
Dynamic Security Labels and Static Information Flow
Control

Lantian Zheng Andrew C. Myers

Computer Science Department

Cornell University, Ithaca, NY 14853

{zlt,andru}@cs.cornell.edu

Abstract

This paper presents a language in which information flow is securely controlled by a type system, yet
the security class of data can vary dynamically. Information flow policies provide the means to express
strong security requirements for data confidentiality and integrity. Recent work on security-typed pro-
gramming languages has shown that information flow can be analyzed statically, ensuring that programs
will respect the restrictions placed on data. However, real computing systems have security policies that
cannot be determined at the time of program analysis. For example, a file has associated access permis-
sions that cannot be known with certainty until it is opened. Although one security-typed programming
language has included support for dynamic security labels, there has been no demonstration that a gen-
eral mechanism for dynamic labels can securely control information flow. In this paper, we present an
expressive language-based mechanism for reasoning about dynamic security labels. The mechanism is
formally presented in a core language based on the typed lambda calculus; any well-typed program in
this language is secure because it satisfies noninterference.

1 Introduction
Information flow control protects information security by constraining how information is transmitted among
objects and users of various security classes. These security classes are expressed aslabelsassociated with
the information or its containers. Denning [8] showed how to use static analysis to ensure that programs
use information in accordance with its security class, and this approach has been instantiated in a number
of languages in which the type system implements a similar static analysis (e.g., [32, 15, 37, 26, 4, 28]).
These type systems are an attractive way to enforce security because they can be shown to enforcenon-
interference[13], a strong, end-to-end security property. For example, when applied to confidentiality,
noninterference ensures that confidential information cannot be leaked by the program no matter how it is
transformed.

However, security cannot be enforced purely statically. In general, programs interact with an external
environment that cannot be predicted at compile time, so there must be a run-time mechanism that allows
security-critical decisions to be taken based on dynamic observations of this environment. For example, it
is important to be able to change security settings on files and database records, and these changes should
affect how the information from these sources can be used. A purely static mechanism cannot enforce this.

To securely control information flow when access rights can be changed and determined dynamically,
dynamiclabels [22] are needed that can be manipulated and checked at run time. Dynamic information
control mechanisms [33, 6, 11, 17, 29, 10] support dynamic labels and use run-time label tests to control
information flows. However, these dynamic mechanisms incur large run-time overhead and generally cannot
preventimplicit flowsarising from the control flow paths not taken at run time [7, 19]. Thus, it is desirable

1



to combine dynamic labels and static information flow control: making dynamic labels and run-time label
tests explicit in programs and using static program analysis to reason about their security properties.

JFlow [21] and its successor, Jif [24] are the only implemented security-typed languages supporting
dynamic labels. However, although the Jif type system is designed to control the new information channels
that dynamic labels create, it has not been proved to enforce secure information flow. Further, the dynamic
label mechanism in Jif has limitations that impair expressiveness and efficiency.

In this paper, we propose an expressive language-based mechanism for securely manipulating infor-
mation with dynamic security labels. The mechanism is formalized in a core languageλDSec (based on
the typed lambda calculus) with first-class label values, dependent security types and run-time label tests.
We prove the correctness of this mechanism by showing that any well-typed program of the core language
satisfies noninterference, which intuitively means that confidential inputs cannot interfere with outputs ob-
servable to attackers. In this paper, attackers are assumed to bepassivein the sense that they can compromise
data confidentiality only by observing program outputs. With this passive attack model, if a program satis-
fies noninterference, then attackers can learn nothing about confidential inputs of the program. This simple
form of noninterference is standard for security-typed languages, although dynamic labels introduce a subtle
complexity: whether an input is confidential may not be statically determinable.

Some previous MAC systems have supported dynamic security classes as part of a downgrading mech-
anism [30]. While downgrading is important, it is useful to treat it as a separate mechanism so that dynamic
manipulation of labels does not necessarily destroy noninterference.

This paper is a revised and expanded version of a paper presented at the second international Workshop
on Formal Aspects in Security and Trust [39]. Compared to that conference version, this paper includes
a complete proof that theλDSec type system enforces noninterference. Another improvement is that we
demonstrate the dynamic label mechanisms ofλDSec can be applied in practice by proposing a corresponding
extension to Jif.

The remainder of this paper is organized as follows. Section 2 presents some background on lattice
label models and security type systems. Section 3 introduces the core languageλDSec and uses sample
λDSec programs to show some important applications of dynamic labels. Section 4 describes the type system
of λDSec . Section 5 proves that theλDSec type system enforces noninterference. Section 6 interprets and
extends the dynamic label mechanism of Jif based on the ideas ofλDSec . Section 7 covers related work, and
Section 8 concludes.

2 Background
Static information flow analysis can be formalized as a security type system, in which security levels of
data are represented by security type annotations, and information flow control is performed through type
checking.

2.1 Security classes

We assume that security requirements for confidentiality or integrity are defined by associatingsecurity
classeswith users and with the resources that programs access. These security classes form a latticeL. We
write k v k′ to indicate that security classk′ is at least as restrictive as another security classk. In this
case it is safe to move information from security classk to k′, because restrictions on the use of the data are
preserved. To control data derived from sources with classesk andk′, the least restrictive security class that
is at least as restrictive as bothk andk′ is assigned. This is the least upper bound, or join, writtenk t k′.

2.2 Labels

Type systems for confidentiality or integrity are concerned with tracking information flows in programs.
Types are extended with securitylabelsthat denote security classes. A label` appearing in a program may

2



be simply a constant security classk, or a more complex expression that denotes a security class. The
notation`1 v `2 means that̀2 denotes a security class that is at least as restrictive as that denoted by`1.

Because a given security class may be denoted by different labels, the relationv generates a lattice
of equivalence classesof labels witht as thejoin (least upper bound) operator. Two labels`1 and`2 are
equivalent, writteǹ 1 ≈ `2, if `1 v `2 and`2 v `1. The join of two labels,̀ 1 t `2, denotes the security
class that is the join of the security classes that`1 and`2 denote. For example, if variablex has label̀ x and
variabley has label̀ y, then the sumx+y is given the label̀x t `y.

2.3 Security type systems for information flow

Security type systems can be used to enforce security information flows statically. Information flows in
programs may be explicit flows such as assignments, or implicit flows arising from the control flow of the
program. Consider an assignment statementx:=y, which contains an information flow fromy to x. Then
the typing rule for the assignment statement requires that`y v `x, which means the security level ofy is
lower than the security level ofx, guaranteeing the information flow fromy to x is secure.

One advantage of static analysis is the ability to control implicit flows in all possible execution paths.
Consider a simple conditional:

if s <= 0 then x := 0 else y := 0

Although there is no direct assignment froms to x or y, this expression may cause implicit flows froms
into x andy, since the values ofx andy depend ons after evaluating the expression. A standard technique
for controlling implicit flows is to introduce aprogram-counter label[7], written pc, which indicates the
security level of the information that can be learned by knowing the control flow path taken thus far. In
this example, the branch taken depends on the value ofs, so thepc in thethen andelse clauses will be
joined with `s, the label ofs. The type system ensures that any effect of expressione has a label at least
as restrictive as itspc. In other words, an expressione cannot generate any effects observable to users who
should not know the current program counter. In this example, the assignment tox will be permitted only if
pc v `x, which ensures̀s v `x. Similarly, `s v `y is also ensured by the static analysis.

Dynamic mechanisms such as the Data Mark Machine [11] are able to control implicit flows by tracking
the program counter labelpc at run time and check the constraintpc v `x or pc v `y depending on which
branch is taken. However, the dynamic mechanisms do not check the label constraints required by the
control flow path not taken at run time. For example, suppose the value ofs is positive, andpc v `y holds
while pc v `x does not hold. Then attackers can infer thats is positive from the absence of run-time label
test failures.

2.4 Noninterference

In general, the goal of static information flow control is to enforce noninterference, which intuitively means
that confidential inputs cannot interfere with outputs observable to attackers. Formally, the security level of
attackers is represented by a labelL. Then any input with a labelH such thatH 6v L is confidential, and
any output with a label less than or equal toL is observable to attackers.

Suppose expressione is a program. Then the inputs ofe are the values of free variables ofe, and
the outputs are simply the result of evaluatinge. More formally, the inputs ofe are represented by an
input mapA, mapping free variables ofe to values, and the notatione[A] denotes the expression obtained
by substituting every free variablex of e with A(x). Programe satisfies the noninterference property if
changing the confidential inputs ofe does not affect the outputs observable to attackers, that is, the following
statement holds:

For two arbitrary labelsL andH and any two input mapsA1 andA2 of e satisfying

3



Base Labels k ∈ L
Variables x, y, f ∈ V
Locations m ∈ M

Labels `, pc ::= k | x | `1 t `2
Constraints C ::= `1 v `2 , C | ε

Base Types β ::= int | label | unit | τ ref | (x :τ1)
C ; pc−−−→ τ2 | (x :τ1)[C] ∗ τ2

Security Types τ ::= β`

Values v ::= x | n | k | () | mτ | λ(x :τ)[C ; pc]. e | (x=v1[C], v2 :τ)
Expressions e ::= v | `1 t `2 | e1 e2 | !e | e1 := e2 | refτ e | if `1 v `2 then e1 else e2

| let (x, y)=e1 in e2

Figure 1: Syntax ofλDSec

• L 6v H,

• the label ofe is less than or equal toL, and

• A1 ≈H A2, which means that for any free variablex of e, if the label ofx is not higher
than or equal toH, thenA1(x) = A2(x),

if e[A1] ande[A2] are evaluated tov1 andv2, thenv1 = v2.

The noninterference property discussed here istermination insensitive[28] becausee[A1] ande[A2] are
required to generate the same result only if both evaluations terminate. In this work, we do not attempt
to deal with termination and timing channels. Control of these channels is largely an orthogonal problem.
In average, termination channels can leak at most one bit per run, so they have often been considered
acceptable (e.g., [8, 32]). Some recent work [1, 27, 38] partially addresses the control of timing channels.

3 The λDSec language
The core languageλDSec is a security-typed lambda calculus that supports first-class dynamic labels. In
λDSec , labels are terms that can be manipulated and checked at run time. Furthermore, label terms can be
used as statically analyzed type annotations. Syntactic restrictions are imposed on label terms to increase
the practicality of type checking, following the approach used by Xi and Pfenning inMLΠ

0 (C) [36].

3.1 Syntax

The syntax ofλDSec is given in Figure 1. We use the namek to range over a lattice of label valuesL (more
precisely, a join semi-lattice with bottom element⊥), x, y to range over variable namesV, andm to range
over a space of memory addressesM.

To make the lattice explicit, we writeL |= k1 v k2 to mean thatk2 is at least as restrictive ask1 in
L, andL |= k = k1 t k2 to meank is the join ofk1 andk2 in L. The bottom element ofL is ⊥. Any
non-trivial label lattice contains at least two pointsL andH whereH 6v L. Intuitively, the labelL describes
what information is observable bylow-security userswho are to be prevented from seeing confidential
information. Thus,low-securitydata has a label bounded above byL; high-securitydata has a label (such
asH) not bounded byL.

In λDSec , a label can be either a label valuek, a variablex, or the join of two other labels̀1 t `2. For
example,L, x, andL t x are all valid labels, andL t x can be interpreted as a security policy that is as
restrictive as bothL andx. The security typeτ = β` is the base typeβ annotated with label̀. The base
types include integers, unit, labels, references, functions and products.

4



The function type(x : τ1)
C ; pc−−−→ τ2 is a dependent type sinceτ1, τ2, C andpc may mentionx. The

componentC is a set oflabel constraintseach with the form̀ 1 v `2; they must be satisfied when the
function is invoked. Thepc component is a lower bound on the memory effects of the function, and an
upper bound on thepc label of the caller. Consequently, a function is not able to leak information about
where it is called. Without the annotationsC andpc, this kind of type is sometimes written asΠx :τ1.τ2 [20].

The product type(x :τ1)[C]∗ τ2 is also a dependent type in the sense that occurrences ofx can appear in
τ1, τ2 andC. The componentC is a set of label constraints that any value of the product type must satisfy.
If τ2 does not containx andC is empty, the type may be written as the more familiarτ1 ∗ τ2. Without the
annotationC, this kind of type is sometimes writtenΣx :τ1.τ2 [20].

In λDSec , values include variablesx, integersn, constant labelsk, the unit value(), typed memory
locationsmτ , functionsλ(x :τ)[C ; pc]. e and pairs(x=v1[C], v2 :τ). A functionλ(x :τ)[C ; pc]. e has one
argumentx with typeτ , and the componentsC andpc have the same meanings as those in function types.
For simplicity,C can be omitted if it is empty, and thepc component can be omitted ife has no side effects.
A pair (x=v1[C], v2 :τ) contains two valuesv1 andv2. The second elementv2 has typeτ and may mention
the first elementv1 by the namex. The componentC is a set of label constraints that the first element of the
pair must satisfy. For example, supposeC contains the constraintx v L (which impliesv1 is a label value),
thenv1 v L must be true since inside the pair the value ofx is v1.

Expressions include valuesv, variablesx, the join of two labels̀ 1 t `2, applicationse1 e2, dereferences
!e, assignmentse1 := e2, referencesrefτe, label-test expressionsif `1 v `2 then e1 else e2, and product
destructorslet (x, y)=e1 in e2.

The label-test expressionif `1 v `2 then e1 else e2 is used to examine labels. At run time, if the
value of`2 is a constant label at least as restrictive as the value of`1, thene1 is evaluated; otherwise,e2 is
evaluated. Consequently, the constraint`1 v `2 can be assumed when type-checkinge1.

The product destructorlet (x, y)=e1 in e2 unpacks the result ofe1, which is a pair, substitutes the first
element forx and the second fory, and then evaluatese2.

From the computational standpoint,λDSec is fairly expressive, because it supports both first-class func-
tions and state, which together are sufficient to encode recursive functions. For example, supposeλf(x :
τ)[C ; pc]. e is a recursive function (f may appear ine) with type τf . Then we can encode the recursive
function using the followingλDSec code:

λ(x :τ)[C ; pc]. ((λ(y :unit)[C ; pc]. !mτf x) (mτf := λ(x :τ)[C ; pc]. e[!mτf /f ]))

wheree[!m/f ] is the expression obtained by substituting!mτf for f in e.

3.2 Operational Semantics

The small-step operational semantics ofλDSec is given in Figure 2. LetM represent a memory that is a
finite map from typed locations to closed values, and let〈e, M〉 be a machine configuration. Then a small
evaluation step is a transition from〈e, M〉 to another configuration〈e′, M ′〉, written〈e, M〉 7−→ 〈e′, M ′〉.

It is necessary to restrict the form of〈e, M〉 to avoid using undefined memory locations. Letloc(e)
represent the set of memory locations appearing ine. A memoryM is well-formed if every addressm
appears at most once indom(M), and for anymτ in dom(M), loc(M(mτ )) ⊆ dom(M), whereM(mτ )
denotes the value of locationmτ in M . The configuration〈e, M〉 is well-formed if M is well-formed,
loc(e) ⊆ dom(M), ande contains no free variables. By induction on the derivation of〈e, M〉 7−→ 〈e′, M ′〉,
we can prove that if〈e, M〉 is well-formed, then〈e′, M ′〉 is also well-formed.

The notatione[v/x] indicates capture-avoiding substitution of valuev for variablex in expressione.
Unlike in the typed lambda calculus,e[v/x] may generate a syntactically ill-formed expression ifx appears
in type annotations insidee, andv is not a label. However, this is not a problem because the type system

5



[E1 ]
L |= k = k1 t k2

〈k1 t k2, M〉 7−→ 〈k, M〉

[E2 ] 〈!mτ , M〉 7−→ 〈M(mτ ), M〉

[E3 ]
m = newloc(M)

〈refτv, M〉 7−→ 〈mτ , M [mτ 7→ v]〉

[E4 ] 〈mτ := v, M〉 7−→ 〈(), M [mτ 7→ v]〉

[E5 ] 〈(λ(x :τ)[C ; pc]. e) v, M〉 7−→ 〈e[v/x], M〉

[E6 ]
L |= k1 v k2

〈if k1 v k2 then e1 else e2, M〉 7−→ 〈e1, M〉

[E7 ]
L |= k1 6v k2

〈if k1 v k2 then e1 else e2, M〉 7−→ 〈e2, M〉

[E8 ] 〈let (x, y)=(x=v1[C], v2 :τ) in e, M〉 7−→ 〈e[v2/y][v1/x], M〉

[E9 ]
〈e, M〉 7−→ 〈e′, M ′〉

〈E[e], M〉 7−→ 〈E[e′], M ′〉

E[·] ::= [·] e | v [·] | [·] := e | v := [·] | ! [·] | refτ [·] | [·] t `2 | k1 t [·]
| if [·] v `2 then e1 else e2 | if k1 v [·] then e1 else e2 | let (x, y)=[·] in e

Figure 2: Small-step operational semantics ofλDSec

of λDSec guarantees that a well-typed expression can only be evaluated to another well-typed and thus well-
formed expression.

The notationM [mτ 7→ v] denotes the memory obtained by assigningv to mτ in M .
The evaluation rules are standard. In rule (E3), the notationaddress-space(M) represents the set

of location names inM , that is,{m | ∃τ s.t. mτ ∈ dom(M)}; the allocatornewloc(M) deterministi-
cally generates a fresh memory locationm such thatm 6∈ address-space(M), andnewloc(M ′) = m if
address-space(M ′) = address-space(M). In rule (E8),v2 may mentionx, so substitutingv2 for y in e is
performed before substitutingv1 for x. For simplicity, the variable name in the product value matchesx so
that no variable renaming (alpha conversion) is needed when substitutingv1 andv2 for x andy in e. In rule
(E9),E represents an evaluation context, a term with a single hole (denoted by[·]) in redex position, and the
syntax ofE specifies the evaluation order.

3.3 Examples

As discussed in Section 1, dynamic labels are vital for precisely controlling information flows between
security-typed programs and the external environment. A practical program often needs to access files or
communicate through networks. These activities can be viewed as communication through anI/O channel
with a corresponding label consistent with the security policy of the entity (such as a file or network socket)
represented by the channel. Because the security policy of an external entity may be discovered and even
changed at run time, the precise label of an I/O channel is dynamic and operations on a channel cannot be
checked at compile time.

6



3.3.1 Run-time access control

Implementing run-time access control is one of the most important applications of dynamic label mecha-
nisms. Suppose there exists a file that stores one integer, and the access control policy of the file is unknown
at compile time. InλDSec , the file can be encoded as a reference of type(x : label⊥) ∗ (intx ref)⊥,
wherex is a dynamic label consistent with the access control policy of the file, and the reference component
of type (intx ref)⊥ stores the contents of the file and can be viewed as modeling the physical address of
the file on a storage device. Thus storing an integer of typeintH in the file is equivalent to assigning the
integer to the memory reference component, which requires thatx is at least as high asH. Since the value
of x is not known at compile time, the conditionH v x can only be checked at run time, using a label-test
expression. The following function stores a high-security integerz in the filew:

λ(w : ((x :label⊥) ∗ (intx ref)⊥)⊥ ref⊥). λ(z :intH)[H].
let (x, y)=!w in if H v x then y := z else ()

Note that thepc label of the function isH because the function body contains a memory effect of labelx
whenH v x.

It is also important to be able to change file permissions at run time. The following code changes the
access control policy of the filew to labelz. However, the original contents ofw need to be wiped out to
prevent them from being implicitly declassified, which provides stronger security assurance than an ordinary
file system. This is done by replacing the old memory reference component in the value ofw with a new
memory reference storing the initial value0.

λ(w : ((x :label⊥) ∗ intx ref⊥)⊥ ref⊥). λ(z :label⊥)[⊥].
(λ(y :intz ref⊥)[⊥]. w := (x=z, y :intx ref⊥))refintz0

3.3.2 Multilevel communication channels

Information flows inside a program are controlled by static type checking. When information is exported
outside a program through an I/O channel, the receiver might want to know the exact label of the informa-
tion, which calls formultilevel communication channels[9] unambiguously pairing the information sent or
received with its corresponding security label. Supporting multilevel channels is one of the basic require-
ments for a MAC system [9].

In λDSec , a multilevel channel can be encoded by a memory reference of type((x :labelx)∗intx)⊥ ref,
which stores a pair composed of an integer value and its label. The confidentiality of the integer component
is protected by the label component, since extracting the integer component from such a pair requires testing
the label component:

λ(z : ((x :labelx) ∗ intx)⊥). let (x, y)=z in
if x v L then mintL := y else ()

In the above example, the constraintx v L must be satisfied in order to store the integer component in
mintL . Since the readability of the integer component depends on the value ofx, lettingx recursively label
itself ensures that all the authorized readers of the integer component can testx and retrieve the integer
value.

Sending an integer through a multilevel channel is implemented by pairing the integer and its label and
storing the pair in the reference representing the channel:

λ(z : (((x :labelx)) ∗ intx)⊥ ref)⊥). λ(w :labelw).
λ(y :intw)[⊥]. z := (x=w, y :intx)

Like other I/O channels, a multilevel channel may have a label that is an upper bound of the security levels
of the information that can be sent through the channel. Product label constraints can be used to specify the

7



label of a multilevel channel. For example, a bounded multilevel channel can be represented by a memory
reference with type((x :labelx)[x v `]∗intx)⊥ ref, wherè is the label of the channel, and the constraint
x v ` guarantees any information stored in the reference has a security label at most as high as`. Sending
information through a bounded multilevel channel often needs a run-time check as in the following code:

λ(z : (((x :labelx))[x v `] ∗ intx)⊥ ref)⊥). λ(w :labelw).
λ(y :intw)[⊥]. if w v ` then z := (x=w, y :intx) else ()

The ability to recursively use a variable to construct the label of its own type provides a useful kind of
polymorphism, which this example demonstrates. Without recursive labels, the type of a multilevel channel
cannot be constructed so simply, because selecting a label for the label componentx becomes problematic.
Any constant label that is chosen may be inappropriate; for example, if the label has the label⊥ then it may
be impossible to compute a suitable label to supply asx. Another possibility is to provide yet another label
that is to function as the label ofx, but this merely pushes the problem back by one level. Givingx the type
labelx is a neat way to tie off this sequence.

4 Type system
This section describes the type system ofλDSec , which is designed to check the label constraints that enforce
secure information flow.

4.1 Label constraints

Because of dynamic labels, it is not always possible to decide whether the relationship`1 v `2 holds at
compile time; therefore, the label-test expression (if) must be used to query the relationship. However, this
dynamic query may create new information flows; the languageλDSec and its type system are designed to
statically control these new information flows.

Although labels are first-class values inλDSec , label terms have a restricted syntactic form so that any
label term can be used as a type annotation. Therefore, constraints on label terms are also type-level infor-
mation that can be used by the type checker.

Furthermore, inλDSec label terms are purely functional: they have no side effects and evaluate to the
same value in the same context. As a result, any label constraint of the form`1 v `2 that is known to hold in
a typing context can be used for type checking in that context. For example, consider the following code:

λ(x :label⊥). λ(y : (intx ref)⊥). λ(z :intH)[H].
if H v x then y := z else ()

According to the semantics of the label-test expression, the assignmenty := z will be executed only if
H v x holds. Thus, the constraintH v x can be used to decide whethery := z is secure. In this example,
any information stored inz is only accessible to users with security level at least as high asx. So it is secure
to storez in y becausex is at least as high asH.

In general, for each expressione, the type checker keeps track of the set of constraintsC that are known
to be satisfied whene is executed, and usesC in type-checkinge.

4.2 Subtyping

The subtyping relationship between security types plays an important role in enforcing information flow
security. Given two security typesτ1 = β1`1 and τ2 = β2`2 , supposeτ1 is a subtype ofτ2, written as
τ1 ≤ τ2. Then any data of typeτ1 can be treated as data of typeτ2. Thus, data with label̀1 may be treated
as data with label̀2, which requires̀ 1 v `2.

The type system keeps track of the set of label constraints that can be used to prove relabeling relation-
ships between labels. LetC ` `1 v `2 denote that̀ 1 v `2 can be inferred from the set of constraints

8



[C1 ]
L |= k1 v k2

C ` k1 v k2
[C2 ]

`1 v `2 ∈ C

C ` `1 v `2

[C3] C ` ` v > [C4] C ` ⊥ v `

[C5] C ` ` v ` t `′

[C6 ]
C ` `1 v `2 C ` `2 v `3

C ` `1 v `3

[C7 ]
C ` `1 v `3 C ` `2 v `3

C ` `1 t `2 v `3

Figure 3: Relabeling rules

[S1 ]
C ` τ1 ≤ τ2 C ` τ2 ≤ τ1

C ` τ1 ref ≤ τ2 ref

[S2 ]

C ` τ2 ≤ τ1 C ` τ ′
1 ≤ τ ′

2

C ` pc2 v pc1 C,C2 ` C1

C ` (x :τ1)
C1 ; pc1−−−−→ τ ′

1 ≤ (x :τ2)
C2 ; pc2−−−−→ τ ′

2

[S3 ]
C ` τ1 ≤ τ2 C ` τ ′

1 ≤ τ ′
2 C,C1 ` C2

C ` (x :τ1)[C1] ∗ τ ′
1 ≤ (x :τ2)[C2] ∗ τ ′

2

[S4 ]
C ` β1 ≤ β2 C ` `1 v `2

C ` (β1)`1 ≤ (β2)`2

Figure 4: Subtyping rules

C. The inference rules are shown in Figure 3; they are standard and consistent with the lattice properties
of labels. Rule (C2) shows that all the constraints inC are assumed to be true. The constraint setC may
contain constraints that are inconsistent with the latticeL, such asH v L. Inconsistent constraint sets are
harmless because they always indicate dead code, such as expressione1 in “if H v L then e1 else e2”.

Since the subtyping relationship depends on the relabeling relationship, the subtyping context also needs
to include theC component. The inference rules for provingC ` τ1 ≤ τ2 are the rules shown in Figure 4
plus the standard reflexivity and transitivity rules.

Rules (S1)–(S3) are about subtyping on base types. These rules demonstrate the expected covariance or
contravariance. InλDSec , function types contain two additional componentspc andC, both of which are

contravariant. Suppose the function typeτ = (x : τ1)
C1 ; pc1−−−−→ τ ′1 is a subtype ofτ ′ = (x : τ2)

C2 ; pc2−−−−→ τ ′2.
Then wherever functions with typeτ ′ can be called, functions with typeτ can also be called. This implies
two necessary premises. First, whereverC2 is satisfied,C1 is also satisfied. SinceC is satisfied, this premise
is written C,C2 ` C1, meaning that for any constraint`1 v `2 in C1, we can deriveC,C2 ` `1 v `2.
Second, the premisepc2 v pc1 is needed because thepc of a function type is an upper bound on thepc
where the function is applied.

In rules (S2) and (S3), variablex is bound in the function and product types. For simplicity, we assume
thatx does not appear inC, sinceα-conversion can always be used to renamex to another fresh variable.

9



[INT] Γ ; C ; pc ` n : int⊥ [UNIT] Γ ; C ; pc ` () : unit⊥

[LABEL ] Γ ; C ; pc ` k : label⊥ [LOC ]
FV (τ) = ∅

Γ ; C ; pc ` mτ : (τ ref)⊥

[JOIN ]
Γ ; C ; pc ` `1 : label`′1

Γ ; C ; pc ` `2 : label`′2

Γ ; C ; pc ` `1 t `2 : label`′1t`′2

[VAR ]
x :τ ∈ Γ

Γ ; C ; pc ` x : τ

[REF ]
Γ ; C ; pc ` e : τ C ` pc v τ

Γ ; C ; pc ` refτe : (τ ref)⊥
[DEREF ]

Γ ; C ; pc ` e : (τ ref)`

Γ ; C ; pc `!e : τ t `

[ABS ]
Γ, x :τ ′ ; C′ ; pc′ ` e : τ

Γ ; C ; pc ` λ(x :τ ′)[C′ ; pc′]. e : ((x :τ ′)
C′ ; pc′−−−−→ τ)⊥

[ASSIGN ]

Γ ; C ; pc ` e1 : (τ ref)`

Γ ; C ; pc ` e2 : τ C ` pc t ` v τ

Γ ; C ; pc ` e1 := e2 : unit⊥

[L-APP ]

Γ ; C ; pc ` e1 : ((x :label`′)
C′ ; pc′−−−−→ τ)`

Γ ; C ; pc ` `2 : label`′[`2/x]

C ` pc t ` v pc′[`2/x] C ` C′[`2/x]
x ∈ FV (τ) ∪ FV (`′) ∪ FV (C′) ∪ FV (pc′)

Γ ; C ; pc ` e1 `2 : τ [`2/x] t `
[APP ]

Γ ; C ; pc ` e1 : ((x :τ ′)
C′ ; pc′−−−−→ τ)`

Γ ; C ; pc ` e2 : τ ′

C ` pc t ` v pc′ C ` C′

x /∈ FV (τ) ∪ FV (τ ′) ∪ FV (C′) ∪ FV (pc′)

Γ ; C ; pc ` e1 e2 : τ t `

[PROD ]

Γ ; C ; pc ` v1 : τ1[v1/x] Γ, x :τ1 ` τ2

Γ ; C ; pc ` v2[v1/x] : τ2[v1/x] C ` C′[v1/x]

Γ ; C ; pc ` (x=v1[C
′], v2 :τ2) : ((x :τ1)[C

′] ∗ τ2)⊥
[UNPACK ]

Γ ; C ; pc ` e1 : ((x :τ1)[C
′] ∗ τ2)`

Γ, x :τ1t`, y :τ2t` ; C, C′ ; pc ` e2 : τ

Γ ; C ; pc ` let (x, y)=e1 in e2 : τ

[IF ]

Γ ; C ; pc ` `i : label`′i
i ∈ {1, 2}

Γ ; C, `1 v `2 ; pc t `′1 t `′2 ` e1 : τ
Γ ; C ; pc t `′1 t `′2 ` e2 : τ

Γ ; C ; pc ` if `1 v `2 then e1 else e2 : τ t `′1 t `′2
[SUB ]

Γ ; C ; pc ` e : τ C ` τ ≤ τ ′

Γ ; C ; pc ` e : τ ′

Figure 5: Typing rules for theλDSec language

This assumption also applies to the typing rules.
Rule (S4) is used to determine the subtyping on security types. The premiseC ` β1 ≤ β2 is natural.

The other premiseC ` `1 v `2 guarantees that coercing data fromτ1 to τ2 does not violate information
flow policies.

4.3 Typing

The type system ofλDSec prevents illegal information flows and guarantees that any well-typed program
satisfies the noninterference property discussed in Section 2. The typing rules are shown in Figure 5. The
notation label(β`) = ` is used to obtain the label of a type, and the notations` v τ and τ v ` are
abbreviations for̀ v label(τ) andlabel(τ) v `, respectively.

The typing context includes atype assignmentΓ, a set of constraintsC and the program-counter label
pc. Γ is a finiteorderedlist of x : τ pairs in the order that they came into scope. For a givenx, there is at
most one pairx :τ in Γ.

A variable appearing in a type must be a label variable. Therefore, a typeτ is well-formed with respect
to type assignmentΓ, writtenΓ ` τ , if Γ maps all the variables inτ to label types. The definition of well-
formed labels (Γ ` `) is the same. ConsiderΓ = x1 : τ1, . . . , xn : τn. For any0 ≤ i ≤ n, the typeτi may
only mention label variables that are already in scope:x1 throughxi. Therefore,Γ is well-formed if for any

10



0 ≤ i ≤ n, τi is well-formed with respect tox1 : τ1, . . . , xi : τi. For example, “x : labelL, y : intx” is
well-formed, but “y :intx, x :labelL” is not. A constraint̀ 1 v `2 is well-formed with respect toΓ if both
`1 and`2 are well-formed with respect toΓ. A typing context “Γ ;C ; pc” is well-formed if Γ is well-formed,
andpc and all the constraints inC are well-formed with respect toΓ.

The typing assertionΓ ;C ; pc ` e : τ means that with the type assignmentΓ, current program-counter
label aspc, and the set of constraintsC satisfied, expressione has typeτ . The assertionΓ ;C ; pc ` e : τ is
well-formed ifΓ ;C ; pc is well-formed, andΓ ` τ .

Rules (INT), (UNIT), (LABEL) and (LOC) are used to check values. Valuev has typeβ⊥ if v has base
typeβ. Rule (LOC) requires typed locationmτ contain no label variables so thatmτ remains a constant
during evaluation. This is enforced by the premiseFV (τ) = ∅, whereFV (τ) denotes the set of free
variables appearing inτ .

Rule (VAR) is standard: variablex has typeΓ(x). Rule (JOIN) checks the join of two labels and assigns
a result label that is the join of the labels of the operands.

Rule (REF) checks memory allocation operations. If thepc label is high, the generated memory location
must not be observable to low-security users, which is guaranteed by the premiseC ` pc v τ . Rule
(DEREF) checks dereference expressions. Since some information about a reference can be learned by
knowing its contents, the result of dereferencing a reference with type(τ ref)` has typeτ t `, where
τ t ` = β`′t` if τ is β`′ .

Rule (ASSIGN) checks memory update. As in rule (REF), if the updated memory location has type
(τ ref)`, thenC ` pc v τ is required to prevent illegal implicit flows. In addition, the premiseC `
pc t ` v τ implies another conditionC ` ` v τ that is required to protect the confidentiality of the
reference that is assigned to. Consider the following code that allows low-security users to learn whether
x v L by observing which ofm1 andm2 is updated to0:

λ(x :labelH)[L]. ((if x v L then mintL
1 else mintL

2 ) := 0)

The code is not well-typed because the conditionC ` ` v τ does not hold for the assignment expression.
Rule (ABS) checks function values. The body is checked with the constraint setC ′ and the program-

counter labelpc′, so the function can only be called at places whereC ′ is satisfied and thepc label is not
more restrictive thanpc′.

Rule (L-APP) is used to check applications of dependent functions. Expressione1 has a dependent

function type((x : label`′)
C′ ; pc′−−−−→ τ)`, wherex does appear iǹ′, C ′, pc′ or τ . As a result, rule (L-

APP) needs to usè′[`2/x], C ′[`2/x], pc′[`2/x] and τ [`2/x], which are well-formed sincè2 is a label.
That also explains whye1, with its dependent function type, cannot be applied to an arbitrary expression
e2: substitutinge2 for x in `′, C ′, pc′ andτ may generate ill-formed labels or types, and it is generally
unacceptable for the type checker to evaluatee2 to valuev2 and substitutev2 for x, which would make
type-checking undecidable. The expressiveness ofλDSec is not substantially affected by the restriction that
a dependent function can only be applied to label terms, because the function can be applied to a variable
that receives the result of an arbitrary expression. For example, in the following code, the applicatione1x
indirectly appliese1 to e2:

(λ(x :label`). if x v L then e1x else ())e2

This works as long as the function enclosinge1x is not dependent.
In rule (L-APP), the label ofe1`2 is at least as restrictive as`, preventing the result ofe1 from being

leaked. The premiseC ` C ′[`2/x] guarantees thatC ′[`2/x] are satisfied when the function is invoked. The
premiseC ` pct ` v pc′[`2/x] ensures that the invocation cannot leak the program counter or the function
itself through the memory effects of the function.

Rule (APP) applies whenx does not appear inC ′, pc′ or τ . In this case, the type ofe1 is just a normal
function type, soe1 can be applied to arbitrary terms.

11



Rule (PROD) is used to check product values. To checkv2, the occurrences ofx in v2 andτ2 are both
replaced byv1, sincex is not in the domain ofΓ. If v1 is not a label, thenx cannot appear inτ2. Thus,
τ2[v1/x] is always well-formed no matter whetherv1 is a label or not. Similarly, the occurrences ofx in τ1

andC ′ are also replaced byv1 whenv1 andC ′ are checked.
Rule (UNPACK) checks product destructors straightforwardly. After unpacking the product value, those

product label constraints inC ′ are in scope and used for checkinge2.
Rule (IF) checks label-test expressions. The constraint`1 v `2 is added into the typing context when

checking the first branche1. When checking the branches, the program-counter label subsumes the labels
of `1 and`2 to protect them from implicit flows. The resulting type contains`′1 and`′2 because the result is
influenced by the values of`1 and`2.

Rule (SUB) is the standard subsumption rule. Ifτ is a subtype ofτ ′ with the constraints inC satisfied,
then any expression of typeτ also has typeτ ′.

This type system satisfies the subject reduction property and the progress property, as stated in the
following two theorems. Theorem 4.1 is an instantiation of Theorem 5.1, which is proved in Section 5.

Definition 4.1 (Well-typed memory). A memoryM is well-typed if for any memory locationmτ in M ,
` M(mτ ) : τ .

Theorem 4.1 (Subject reduction).Supposepc ` e : τ , andM is a well-typed memory. If〈e, M〉 7−→
〈e′, M ′〉, thenM ′ is well-typed, andpc ` e′ : τ .

Theorem 4.2 (Progress).If pc ` e : τ , andFV (e) = ∅, andM is a well-typed memory such that〈e, M〉 is
a well-formed configuration, then eithere is a value or there existse′ andM ′ such that〈e, M〉 7−→ 〈e′, M ′〉
andFV (e′) = ∅.

Proof. By induction on the derivation ofpc ` e : τ . The base cases are cases (INT), (UNIT), (LABEL),
(LOC), (ABS), (PROD), in whiche is a value.

• Case (JOIN). In this case,e is `1 t `2. If `1 is not a value, then〈`1, M〉 7−→ 〈`′1, M〉 by induction,
and〈e, M〉 7−→ 〈`′1 t `2, M〉 by rule (E9). If`1 is a value, and̀2 is not a value, then〈e, M〉 7−→
〈`1 t `′2, M〉 by the same argument. Otherwise,`1 and`2 are both values, then〈e, M〉 7−→ 〈k, M〉
by rule (E1), wherek = `1 t `2.

• Case (VAR). SinceFV (e) = ∅, this case cannot occur.

• Case (REF).e is refτ e1. If e1 is not a value, then〈e1, M〉 7−→ 〈e′1, M ′〉 by induction, and
〈refτ e1, M〉 7−→ 〈refτ e′1, M ′〉. If e1 is a valuev, then〈refτ e1, M〉 7−→ 〈mτ , M [mτ 7→ v]〉 by
rule (E3).

• Case (DEREF). By induction and rule (E2).

• Case (ASSIGN). By induction and rule (E4).

• Cases (L-APP) and (APP).e is e1e2. If e1 or e2 is not a value, then〈e, M〉 7−→ 〈e′, M ′〉 by induction
and (E9). Otherwise,e1 is λ(x : τ)[C ; pc]. e′1, ande2 is v. By rule (E5),〈e, M〉 7−→ 〈e′1[v/x], M〉.
SinceFV (e′1) = FV (e1) ∪ {x} = {x}, we haveFV (e′1[v/x]) = ∅.

• Case (UNPACK). By induction and rule (E8).

• Case (IF). By induction and rules (E6) and (E7).

• Case (SUB). By induction.

12



5 Noninterference
This section proves that any well-typed program inλDSec satisfies the noninterference property as discussed
in Section 2. Let7−→∗ denote the transitive closure of the7−→ relationship. The following definitions and
theorem formalize the claim that the type system ofλDSec enforces noninterference. For simplicity, we only
consider that results are integers because they can be compared outside the context ofλDSec .

Definition 5.1 (Well-typed input). An input mapA is well-typed with respect toΓ, writtenΓ ` A, if for
anyx in dom(Γ), we havè A(x) : Γ(x)[A], whereΓ(x)[A] represents the type obtained by substituting
every free variabley in Γ(x) with A(y).

Definition 5.2 (Input low-equivalence). Two input mapsA1 andA2 are equivalent with respect toΓ and
labelH, written asΓ ` A1 ≈H A2, if Γ ` A1, A2, and for anyx in dom(Γ), H 6v Γ(x) impliesA1(x) =
A2(x).

Noninterference Theorem. SupposeL 6v H, andΓ ` e : intL. Given two input mapsA1 andA2 such
thatΓ ` A1 ≈H A2, if 〈e[Ai], M〉 7−→∗ 〈vi, M ′

i〉 for i ∈ {1, 2}, thenv1 = v2.

To prove this noninterference theorem, we adapt the elegant proof technique developed by Pottier and
Simonet for an ML-like security-typed language [26]. Suppose expressione has only one free variablex. To
show that noninterference holds, it is necessary to reason about the executions of two related terms:e[v1/x]
ande[v2/x]. We extendλDSec with a bracket construct(e1 | e2) that represents alternative expressions that
might arise during the evaluation of two programs that differs initially only inv1 andv2. Thene[v1/x]
ande[v2/x] can be incorporated into a single terme[(v1 | v2)/x] in the extended languageλ2

DSec , providing
a syntactic way to reason about two executions. We can show that twoλDSec terms only differ at the
confidential part if the two terms can be encoded by a well-typedλ2

DSec term. Therefore, proving the
noninterference theorem ofλDSec can be reduced to proving the subject reduction theorem ofλ2

DSec . The
major extension to Pottier’s proof technique is that the bracket construct must also be applied to labels.
Because types may contain bracketed labels, the projection operation also applies to typing environments.

The rest of this section details the syntax and semantic extensions ofλ2
DSec and proves the key subject

reduction theorem ofλ2
DSec and the noninterference theorem ofλDSec .

5.1 Syntax extensions

Theλ2
DSec language extendsλDSec with the bracket constructs and a new valuevoid that can have any type:

` ::= . . . | (` | `)
v ::= . . . | (v | v) | void
e ::= . . . | (e | e)

where the ellipses represent the terms also belonging toλDSec . The bracket constructs cannot be nested,
so the subterms of a bracket construct must beλDSec terms orvoid. A λ2

DSec memory encodes twoλDSec

memories, which may have distinct domains. The bindings of the formmτ 7→ (v | void) andmτ 7→
(void | v) represent situations wheremτ is bound within only one of the twoλDSec memories.

Given aλ2
DSec expressione, let bec1 and bec2 represent the twoλDSec terms thate encodes. The

projection functions satisfyb(e1 |e2)ci = ei and are homomorphisms on other expression forms. In addition,
(e1 | e2)[v/x], the capture-free substitution ofv for x in (e1 | e2), must use the corresponding projection of
v in each branch:(e1 | e2)[v/x] = (e1[bvc1/x] | e2[bvc2/x]).

In λ2
DSec , labels can be bracket constructs, and types may contain bracketed labels. Thus, the projection

operation can be applied to labels, types, type assignments, and label constraints. Similarly, the projection
functions are homomorphisms on these typing constructs. For example,bint(L | H)c1 = intL, andbx :
τ, y :τ ′c1 = x :bτc1, y :bτ ′c1.

13



The following relabeling rule is added to reason about relabeling relationship between bracketed labels:

bCc1 ` b`1c1 v b`2c1 bCc2 ` b`1c2 v b`2c2
C ` `1 v `2

5.2 Operational semantics

Since aλ2
DSec term effectively encodes twoλDSec terms, the evaluation of aλ2

DSec term can be projected
into twoλDSec evaluations. An evaluation step of a bracket expression(e1 |e2) is an evaluation step of either
e1 or e2. ande1 or e2 can only access the corresponding projection of the memory. Thus, the configuration
of λ2

DSec has an indexi ∈ {•, 1, 2} that indicates whether the term to be evaluated is a subterm of a bracket
expression, and if so which branch of a bracket the term belongs to. For example, the configuration〈e, M〉1
means thate belongs to the first branch of a bracket, ande can only access the first projection ofM . We
write “〈e, M〉” for “ 〈e, M〉•”, which meanse does not belong to any bracket.

The operational semantics ofλ2
DSec is shown in Figure 6. It is based on the semantics ofλDSec and

contains some new evaluation rules (E10–E14) for manipulating bracket constructs. Rules (E2)–(E4) are
modified to access the memory projection corresponding to indexi. The rest of the rules in Figure 2 are
adapted toλ2

DSec by indexing each configuration withi. The following two lemmas state that the operational
semantics ofλ2

DSec satisfies (A1) and (A2), and is adequate to encode the execution of twoλDSec terms.

Lemma 5.1 (Soundness).If 〈e, M〉 7−→ 〈e′, M ′〉, then〈beci, bMci〉 7−→∗ 〈be′ci, bM ′ci〉 for i ∈ {1, 2}.

Proof. By inspection of the evaluation rules.

Lemma 5.2 (Completeness).If 〈beci, bMci〉 7−→∗ 〈vi, M ′
i〉 for i ∈ {1, 2}, then there exists a configura-

tion 〈v, M ′〉 such that〈e, M〉 7−→∗ 〈v, M ′〉.

Proof. First, 〈e, M〉 cannot admit an infinite evaluation sequence. Rules (E11)–(E16) can only be applied
for finite times because each of these rules moves some pair constructor strictly closer to the term’s root.
These rules are the only rules that leave both projections of a configuration unchanged. Therefore, by
Lemma 5.1, an infinite evaluation sequence of〈e, M〉 implies that for somei ∈ {1, 2}, 〈beci, bMci〉
admits an infinite evaluation sequence, which contradicts〈beci, bMci〉 7−→∗ 〈vi, M ′

i〉, since the operational
semantics ofλDSec is deterministic.

By induction on the structure ofe, we can prove that if〈e, M〉 is stuck, then〈beci, bMci〉 for some
i ∈ {1, 2} is also stuck. Therefore,〈e, M〉 cannot be stuck, and then it must terminate normally.

5.3 Typing and subject reduction

The type system ofλ2
DSec includes all the typing rules in Figure 5 and has two additional rules, one for

typingvoid, the other for typing bracket constructs.

[VOID] Γ ;C ; pc ` void : τ

[BRACKET ]

bΓc1 ;bCc1 ;bpc′c1 ` e1 : bτc1
bΓc2 ;bCc2 ;bpc′c2 ` e2 : bτc2

H t pc v pc′ H v τ

Γ ;C ; pc ` (e1 | e2) : τ

Before proving theλ2
DSec type system satisfies the subject reduction property, we first prove some lem-

mas about projection and substitution.

14



[E2] 〈!mτ , M〉i 7−→ 〈readi M(mτ ), M〉i

[E3 ]
m = newloc(M)

〈refτv, M〉i 7−→ 〈mτ , M [mτ 7→ newi v]〉i

[E4] 〈mτ := v, M〉i 7−→ 〈(), M [mτ 7→ updatei M(mτ ) v]〉i

[E10 ]
〈ei, M〉i 7−→ 〈e′i, M ′〉i ej = e′j {i, j} = {1, 2}

〈(e1 | e2), M〉 7−→ 〈(e′1 | e′2), M ′〉

[E11] 〈(v1 | v2)v, M〉 7−→ 〈(v1bvc1 | v2bvc2), M〉

[E12] 〈(v1 | v2) := v, M〉 7−→ 〈(v1 := bvc1 | v2 := bvc2), M〉

[E13] 〈!(v1 | v2), M〉 7−→ 〈(!v1 | !v2), M〉

[E14] 〈if v1 v v2 then e1 else e2, M〉 7−→ 〈(if bv1c1 v bv2c1 then be1c1 else be2c1 |
if bv1c2 v bv2c2 then be1c2 else be2c2),M〉

if v1 = (v | v′) or v2 = (v | v′)

[E15] 〈v1 t v2, M〉 7−→ 〈(bv1c1 t bv2c1 | bv1c2 t bv2c2), M〉 if v1 = (v | v′) or v2 = (v | v′)

[E16] 〈let (x, y)=((x=v1[C], v2 :τ) | (x=v′
1[C

′], v′
2 :τ ′)) in e, M〉 7−→ 〈e[(v2 | v′

2)/y][(v1 | v′
1)/x], M〉

[Auxiliary functions]

new• v = v update• vv′ = v′ read• v = v
new1 v = (v | void) update1 vv′ = (v′ | bvc2) read1 v = bvc1
new2 v = (void | v) update2 vv′ = (bvc1 | v′) read2 v = bvc2

Figure 6: Small-step operational semantics ofλ2
DSec

Lemma 5.3 (Label Projection). If C ` `1 v `2, thenbCci ` b`1ci v b`2ci for i ∈ {1, 2}.

Proof. By induction on the derivation ofC ` `1 v `2.

Lemma 5.4 (Constraint Reduction). If Γ ;C, `1 v `2 ; pc ` e : τ andC ` `1 v `2, thenΓ ;C ; pc ` e : τ .

Proof. By induction on the derivation ofΓ ;C, `1 v `2 ; pc ` e : τ .

Lemma 5.5 (Projection). If Γ ;C ; pc ` e : τ , thenbΓci ;bCci ;bpcci ` beci : bτci, for i ∈ {1, 2}.

Proof. By induction on the derivation ofΓ ;C ; pc ` e : τ , and using the label projection lemma.

Lemma 5.6 (Store Access).Let i be in{•, 1, 2}. Supposepc ` v : τ andpc ` v′ : τ . In addition,i ∈ {1, 2}
impliesH v τ . Thenpc ` readi v : bτci, pc ` newi v : τ andpc ` updatei vv′ : τ .

Proof. By the definition of the functionsread, new andupdate in Figure 6, by the projection lemma, and
rules (VOID) and (BRACKET).

Lemma 5.7 (Substitution). If x : τ ′,Γ ;C ; pc ` e : τ , and` v : τ ′[v/x], thenΓ[v/x] ; C[v/x] ; pc[v/x] `
e[v/x] : τ [v/x].

15



Proof. By induction on the derivation ofx :τ ′,Γ ;C ; pc ` e : τ .

Theorem 5.1 (Subject reduction).Supposepc ` e : τ , memoryM is well-typed,〈e, M〉i 7−→ 〈e′, M ′〉i,
andi ∈ {1, 2} impliesH v pc. Thenpc ` e′ : τ , andM ′ is also well-typed.

Proof. By induction on the derivation of〈e, M〉i 7−→ 〈e′, M ′〉i. Without loss of generality, we assume
that the last step of the derivation ofpc ` e : τ does not use the rule (SUB). Suppose the derivation of
pc ` e : τ ends with using (SUB). Then there existsτ ′ such thatpc ` e : τ ′, andτ ′ ≤ τ , and the derivation
of pc ` e : τ ′ does not end with using (SUB). If we can showpc ` e : τ ′, which satisfies the assumption,
thenpc ` e : τ by (SUB). Therefore, the assumption does not lose generality.

Here we just show eight cases: (E3), (E5), (E6), (E8), (E10), (E11), (E14) and (E16). The rest of
evaluation rules are treated similarly.

• Case (E3).e is refτ ′ v, andτ is (τ ′ ref)⊥. Thene′ is mτ ′ . By (LOC), pc ` e′ : (τ ′ ref)⊥. By
Lemma 5.6,pc ` newiv : τ ′. Thus,M [mτ ′ 7→ newiv] is well-typed.

• Case (E5).e is (λ(x : τ ′)[C ′ ; pc′]. e′)v. Thenpc ` λ(x : τ ′)[C ′ ; pc′]. e′ : ((x : τ ′′)
C′′ ; pc′′−−−−−→ τ1)`, and

pc ` v : τ ′′, and` C ′′[v/x]. By rules (APP) and (L-APP),τ = τ1[v/x] t `, andpc v pc′′[v/x].
By rules (ABS) and (SUB),x : τ ′ ;C ′ ; pc′ ` e′ : τ1, and` τ ′′ ≤ τ ′, ` pc′′ v pc′, andC ′′ ` C ′.
Therefore,̀ C ′[v/x], andpc v pc′[v/x]. By the substitution lemma,C ′[v/x] ; pc′[v/x] ` e′[v/x] :
τ1[v/x]. By Lemma 5.4,pc′[v/x] ` e′[v/x] : τ1[v/x]. Sincepc v pc′[v/x] andτ1[v/x] v τ , we have
pc ` e′[v/x] : τ .

• Case (E6). By rule (IF),k1 v k2 ; pc ` e1 : τ . By Lemma 5.4 andL |= k1 v k2, we havepc ` e1 : τ .

• Case (E8).e is let (x, y)=(x=v1[C], v2 :τ2) in e′. By rule (UNPACK),pc ` (x=v1[C], v2 :τ2) :
((x : τ1)[C] ∗ τ2)`, andx : τ1 t `, y : τ2 t ` ; pc ` e′ : τ . By rule (PROD),pc ` v1 : τ1[v1/x], and
pc ` v2[v1/x] : τ2[v1/x], and` C[v1/x]. Using the substitution lemma twice, we getC[v1/x] ; pc `
e′[v1/x][v2[v1/x]/y] : τ [v1/x][v2[v1/x]/y]. It is straightforward to show thate′[v1/x][v2[v1/x]/y] =
e′[v2/y][v1/x]. According to rule (UNPACK),x, y 6∈ FV (τ). Thus,τ [v1/x][v2[v1/x]/y] = τ . In
addition, we havè C[v1/x]. Therefore,pc ` e[v1/x][v2/y] : τ .

• Case (E10).e is (e1 | e2). Without loss of generality, assume〈e1, M〉1 7−→ 〈e′1, M ′〉1 ande2 = e′2.
By rule (BRACKET),H v pc, andbpcc1 ` e1 : bτc1. H v pc impliesH v bpcc1. By induction,
bpcc1 ` e′1 : bτc1, andM ′ is well-typed. Using rule (BRACKET), we can getpc ` (e′1 | e′2) : τ .

• Case (E11).e is (v1 | v2)v. By (APP) and (L-APP),pc ` (v1 | v2) : ((x :τ ′)
C′ ; pc′−−−−→ τ ′′)`, andpc ` v :

τ ′. Thenτ = τ ′′[v/x]t`. In addition,pct` v pc′. By (BRACKET),H v `, which impliesH v pc′.

By Lemma 5.5,bpcci ` vi : ((x : bτ ′ci)
bC′ci ;bpc′ci−−−−−−−→ bτci)b`ci

, andbpcci ` bvci : bτ ′ci, which
imply bpcci ` vibvci : bτci. According to (APP) and (L-APP), a well-typed application expression
e1e2 can be type-checked with thepc component of the type ofe1 in the typing context. Therefore,
bpc′ci ` vibvci : bτci. SinceH v pc′, we can apply (BRACKET) to getpc ` (v1bvc1 | v2bvc2) : τ .

• Case (E14).e is if v1 v v2 then e1 else e2, and there existsj ∈ {1, 2} such thatvj = (v | v′).
Supposepc ` vi : label`i

for i ∈ {1, 2}. Sincevj is a bracket construct,H v `j . By (IF), bothe1

ande2 are type-checked withpct `1 t `2 in the typing context. Thus, we can getpct `1 t `2 ` e : τ .
By Lemma 5.5,bpc t `1 t `2ci ` beci : bτci. H v `j implies H v bpc t `1 t `2ci. Applying
(BRACKET), we getpc ` (bec1 | bec2) : τ .

16



• Case (E16).e is let (x, y) = ((x = v1[C], v2 : τ) | (x = v′1[C
′], v′2 : τ ′)) in e′. Suppose expression

((x=v1[C], v2 :τ) | (x=v′1[C
′], v′2 :τ ′)) has type(x :τ1)[C0] ∗ τ2)⊥. It is easy to show that(v1 | v′1)

and(v2 |v′2) have typeτ1 andτ2 respectively. Then this case is reduced to case (E8), which is standard.

5.4 Noninterference proof

Theorem 5.2 (Noninterference).SupposeL 6v H, andΓ ` e : intL. Given two input mapsA1 andA2

such thatΓ ` A1 ≈H A2, if if 〈e[Ai], M〉 7−→∗ 〈vi, M ′
i〉 for i ∈ {1, 2}, thenv1 = v2.

Proof. First, we incorporateA1 andA2 into aλ2
DSec input mapA such that for anyx in dom(Γ), A(x) =

A1(x) if A1(x) = A2(x), andA(x) = (A1(x) | A2(x)) if otherwise. SinceΓ ` A1 ≈H A2, A(x) is a
bracket construct only ifH v Γ(x)[A1] andH v Γ(x)[A2], or equivalently,H v Γ(x)[A]. Therefore,A is
a well-typed input map with respect toΓ. By Lemma 5.7,̀ e[A] : intL.

Because〈e[Ai], M〉 7−→∗ 〈vi, M ′
i〉 and e[Ai] = be[A]ci for i ∈ {1, 2}, 〈e[(v1 | v2)/x], M〉 7−→∗

〈v, M ′〉 by Lemma 5.2. Moreover,̀ v : intL by Theorem 5.1. Thus,v is not a bracket value, and
bvc1 = bvc2. By Lemma 5.1,〈e[Ai], M〉 7−→∗ 〈bvci, bM ′ci〉 for i ∈ {1, 2}. Since the operational
semantics ofλDSec is deterministic, we havev1 = bvc1 andv2 = bvc2, which implyv1 = v2.

6 Dynamic labels in practice
The simplicity ofλDSec helps proving the correctness of its dynamic label mechanism, but makesλDSec

impractical to use. This section shows that the dynamic label mechanism ofλDSec can be applied to a
practical programming language such as Jif. First, we show that the existing dynamic label mechanism of
Jif can be interpreted usingλDSec . Second, we propose an extension to the dynamic label mechanism of Jif
based onλDSec .

6.1 Dynamic labels in Jif

Jif [24] is the only implemented security-typed language supporting dynamic labels. Jif extends the Java
language [14] with static information flow control. Jif aims to provide a usable programming model, in
which the dynamic label mechanism plays an important role.

In Jif, labels can also be used as first-class values, and a variable of typelabel may be used as a label for
other values. Jif provides theswitch label statement for run-time label tests. For example, the following
code uses theswitch label statement to send a value through a communication channel with a dynamic
label:

(A) final label{L} x;
Channel{*x} c;
int{H} y;
switch label(y) {

case (int{*x} z) c.send(z);
else throw new UnsafeTransfer();

}

Thesend operation is secure only ifx is a high-security label, which has to be determined at run time. The
notation*x refers to the label value ofx; it can be used as a label only ifx is declared as afinal variable,
to prevent assignments from changing the meaning of types that mention it. In the example, theswitch
label statement executes the first of the cases whose associated label is at least as restrictive as that ofy.
The value ofy is assigned to the corresponding variable (for example,z). In this example, the first case will
be executed only ifH v ∗x, guaranteeing thatc is a high-security channel.

17



In general, the statementswitch label(e){case (int{`} x) S1; else S2} can be encoded as the
following pseudo-code inλDSec :

if `e v ` then (λ(x :int`)[pc]. S1) e else S2

where`e represents the label ofe, andpc is an upper bound to the labels of the effects ofS1. By rule (IF),
`1 t `2 v pc needs to hold, wherè1 and`2 are the labels of̀e and`, respectively. Indeed, the type system
of Jif ensures̀1 t `2 v pc.

In Jif, labels are specified using thedecentralized label model[23]. These labels may explicitly mention
principals. For example, a value with typeint{Alice:Bob} is an integer owned by principalAlice and
readable byAlice andBob. Like labels, principals may also be used as first-class values at run time. The
statementactsFor(p1, p2)S executes the statementS if the principalp1 can act for the principalp2.
This acts-for relationship betweenp1 andp2 is equivalent to{p2:} v {p1:}. Thus theactsFor statement
essentially implements a run-time label test, and can be encoded as:

if {p2:} v {p1:} then S else ()

The Jif type system checksS with a program counter labelpc such that̀ 1 t `2 v pc, where`1 and`2 are
the labels ofp1 andp2, respectively. This is consistent with the type system ofλDSec .

6.2 The Jif-DX language

The original Jif dynamic label mechanism appears to be sound but has several limitations. First, label
checking of the clauses of aswitch label statement does not fully exploit the label constraint enforced
by the run-time test. Second, Jif supports only one kind of statically specified label constraints:actsFor
constraints, which give information about principals but are not as powerful as general label constraints.
Third, in Jif only variables or fields of the enclosing class declaration can be used as dynamic labels, but in
practice other expressions may be useful in dynamic labels.

These limitations of Jif make it difficult or awkward to write some applications that need to manipulate
dynamic labels. Therefore, we propose the Jif-DX language, which extends Jif with a better dynamic label
mechanism, including the label-test statement, method and field label constraints, and more general label
expressions1. These new language features are based on the constructs ofλDSec . In particular, the label-
test statement resembles the label-test expression ofλDSec ; a method label constraint corresponds to the
label constraint component of a lambda term; a field label constraint corresponds to the label constraint
component in a pair value.

6.2.1 The label-test statement

Jif-DX provides the label-test statement, which is a more flexible way to implement run-time label checks
than theswitch label statement. The label-test statement resembles the conditional label-test expression
of λDSec , except that the conditional branches are statements instead of expressions: “if (`1<=`2) S1

else S2”. Intuitively, S1 is executed if̀ 1 v `2 is true at run time; otherwise,S2 is executed. As inλDSec ,
`1 v `2 can be assumed to hold when type-checkingS1.

Both theswitch label statement and theactsFor statement in Jif can be encoded with the label-test
statement. For example, the statement “actsFor(p1, p2) S” is equivalent to “if ({p2:} <= {p1:}) S”.

1Some of the proposed features have been incorporated into Jif version 3.0.

18



6.2.2 Method label constraints

Jif-DX allows general label constraints to be specified in method signatures, whereas Jif only provides
actsFor constraints. The following example shows a use of a label constraint on a method:

(B) class Key[principal p] {
int{} encrypt(label{} lb, int{*lb} x) where {*lb} <= {p:} { ... }

}

The classKey[principal p] represents a key belonging to principalp. Theencrypt method takes in
a labellb and an integerx labeled with{*lb}, and attempts to encryptx with the key of principalp and
return the encrypted result as a public integer. This method should only encrypt the data owned by principal
p, because the result can be decrypted byp. This requirement is captured by the method label constraint
{*lb} v {p:}. The compiler ensures that the constraint is satisfied wherever this method is called.

Another way to write this code would be to insert a run-time check in the method body and make the
method throw an exception if{*lb} v {p:} is not satisfied at run time. This code would incur some
unnecessary run-time label checks, and the caller would have to handle the exception somehow. Indeed,
one advantage of the method label constraint is its ability to exploit information available at the caller side
to reduce the number of run-time checks. For example, in the following Jif-DX code the compiler can
determine that the method constraint is satisfied without a run-time check:

(C) Key[Alice]{} k;
int{Alice:Bob} x;
k.encrypt({Alice:Bob}, x);

6.2.3 Field label constraints

In Jif-DX, label constraints can also be specified on class fields of typelabel. The compiler ensures that
the field label constraints of a class are satisfied whenever a new instance of the class is created. All fields
appearing in a label constraint must be final, so field label constraints that are satisfied when an object is
created will hold for the lifetime of the object.

Like method label constraints, field label constraints can be used to reduce the number of run-time label
checks. For example, sending an integer through a multilevel communication channel with label` requires
sending the exact label of the integer through the channel. The natural way to implement it is to wrap the
integer and its label in an object of theLabeled class and send the object through the channel.

(D) class Labeled {
public final label{`} lb;
public int{*lb} content;
public Labeled(label{`} x, int{*x} y) { lb = x; content = y; }

}

The label of fieldlb is `, ensuring thatlb itself can be sent through the channel. But the label of field
content is dynamic, and the constraint{*lb} v ` needs to hold for fieldcontent to be sent safely
through the channel. This constraint can be enforced by a run-time label check, but it can also be enforced
statically by specifying a field label constraint{*lb} v `, as in theUBLabeled (“UB” stands for upper
bound) class. Sending aUBLabeled object through a channel with label` is always safe.

(E) class UBLabeled {
public final label{`} lb where {*lb} <= `;
public int{*lb} content;
public UBLabeled(label{`} x, int{*x} y) where {*x} <= ` {

19



lb = x; content = y;
}

}

6.2.4 Path-expression labels

Consider theLabeled class again, and supposeo is aLabeled object. Then what is the type ofo.content?
According to theLabeled class, the precise type would beint{*o.lb}, which cannot be expressed in Jif
because Jif does not allowpath expressionssuch aso.lb to appear in labels.

In Jif-DX, a path expression with the typelabel can be used in label expressions as long as all the
identifiers in the path expression are final, ensuring that the path expression always has the same value. For
example, ifo is a final variable, then{*o.lb} is a legitimate label, and the following code can be used to
accesso.content while preserving its precise type.

(F) int{*o.lb} y = o.content;

If o were not a final variable, theno.content would not be well-typed in Jif-DX. But there is an easy
workaround: assigno to a final variablefo and access thecontent field by fo.content, which has a
well-formed typeint{*fo.lb}. This workaround is like unpacking a pair value inλDSec .

6.2.5 Example: bounded dynamic labeling

In this section, we show how to use the new dynamic label constructs in Jif-DX to implement a MAC
mechanism, which would be much harder and unintuitive to implement in Jif. The MAC mechanism in the
MITRE CMW system [34] associates two labels with each object: afloating labeland a fixedmandatory
label. The floating label is updated accordingly when the content of the object is updated, but is bounded by
the fixed mandatory label in order to prevent the covert channel caused by label updates. The doubly labeled
object can be represented by aUBLabeled (see code fragment E) object in Jif-DX, and the policy that the
floating label be bounded by the mandatory label is represented by the field constraint{*lb} v `, where
{*lb} is the floating label, and̀ is the mandatory label.

The following code shows how to update the label and access the content of aUBLabeled object. Simple
as it is, this example demonstrates several subtle issues related to manipulating dynamic labels.

(G) UBLabeled o;
final label{} x, y;
int{*x} data;
...

(1) if ({*x} <= `) o = new UBLabeled(x, data);
final UBLabeled{} fo = o;

(2) if ({*fo.lb} <= {*y})
if ({*y} <= `) o = new UBLabeled(y, fo.content);

(3) int{`} output = fo.content;
int{Alice:} output2;

(4) if ({*fo.lb} <= {Alice:}) output2 = fo.content;

The first label-test statement (1) attempts to update the content ofo, and the constraint{*x} <= ` guarantees
the label of the new value is bounded by the mandatory label`. The constructor callnew UBLabeled(x,
data) is well-typed because of the constraint{*x} v ` enforced by the label test.

The second label-test statement (2) attempts to just update the label field ofo to y. The first test
{*fo.lb} <= {*y} is necessary fornew UBLabeled(y, fo.content) to be well-typed, because the type

20



of fo.content (int{*fo.lb}) must be a subtype ofint{*y}. Essentially, the constraint prevents down-
grading the label of the object content. Furthermore, this example shows that the immutability requirement
for label fields is not a fundamental limitation because adding a level of indirection makes it possible to
updateo.lb even though the fieldlb is final.

The last two statements (3,4) attempt to accesso.content. The assignment tooutput is well-typed
because of the field label constraint{*fo.lb} v `. The assignment tooutput2 might appear secure
because a label test is used to ensure the label ofoutput2 is at least as restrictive as the label offo.content.
However, there is an implicit flow fromfo.lb to output2 in the label-test statement. The implicit flow is
legal only if ` v {Alice:}, which prevents a possible covert channel caused by dynamic labeling.

7 Related Work
Dynamic information flow control mechanisms [33, 34] track security labels dynamically and use run-time
security checks to constrain information propagation. These mechanisms are transparent to programs, but
they cannot prevent illegal implicit flows arising from the control flow paths not taken at run time.

Various general security models [18, 30, 12] have been proposed to incorporate dynamic labeling. Unlike
noninterference, these models define what it means for a system to be secure according to a certain relabeling
policy, which may allow downgrading labels.

Using static program analysis to check information flow was first proposed by Denning and Denning [8];
later work phrased the analysis as type checking (e.g., [25]). Noninterference was later developed as a more
semantic characterization of security [13], followed by many extensions. Volpano, Smith and Irvine [32] first
showed that type systems can be used to enforce noninterference, and proved a version of noninterference
theorem for a simple imperative language, starting a line of research pursuing the noninterference result for
more expressive security-typed languages. Heintze and Riecke [15] proved the noninterference theorem for
the SLam calculus, a purely functional language. Zdancewic and Myers [37] investigated a secure calculus
with first-class continuations and references. Pottier and Simonet [26] considered an ML-like functional
language and introduced the proof technique that is extended in this paper. A more complete survey of
language-based information-flow techniques can be found in [28, 40].

One problem with type-based static information flow analyses is that they tend to be conservative and
may identify information flows that do not exist. For example, consider the following code:

if s <= 0 then x := 0 else x := 0

in whichx does not depend ons, but most security type systems still ensure`s v `x. Some recent work [2,
16] partially addresses this problem by using flow-sensitive static analyses.

The Jif language [21, 24] extends Java with a type system for analyzing information flow, and aims to be
a practical language for developing secure applications. However, there is not yet a noninterference proof
for the type system of Jif, because of its complexity. This work is inspired by the dynamic label mechanism
of Jif, although the dynamic label mechanism inλDSec is more expressive. Jif provides two constructs
for run-time label tests: theswitch-label statement and theactsFor statement, both of which can be
encoded using the label-test expression inλDSec . The typing rules forswitch-label andactsFor are as
restrictive as the typing rule of the label-test expression. Thus, the noninterference result forλDSec provides
strong evidence that these dynamic label constructs in Jif are secure.

Banerjee and Naumann [5] proved a noninterference result for a Java-like language with simple access
control primitives. Unlike inλDSec , run-time access control in their language is separate from information
flow control in the sense that the result of a run-time access check does not affect the security of any
information flow in a program.

Concurrent to our work, Tse and Zdancewic proved a noninterference result for a security-typed lambda
calculus (λRP) with run-time principals [31]. Run-time principals are closely related to dynamic labels, as

21



labels are composed of principals in the decentralized label model of Jif. However,λRP does not support
references or existential types, which makes it unable to represent dynamic security policies that may be
changed at run time, such as file permissions. As discussed in Section 1, modeling real systems requires
this ability. By comparison, inλDSec the label stored in a reference may be updated at run time, and
with dependent existential types, we can ensure that a piece of data and its label are updated consistently.
In addition, support for references makesλDSec more powerful thanλRP computationally. TheλRP type
system uses singleton types (types containing only one value [3]) for relating type information to term-
level constructs. We have chosen to use dependent types because it is the approach used by Jif, and the
approach based on singleton types neither provides more expressiveness nor simplifies the type system or
the noninterference proof in any substantial way. In general, we feel that the choice between dependent
types and singletons is a matter of taste.

Other work [36, 35] has used dependent type systems to specify complex program invariants and to
statically catch program errors considered run-time errors by traditional type systems. This work also makes
a trade-off between expressive power and practical type checking.

8 Conclusions
This paper formalizes computation and static checking of dynamic labels in the type system of a core
languageλDSec and proves a noninterference result: well-typed programs have the noninterference property.
The languageλDSec is the first language supporting general dynamic labels whose type system is proved to
enforce noninterference. Based on the dynamic label mechanism ofλDSec , we propose an extension to Jif,
making it easier to write programs manipulating dynamic labels efficiently.

An important direction for future work is to investigate the interaction between dynamic labels and
parametric polymorphism.

Acknowledgements
The authors would like to thank Greg Morrisett, Steve Zdancewic and Amal Ahmed for their insightful
suggestions. Many thanks also to Steve Chong, Nate Nystrom, Michael Clarkson, and the anonymous
reviewers, who all provided useful feedbacks on earlier drafts of this paper.

This work was supported by the Department of the Navy, Office of Naval Research, under ONR Grant
N00014-01-1-0968. Any opinions, findings, conclusions, or recommendations contained in this material are
those of the authors and do not necessarily reflect views of the Office of Naval Research. This work was
also supported by the National Science Foundation under grants 0208642, 0133302, and 0430161, and by
an Alfred P. Sloan Research Fellowship.

References
[1] Johan Agat. Transforming out timing leaks. InProc. 27th ACM Symp. on Principles of Programming Languages (POPL),

pages 40–53, Boston, MA, January 2000.

[2] Torben Amtoft and Anindya Banerjee. Information flow analysis in logical form. InThe Eleventh International Symposium
on Static Analysis Proceedings, pages 100–115, Verona, Italy, 2004.

[3] David Aspinall. Subtyping with singleton types. InComputer Science Logic (CSL), Kazimierz, Poland, pages 1–15. Springer-
Verlag, 1994.

[4] Anindya Banerjee and David A. Naumann. Secure information flow and pointer confinement in a Java-like language. InProc.
15th IEEE Computer Security Foundations Workshop, June 2002.

[5] Anindya Banerjee and David A. Naumann. Using access control for secure information flow in a Java-like language. InProc.
16th IEEE Computer Security Foundations Workshop, pages 155–169, June 2003.

[6] D. E. Bell and L. J. LaPadula. Secure computer systems: mathematical foundations and model. Technical Report M74-244,
MITRE Corp., Bedford, MA, 1973.

[7] Dorothy E. Denning.Cryptography and Data Security. Addison-Wesley, Reading, Massachusetts, 1982.

22



[8] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure information flow.Comm. of the ACM,
20(7):504–513, July 1977.

[9] Department of Defense.Department of Defense Trusted Computer System Evaluation Criteria, DOD 5200.28-STD (The
Orange Book) edition, December 1985.

[10] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David Ziegler, Eddie Kohler, David Mazières, Frans
Kaashoek, and Robert Morris. Labels and event processes in the Asbestos operating system. InProc. 20th ACM Symp. on
Operating System Principles (SOSP), October 2005.

[11] J. S. Fenton. Memoryless subsystems.Computing J., 17(2):143–147, May 1974.

[12] Simon Foley, Li Gong, and Xiaolei Qian. A security model of dynamic labeling providing a tiered approach to verification.
In IEEE Symposium on Security and Privacy, pages 142–154, Oakland, CA, 1996. IEEE Computer Society Press.

[13] Joseph A. Goguen and Jose Meseguer. Security policies and security models. InProc. IEEE Symposium on Security and
Privacy, pages 11–20, April 1982.

[14] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The Java Language Specification. Addison Wesley, 2nd edition,
2000. ISBN 0-201-31008-2.

[15] Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming with secrecy and integrity. InProc. 25th ACM Symp.
on Principles of Programming Languages (POPL), pages 365–377, San Diego, California, January 1998.

[16] Sebastian Hunt and David Sands. On flow-sensitive security types. InProc. 33th ACM Symp. on Principles of Programming
Languages (POPL), pages 79–90, Charleston, South Carolina, USA, January 2006.

[17] M. Douglas McIlroy and James A. Reeds. Multilevel security in the UNIX tradition.Software—Practice and Experience,
22(8):673–694, August 1992.

[18] John McLean. The algebra of security. InIEEE Symposium on Security and Privacy, pages 2–7, Oakland, California, 1988.

[19] Catherine Meadows. Policies for dynamic upgrading. InDatabase Security, IV: Status and Prospects, pages 241–250. North
Holland, 1991.

[20] John C. Mitchell.Foundations for Programming Languages. The MIT Press, Cambridge, Massachusetts, 1996.

[21] Andrew C. Myers. JFlow: Practical mostly-static information flow control. InProc. 26th ACM Symp. on Principles of
Programming Languages (POPL), pages 228–241, San Antonio, TX, January 1999.

[22] Andrew C. Myers and Barbara Liskov. A decentralized model for information flow control. InProc. 17th ACM Symp. on
Operating System Principles (SOSP), pages 129–142, Saint-Malo, France, 1997.

[23] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized label model.ACM Transactions on Software
Engineering and Methodology, 9(4):410–442, October 2000.

[24] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and Nathaniel Nystrom. Jif: Java information flow.
Software release, at http://www.cs.cornell.edu/jif, July 2001–.

[25] Jens Palsberg and Peter Ørbæk. Trust in theλ-calculus. InProc. 2nd International Symposium on Static Analysis, number
983 in Lecture Notes in Computer Science, pages 314–329. Springer, September 1995.

[26] François Pottier and Vincent Simonet. Information flow inference for ML. InProc. 29th ACM Symp. on Principles of
Programming Languages (POPL), pages 319–330, 2002.

[27] Andrei Sabelfeld and Heiko Mantel. Static confidentiality enforcement for distributed programs. InProceedings of the 9th
International Static Analysis Symposium, volume 2477 ofLNCS, Madrid, Spain, September 2002. Springer-Verlag.

[28] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.IEEE Journal on Selected Areas in
Communications, 21(1):5–19, January 2003.

[29] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler, David Andersen, and Jay Lepreau. The flask security architec-
ture: System support for diverse security policies. InThe Eighth USENIX Security Symposium Proceedings, pages 123–139,
August 1999.

[30] Ian Sutherland, Stanley Perlo, and Rammohan Varadarajan. Deducibility security with dynamic level assignments. InProc.
2nd IEEE Computer Security Foundations Workshop, Franconia, NH, June 1989.

[31] Stephen Tse and Steve Zdancewic. Run-time principals in information-flow type systems. InIEEE Symposium on Security
and Privacy, Oakland, CA, May 2004.

[32] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure flow analysis.Journal of Computer
Security, 4(3):167–187, 1996.

[33] Clark Weissman. Security controls in the ADEPT-50 time-sharing system. InAFIPS Conference Proceedings, volume 35,
pages 119–133, 1969.

23



[34] John P. L. Woodward. Exploiting the dual nature of sensitivity labels. InIEEE Symposium on Security and Privacy, pages
23–30, Oakland, California, 1987.

[35] Hongwei Xi. Imperative programming with dependent types. InProceedings of 15th Symposium on Logic in Computer
Science, Santa Barbara, June 2000.

[36] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. InProc. 26th ACM Symp. on Principles of
Programming Languages (POPL), pages 214–227, San Antonio, TX, January 1999.

[37] Steve Zdancewic and Andrew C. Myers. Secure information flow via linear continuations.Higher Order and Symbolic
Computation, 15(2–3):209–234, September 2002.

[38] Steve Zdancewic and Andrew C. Myers. Observational determinism for concurrent program security. InProc. 16th IEEE
Computer Security Foundations Workshop, pages 29–43, Pacific Grove, California, June 2003.

[39] Lantian Zheng and Andrew C. Myers. Dynamic security labels and noninterference. InProc. 2nd Workshop on Formal
Aspects in Security and Trust, IFIP TC1 WG1.7. Springer, August 2004.

[40] Lantian Zheng and Andrew C. Myers. Dynamic security labels and noninterference. Technical Report 2004–1924, Cornell
University Computing and Information Science, 2004.

24


