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Abstract

After changes are made to a previously tested program, a goal of regression testing is to perform
retesting based on the modifications while maintaining the same testing coverage as completely
retesting the programie present a novel approach to data flow based regression testing that uses
slicing algorithms to explicitly detect definition-use associatitimst are dected by a program
change. Animportant benefit of our slicing technique is that, unlike previous techniques, neither
data flow history nor recomputation of data flow for the entire program is required to detect
affected definition-use associationBhe program changes drive the recomputation of the required
partial data flow through slicingAnother advantage is that our technique achieves the same test-
ing coverage with respect to thdeafted definition-use associations as a complete retest of the
program without maintaining &est suite.Thus, the overhead of maintaining and updating a test
suite is eliminated.

1. Introduction

Although software may have been completely tested during its development to satisfy some adequacy crite-
rion, program changes during maintenance require that parts of the software be r&egtskion testings the
process of validating modified parts of the software, and ensuring that no new errors are introduced into previously
tested codeln addition to testing the changed code, regression testing must retest parts of the pfegtadhtsfa
change. Aselectiveapproach to regression testing attempts to identify and retest only those parts of the program
that are dected by a changeThere are two important problems in selective regression testing: (1) identifying those
existing tests that must be rerun since they may exhili@reift behavior in the changed program and (2) identify-
ing those program components that must be retested to satisfy some coverage critesiovork focuses on the
second problem in that it identifies program components to satisfy data flow testing criteria for the changed program.

Techniques for selective regression testing that use the data flow in a program to identify program components
to retest after changesfH), 14, 19have been developedin data flow testing [&, 12, 13],a variable assignment is
tested gatisfied by tests that execute subpaths from the assignmentd@fnjtior) to points where the variabk’
value is used (i.eysg. Traditional data flow analysis techniques are used to compute definition-use (def-use) asso-
ciations, and test data adequacy criteria are used to select particular def-use associatioedtstast. then gen-
erated that cause execution through these selected def-use associglenive regression testing techniques for
data flow testing first identify the def-use associations that feeted by a change and then select tests that satisfy

these dected def-use associations.
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son University

An earlier version of this paper appeareéinceedings of the Confarce on SoftwarMaintenanceNovember 1992.



Existing data flow based regression testing techniques explicitly idéirifgtly affected def-use associations
by detectinghewdef-use associations that are created by a program ch@hgse techniques compute the changed
data flow by either (1) incrementally updating the original data flow to agree with the modified ddéijd §or (2)
exhaustively computing the data flow for both the original and modified programs and comparing the sets to deter
mine the diferences. Thughese techniques either save data flow information between testing sessions or com-
pletely recompute it at the beginning of each sessfoprogram change can alsadirectly affect def-use associa-
tions due to either a change in the computed value of a definition or a change in the predicate value of a conditional
statement. EXxistingegression testing techniques identify these indirectigcted def-use associations by either
running all tests from the test suite that previously executed through the changedl&hd®Ror using slicing
techniques that require prior computation of the data flow information for the progi&[2,

This paper presents a new approach to selective regression testing using the conpepgrafraslice A
backward program slice 1120]at a program poir for variablev consists of all statements in the program, includ-
ing conditionals, that might f&fct the value of at p, whereas a forward program slicdl ]\t a program poinp for
variablev consists of all statements in the program, including conditionals, that mighebedfby the value of
atp. The technique uses two slicing algorithms to determine directly and indirefettyeaf def-use associations.
The first algorithm is a backward walk through the program, from the point of the edit, that searches for definitions
related to the changed statemefihe second algorithm is a forward walk from the point of the éaliring the for
ward walk, the algorithm detects uses, and subsequent definitions and uses, tlfiettacktaf a definition that is
changed as a result of the program editlditionally, the algorithm identifies any def-use associations that depend
on a changed predicat&@hrough these two algorithms, this technique detects def-use associations that are changed
or afected because of program modifications.

The slicing algorithms arefafient in that they detect the def-use associations without requiring either the data
flow history or the complete recomputation of data flow for the entire progflmse algorithms are based on the
approach taken by #iker[20] that uses the control flow graph representation of the program and only requires the
computation of partial data flow informatioklnlike previous regression testing techniques that require either a test
suite or data flow information to select tests for regression testing, this technique explicitly identiffestatl aef-
use associationsThus, the technique requires neither a test suite nor complete data flow information to enable
selective retestinglf a test suite is maintained, fewer tests may be executed since only those tests that may execute
affected def-use associations are rerun.

The next section presents background for the slice-based techfigcon 3 describes the analysis required
to detect d&cted def-use associations and presents the algorithms for backward and forwardBeetiks 3 also
presents the algorithm that uses the backward and forward walks to determine what to retésteiotr wfipes of
program edits, along with our general approach for translating higher level edits to lower levebeditn 4 dis-
cusses the merit of the technique and its applications to te€longluding remarks are given in Section 5.
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Figure 1 Definition-c-uses for variable X and definition-p-uses for variable A.

2. Background

This section overviews data flow testing, the basis of the regression testing tecHihiguechnique also uses
control dependence information to identify whiclieafed def-use associations in a program to refésus, this
section also briefly discusses control dependence.

2.1. DataFlow Testing

Several data flow testing techniquesl[s,13]have been developed to assist in detecting program e#brs.
of these techniques use the data flow information in a program to guide the selection of téRiaddtanal data
flow analysis techniques [1], based on a control flow graph representation of a program, are used to compute def-use
associations. l@a oontrol flow graph, each node corresponds to a statement and each edge represents the flow of
control between statementBefinitions and uses of variables are attached to nodes in the control flow graph, and
data flow analysis uses these definitions and usesotopute def-use associationdses are classified as either
computationuses (c-uses) qredicateuses (p-uses)A c-use occurs whenever a variable is used in a computation
statement; a p-use occurs whenever a variable is used in a conditional staf@efarge associations are repre-
sented by tripless( u, ¥, where the value of variabledefined in statemesstis used in statement or edgeln FHg-
ure 1, definitions are shown with the variable on the left side of the assignment and uses are shown with the variable
on the right side of an assignment or in a predicatehe figure, node 7 contains a c-use of the definition of X in
node 4.The triple (4, 7, X) represents this def-use associafNode 7 also contains a c-use of the definition of X in
node 6, and the triple (6, 7, X) represents this def-use associbtgure 1 contains a p-use in node 5 of the defini-
tions of A in nodes 2 and 3, so there are def-use associations between the definitions in nodes 2 and 3 and each of
the edges leaving conditional node 5; triples (2, (5,6), A), (2, (5,7), A) (3, (5,6), A) and (3, (5,7), A) represent these
def-use associations.



Test data adequacy criteria are used to select particular def-use associations @méestiterion, all-du-
paths, requires that each definition of a variable be tested on each loop-free subpath to each reachabtberse.
criterion, all-uses, requires that each definition of a variable be tested on some subpath to each oDitseuses.
teria, such as all-defs, require that fewer def-use associations be festedcomplete discussion of data flow test-
ing, see references [66].

2.2. Control Dependence

To identify def-use associations that may Heaéd by a program change, the slice-based approacbarses
trol dependencanformation. Informally a rode (statement) in a control flow graph is control dependent on another
node (statement) Y if there are two paths out,du¥h that one path necessarily reaches X and the other path may
not reach X.This definition of control dependence, given by Ferrante, Ottenstein anmdnAf5], is essentially the
same as the definition direct stong contol dependencgiven by Clarke and Podgurski [15].

In Figure 1, the execution of statement 2 depends on statement 1 evaluatilegwhereas the execution of
statement 3 depends on statement 1 evaluatifags® Thus, statements 2 and 3 are control dependent on statement
1. Also,statements 6 and 7 are control dependent on statemeétdviever satements 1, 4, and 5 are only control
dependent on reaching the point immediately before statement 1.

3. DetectingAffected Definition-Use Associations

To satisfy a data flow testing criterion after making a program change requires identifying the def-use associa-
tions afected by the changeThis section first discusses theféient types of décted def-use associationshen, it
discusses the slicing algorithms for forward and backward walks that identify the definitions and uses that are
affected by a program edifNext, the section presents the algorithm to handle thereiift types of program edits,
and finally it discusses the way in which higher level edits are translated to lower level edits for processing.

3.1. Types of Affected Def-Use Associations

Affected def-use associations fall into two categories: (1) thdeeted directly because of the inser
tion/deletion of definitions and usawe(v associationsand (2) those &éctedindirectlybecause of a change in either
a omputed valuev@lue associationr a path condition fath associations

New AssociationsA program edit creates new def-use associations that must be tEstegixample, consider the

following code segment:

1. ifA>1then
2 Y:=X+5
3. else

4. Y:=X-5
5. endif

6. X:=2 /* replace with“™X :=2 + Y */

If statement 6 is replaced witi:=2+Y’’, a new use of variable Y is introduceBef-use associations consisting of
those definitions of Y that reach the new use of Y must be teStexke new associations are (2, 6, Y) and (4, 6, Y).



Value Association®/alue associations are def-use associations whose computed values may have changed because

of the program edit and therefore, require retestifay. example, consider the following code segment:

S X=2 /* replace with ‘X := 3" */
if A>1then
Y=X+5
else
Z=X-5
endif
. T=Y+6
Uu=72+B

©NoOOA~WNE

If statement 1 is replaced witiX*:= 3", no new def-use associations are creatddwever the def-use associations

that depend on the new value of X are retested since theyfertedfby the changeSince both statements 3 and 5

use the definition of X in statement 1, def-use associations (1, 3, X) and (1, 5, X) are value assotiaioesv

value of X in statement 3fatts the computed value of Y at that statement, which causes value association (3, 7, Y)
to be identified.Likewise, value association (5, 8, Z) is found because of feetafl value of Z in statement 5.

Now, the values of T in statement 7 and U in statement 8 feeted, and the process of identifying value associa-
tions continues with uses of these variables.

Path AssociationThe def-use associations that arfe@ed on a path whose path condition has changed must be

retested. Apath condition can be altered because of an explicit change in an operator in the predicate statement.
For example, consider the following code segment:

1. X:=2 /* replace with X := 3" */
2. ifA>1then [*replace with’A <1 */
3. Y:=X+5

5. endif

6. if X>Athen

7. Y:=X-5

8. endif

9. writeY

If statement 2 is changed td A < 1 then”, then no new def-use associations are created, but any def-use associa-
tion that is control dependent on statement 2 mayfbetafl by the change-ere, statement 3 is control dependent
on statement 2, and so path association (3, 9, Y) is identified.

A path condition can also be altered because of a change in the value of a p-use in a pFediexemple,
in the above code segment, if statement 1 is replaced ‘Witlx ‘3", then the value computed in statement 6 is
affected, and the path condition to statement 7 is chanfeas, path association (7, 9, Y) is found.

3.2. Backwardand Forward Walk Algorithms

Algorithms for backward and forward walks identify the definitions and uses thatfectedfby a program
edit. Bothalgorithms use a control flow graph representation of the program in which each node represents a single
statement. Thesalgorithms compute data flow information to identiffeafed def-use associations but require no
past history of data flow informatiorizurthermore, the algorithms are slicing algorithms in that they examine only
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Figure 2 BackwadWalk on variable X at statement BackwadWalk locates definitions of X in nodes 4 and 6 that
reach statement 7.

relevant parts of the control flow graph to compute the required data flow informdt@se algorithms are

designed based on the approach taken kijs&¥ for computing slices[20]This approach lets relevant program

slices be computed without exhaustively computing the def-use information for the proghéendiscussion

assumes that only scalars are being considered; the technique is easily extended to include arrays by adding a new

condition for halting the search along paths.

3.3. Algorithm BackwadWalk

The backward walk algorithm identifies statements containing definitions of variables that reach a program
point. Beforethe algorithm is presented in detail, it is demonstrated with an exarfjgjere 2 gives a program
segment containing some definitions and u&gpose the goal is to compute the set of statements containing defi-
nitions of variable X that reach statementThe walk begins at the point immediately before statement 7 in the con-
trol flow graph. A walk back over edges (5,7) and (4,5) locates statement 4, which contains a definitioBilofex.
no other definition of X can reach statement 7 along a path through statement 4, the search for definitions of X stops
at statement 4Since there are two backward paths from statement 5, the algorithm also walks back over edge (6,5)
and finds statement 6 that contains a definition offKe backward walk algorithm locates the statements contain-
ing definitions of variable X that reach a point in the program, without computing data flow analysis for the entire
program. Theechnique uses the definitions that reach the statement, along with the uses in the statement, to form
def-use associationdt should be noted that if a variable being considered is undefined along a path, then the search

will terminate once it reaches the start node of the control flow graph.



algorithm BackwadWalk(s,U)

input S: program point/statement

U : set of program variables
output DefsOfU: set of statements/nodes in the control flow graph
declare In[i], Ouffi], NewOut set of program variables

Waklist : statements/nodes in the control flow graph, maintained as a priority queue
n, n : program point/statement
Pred(i), Sucdi) : returns the set of immediate predecessors(successors) of
begin
DefsOfU= Warklist = O [* initialization */
forall n e Pred(s) do Warklist = n r;rf Warklist [* rdf = reverse-depth-first */

In[s]=U; Oufs|=0
forall n; #s dolIn[n;] = Outin] =0

while Warklist # 0 do /* more statements along backward walk, continue processing */
Getn from head ofVarklist [* get next statement in backward walk */
NewOut= s,D¢ ) In[p] [* recomputeOut set as union di sets of successors */
peSucgn
if NewOut£ Outn] then /* there is change from last iteration */
Outn] = NewOut [* assign new out set ©Outn] */
if n defines a variabla ¢ U then /* a definition of variable ilJ is found along this path */
DefsOfU= DefsOfU[ ] {n} /* add statement n to definitions set */
In[n] = Outn] - {u} /* stop searching for definitions of*/
else In[n] = Outn] /* there is no definition in, just propagate */
if In[n] # O then /* all definitions of variables it not found, */

/* add Preds(n) to Worklist */
forall x £ Predgn) do Warklist = x (erf Warklist
(

return (DefsOfy /* all statements containing definitions of variable&Jity
end BackwadWalk

Figure 3 Algorithm BackwadWalk computes the definitions of variableddrthat reach the statemesnt

Algorithm BackwadWalk, given in Figure 3, identifies the statements containing definitions oflhsfetari-
ables that reach a program paintBackwadWalk inputs the program point or statemsrand a set) of program
variables, and outpuBefsOfU a %t of statements or nodes in the control flow graph corresponding to the defini-
tions of variables itJ that reacts. BackwadWalk traverses the control flow graph in the backward direction fom
until all variables otJ are encountered along each patine algorithm collects the statements containing the defini-
tions inDefsOfUand returns the set.

To assist in the traversal proce&ackwadWalk maintains sets of variabléis,andOut, for relevant nodes in
the control flow graph.Oufi] contains the variables whose definitions the algorithm has not encountered along
some path from the point immediately followingp s; In[i] contains the variables whose definitions the algorithm
has not encountered along some path from the point immediately precémlsigSince the algorithm walks back-
ward in the control flow graph, it comput@sifn] as the union of thén sets ofn's successors. Thalgorithm uses
another set of variableBlewOut to sore temporarily the newly computé&lt set. Duringthe backward traversal,
the algorithm maintains a worklistyaklist, consisting of those nodes that must be visitédklist indicates how
far the traversal has progress&hckwadWalk maintains Wrklist as a priority queue based on a reverse depth first
ordering of nodes in the control flow graphhe algorithm also usesandn; to represent statements or nodes in the
control flow graph, and functioired(i) andSucc(i)to compute the immediate predecessors and successors of node



i, respectively

Algorithm BackwadWalk begins by initializing all sets that it useéfter initialization, the only entries in
Waklist are the predecessors ©f The main part of the algorithm isvehile loop that repeatedly processes state-
ments inWarklist until Warklist is empty To process a statement BackwadWalk first computedNewOQutfor n as
the union of thdn sets of the successorsroin the control flow graphlf NewOutandOut[n] are the same, there
has been no change from the last iteration ofshide loop, and processing along the path contaimitgrminates;
the comparison dilewOutandOut[n] causes each loop to be processed only one tiffdewOutand Out[n] dif-
fer, there is a change from the last iteration of Wiele loop. In this caseBackwadWalk assignsNewOutto
Out[n], and examine® for a definition of a variable ib. If the algorithm finds such a definition, it add& Def-
sOfU. Additionally, the algorithm removes from In[n] since it no longer needs to search for a definitiomalbng
this path. If BackwadWalk finds no definition of a variable id in n, it assigns Out[n] to In[n] and adds all imme-
diate predecessors ofto Waklist. Each statement added towarklist represents a point in the program along
which the backward traversal must continue, since not all variablésviere defined along a path from a successor
of nto points. Thus,BackwadWalk only adds a node té/arklist if the In set of one of its successor is not empty
When Waklist is empty the algorithm has encountered all definitions of all variablésaiong all backward paths
from sand the algorithm terminates.

The example in Figure 2 demonstrates an applicatioBackwadWalk to locate the definitions of X that
reach statement 7The algorithm first initializedVaklist to statement 5, the only immediate predecessor of 7.
After computingIn[5] and Ouf5], the immediate predecessors of statement 5, the algorithm examines statements 4
and 6. Since statements 4 and 6 define variable X, the traversal stoaaksladWalk returns statements 4 and 6.

In the following analysis of the runtime complexity of BackwadWalk algorithm, lets represent the num-
ber of nodes in the control flow grapfhe identification of each member@éfsOfUmay in the worst case require
the traversal of the entire control flow graphhere are two components involved in the processing of each node
encountered during the traversal: (1) inserting the noti¢aiklist, which take€O(log 9 time sinceWaklist is a pri-
ority queue and (2) processing the node when it reaches the frontwértiist, which takes constant time assum-
ing that bit-vectors are used, where each bit represents a distinct variable in the program. Thus, the overall runtime
complexity ofBackwadWalk is bounded byD(s log s|DefsOfU).

3.3.1. Algorithm ForwardWalk

The forward walk algorithm identifies uses of variables that are directly or indirefdlsteaf by either a
change in a value of a variable at a point in the program or a change in a pretiieatdef-use associations
returned by the algorithm are triples (1, V indicating that the value of variableat statemens, affected by the
change, is used by statementA def-use association is directlyfedted if the triple represents a use of an altered
definition. Adef-use association is indirectiffedted in one of two ways: (1) the triple is in the transitive closure of
the changed definition, or (2) the triple is control dependent on a changéettedapredicate.
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Figure 4. The firstForwardWalk on variable Y at statement 2 finds def-use associations (2,4,Y) and def-use associa-
tion (4,10,J). The second~orwardWalk begins traversal at statement 3 with the definitions that reach it, (1,X) and
(2,Y); def-use associations (1,6,X), (2,4,'énd (4,10,J) are locatedSince statement 7 is control dependent on
statement 3, def-use associations (7,8,Z) and (7,10,Z) are identified.

Consider the program segment in Figurdfda forward walk begins at statement 2 for variabléh¥ use of
Y in gatement 4 is foundThus, directly dected def-use association (2,4,Y) is computadditionally, since def-
use association (4,10,J) for variable J is in the transitive closure of the definition of Y in statement 2, this def-use
association is indirectly fcted. Ifa forward walk begins at statement 1 for variable X, the uses of X in statements
3, 6 and 9 are located, and directlfeafed def-use associations (1,3,X), (1,6,X) and (1,9,X) are compAtdi-
tionally, because of the ffcted predicate in statement 3, any def-use association whose definition is control depen-
dent on statement 3 is indirectlyffexfted. Thusdef-use associations (7,8,Z) and (7,10,Z) for variable Z are identi-

fied as indirectly décted.

Algorithm ForwardWalk, given in Figure 5, inputs a set Bhirs representing definitions whose uses are to be
found, along with a booleahlamesthat indicates whether the walk starts with a set of variable names at a program
point’ or a set of definitionsNamess true if the walk begins with a set of variable names v at a point p, represented

by (p,v). Otherwisethe walk begins with the pairs offefted definitions (s). ForwardWalk outputs a set of def-
use triplesTriples

T ForwardWalk can handle multiple pairs, consisting pbints/statements and variables of the fogw),(by simultaneously process-
ing all of these pairsTo smplify the discussionf-orward\Walk is described for a single pas\).
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algorithm ForwardWalk(Pairs, Name$

input Names boolean is true if change is only a predicate change

Pairs: sets of definitions, g, v), wheres is a program point/statement and a variable
output Triples: set of (point/statement, statement, variable)
declare In[i], Oufi], Kill, NewlIn: set of pairs, (point/statement,variable)

Waklist, Cd[i], PredCd AffectedPreds set of point/statement
DefsOfV: set of (s, v) of definitions

v : program variable

k, n: statement/node

Pred(i), Sucgi) : returns the predecessors(successorsjothe control flow graph

Def(i): returns the variable defined by statement
begin
Triples=0
forall (s,v) € Pairsdo
forall n e Sucgs) do Worklist=n dJ? Worklist

forall statementsy; not in any pair irPairs do In[n;] = Out[n;] = O
forall (s, v) € Pairsdo In[s] = O; Out[s] = {(s, V)}
if Nameghen AffectedPreds {s} elseAffectedPreds O

while Worklist# O do
Getn from head ofWorklist

Newin= [] oOutp]
pePred(n)

if NewlIn# In[n] then
In[n] = NewlIn

PredCcd= [] cCd(p)
pePred(n)

if PredCd- Cd(n) # O then UpdateAffinfo

if n has a c-use of variablesuch thatd,v) € In[n] then
forall (d,v) € In[n] do Triples = Triples ] {(d,n,v)}
Kill ={(s,Def(n)): (s,Def(n)) e In[n]}
out[n] = (In[n] - Kill') L] {(n,Def(n))}

elsif n has a p-use of variablesuch thatd,v) ¢ In[n] then
forall (d,v) € In[n] do Triples = Triples L] {(d,n,p)}
DefsOfV= BackwardWalkn, {v}) - In[n]
In[n] = In[n] [ {(n, v) : (d, v;) &€ DefsOf\}
Oout[n] = In[n]
AffectedPreds AffectedPred$ | {n}

elseifn defines a variable A Cd(n) N AffectedPreds [ then
out[n] = out[n] [] {(n, Def(n))}

elseOut[n] = In[n]

if Qut[n] # 0 then
forall x e Sucgn) do Worklist= x + Worklist

return (Triples)
end ForwardWalk

/* initialization */

[* df = depth first */

[* continue processing nodes*/

/* change from last iteration */
[* recomputeln[n] */

/* update afected predicate information */

/* found a c-use */

[* additional def-use associations */

[* definitions that are killed by */ */

[* propagate definitions to end of/

/* found a p-use */

/* additional def-use associations */

/* find definitions that reachfatted predicate */
/* add new definitions tdn andOut sets */

/* mark this predicate statement afeafed */

[* statement contains a definition */

[* propagate this definition forward */

/* statement contains no definition or use of interest */
/* more definitions/uses, continue processing */

/* all affected value and path associations */

Figure 5 Algorithm ForwardWalk identifies all def-use triples that ardeafted by a change in the value of variable

v at pointsin the program, or that arefa€ted by a predicate change.

For each statement node In and Out sets contain the pairs representing definitions whose uses are to be

found, since their values arefesfted by the edit.The setin[n] (Out[n]) contains the values just before (aftar)

whose uses are to be fourHach value is represented as a pjip)(indicating that the value of varialjeat pointd

is of interest.If ForwardWalk encounters a statememthat uses the valuel,) belonging toln[n], it adds def-use

triple (d,n,p to the list of def-use pairs faicted by a change in the value of variabkg statemens. The value of
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the variable defined by statemeris also indirectly décted. Ifthe algorithm encounters a new definition of a vari-
ablep at statemenn, then the values gf belonging toln[n] are killed by this definition, and the search for these
values along this path terminatebhe setill in the algorithm denotes the set of values killed by a definifidre

Kill setis needed to compuBt[n] from In[n]. Sincethe algorithm walks forward in the control flow grajjn]

is computed by taking the union of tBeit sets ofn’'s predecessors. Durinis traversal, a worklis¥Vorklist, con-
sisting of those nodes that must be visited, indicates how far the traversal has progfessaddWalk maintains
Worklistas a priority queue based on a depth first ordering of nodes in the control flow Ghepdlgorithm exam-
ines the statements Worklist for c-uses and p-uses of the definitions in lihsets along with definitions in state-
ments that are control dependent on a changedemted predicate As the algorithm examines the statements in
Worklist, it adds additional statements to be consideréd/toklist ForwardWalk also use®efsOfV a st of defi-
nitions,v, a program variable, ank andn, statements in the prograntunctionsPred, SuccandDefreturn the pre-

decessors, successors and variable defined by statemnespectively

In the first part ofForwardWalk, al variables are initialized The main part of the algorithm isvehile loop
that processes statements/nodedarklist until Warklist is empty For each statememt removed fromWarklist,
processing consists of first computiNgwInfor n by taking the union of th®ut sets of the predecessorsmfand
then determining iNewlnis the same as the previous valudrjh]. If these sets are the same, there has been no
change since the previous iteration, and the forward walk along this path terminatd$ thtese sets dir, n is
processed furtheNewlnis assigned tén[n], and PredCdis assigned the union of the control dependence informa-
tion for n's predecessor(s). PredCdcontains nodes on whiahis not control dependent, then the forward walk
along this path has moved into afeiiént region of control dependence, @itectedPedsmust be updated accord-
ingly. ProcedureUpdateAffinfashown in Figure 6 (described below) handles this tdsien, noden is checked to
see if it has a c-use of variahle If so, def-use associations for any pairsrifn] are added tdriples and the vari-
able defined at is added td®ut[n] since it is indirectly décted. Ifthere is no c-use afatn butn contains a p-use,
def-use associations for any pairdnfn] are added tdriples Since a p-use signals arfedted predicate, any defi-
nitions that reacim are found usin@®@ackwadWalk; these definitions are used to identify indirectlfeefed def-use
associations. Iheither type of use is found atthe statement is inspected for a definition; if one is founr e
appropriate data flow sets are updat&thally, if no definition or use of the variables is foundnathe data flow
information is propagated through If Out[n] is not emptythen thesuccessors af must be processed, and they

are added tWaklist. WhenWarklist is empty processing terminates afidplesis returned.

An important feature dforwardWalk is that it identifies def-use associations that are control dependent on an
affected predicate, even though the value computed by the definition featedf Thusthe control dependence
information must be computed prior to usifgrwardWalk Control dependencies arefiefently computed for
each node in a control flow graph using the post-dominator relation among the nodesr[Bach control flow
graph noden, Cd[n] stores the set of nodes on whichs control dependentA set of nodesAffectedPredstores

the current list of décted predicates. When a node containing a definition is encountered, if
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procedure UpdateAffinfo

begin
forall k e (PredCd- Cd(n)) N AffectedPredsdo [* statement is out of previous control dependence region */
In[n] = In[n] - {(k, v;) for all v;} /* updateln[n] accordingly */
AffectedPreds AffectedPreds { k} /* kis no longer décted in new region */
forall (k, u, v) in Triplesdo [* update def-use associations */
Triples= Triples- {(k, u, v)}
forall (d, v) £ DefsOfVdo Triples= Triples [ ] {(d, u, v)}
end UpdateAffinfo

Figure 6. ProcedurdJpdateAffinfoadjusts predicate information when the walk has enteredexatif region of
control dependence.

AffectedPredss nonempty the definition is added to then set so that its uses can be fourd. this way
ForwardWalklocates def-use associations that are control dependerfeotedfpredicates.

ForwardWalkmust also recognize all def-use associations that are control dependefieicted giredicates.
To accomplish this, each time a new node is removed #orklist, its control dependencies are compared with the
control dependencies of its predecessdirshere is a diference in control dependence information, the procedure
UpdateAffinfo shown in Figure 6, is calledAssume thatJpdateAffinfocan access all variables ForwardWalk.
UpdateAffiInfoconsiders those faicted predicates on whiahis not control dependent, and removes these state-
ments fromin[n]. A decrease in control dependencies indicates that some predicate may no lonigetdut #ius
it is removed fromAffectedPredandTriplesis adjusted accordingly

The example in Figure 4 illustrates the usd-ofwardWalk The firstForwardWalkon variable Y at state-
ment 2 finds the use of Y in statement 4 to yield the def-use association (Sh¥@.definition J in statement 4 is
affected by the change in ¥orwardWalkadds (4,J) t@UT[4] and continues the traversal to find the def-use asso-
ciation (4,10,J).In the second~orwardWalk the walk begins with statement 3 and the definitions that reach it,
(1,X) and (2,Y). Thus, the initialPairs consist of (3,X) and (3,Y)For (3,X), ForwardWalkfinds Triple (3,6,X)
that is used to identify ffcted def-use association (1,6,X)owever def-use association (1,9,X) is not included
since its value is not f&fcted by a change in statementRr (2,Y), ForwardWalkfinds (2,4); since the definition
of J in statement 4 isfatted, (4,10,J) is identifiedSince statement 7 is control dependent on statement 3 and con-
tains a definition, def-use associations (7,8,Z) and (7,10,Z) are identified for Z even though their values are not
affected by the change in statement 3.

In the following analysis of the runtime complexity of fherwardWalk algorithm, lets represent the number
of nodes in the control flow grapfhe identification of each memberTiplesis achieved in one of the following
two ways: (1) a forward traversal of the flow graph to identify a use of a value, or (2) a backward traversal from a
predicate node, followed by a forward traversal from the same predicate node. In the worst case, the for
ward/backward traversals may inspect the entire control flow graph and thus process allThedascessing of
each node consists of two components: (1) inserting the ndlerlitist which takeO(log ) time and (2) process-
ing the node when it reaches the front of Weklist, which takesO(s) time since it requires examining each ele-
ment in the node’data flow set, and the size of the data flow set is bounded Tyus, the overall runtime com-
plexity of theForward\Walk algorithm isO(s?[Triples).
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algorithm FindDUAssNES, Edit)

input S: program point/statement

Edit: Insert (Delete) use(definition), Change statement (branch) opénstent(Delete) edge
output DefUseAssnsset of (point/statement, statement, variable)
declare DefsOfX: set of statements/nodes in the control flow graph

NewAssns,aluePathAssns riples, Tiples’ : set of (point/statement, statement, variable)
CFG, CFG’: control flow graph

V : set of program variables

DefsOfVY DefsOfY DefsOfVp, DefsOfVitset of variable definitions

Def(i) : returns the variable defined by statenient

begin
caseEditis:

Insert a use of variabl¢in statemen8: Y:=..X..: DefUseAssns= InsertUse(S,X)
Delete a use of variab)Xin statemenS. Y:=.. X.. : DefUseAssns= DeleteUse(S,X)
Insert a definition of variabl¥¢ in statemen8&: Y:=.. : DefUseAssns= InsertDefinition(S,Y)
Delete a definition of variabMin statemeng; Y:=..: DefUseAssns- DeleteDefinition(S,Y)
Change operator in statemegtY: =: DefUseAssns= OperatorChange(S,Y)
Change operator in branch condition in statensent DefUseAssns= ConditionChange(S)
Insert an edge from statement p to statement t : DefUseAssns= InsertEdge(p,t)
Delete an edge from statement p to statement t: DefUseAssns= DeleteEdge(p,t)

end FindDUAssns

Figure 7. Algorithm FindDUAssnsaccepts a statemeBtind an edit typ&dit, and identifies all def-use associations
that must be tested because of that edit.

3.4. Actionsfor Differ ent Types of Edits

This section considers consider the way in which weBmekwardWalkand ForwardWalkto identify the
def-use pairs that arefafted by a program changélgorithm FindDUAssns(S, Edit)given in Figure 7, inputs
statementS where the edit occurs, along with the type of éditt that occurred aB After processing the edit,
FindDUAssngeturns the def-use associatiobgfUseAssnghat are dected by the editFindDUAssnsuses sev-
eral variables during its processinBefsOfXstores statements/nodes in the control flow graph representing defini-
tions in the programNewAssnsValuePathAssngriples and Triples represent sets of def-use associaticBEG
andCF G represent control flow graphg,represents a set of program variables, BatsOfV, DefsOfY, DefsOfVp
and DefsOfVtrepresent sets of variable definitiorfanally, Def(i) is a function that returns the variable defined by
statement. Each action has access to this set of global varialitethe following discussion, we detail the action
(function) taken as a result of each edit.

Insert a use of variable X in statemé&hty: = .. X..

Inserting a use of variabl¥ causes new def-use associations between statements containing defini¥ons of
that reach the new use&t First, functioninsertUseusesBackwardWalko locate all definitions oX that reach the
new use ofX in S; these definitions are returnedefsOfX Each of the definitions iDefsOfXtogether with the
use ofX in Srepresents a newly created def-use association that is adNew#&ssns Then, ForwardWalkcom-
putesValuePathAssnswvhich are def-use associations that have experienced value changes because of the change in
the value ofY at S, or def-use associations that are control dependent onfecteaf predicate Finally, the set of
affected def-use association3efUseAssnsis computed as the union dfewAssnaindValuePathAssns
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0|Y:=2 Changel: insert use of X in Change2: delete use of X
statement 5 in statement 5
1|X:= BackwadWalk(5,{X}): ForwardWalk({(5,Y)}, false):
definition of X in statement def-use associations to be
1 reaches statement 5¢lef- retested are (5,7,Y) and
2 [A>17 use association to be tested(7,9,2)
is (1,5,X)
ForwardWalk({(5,Y)}, false)
3 |B:=A 4 |B:=X def-use associations to be
retested are (5,7,Y) and
(7,9,2)
51Y:=X
Change3: insert definition Change4: delete definition
6 IA>B? of Y in statement 5 of Y in statement 5
ForwardWalk({(5,Y)}, false): BackwadWalk(5,{Y}):
71z:=y 8 |A:=X def-use associations to bedefinition of Y in statement
retested are (5,7,Y) and O reaches statement5
— (7,9,2) ForwardWalk({(5,Y)}, false)
9|X=Z def-use associations to be
$ retested are (0,7,Y) and
(7,9,2)

Figure 8 Changel inserts a use of X in statemenB&ckwadWalk identifies the def-use associations to the new
use of X and-orwardWalk identifies the def-use associations that afiectfd by the change in the definition of Y in
statement 5.Change2 deletes the use of X in statemerfd@wardWalk identifies the def-use associationfeefed

by this change in the definition of YChange3 inserts a definition of Y in statementrwardWalk identifies the
def-use associations to be retest€thange4 deletes the definition of Y in statemerBackwadWalk identifies the
definitions of X that reach statement 5 to form new def-use associations to be Tésted-orwardWalk identifies

the def-use associationgeadted by the change in statement 5.

function InsertUse(S,X) /* use the modified CFG */
DefsOfX= BackwadWalk(S,{X}) [* find statements with definitions &fthat reacts*/
NewAssns []  {(S,S X)} [* form new def-use associations */
S eDefsOfX
VauePathAssns ForwardWalk({S, Y)}, false) /* find indirectly afected def-use associations */
DefUseAssns NewAssn$ | ValuePathAssns [* combine new and #&cted def-use associations */

endInsertUse

To illustratelnsertUse consider Changel in Figure 8; assume that the u¥ero$tatement 5 has just been inserted.
BackwardWalkon (5,{X}) finds the definition ofX in statement 1, and (1,5,X) is addedNewAssns Then,
ForwardWalk on (5,Y) identifies the ValuePathAssn$5,7,Y) and (7,9,Z) because the change in the valué of

affects these def-use associations.
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Delete a use of variable X in statemé&n¥:=.. X..

Deleting a use oK causes the value &f to change but introduces no new def-use associatieusction
DeleteUseusesForwardWalkto identify all def-use associations that arfeetd by the change in the valueYof
If these def-use associations involve predicate statements, thefetiechpath associations for those predicates are

also identified during-orwardWalk The returned set of def-use associations is assigrnedftdseAssns

function DeleteUséS, X) [* use the modified CFG */
DefUseAssns ForwardWalk({(S,Y)}, false) /* find all affected def-use associations */
end DeleteUse

For example, if the use of in statement 5 in Figure 8 (Change?) is deleeleteUsaisesForwardWalkon (5,Y)
to detect the def-use associations (5,7,Y) and (7,9,Z) that experience value chandestaubpaith associations are

found.

Insert a definition of variable Y in statemé&hty:=..

When a definition o¥ is inserted in statemef there are new def-use associations betvgand statements
containing reachable usesYgfthere are also #ected def-use associations due to the change in the computed value
at S. InsertDefinitionusesForwardWalkto identify the newly created def-use associations for the inserted defini-
tion of Y. Other definitions that experience value changes because of the ch&aeeialso foundlIf any of the
def-use associations involve predicates, the def-use associafextediby those predicates are also identified dur

ing ForwardWalk The set of all new and fetcted def-use associations returnedAmywardWalkis assigned to

DefUseAssns
function InsertDefinition(S, Y) [* use the modified CFG */
DefUseAssns ForwardWall((S,Y), false [* find all afected def-use associations */

end InsertDefinition

Assume that statement 5 in the example of Figure 8 is an inserted definiqiCbénge3). ForwardWalkyields
new association (5,7,Y) because the newly computed vaMesafised in statement Additionally, ForwardWalk

identifies value association (7,9,Z) because the valZeimktatement 7 is fdcted.

Delete a definition of variable Y in statemé&nY:=..

When a definition of variabl¥ is deleted from statemei® there are new def-use associations since other
definitions ofY now reach uses that were previously blocked by the deleted definitianAdditionally, there are
def-use associationsfefted by the change in the computed valu&.aDeleteDefinitionusesBackwardWalkto
identify the definitions ofY that reachS the statement containing the deleted definitiorY pend adds them to

DefsOfY. Now that the definition of in Sis deleted, the definitions &fin DefsOfYreach uses previously reached
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by the definition ofY in S. Additionally, the value and path associations that aectdd by the deleted definition of

Y are computedThen, ForwardWalkidentifies the def-use associations that are created by the edit at ste&Bement
the value associations whose values d@ectdd, and path associations dependent fectafl predicates; these asso-
ciations are returned ifiriples. Those uses of reachable fromS are associated with the definitions ofin
DefsOfY and stored inNewAssns Then the remaining def-use associations Tinples are assigned to

ValuePathAssnsFinally, DefUseAssnis the union oNewAssnandValuePathAssns

function DeleteDefinitiolS, Y) [* use the modified CFG */
DefsOfY = BackwadWalk(S,{Y}) [* find statements with definitions dfthat reacts*/
Triples= ForwardWalk({(S,Y)}, false) [* find affected def-use associations */
NewAssns={(S,S,Y): (SS,Y) eTriples/A § £DefsOfY} /* form new def-use associations */
ValuePathAssns {(d,u,v: (d,u,v)e TriplesA d # S} /* find indirectly afected def-use associations */
DefUseAssns NewAssns| | ValuePathAssns /* combine new/dected def-use associations */

end DeleteDefinition

For example, if statement 5 in Figure 8 is deleted (ChanBatkwardWallfirst identifies the definitions of that
reach statement 5The result is the definition of in statement ONext, ForwardWalkbegins at statement 5 with

as a reference and finds théeafed value association (5,7,Y}yince the definition ol at statement 5 has been
deleted, definition 5 in def-use associatif#7,Y) is replaced by the definition ¥fin statement 0 that was found
by BackwardWalk The changed def-use association is (0,7,Yhe def-use association (7,9,2) is also found by

ForwardWalkdue to a change in the valuetf

Change operator or value of a constant operand in state@éht=. .

If the operator or a constant operand used in an assignment statement is altered, no new def-use associations
are createdHowever the value of the variable defined by this altered statement changes, which causes value asso-
ciations and possibly path associatio@peratorChangeaisesForwardWalkto identify both value and path associ-

ations afected by this edit, and they are store®afUseAssns

function OperatorChangés) [* use the new CFG */
DefUseAssns ForwardWalk({(S,Y)}, false) /* find all affected def-use associations */
end OperatorChange

To illustrateOperatorChanggeconsider Changel in Figure 9; assume that there is an operator change in statement 1.
ForwardWalk on statement 1 identifies the value associations that teeteaf by the change: (1,4,X), (4,7,B),
(4,(6,7),B), (4,(6,8),B), (7,8,Z) and (8,9,A).
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Changel: change operator Change2: change condi-
\b in statement 1 tion in statement 6

ForwardWalk({(1,X)}, false):  BackwadWalk(6,{Z,B,X}):
def-use associations to bedefinition of Z in statement
2 A>1? retested are (1,4,X), (4,7,B), 0, definitions of B in state-
(4,(6,7),B), (7,8,2), (8,9,A) ments 3 and 4, and defini-
tion of X in statement 5
3| B:=A 4| B:=X reach statement 6
ForwardWalk({(6,2),(6,B),
(6,X)}, true): finds Triples

5] X:=A (6.7.B), (7.8,2) and (8,9.,A),
yielding def-use associa-
6| A>B? tions; def-use associations
. (3,7,B), (3.(6,7),B),
(3,(6,8),B), (4,7,B),
7 Z=B F (4:(617)!8)1 (4!(6’8)’8)’
(7,8,2) and (8,9,A)
8 |A:=Z+X
9 | write A

Figure 9 Changel modifies the operator in statementarwardWalk identifies the def-use associations to be
retested. Changefodifies the condition in statement Both BackwadWalk andForwardWalk are used to identify
def-use associationsfetted by the change in statement 6.

Change operator or value of a constant operand in a branch condition in statSment

Changing the operators of a branch condition statef@@méates no new def-use associatioB#nce the
branch condition does not define any variable it does not diretlsgt éiie values of any def-use associatioffn
example is changing a conditioX<Y’’ to “X>Y’’.) However al value and path associations influenced by the
result of S must be identified.ConditionChangedentifies the definitions that rea&using BackwardWalk and
stores them iDefsOf\ The uses of these definitions that are reachable &amd are control dependent Srare
identified usingForwardWalk the result is stored ifiriples Triplescontains two types of def-use associations: (1)
those def-use associations whose definition appears &éome whose use is control dependenSand (2) those
def-use associations whose definition is control dependest BanctionConditionChangeomputes those def-use
associations of type (1) and stores therd@fUseAssnsThen,ConditionChangeomputes the def-use associations
of type (2) and stores them YaluePathAssnsThe final set of décted def-use associations is found by adding the

set ofValuePathAssn# DefUseAssns
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function ConditionChangés) [* use the new CFG */
DefsOfV= BackwadWalk(S,V) [* find statements with definitions dfthat reacts*/
Triples= ForwardWalk({(S,\/): DefsOfVcontains a /* find value and path associations */

definition ofV,}, true )
DefUseAssns={(S,S, V): (SS,V) ¢ Triples/\ S ¢ DefsOf\} /* def-use associations of type (1) */

ValuePathAssns {(d,u,v): (d,u,v)e Triples and ¢¢ S} /* def-use associations of type (2) */
DefUseAssns DefUseAssn§ | ValuePathAssns /* find all affected def-use associations */
end ConditionChange

Consider Figure 9 where there is a condition change in statement 6 (Chafigg2BackwadWalk on statement 6
identifies definitions that reach the changed predicate (i.e., definition of Z in statement 0, definitions of B in state-
ments 3 and 4, and definition of X in statement®)enForwardWalk is called with pairs {(6,2),(6,B),(6,X)}, and

the Namesflag set. The Triplesreturned from this walk are used to form the def-use associations ((0,8,2), (3,7,B),
(3,(6,7),B), (3,(6,8),B), (4,7,B), (4,(6,7),B), (4,(6,8),B) and (5,8,Kef-use associations (7,8,Z) and (8,9,A) are

also afected and identified byforward\Walk for retesting.

Insert an edge (p,t) dm statement p to statement t

Inserting an edgep(f) can cause creation of new def-use associations since definitions may reach uses over
the new paths created by, ). Thevariables defined by statements corresponding to uses of the new def-use asso-
ciations may have their valuedefted. Thusall def-use associations that depend on the valuedegfted vari-
ables must be identifiedrirst, InsertEdgeusesBackwadWalk to find all definitions that reach statemern the
altered control flow grapiCFG'; these definitions are stored efsOf\V. Next, ForwardWalkis used to locate
def-use associations in the old control flow grapRG, that depend on the definitions efsOf\, Triplesis used
to store these def-use associatioffie. identify the new and &dcted def-use associations involving the new edge
(p,t), ForwardWalkis used to comput&riples on CFG'. After removing the common def-use associations in
Triplesand Triples, Triples stores the new def-use associatidiswAssns Then aForwardWalkfrom t yields
the value and path associationsvialuePathAssnsThe set of d&cted def-use associatioB3efUseAssnsis the
union of NewAssnand ValuePathAssnsSince the addition of an edge modifies the control dependence informa-
tion the modified flow graph must be reanalyzed to compute control depend8imes.the Forward@k is per
formed on both the old and the modified flow graphs, the control dependence information for both graphs must be

made available.
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action InsertEdgép, t)
DefsOfV= BackwadWalk(t,{V}) onCFG /* find definitions that reachin new cfg */
Triples= ForwardWalk({( s, Def(s)): s¢ DefsOf\}, false) on CFG
/* find def-use associations on old cfg */
Triples = ForwardWalk({(t, V;): DefsOfVcontains a definition of; andV; # Def(t)}, true) on CFG
/* find def-use associations on new cfg */
Triples = {(s,t): seDefsOfV, Def(s) e ref(t)} [] {(s;, 9 : s ¢ DefsOfvand (o, s,V,) ¢ Triples}
NewAssns Triples - Triples [* find new def-use associations */
ValuePathAssns ForwardWalk{( s, Def(s)): oppE(r, s) ¢ NewAssng false) on CFG
/* find affected def-use associations */
DefUseAssns NewAssn$ | ValuePathAssns [* all affected def-use associations */
end InsertEdge

To se the dkcts of inserting an edge in the control flow graph, consider Figurént@e figure, a partial original
program and a modified version are giv&ontrol flow graphs are shown for the original program (a), a modified
version after an edge is deleted (b), and a modified version after an edge is add€de(gjeneral approach to
translating higher level edits to lower level edits is discussed in Section 3.5.BBRuktyad\Walk from statement 3
finds the definition of A in statement ThenForwardWalk from statement 3 in the control flow graph for the origi-
nal program (a) yields (1,5,A) and (5,6,%prwardWalk on the control flow graph for the new program (c) yields
((3,6,X). ThusNewAssnsontains (3,6,X), which must be tested.

Delete an edge (p,t)dm statement p to statement t

Deleting an edge may cause the deletion of some def-use pairs but it does not create any ridonEaies.
there are def-use pairs that arfeetied by the deleted edgén affected def-use pair is one that has not been deleted
although the use was reachable by the definition through the deletedrédgeDeleteEdgddentifies the defini-
tions, DefsOfVp that reach statemeptusing BackwardWalk Using this information the definitionBefsOfVi that
reacht via the deleted edge are identifielext ForwardWalk is used to locate def-use associatidigles in the
old control flow graphCFG, that depend on definitions DefsOfVt ForwardWalk on the new control flow graph,
CFG’, is wised to locate def-use associatiofigples’, that depend on definitions DefsOfVtand are present in the
modified control flow graphBy removing the def-use associations that have been eliminated due to edge deletion,
we obtain the set of faicted def-use associatiom@efUseAssnsAs was the case for edge addition, following edge
deletion we must recompute control dependence information.

action DeleteEdgép, t)
DefsOfVp= BackwadWalk(p,{V}) on CFG [* find definitions that reachegdin old CFG */
DefsOfVt= {p} [] {n: nODefsOfVp and Def(p¥: Def(n)} [* find definitions that reachedsia p in old CFG */
Triples= ForwardWalk{(t, V;): DefsOfVtcontains a definition o¥; andV, # Def(t)}, true) on CFG
Triples={(s, t, Def(s)): se DefsOfVt Def(s)e ref(t)} L] {(s;,s): s.eDefsOfVtand (p,s,V;) eTriplest
/* find old def-use associations through () */
Triples = ForwardWalk({( s, Def(s)): se DefsOfV}, falsg on CFG
[* find new def-use associations@FG' */
DefUseAssns Triples- (Triples— Triples) /* set of afected def-use associations */
end DeleteEdge



-20-

Original Program (partial)

A=
if A>0then
X:=..
gotoL
elsexX :=..
L: X =X+A
L' ..=X

1 =

2| A>0?

(a) Original Program

Modified Program (partial)

A=

if A>0then
X:=..
gotoL'

elsexX :=..

L: X:=X+A
L ..=X

1 =

1| A
2| A>0?
3| Xi= 4| X=
5| Xi=X+A
6| ..:=

/

(b) Modified Program
after deleting edge

(1,5,A) and (5,6,X)
must be retested

1 =

1| A
2| A>0?
3| Xi= 4| X:=
5| Xi=X+A
6| ...=X

/

(c) Modified Program
after adding edge

(3,6,X) must be tested

Figure 10. A partial program and its modified versiofhe control flow graph for the original program is shown
on the left, and control flow graphs for the modified version are shown in the center and on the right.

To se the dects of deleting an edge in the control flow graph, consider Figuigat@wadWalk from statement 3
determines that the definition of variable A in statement 1 reaches statement 5 via the deleted edde3tb&
ForwardWalk from statement 5 yields def-use associations (1,5,A) and (5,6,X). Since these def-use associations are

not deleted in the modified program, both must be tested.

3.5. Translating High Level Edits to Low Level Edits

The approach to translating higher level edits into lower level edits for processing by our algorithms is:

a) makestructural changes to the control flow graph;

b) add/modifyassignment statements;

c) add/modifypredicates.
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Original Program Segment Modified Program Segment
A=Z A=Z
if A>0then if A>0then
X:=1 X:=1
else else
X:=2 X:=2
X:=X+A if Z>0then
A=X+1 Z=Z+1
gotoL
X:=X+A
LLA=X+1

(a) Original Program

(b) Insert edge (c) Insert assignment (d) Insert predicate
statement

Figure 11. A partial program on the left and the modified versions that result in a predicate change in the program.

Figure 1L shows an example of inserting a predicate staternlarthe figure, both the original program segment and
the modified program segment are showime control flow graph in (a) represents the original program segment.
The control flow graph in (b) shows the insertion of the edge to et t@afr the conditional brancihen, in (c), the
body of the conditional statment is inserted; here only an assignment statement is ifksealgdin (d), the predi-
cate statement is added to the control flow grdpheach step, the algorithms presented in this paperused to

process the edit and identify those def-use associations to (re)test.

After each low level edit, the def-use associations that must be retested are idehttigiedll low level edits
have been processed the set of all possible def-use associations that may require retesting aéneotiva.later
low level edits may cause some of the previously identified def-use associations to be invalidated, a single pass over

the def-use associations is required to identify and remove these def-use assodih&drackward walk algorithm
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is used to determine the validity of the def-use associatibns.invalid associations are discarded and the remain-
ing def-use associations are now testids important to note that although a high level edit may translate into sev-
eral low level edits, testing is not performed after each low level edit but rather it is performed once per high level

edit.

4. Testing Affected Def-Use Associations

Next, the regression testing technique is illustrated using an exaf@gitesider the program whose control
flow graph is shown in Figure 12Z’he program should compute the square root for input variable X by repeatedly
halving the interval between the two estimates, X1 and K# table on the right in Figure 12 gives the def-use

associations for the program that are required to satisfy the all-uses data flow testing ciitegiggmogram has

Def-use Information

node definition def-use associations

1 X (1,3,X), (1,6,X)

2 X1 (2,(4,5),X1), (2,(4,10),X1), (2,5,X1),
(2,(6,7),X1), (2,(6,8),X1)

3 X2 (3,(4,5),X2), (3,(4,10),X2), (3,5,X2)
(3,8,X2)

5 X3 (5,(6,7),X3), (5,(6,8),X3), (5,7,X3)

7 X2 (7,(4,5),X2), (7,(4,10),X2), (7,5,X2)
(7,8,X2)

8 X1 (8,(4,5),X1), (8,(4,10),X1), (8,5,X1),
(8,(6,7),X1), (8,6,8),X1)

Figure 12. Program to compute the square root of X that contains an error in statement 8 that must be changed to
“ X1:=X3".

an error in statement 8: statement 8 should r&dd=X3'’". Correctingthe error requires two actions: (1) delete the
use of X2 in statement 8 and (2) insert the use of X3 in statemdrteBsequel shows how the algorithms handle
the changes.
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(1) Deletethe use of X2 in statement 8

Because X2is deleted, ForwardWalk first finds the uses of X1 in statements 4, 5 arttli§, detected def-
use associations for X1 are (8,(4,6),X1), (8,(4,5),X1), (8,5,X1), (8,(6,7),X1) and (8,(6,8pKTE the definition of
X3 in statement 5 may befa€ted, def-use associations for X3, (5,(6,7),X3), (5,(6,8),X3) and (5,7,X3) are detected.
The use of X3 in statement 7 mayfeat the definition of X2 and def-use associations for X2 (7,(4,5),X2),
(7,(4,10),X2) and (7,5,X2) are identifiedlthough the definition of X3 in statement 5 may bfeeted by this use
of X2, the processing stops since def-use associations for this definition of X3 are already detected.

(2) Insertthe use of X3 in statement 8

First, BackwadWalk on statement 8 for X3 finds the reaching definition of X3 in statement 5 and returns the
def-use association (5,8,X3) for X&ince ForwardWalk on X3 in statement 8 is identical to the ForwardWalk per
formed during the above deletion of the use of X2 in statement 8, the same def-use associations arerigtumed.

13 lists the def-use associations that afectdd after the program change and must be tested to satisfy the all-uses

criterion.
node  definition def-use associations
5 X3 (5,(6,7),X3), (5,(6,8),X3) (5,7,X3) (5,8,X3)
7 X2 (7,(4,5),X2), (7,(4,10),X2), (7,5,X2)
8 X1 (8,(4,6),X1), (8,(4,10),X1), (8,5,X1)

(8,(6,7),X1), (8,(6,8),X1)

Figure 13: Def-use Associations for Regressiogsiing

Although this paper has described the use of the sliced-based algorithms to satisfy the all-uses criterion, the
technique is applicable to the other data flow testing critdf@. a given change, these algorithms identify the
directly and indirectly décted def-use associations in the prograrhus, these are the only def-use associations
that must be considered for adequacy when retesting the protfrétme. user desires all-du-paths coverage instead
of all-uses, then instead of finding a test that executes some subpath from the definition to the use, tests would be
required to execute all du-paths between the definition and thdfuke. all-defs coverage is desired, then instead

of satisfying all def-use associations, only one of them would be required for each definition.

After the afected def-use associations are identified (see Figure 13), tests must be executed to exercise these
def-use associationgOne technique is to maintain a test suite that is used to retest the prdfyetest suite is
maintained, tests are selected from the test suite to retest the def-use associations after a program change and the test
suite is updated to reflect the changde test suite typically contains an association between each def-use pair and
the test used to test that painformation about the test includes the input values and the executionTjathest
suite is examined to determine the tests that satisfy theted def-use associations and the changed chadese
tests arererun and we check to see whiclfieafed associations are satisfied by a test, as well as updating the test
suite. Ifa def-use pair does not have an associated test, then a new test can be gehieisatedhnique requires
fewer tests than previous methods since we do not execute all tests that traverse the changed node. For the example

in Figure 13 the def-use associations due to statements 1, 2, and 3 are not tested following the program change.
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To save the overhead involved in storing and updating test suites, another approach is to generate tests only
for the changed parts of the program during regression tesinge the sliced-based algorithms explicitly identify
both directly and indirectly &fcted def-use associations, the only tests that must be run are those that satisfy these
associations and all-uses data flow testing coverage of the program will still be proMdesg unlike other regres-
sion testing techniques, the sliced-based method identifiesteaf def-use associations without the overhead of

maintaining and updating a test suite.

In either of the scenarios given above, new tests may be requiests. can be generated manually by the
user or automatically using a test generatwhen a new test is required, a program slice can be computed based on
the afected def-use associations to assist in generation of fBists.program slice contains those statements that
are needed to traverse alfefted and untested def-use associatidhsests are generated manuallye program
slice enables the user to focus on the program statements pertinent fedtesl afef-use associationf.the tests
are automatically generated, the test generator only considers the program statements that are innhgithkce.
case, using the slice reduces the test generatiort since only the input variables on the slice are considered.

Additional details of our slicing algorithm and its use in test generation can be found in refereBjces [7,

Another approach to regression testing based on slicing was developed by Bates and Horwitg[2].
approach uses backward slicing algorithms on program dependence graphs to deternfeadtieafts of a pro-
gram that require retesting-ollowing program changes the program dependence graph must be reconstructed
before slicing algorithms can be applied for identifying tHect#d parts of the progranThis construction of a
program dependence graph requires the exhaustive recomputation of all def-use associations in the program or the
incremental update of changed def-use associations based on previous def-use assdécdifiensnt approach to
regression testing, alsbased on slicing, was developed by Rothermel and Haffoid18]. This approach also
uses a program dependence graph representation to identify the changed def-use pairs for regressidnliesting.
the above approaches to slicing, the approach presented in this paper only requires partial data flow analysis follow-
ing program changes and does not depend on any def-use.hRttingrmel and Harrold also consider interproce-
dural regression testing while in this paper we focus on intraprocedural telstimgever snce the slicing algo-
rithms presented in this paper are based @is&vs technique [20] which handles interprocedural slicing, these

algorithms can also be extended to allow interprocedural regression testing.

The problem of performing partial data flow analysis is also addressed by a demand driven data flow frame-
work described in Reference [4However this framework does not apply to analyses that require consideration of
control dependence information. Therefore, although the framework could be used to deBeekivadWalk

algorithm, it cannot be used in developing Boeward\Walk algorithm.
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5. Conclusion

This paper has a regression testing technique that utilizes sliting.technique identifies both directly and
indirectly afected def-use associationshe use of the slice for regression testing figieht in terms of both mem-
ory and time overheadJnlike previous regression techniques, this approach neither needs to completely recompute
data flow information after a change nor maintain a history of previous data flow computation for incremental
updates. Insteadhe approach recomputes the partial data flow that is needed, as driven by the program changes.
Also, the approach does not need the overhead of maintaining a test suite, which includes the input, output and
updates of the test suitdf. the test suite is maintained, the approach reduces the number of tests that must be rerun
to provide full testing coverage and to update the test s@liteough the technique has been presented to satisfy the
all-uses criterion, it could easily be modified for other data flow testing critgdgag interprocedural slicing, the

technique can also be extended to interprocedural regression testing.
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