search key to determine a 
lattice element c, which is the infimum of the elements 
labelled with t,he keywords: c = A{p(q) 1 q E Q}. 
For example, the search key Q = {file,new} identifies 
the component creat2, as there is no other component 
below both file and new. The key {file, create} selects 
the unlabelled center element. Only components below 
this element will fit to both file and create. Hence any 
search key narrows the search space (Figure 3). More 
search keys may be added incrementally, constraining 

Figure 3: Narrowing the search space 

the possible components even further. This behaviour is 
much more flexible than e.g., faceted search 1121, where 
keywords must be given in a fixed order, and incomplete 
queries are not possible. 

As a side effect, any search key also determines the 
set of still possible keywords, namely those which are 
consistent with the preceding search keywords. After 
selecting file and create, search key new is no longer 
possible, because there is no element below file and 
creute, which is also below new. In general! a keyword 
Ic is inconsistent with a (partial) query Q, if ,u(Ic) A 
/\{p(q) 1 q E Q} = 1. Thus not, only can the set of 
possible search results be narrowed increment,ally, the 
set of still possible keywords is narrowed as well. Using 
the precomputed lattice, this context-sensitive support 
can be presented to the user very fast, while the lattice 
itself need not be visible [6, 71. 

4 Exploring configuration spaces 

Our next application is the analysis of configuration 
spaces. Our work was motivated by Parnas, who pointed 
out: “When a large and important family of products 
gets out of control, a major effort to restructure it, is 
appropriate. The first step must be to reduce the size 
of the program family. One must examine the various 
versions to determine why and how they differ” [lo]. 
The application of concept analysis to this problem is 
quite obvious, because configuration management sys- 
tems typically select and compose software components 
(objects) according to certain features (attributes). We 
concentrated our efforts on UNIX source files, where vari- 
ants and versions are often managed using the C pre- 
processor CPP. A lot of source code sticking to the “con- 
figuration selection by preprocessing” scheme is around, 
which makes it an ideal target for reengineering studies. 

'not to be cmfused with the element labelled create 

4 



. I.. 

#ifdef DOS DOS OS2 X_win 
II... I 

#endif 
II r 

J- 

III X 
ltifdef OS2 1v x x 

III... v x . . 
VI 

#endif 
#if defined(DOS) IsI 

&& defined(X_win) 

. . IV... 
#endif 

fifdef X-win 

VI... .,:p 

V II 

III 

X-w n DOS 

OS 

. . . v... 
tendif 

IV 

. 

Figure 4: A simple CPP file a,nd its configuration lattice 

4.1 The configuration table and its lattice 

Using CPP, objects are code pieces (consecutive source 
line intervals), while the attributes are derived frorn 
the CPP expressions governing each code piece. Fig- 
ure 4 presents a. simple example which shows how a 
configuration table is derived from a source file. In 
the corresponding lattice, a concept represents a spe- 
cific configuration thread, namely a set of code pieces 
selected by the same CPP expressions. The example 
lattice also displays an interference between two con- 
figuration threads, namely a code piece governed by 
two supposedly independent, or orthogonal, CPP sym- 
bols. Interferences show up as infirna not labelled with 
a CPP symbol. In the example, X-win and DOS are as 
everybody knows even mutually exclusive, hence the 
interference indicates that code piece IV is dead code. 

But governing conditions can be arbitrary boolean 
expressions; furthermore, #ifdefs and #ifs may be 
nested. Thus it is not so obvious what the “attributes” 
should be. The handling of complex governing expres- 
sions is explained in detail in [ 141: governing expressions 
are transformed into conjunctive normal form; then ad- 
ditional columns for elementary disjunctions and nega- 
tions are introduced, as a formal context cannot express 
negated or disjunctive attributes directly. In order that 
this transformation be correct, additional implications 
have to be introduced as well. As an example, consider 
Figure 5. The lattice displays an interference between 
elementary disjunctions DOS] [X-win and UNIX] ]DOS. 
In the source text, it seerns that code piece II is gov- 
erned by the simple expression DOS, but since DOS 
also appears in the governing expression for code piece 

V, there is a subtle interdependency between the corre- 
sponding configuration threads - visible in the lattice. 

tifdef UNIX 

. . I... 
#endif 

tifdef DOS 

. IV... oi 
tendif 

#if defined(UNIX) I I 

II.. . 
#endif DO.5 ,x_w* NIXI JDOS 
#if defined(DOS) III “NIX / / X_l.Jl” 

I I defined(X_win) 
v 

. . . III... DOS NIX,/XPwln 
tendif II I. I” 
#if !defined(UNIX) 

(defined(DOS)P&defined(X_win)) 

#endif 

L)OS UNIX DOSI/X_win UNIXIIX_win UNIXI/DOS 

t 

Figure 5: Disjunctions can cause interference 

4.2 Interference analysis 

One of the source files we analysed was the stream ed- 
itor rcsedit from the RCS system. This program is 
1656 lines long and uses 21 CPP variables for configu- 
ration management. Its configuration lattice, t,ogether 
with the labelling of the lattice elements is shown in 
Figure 6; it has been computed and layouted by the 
tool NORA/RECS.” The top element Cl represents the 
code pieces not governed by anything. The left-hand 
side of the lattice is quite flat (Cl8 to C4) which means 
that there are many configurations which do not influ- 
ence each other. From a software engineering viewpoint, 
this is desirable, as it indicates low cou$ing between 
configuration threads. 

There are, however, some interferences in the right- 
hand side. For example, C27, representing source line 
1426, is the infimum of C3 and C26. The latter are 
labelled has-rename resp. has_NFS; has_rename has to 
do with the file system, while hasNFS is concerned 
with the network. These should be independent (trans- 
parency of the network), but the lattice reveals that 
they are not. A look into the source code reveals the 
following comment for line 1426: “An even rarer NFS 
bug can occur when clients retry requests. . This not 
only wrongly deletes B’s lock, it removes the RCS file! 

. Since this problem afflicts scads of Unix programs, 

sNORA/RECS offers display of concept labels and corresponding 
code pieces upon mouse click, display of irreducible elements, sublat- 
tices, congruences, subdirect decomposition, subtensorial decomposi- 
tion, horizontal decomposition, and automatic interference detection. 
Still, it is an experimental implementation not fit for field use. 

5 



me Action Optlons 

Figure 6: Configuration lattice for rcsedit 

C3 has_rename 
1424 - 1424 
1428 1428 
1432 1437 

rensmr(from, to) != n 
IF has_NFS 

&& errno != ENOENT 
endif 

? -, 
if bad_a_rerme 
: mode != mode_while_renaming 7 chmod(tu. II 

but is so rare that, nobody seems to be worried about 
it, we won’t worry eit,her.” 

A good configuration lattice is horizontally decom- 
posuble: it consists of independent sublattices, which 
are connected only via the top and bottom elements. 
Figure 7 presents a table which leads to a horizontally 
decomposable lat,ttice, but also contains an interference. 
Since row and c:olurrm permutations do not, influence the 
lattice, horizontal decomposition (if possible) is a sim- 
ple and natural way to discover independent configura- 
tion subspaces, which would be difficult in the table (or 
source file) directly. If all CPP symbols in a sublattice 
deal with the smw configuration aspect, the principles 
of high cohesion and low coupling are satisfied. Inter- 
ferences destroy horizontal decomposability, but can be 
discovered automatically. Interfcrenccs and their dis- 

covery using concept analysis are described in detail in 
[14] and [3]. 

4.3 Background knowledge and minimal gov- 

erning expressions 

Often the user has some background knowledge, such 
as “X-win requires UNIX” or “X-win and DOS are in- 
compatible”. Such knowledge can be coded as impli- 
cations: X-win + UNIX resp. -y-win A DOS -+ A 
(because a contradiction implies everything). It can 
easily be checked whether background implications arc 
respected by a configuration table and its lattice. If 
not, the source file is inconsistent with the background 
knowledge, and the lattice displays those code pieces 

6 



Figure 7: A horizontal decomposition and an interfer- 
ence 

which violat,e background implications. 
Background knowledge can also be used to simplify 

governing expressions in a way not achievable by boolean 
simplification alone. Lindig [9] not only found a simple 
and efficient way to determine the total number of con- 
figurations from the lattice; he also demonstrated how 
minimal governing expressions can be generated from ir- 
reducible lattice elernents. Background knowledge can 
be added to this process: governing expressions are min- 
imized with respect to program-specific or background- 
specific mutual dependencies. This results in a powerful 
tool for “software geriatrics”, as demanded by Parnas. 

5 Assessing modular structures 

In this section, we want t,o show how concept, analysis 
can be used to assess the modular structure of legacy 
code and perhaps modularize old systems. We try to 
find modules in legacy code by analysing the relation 
between procedures and global variables. Hence the ob- 
jects c3 are the procedures of a program, the attributes 
A are the global variables, and the variable usnge table 
has entry (p, 71) if procedure p loses variable II. 

5.1 Modules and lattices 

A module consists of a set of procedures P 5 0 and a 
set of variables V c A such that all procedures in P use 
only variables in V and all variables in V are only used 
by procedures in P. This definition captures the essence 
of information hiding. In the table, a module shows 
up as a maximal rectangle. This rectangle, however, 
need not be completely filled - not every procedure in 
a module uses all module variables, and not all module 
variables arc used by all procedures. 

We say that two sets of procedures (resp. their mod- 
ules) are coupled if they use the same global variable(s). 
Similarly, two sets of variables (resp. their modules) in- 
terfere, if they are used by the same procedure. Al- 
though coupling via global variables is undesirable, in 
a reengineering setting coupling might be acceptable if 

gotoxy x 

Figure 8: Variable usage table of student, Modula-2 pro- 
gram (excerpt) 

there are nested local modules or procedures. Int,erfer- 
ences however prevent a modularization, as there is a 
procedure which uses variables from two d&rent mod- 
ules -- a violation of the information hiding principle. 

Figure 8 presents the variable usage table for a Modu- 
la-2 program from a student project. The program is 
about 1500 lines long and divided into 8 modules; there 
are 33 procedures which use 16 module variables. The 
corresponding lattice (Figure 9) is of course horizon- 
tally decomposable4. Note that there are more horizon- 
tal summands than modules in the program. Thus the 
modularization proposal generated from the variable us- 
age does not agree with the actual module structure in 
the program. Manual inspection confirms t,hat some 
modules have low cohesion and should be split. For ex- 

ample, elements 3 and 4 have been one module in the 
original program, but the lattice indicates that element 
4 implements an abstract data type, while element 3 
deals with some low-level memory management. 

In case there are only a few interferences between 
horizontal summands, the modular structure is still good. 
Interferences can be detected automatically and rernoved 
by simple program transformations such as encapsula- 
tion of global variables. If there are too many inter- 
ferences, one might still try to modularize the source 
code by using so-called block relations. Block relations 
(also called weak congruences) correspond to rect,angle 
shapes in the table and induce a factor lattice. Every 

4For modular languages, this is a consequence of the theory. UII- 
fortunately, Modula-2 allows to export module variables, which can 
lead to coupling and interferences. 



Figure 9: Module structure of a student Modula-2 pro- 
gram 

element in the factor latt,ice corresponds to a rectangle 
shape in the original table and thus a module candidate. 
While block relations are difficult to detect manually in 
a table or its lattice, an efficient algorithm for dicovering 
block relations exists. 

Figure 10 presents an example. The table entries 
can be grouped into three rectangle shapes, as can be 
seen from the additional bullet entries. The lattice re- 
sulting from the “enriched” table (original entries plus 
bullets) therefore has just, three elements, which can be 
considered a “skeleton” of the original lattice. Indeed, 
the original lattice can be grouped into three overlap- 
ping “congruence classes”. The factor lattice is just the 
three-element skeleton, hence there are three module 
candidates in the source code. 

Another approach was studied by Siff and Reps [13]. 
They not only consider the use of global variables, but 
also use of types, or the fact that a procedure does not 
use a variable or type. A modularization is obtained 
by finding lattice elernents which provide a partition of 
the attribute space. Siff reports good results on small 
C programs. 

5.2 A case study 

We examined several legacy systems written in FOR- 

TRAN and COBOL. One example is an aerodynamics 
system used for airplane development in a national re- 

VI V2 V3 V4 V5 V6 

R1. X X x x x 

R2 x . x x . x 

R3 x . x . x x 

R4 x x x . . x 

R5 x . x x x 

R6 . x x . 

Figure 10: A context table, its lattice, a block relation, 
and its corresponding congruence classes 

search institution. The system is about, 20 years old, 
and has undergone countless modifications and exten- 
sions. The source code is 106000 lines long, consists 
of 317 subroutines, and uses 492 global variables in 46 
COMMON blocks. One of the goals of the analysis is to 
reshape COMMON blocks such that each module corre- 
sponds to one COMMON block. Several manual restruc- 
turing efforts had not been very successful, so it was 
decided to try concept analysis. 

After the variable usage table was built, the lattice 
was constructed5. It contains no less than 2249 ele- 
ments. The number of elements in itself is not the 
problem (after all, it is a large program), but unfor- 
tunately the lattice is so full of interferences that it is 
impossible to reveal any structure (Figure 11). There is 
no way to make the lattice horizontally decomposable 
by removing just a small number of interferences. 

Several experiments tried to analyse just part of the 
system. The program contains a particularly intricate 
COMMON block called “CNTL”, which contains 26 vari- 
ables. These variables are used in 192 subroutines, and 
the resulting lattice does not look very encouraging ei- 
ther. Another experiment examined the “OUTPUT”- 
subsystem, which consists of 50 subroutines using 278 
global variables from 26 COMMON blocks; the resulting 
lattice still has 259 elements and is full of fine-grained 
interferences. 

We also tried to determine block relations. Unfortu- 
nately, neither the lattice for the whole system nor the 
lattice for the “CNTL” COMMON block had usable block 
relations, hence no automatic modularization was pos- 

‘This required 11 seconds on a SparcStation20. 



Figure 11: Module structure of aerodynamics system 

sible. We also tried to apply subdirect decomposition 
[16] and subtensorial decomposition [17], as described in 
[3]. These decomposition techniques are motivated by 
algebraic rather than software engineering issues, and 
failed also. 

Generally speaking, t,he presence of module candi- 
dates must correspond to some partitioning of the vari- 
ables, and such partitionings can be found by lattice 
decompositions such as horizontal or block decompo- 
sition. In the example, the overwhelming number of 
interferences prevents a partitioning and hence a mod- 
ularization. 

Based on these results, the national institution de- 
cided to cancel a reengineering project for this system, 
and develop a new system from scratch. 

6 Future work 

The potential of concept analysis in program under- 
standing has not, yet been fully explored. Here are some 
plans for future work: 

l A module can also be characterized by variables 

which are not used. Hence any module corre- 
sponds to a maximal unfilled rectangle. The Iat,- 
tice of the inverted context displays all these rec- 
tangles. 

The structure theory for concept lattices offers al- 
gebraic decompositions which have not been ex- 
plored yet. 

Fuzzy contexts use values between 0 and 1 as table 
entries. For such tables, a concept lattice can again 
be computed [II]. 

Concept analysis can be used for the analysis and 
perhaps reengineering of class hierarchies in old 
C ++ programs. 

References 

PI 

PI 

PI 

PI 

PI 

PI 

[71 

PI 

PI 

G. Birkhoff: Lattice Theory. American Mathemati- 
cal Society, Providence, R.I., 1st edition, 1940. 

B. Davey, H. Pricstley: Introduction to lattices and 
order. Cambridge University Press 1990. 

P. Funk, A. Lewien, G. Snelting: Algorithms for 
concept lattice decomposition and their application. 
Report 95-09, Computer Science Department, Tech- 
nische Universitait Braunschweig, 1995. 

R. Godin, R. Missaoui: An incremental concept for- 
mation approach for learning from databases. Theo- 
retical Computer Science 133 (1994), pp. 387 ~- 419. 

M. Krone, G. Snelting: On the inference of con- 
figuration structures from source code. Proc. 16th 
International Conference on Software Engineering, 
Mai 1994, IEEE Comp. Sot. Press, pp. 49-57. 

C. Lindig: Concept-Based Component Retrieval. 
Proc. IJCAI-95 Workshop on Formal Approaches to 
the Reuse of Plans, Proofs, and Programs, Montreal, 
August 1995. 

C. Lindig: Komponentensuche mit Begriffen. Proc. 
Softwaretechnik ‘95, Braunschweig, Oktober 1995, 
S. 67-75. 

C. Lindig, G. Snelting: Assessing Modular Structure 
of Legacy Code Based on Mathematical Concept 
Analysis. Proc. International Conference on Soft- 
ware Engineering (ICSE’97), Boston 1997, pp. 349 
~- 359. 

C. Lindig: Analyse von Softwarevarianten. Report 
98-03, Computer Science Department, Technische 
Universitat Braunschweig, 1998. 

9 



[lo] D. Parnas: Software Aging. Proc. International 
Conference on Software Engineering (ICSE’97)) 
Boston 1997, pp. 279-290. 

[II] s. PoIla11d: Fuzzy Brgriffe formale Begriffs- 
analysr unscharfer Dat,en. Springer Verlag 1997. 

[Ia] R,. Pritto-Diaz: Implementing faceted classification 
for softwart> r(‘use. .Journal of the ACM 34 (5), 1991, 

pp. 89 97. 

[13] M. Sitf. T. Reps: Ttlc~ntifying Modules via Concept 
Analysis. I’roc*. Intt~rnat,ional Confercncse on Soft,- 
ware Maintenance, Bari 1997, pp. 170 ~ 179. 

[14] G. Snc~li,ing: R.eenginecring of configurations ba.secl 
on rnnthrnlat,i~al corrc.ckpt, analysis. ACM Transac- 
tions CJII SC )ft,waro Engint:ering and Methodology 5,2 
(April 19!)6), pp. 146-189. 

[15] R. Will<>: Restructuring lattice theory: an ap- 
proach ba.sed OII hierarchies of conccpt,s. In: I. Rival, 
(Ed.), Ordered Sets. pp. 445-470, Reidel 1982. 

[16] R.. Will?: Subdirect decomposition of concept lat- 
tices. Algebra Cnivcrdis 17 (1993), pp. 275-287. 

1171 R. Willc: Tonsorial d(,c:c.mrposition of concept lat- 

tices. Order 2 (19851, pp. 81-95. 

[18] R. Willc: Brdeutungen von Begriffsverbsnden. In 
B. Ganter, R. Wille, K. Wolff (Ed.): Beitrgge zur 
Begriffsanalyse. BI Wissenschaftsverlag 1996, pp. 
161 212. 

[19] B. Ganter, R. Willc: Forrnale Begriffsanalyse -- 
Ma.thernatischc Grundlagen. Springer Verlag 1996. 

10 


