
An Appr oach to Regression Testing using Slicing†

Rajiv Gupta Mary Jean Harrold Mary Lou Soffa
Dept. of Computer Science Dept. of Computer and Information ScienceDept. of Computer Science

University of Pittsburgh OhioState University University of Pittsburgh
Pittsburgh, PA 15260 Columbus,OH 43210-1277 Pittsburgh, PA 15260

gupta@cs.pitt.edu harrold@cis.ohio-state.edu soffa@cs.pitt.edu

Abstract

After changes are made to a previously tested program, a goal of regression testing is to perform
retesting based on the modifications while maintaining the same testing coverage as completely
retesting the program.We present a novel approach to data flow based regression testing that uses
slicing algorithms to explicitly detect definition-use associationsthat are affected by a program
change. Animportant benefit of our slicing technique is that, unlike previous techniques, neither
data flow history nor recomputation of data flow for the entire program is required to detect
affected definition-use associations.The program changes drive the recomputation of the required
partial data flow through slicing.Another advantage is that our technique achieves the same test-
ing coverage with respect to the affected definition-use associations as a complete retest of the
program without maintaining atest suite.Thus, the overhead of maintaining and updating a test
suite is eliminated.

1. Intr oduction

Although software may have been completely tested during its development to satisfy some adequacy crite-

rion, program changes during maintenance require that parts of the software be retested.Regression testingis the

process of validating modified parts of the software, and ensuring that no new errors are introduced into previously

tested code.In addition to testing the changed code, regression testing must retest parts of the program affected by a

change. Aselectiveapproach to regression testing attempts to identify and retest only those parts of the program

that are affected by a change.There are two important problems in selective regression testing: (1) identifying those

existing tests that must be rerun since they may exhibit different behavior in the changed program and (2) identify-

ing those program components that must be retested to satisfy some coverage criterion.This work focuses on the

second problem in that it identifies program components to satisfy data flow testing criteria for the changed program.

Techniques for selective regression testing that use the data flow in a program to identify program components

to retest after changes[9,10, 14, 19]have been developed.In data flow testing [3,6, 12, 13],a variable assignment is

tested (satisfied) by tests that execute subpaths from the assignment (i.e.,definition) to points where the variable’s

value is used (i.e.,use). Traditional data flow analysis techniques are used to compute definition-use (def-use) asso-

ciations, and test data adequacy criteria are used to select particular def-use associations to test.Tests are then gen-

erated that cause execution through these selected def-use associations.Selective regression testing techniques for

data flow testing first identify the def-use associations that are affected by a change and then select tests that satisfy

these affected def-use associations.
�����������������������������������
† Partially supported by the NSF through Presidential Young Investigator Award CCR-9157371 and Grant CCR-9402226
to the University of Pittsburgh, and Grant CCR-9109531 and National Young Investigator Award CCR-9357811 to Clem-
son University.
An earlier version of this paper appeared inProceedings of the Conference on Software Maintenance, November 1992.

- 2 -

Existing data flow based regression testing techniques explicitly identifydirectlyaffected def-use associations

by detectingnewdef-use associations that are created by a program change.These techniques compute the changed

data flow by either (1) incrementally updating the original data flow to agree with the modified code [9,10, 19]or (2)

exhaustively computing the data flow for both the original and modified programs and comparing the sets to deter-

mine the differences. Thus,these techniques either save data flow information between testing sessions or com-

pletely recompute it at the beginning of each session.A program change can alsoindirectlyaffect def-use associa-

tions due to either a change in the computed value of a definition or a change in the predicate value of a conditional

statement. Existingregression testing techniques identify these indirectly affected def-use associations by either

running all tests from the test suite that previously executed through the changed code[9,10, 19],or using slicing

techniques that require prior computation of the data flow information for the program[2,18].

This paper presents a new approach to selective regression testing using the concept of aprogram slice. A

backward program slice [11, 20]at a program pointp for variablev consists of all statements in the program, includ-

ing conditionals, that might affect the value ofv at p, whereas a forward program slice [11] at a program pointp for

variablev consists of all statements in the program, including conditionals, that might be affected by the value ofv

at p. The technique uses two slicing algorithms to determine directly and indirectly affected def-use associations.

The first algorithm is a backward walk through the program, from the point of the edit, that searches for definitions

related to the changed statement.The second algorithm is a forward walk from the point of the edit.During the for-

ward walk, the algorithm detects uses, and subsequent definitions and uses, that are affected by a definition that is

changed as a result of the program edit.Additionally, the algorithm identifies any def-use associations that depend

on a changed predicate.Through these two algorithms, this technique detects def-use associations that are changed

or affected because of program modifications.

The slicing algorithms are efficient in that they detect the def-use associations without requiring either the data

flow history or the complete recomputation of data flow for the entire program.These algorithms are based on the

approach taken by Weiser[20] that uses the control flow graph representation of the program and only requires the

computation of partial data flow information.Unlike previous regression testing techniques that require either a test

suite or data flow information to select tests for regression testing, this technique explicitly identifies all affected def-

use associations.Thus, the technique requires neither a test suite nor complete data flow information to enable

selective retesting.If a test suite is maintained, fewer tests may be executed since only those tests that may execute

affected def-use associations are rerun.

The next section presents background for the slice-based technique.Section 3 describes the analysis required

to detect affected def-use associations and presents the algorithms for backward and forward walks.Section 3 also

presents the algorithm that uses the backward and forward walks to determine what to retest for different types of

program edits, along with our general approach for translating higher level edits to lower level edits.Section 4 dis-

cusses the merit of the technique and its applications to testing.Concluding remarks are given in Section 5.

- 3 -

X>1?

A := A :=

X :=

A<0?

T F

X :=

:= X

T
F

1

2 3

4

6 7

5

Definition-c-use Associations
(4, 7, X)
(6, 7, X)

Definition-p-use Associations
(2, (5,6), A)
(2, (5,7), A)
(3, (5,6), A)
(3, (5,7), A)

Figure 1. Definition-c-uses for variable X and definition-p-uses for variable A.

2. Background

This section overviews data flow testing, the basis of the regression testing technique.The technique also uses

control dependence information to identify which affected def-use associations in a program to retest.Thus, this

section also briefly discusses control dependence.

2.1. DataFlow Testing

Several data flow testing techniques [6,12, 13]have been developed to assist in detecting program errors.All

of these techniques use the data flow information in a program to guide the selection of test data.Traditional data

flow analysis techniques [1], based on a control flow graph representation of a program, are used to compute def-use

associations. Ina control flow graph, each node corresponds to a statement and each edge represents the flow of

control between statements.Definitions and uses of variables are attached to nodes in the control flow graph, and

data flow analysis uses these definitions and uses tocompute def-use associations.Uses are classified as either

computationuses (c-uses) orpredicateuses (p-uses).A c-use occurs whenever a variable is used in a computation

statement; a p-use occurs whenever a variable is used in a conditional statement.Def-use associations are repre-

sented by triples, (s, u, v), where the value of variablev defined in statements is used in statement or edgeu. In Fig-

ure 1, definitions are shown with the variable on the left side of the assignment and uses are shown with the variable

on the right side of an assignment or in a predicate.In the figure, node 7 contains a c-use of the definition of X in

node 4.The triple (4, 7, X) represents this def-use association.Node 7 also contains a c-use of the definition of X in

node 6, and the triple (6, 7, X) represents this def-use association.Figure 1 contains a p-use in node 5 of the defini-

tions of A in nodes 2 and 3, so there are def-use associations between the definitions in nodes 2 and 3 and each of

the edges leaving conditional node 5; triples (2, (5,6), A), (2, (5,7), A) (3, (5,6), A) and (3, (5,7), A) represent these

def-use associations.

- 4 -

Test data adequacy criteria are used to select particular def-use associations to test.One criterion, all-du-

paths, requires that each definition of a variable be tested on each loop-free subpath to each reachable use.Another

criterion, all-uses, requires that each definition of a variable be tested on some subpath to each of its uses.Other cri-

teria, such as all-defs, require that fewer def-use associations be tested.For a complete discussion of data flow test-

ing, see references [6,16].

2.2. Control Dependence

To identify def-use associations that may be affected by a program change, the slice-based approach usescon-

trol dependenceinformation. Informally, a node (statement) in a control flow graph is control dependent on another

node (statement) Y if there are two paths out of Y, such that one path necessarily reaches X and the other path may

not reach X.This definition of control dependence, given by Ferrante, Ottenstein and Warren [5], is essentially the

same as the definition ofdirect strong control dependencegiven by Clarke and Podgurski [15].

In Figure 1, the execution of statement 2 depends on statement 1 evaluating totrue, whereas the execution of

statement 3 depends on statement 1 evaluating tofalse. Thus, statements 2 and 3 are control dependent on statement

1. Also,statements 6 and 7 are control dependent on statement 5.However, statements 1, 4, and 5 are only control

dependent on reaching the point immediately before statement 1.

3. DetectingAffected Definition-Use Associations

To satisfy a data flow testing criterion after making a program change requires identifying the def-use associa-

tions affected by the change.This section first discusses the different types of affected def-use associations.Then, it

discusses the slicing algorithms for forward and backward walks that identify the definitions and uses that are

affected by a program edit.Next, the section presents the algorithm to handle the different types of program edits,

and finally, it discusses the way in which higher level edits are translated to lower level edits for processing.

3.1. Types of Affected Def-Use Associations

Affected def-use associations fall into two categories: (1) those affected directly because of the inser-

tion/deletion of definitions and uses (new associations) and (2) those affectedindirectlybecause of a change in either

a computed value (value associations) or a path condition (path associations).

New Associations:����������������������������� A program edit creates new def-use associations that must be tested.For example, consider the

following code segment:
. . .

1. if A > 1 then
2. Y := X + 5
3. else
4. Y := X - 5
5. endif
6. X := 2 /* replace with ‘‘X := 2 + Y’’ * /

. . .

If statement 6 is replaced with ‘‘X:=2+Y’ ’, a new use of variable Y is introduced.Def-use associations consisting of

those definitions of Y that reach the new use of Y must be tested.These new associations are (2, 6, Y) and (4, 6, Y).

- 5 -

Value Associations� ����������������������������� Value associations are def-use associations whose computed values may have changed because

of the program edit and therefore, require retesting.For example, consider the following code segment:
. . .

1. X := 2 /* replace with ‘‘X := 3’’ * /
2. if A > 1 then
3. Y := X + 5
4. else
5. Z := X - 5
6. endif
7. T := Y + 6
8 U := Z + B

. . .

If statement 1 is replaced with ‘‘X := 3’’, no new def-use associations are created.However, the def-use associations

that depend on the new value of X are retested since they are affected by the change.Since both statements 3 and 5

use the definition of X in statement 1, def-use associations (1, 3, X) and (1, 5, X) are value associations.The new

value of X in statement 3 affects the computed value of Y at that statement, which causes value association (3, 7, Y)

to be identified.Likewise, value association (5, 8, Z) is found because of the affected value of Z in statement 5.

Now, the values of T in statement 7 and U in statement 8 are affected, and the process of identifying value associa-

tions continues with uses of these variables.

Path Associations� ��������������������������� The def-use associations that are affected on a path whose path condition has changed must be

retested. Apath condition can be altered because of an explicit change in an operator in the predicate statement.

For example, consider the following code segment:
. . .

1. X := 2 /* replace with ‘‘X := 3’’ * /
2. if A > 1 then /* replace with ‘‘A < 1’’ * /
3. Y := X + 5
5. endif
6. if X > A then
7. Y := X - 5
8. endif
9. writeY

. . .

If statement 2 is changed to ‘‘if A < 1 then’’, then no new def-use associations are created, but any def-use associa-

tion that is control dependent on statement 2 may be affected by the change.Here, statement 3 is control dependent

on statement 2, and so path association (3, 9, Y) is identified.

A path condition can also be altered because of a change in the value of a p-use in a predicate.For example,

in the above code segment, if statement 1 is replaced with ‘‘X := 3’’, then the value computed in statement 6 is

affected, and the path condition to statement 7 is changed.Thus, path association (7, 9, Y) is found.

3.2. Backwardand Forward Walk Algorithms

Algorithms for backward and forward walks identify the definitions and uses that are affected by a program

edit. Bothalgorithms use a control flow graph representation of the program in which each node represents a single

statement. Thesealgorithms compute data flow information to identify affected def-use associations but require no

past history of data flow information.Furthermore, the algorithms are slicing algorithms in that they examine only

- 6 -

A<5?

A := A :=

X :=

A<0?

T F

X :=

:= X

T
F

1

2 3

4

6 7

5

BackwardWalk(7,{X})

defs of X visited path taken
4 7,5,4
6 7,5,6

variable use def-use associations
use of X at statement 7 (6,7,X), (4,7,X)

Figure 2. BackwardWalk on variable X at statement 7.BackwardWalk locates definitions of X in nodes 4 and 6 that
reach statement 7.

relevant parts of the control flow graph to compute the required data flow information.These algorithms are

designed based on the approach taken by Weiser for computing slices[20].This approach lets relevant program

slices be computed without exhaustively computing the def-use information for the program.This discussion

assumes that only scalars are being considered; the technique is easily extended to include arrays by adding a new

condition for halting the search along paths.

3.3. Algorithm BackwardWalk

The backward walk algorithm identifies statements containing definitions of variables that reach a program

point. Beforethe algorithm is presented in detail, it is demonstrated with an example.Figure 2 gives a program

segment containing some definitions and uses.Suppose the goal is to compute the set of statements containing defi-

nitions of variable X that reach statement 7.The walk begins at the point immediately before statement 7 in the con-

trol flow graph. A walk back over edges (5,7) and (4,5) locates statement 4, which contains a definition of X.Since

no other definition of X can reach statement 7 along a path through statement 4, the search for definitions of X stops

at statement 4.Since there are two backward paths from statement 5, the algorithm also walks back over edge (6,5)

and finds statement 6 that contains a definition of X.The backward walk algorithm locates the statements contain-

ing definitions of variable X that reach a point in the program, without computing data flow analysis for the entire

program. Thetechnique uses the definitions that reach the statement, along with the uses in the statement, to form

def-use associations.It should be noted that if a variable being considered is undefined along a path, then the search

will terminate once it reaches the start node of the control flow graph.

- 7 -

algorithm BackwardWalk(s,U)
input s : program point/statement

U : set of program variables
output DefsOfU: set of statements/nodes in the control flow graph
declare In[i], Out[i], NewOut: set of program variables

Worklist : statements/nodes in the control flow graph, maintained as a priority queue
n, ni : program point/statement
Pred(i), Succ(i) : returns the set of immediate predecessors(successors) ofi

begin
DefsOfU= Worklist = ∅ /* initialization */
forall n � Pred(s) do Worklist = n

rdf
+ Worklist /* rdf = reverse-depth-first */

In[s] = U; Out[s] = ∅
forall ni ≠ s do In[ni] = Out[ni] = ∅

while Worklist ≠ ∅ do /* more statements along backward walk, continue processing */
Getn from head ofWorklist /* get next statement in backward walk */
NewOut=

p� Succ(n)
∪ In[p] /* recomputeOutset as union ofIn sets of successors */

if NewOut≠ Out[n] then /* there is change from last iteration */
Out[n] = NewOut /* assign new out set toOut[n] * /
if n defines a variableu � U then /* a definition of variable inU is found along this path */

DefsOfU= DefsOfU∪ { n} / * add statement n to definitions set */
In[n] = Out[n] - { u} / * stop searching for definitions ofu */

else In[n] = Out[n] /* there is no definition inn , just propagate */
if In[n] ≠ ∅ then /* all definitions of variables inU not found, */

/* addPreds(n) to Worklist */
forall x � Preds(n) do Worklist = x

rdf
+ Worklist

return (DefsOfU) /* all statements containing definitions of variables inU */
endBackwardWalk

Figure 3. AlgorithmBackwardWalk computes the definitions of variables inU that reach the statements.

Algorithm BackwardWalk, given in Figure 3, identifies the statements containing definitions of a setU of vari-

ables that reach a program points. BackwardWalk inputs the program point or statements and a setU of program

variables, and outputsDefsOfU, a set of statements or nodes in the control flow graph corresponding to the defini-

tions of variables inU that reachs. BackwardWalk traverses the control flow graph in the backward direction froms

until all variables ofU are encountered along each path.The algorithm collects the statements containing the defini-

tions inDefsOfUand returns the set.

To assist in the traversal process,BackwardWalk maintains sets of variables,In andOut, for relevant nodes in

the control flow graph.Out[i] contains the variables whose definitions the algorithm has not encountered along

some path from the point immediately followingi to s; In[i] contains the variables whose definitions the algorithm

has not encountered along some path from the point immediately precedingi to s. Since the algorithm walks back-

ward in the control flow graph, it computesOut[n] as the union of theIn sets ofn’s successors. Thealgorithm uses

another set of variables,NewOut, to store temporarily the newly computedOut set. Duringthe backward traversal,

the algorithm maintains a worklist,Worklist, consisting of those nodes that must be visited;Worklist indicates how

far the traversal has progressed.BackwardWalk maintains Worklist as a priority queue based on a reverse depth first

ordering of nodes in the control flow graph.The algorithm also usesn andni to represent statements or nodes in the

control flow graph, and functionsPred(i) andSucc(i)to compute the immediate predecessors and successors of node

- 8 -

i, respectively.

Algorithm BackwardWalk begins by initializing all sets that it uses.After initialization, the only entries in

Worklist are the predecessors ofs. The main part of the algorithm is awhile loop that repeatedly processes state-

ments inWorklist until Worklist is empty. To process a statementn, BackwardWalk first computesNewOutfor n as

the union of theIn sets of the successors ofn in the control flow graph.If NewOutandOut[n] are the same, there

has been no change from the last iteration of thewhile loop, and processing along the path containingn terminates;

the comparison ofNewOutandOut[n] causes each loop to be processed only one time.If NewOutandOut[n] dif-

fer, there is a change from the last iteration of thewhile loop. In this case,BackwardWalk assignsNewOutto

Out[n], and examinesn for a definition of a variable inU. If the algorithm finds such a definition, it addsn to Def-

sOfU. Additionally, the algorithm removesu from In[n] since it no longer needs to search for a definition ofu along

this path. If BackwardWalk finds no definition of a variable inU in n, it assignsOut[n] to In[n] and adds all imme-

diate predecessors ofn to Worklist. Each statementn added toWorklist represents a point in the program along

which the backward traversal must continue, since not all variables inU were defined along a path from a successor

of n to points. Thus,BackwardWalk only adds a node toWorklist if the In set of one of its successor is not empty.

When Worklist is empty, the algorithm has encountered all definitions of all variables inU along all backward paths

from s and the algorithm terminates.

The example in Figure 2 demonstrates an application ofBackwardWalk to locate the definitions of X that

reach statement 7.The algorithm first initializesWorklist to statement 5, the only immediate predecessor of 7.

After computingIn[5] andOut[5], the immediate predecessors of statement 5, the algorithm examines statements 4

and 6. Since statements 4 and 6 define variable X, the traversal stops andBackwardWalk returns statements 4 and 6.

In the following analysis of the runtime complexity of theBackwardWalk algorithm, lets represent the num-

ber of nodes in the control flow graph.The identification of each member ofDefsOfUmay in the worst case require

the traversal of the entire control flow graph.There are two components involved in the processing of each node

encountered during the traversal: (1) inserting the node inWorklist, which takesO(log s) time sinceWorklist is a pri-

ority queue and (2) processing the node when it reaches the front of theWorklist, which takes constant time assum-

ing that bit-vectors are used, where each bit represents a distinct variable in the program. Thus, the overall runtime

complexity ofBackwardWalk is bounded byO(s log s|DefsOfU|).

3.3.1. Algorithm ForwardWalk

The forward walk algorithm identifies uses of variables that are directly or indirectly affected by either a

change in a value of a variable at a point in the program or a change in a predicate.The def-use associations

returned by the algorithm are triples (s, u, v) indicating that the value of variablev at statements, affected by the

change, is used by statementu. A def-use association is directly affected if the triple represents a use of an altered

definition. Adef-use association is indirectly affected in one of two ways: (1) the triple is in the transitive closure of

the changed definition, or (2) the triple is control dependent on a changed or affected predicate.

- 9 -

X:= Y :=

X>J

J := Y

:= X Z :=

:= Z

:= X

:= Z

:= J

T F

T F

1 2

3

4 5

6 7

8

9

10

ForwardWalk({(2,Y)}, false)

variable def-useassociation pathtaken

Y (2,4,Y) 2,3,4
J (4,10,J) 4,9,10

ForwardWalk({(3,X),(3,Y)}, true)

variable def-useassociation pathtaken

X (1,6,X) 3,5,6
Y (2,4.Y) 2,3,4
J (4,10,J) 4,9,10
Z (7,8,Z) 7,8

(7,10,Z) 7,8,9,10

Figure 4. The firstForwardWalk on variable Y at statement 2 finds def-use associations (2,4,Y) and def-use associa-
tion (4,10,J).The secondForwardWalk begins traversal at statement 3 with the definitions that reach it, (1,X) and
(2,Y); def-use associations (1,6,X), (2,4,Y)and (4,10,J) are located.Since statement 7 is control dependent on
statement 3, def-use associations (7,8,Z) and (7,10,Z) are identified.

Consider the program segment in Figure 4.If a forward walk begins at statement 2 for variable Y, the use of

Y in statement 4 is found.Thus, directly affected def-use association (2,4,Y) is computed.Additionally, since def-

use association (4,10,J) for variable J is in the transitive closure of the definition of Y in statement 2, this def-use

association is indirectly affected. Ifa forward walk begins at statement 1 for variable X, the uses of X in statements

3, 6 and 9 are located, and directly affected def-use associations (1,3,X), (1,6,X) and (1,9,X) are computed.Addi-

tionally, because of the affected predicate in statement 3, any def-use association whose definition is control depen-

dent on statement 3 is indirectly affected. Thus,def-use associations (7,8,Z) and (7,10,Z) for variable Z are identi-

fied as indirectly affected.

Algorithm ForwardWalk, given in Figure 5, inputs a set ofPairs representing definitions whose uses are to be

found, along with a boolean,Names, that indicates whether the walk starts with a set of variable names at a program

point† or a set of definitions.Namesis true if the walk begins with a set of variable names v at a point p, represented

by (p,v). Otherwise,the walk begins with the pairs of affected definitions (s,v). ForwardWalk outputs a set of def-

use triples,Triples.
�����������������������������������
† ForwardWalk can handle multiple pairs, consisting ofpoints/statements and variables of the form (s,v), by simultaneously process-
ing all of these pairs.To simplify the discussion,ForwardWalk is described for a single pair (s,v).

- 10 -

algorithm ForwardWalk(Pairs, Names)
input Names: boolean is true if change is only a predicate change

Pairs: sets of definitions, (s, v), wheres is a program point/statement andv is a variable
output Triples: set of (point/statement, statement, variable)
declare In[i], Out[i], Kill , NewIn: set of pairs, (point/statement,variable)

Worklist, Cd[i], PredCd, AffectedPreds: set of point/statement
DefsOfV: set of (s, v) of definitions
v : program variable
k, n : statement/node
Pred(i), Succ(i) : returns the predecessors(successors) ofi in the control flow graph
Def(i): returns the variable defined by statementi

begin
Triples= ∅ /* initialization */
forall (s,v) 	 Pairsdo

forall n 	 Succ(s) do Worklist = n
df
+ Worklist /* df = depth first */

forall statementsni not in any pair inPairs do In[ni] = Out[ni] = ∅
forall (s, v) 	 Pairs do In[s] = ∅; Out[s] = { (s, v)}
if Namesthen AffectedPreds= { si } elseAffectedPreds= ∅

while Worklist ≠ ∅ do /* continue processing nodes*/
Getn from head ofWorklist
NewIn=

p
 Pred(n)
∪ Out[p]

if NewIn≠ In[n] then /* change from last iteration */
In[n] = NewIn /* recomputeIn[n] * /
PredCd=

p
 Pred(n)
∪ Cd(p)

if PredCd- Cd(n) ≠ ∅ then UpdateAffInfo /* update affected predicate information */
if n has a c-use of variablev such that (d,v) 	 In[n] then /* found a c-use */

forall (d,v) 	 In[n] do Triples = Triples ∪ {(d,n,v)} /* additional def-use associations */
Kill = { (s,Def(n)): (s,Def(n)) 	 In[n]} /* definitions that are killed byn */ */
Out[n] = (In[n] - Kill) ∪ {(n,Def(n))} /* propagate definitions to end ofn */

elsif n has a p-use of variablev such that (d,v) 	 In[n] then /* found a p-use */
forall (d,v) 	 In[n] do Triples = Triples ∪ {(d,n,p)} /* additional def-use associations */
DefsOfV= BackwardWalk(n, { v}) - In[n] /* fi nd definitions that reach affected predicate */
In[n] = In[n] ∪ {(n, vi) : (d, vi) 	 DefsOfV} / * add new definitions toIn andOut sets */
Out[n] = In[n]
AffectedPreds= AffectedPreds∪ { n} / * mark this predicate statement as affected */

elseifn defines a variablev Λ Cd(n) ∩ AffectedPreds≠ ∅ then /* statement contains a definition */
Out[n] = Out[n] ∪ {(n, Def(n))} /* propagate this definition forward */

elseOut[n] = In[n] /* statement contains no definition or use of interest */
if Out[n] ≠ ∅ then /* more definitions/uses, continue processing */

forall x 	 Succ(n) do Worklist = x
df
+ Worklist

return (Triples) /* all affected value and path associations */
end ForwardWalk

Figure 5. Algorithm ForwardWalk identifies all def-use triples that are affected by a change in the value of variable
v at points in the program, or that are affected by a predicate change.

For each statement noden, In and Out sets contain the pairs representing definitions whose uses are to be

found, since their values are affected by the edit.The setIn[n] (Out[n]) contains the values just before (after)n

whose uses are to be found.Each value is represented as a pair (d,p) indicating that the value of variablep at pointd

is of interest.If ForwardWalk encounters a statementn that uses the value (d,p) belonging toIn[n], it adds def-use

triple (d,n,p) to the list of def-use pairs affected by a change in the value of variablev at statements. The value of

- 11 -

the variable defined by statementn is also indirectly affected. Ifthe algorithm encounters a new definition of a vari-

ablep at statementn, then the values ofp belonging toIn[n] are killed by this definition, and the search for these

values along this path terminates.The setKill in the algorithm denotes the set of values killed by a definition.The

Kill set is needed to computeOut[n] f rom In[n]. Sincethe algorithm walks forward in the control flow graph,In[n]

is computed by taking the union of theOut sets ofn’s predecessors. Duringthis traversal, a worklist,Worklist, con-

sisting of those nodes that must be visited, indicates how far the traversal has progressed.ForwardWalkmaintains

Worklist as a priority queue based on a depth first ordering of nodes in the control flow graph.The algorithm exam-

ines the statements inWorklist for c-uses and p-uses of the definitions in theIn sets along with definitions in state-

ments that are control dependent on a changed or affected predicate.As the algorithm examines the statements in

Worklist, it adds additional statements to be considered toWorklist. ForwardWalk also usesDefsOfV, a set of defi-

nitions,v, a program variable, andk andn, statements in the program.FunctionsPred, SuccandDef return the pre-

decessors, successors and variable defined by statementi, respectively.

In the first part ofForwardWalk, all variables are initialized.The main part of the algorithm is awhile loop

that processes statements/nodes onWorklist until Worklist is empty. For each statementn removed fromWorklist,

processing consists of first computingNewInfor n by taking the union of theOut sets of the predecessors ofn, and

then determining ifNewIn is the same as the previous value ofIn[n] . If these sets are the same, there has been no

change since the previous iteration, and the forward walk along this path terminates atn. If these sets differ, n is

processed further:NewInis assigned toIn[n] , and PredCdis assigned the union of the control dependence informa-

tion for n’s predecessor(s). IfPredCdcontains nodes on whichn is not control dependent, then the forward walk

along this path has moved into a different region of control dependence, andAffectedPredsmust be updated accord-

ingly. ProcedureUpdateAffInfoshown in Figure 6 (described below) handles this task.Then, noden is checked to

see if it has a c-use of variablev. If so, def-use associations for any pairs inIn[n] are added toTriples, and the vari-

able defined atn is added toOut[n] since it is indirectly affected. Ifthere is no c-use ofv at n but n contains a p-use,

def-use associations for any pairs inIn[n] are added toTriples. Since a p-use signals an affected predicate, any defi-

nitions that reachn are found usingBackwardWalk; these definitions are used to identify indirectly affected def-use

associations. Ifneither type of use is found atn, the statement is inspected for a definition; if one is found atn, the

appropriate data flow sets are updated.Finally, if no definition or use of the variables is found atn, the data flow

information is propagated throughn. If Out[n] is not empty, then thesuccessors ofn must be processed, and they

are added toWorklist. WhenWorklist is empty, processing terminates andTriples is returned.

An important feature ofForwardWalk is that it identifies def-use associations that are control dependent on an

affected predicate, even though the value computed by the definition is unaffected. Thus,the control dependence

information must be computed prior to usingForwardWalk. Control dependencies are efficiently computed for

each node in a control flow graph using the post-dominator relation among the nodes [5].For each control flow

graph noden, Cd[n] stores the set of nodes on whichn is control dependent.A set of nodesAffectedPredsstores

the current list of affected predicates. When a node containing a definition is encountered, if

- 12 -

procedureUpdateAffInfo
begin

forall k � (PredCd- Cd(n)) ∩ AffectedPredsdo /* statement is out of previous control dependence region */
In[n] = In[n] - { (k, vi) for all vi } / * updateIn[n] accordingly */
AffectedPreds= AffectedPreds- { k} / * k is no longer affected in new region */
forall (k, u, v) in Triplesdo /* update def-use associations */

Triples= Triples - { (k, u, v)}
forall (d, v) � DefsOfVdo Triples= Triples∪ {(d, u, v)}

endUpdateAffInfo

Figure 6. ProcedureUpdateAffInfoadjusts predicate information when the walk has entered a different region of
control dependence.

AffectedPredsis nonempty, the definition is added to theIn set so that its uses can be found.In this way,

ForwardWalklocates def-use associations that are control dependent on affected predicates.

ForwardWalkmust also recognize all def-use associations that are control dependent on affected predicates.

To accomplish this, each time a new node is removed fromWorklist, its control dependencies are compared with the

control dependencies of its predecessors.If there is a difference in control dependence information, the procedure

UpdateAffInfo, shown in Figure 6, is called.Assume thatUpdateAffInfocan access all variables inForwardWalk.

UpdateAffInfoconsiders those affected predicates on whichn is not control dependent, and removes these state-

ments fromIn[n] . A decrease in control dependencies indicates that some predicate may no longer be affected; thus

it is removed fromAffectedPredsandTriples is adjusted accordingly.

The example in Figure 4 illustrates the use ofForwardWalk. The firstForwardWalkon variable Y at state-

ment 2 finds the use of Y in statement 4 to yield the def-use association (2,4,Y).Since definition J in statement 4 is

affected by the change in Y, ForwardWalkadds (4,J) toOUT[4] and continues the traversal to find the def-use asso-

ciation (4,10,J).In the secondForwardWalk, the walk begins with statement 3 and the definitions that reach it,

(1,X) and (2,Y). Thus, the initialPairs consist of (3,X) and (3,Y).For (3,X), ForwardWalkfinds Triple (3,6,X)

that is used to identify affected def-use association (1,6,X).However, def-use association (1,9,X) is not included

since its value is not affected by a change in statement 3.For (2,Y), ForwardWalkfinds (2,4); since the definition

of J in statement 4 is affected, (4,10,J) is identified.Since statement 7 is control dependent on statement 3 and con-

tains a definition, def-use associations (7,8,Z) and (7,10,Z) are identified for Z even though their values are not

affected by the change in statement 3.

In the following analysis of the runtime complexity of theForwardWalk algorithm, lets represent the number

of nodes in the control flow graph.The identification of each member ofTriples is achieved in one of the following

two ways: (1) a forward traversal of the flow graph to identify a use of a value, or (2) a backward traversal from a

predicate node, followed by a forward traversal from the same predicate node. In the worst case, the for-

ward/backward traversals may inspect the entire control flow graph and thus process all nodes.The processing of

each node consists of two components: (1) inserting the node inWorklist which takesO(log s) time and (2) process-

ing the node when it reaches the front of theWorklist, which takesO(s) time since it requires examining each ele-

ment in the node’s data flow set, and the size of the data flow set is bounded byn. Thus, the overall runtime com-

plexity of theForwardWalk algorithm isO(s2|Triples|).

- 13 -

algorithm FindDUAssns(S, Edit)
input S: program point/statement

Edit: Insert (Delete) use(definition), Change statement (branch) operator, Insert(Delete) edge
output DefUseAssns: set of (point/statement, statement, variable)
declare DefsOfX: set of statements/nodes in the control flow graph

NewAssns, ValuePathAssns, Triples, Triples’ : set of (point/statement, statement, variable)
CFG, CFG’ : control flow graph
V : set of program variables
DefsOfV, DefsOfY, DefsOfVp, DefsOfVt: set of variable definitions
Def(i) : returns the variable defined by statementi

begin
caseEdit is :

Insert a use of variableX in statementS: Y: = . . X. . : DefUseAssns:= InsertUse(S,X)
Delete a use of variableX in statementS: Y: = . . X. . : DefUseAssns:= DeleteUse(S,X)
Insert a definition of variableY in statementS: Y: = . . : DefUseAssns:= InsertDefinition(S,Y)
Delete a definition of variableY in statementS: Y: = . . : DefUseAssns:= DeleteDefinition(S,Y)
Change operator in statementS: Y: = : DefUseAssns:= OperatorChange(S,Y)
Change operator in branch condition in statementS : DefUseAssns:= ConditionChange(S)
Insert an edge from statement p to statement t : DefUseAssns:= InsertEdge(p,t)
Delete an edge from statement p to statement t : DefUseAssns:= DeleteEdge(p,t)

endFindDUAssns

Figure 7. Algorithm FindDUAssnsaccepts a statementSand an edit typeEdit, and identifies all def-use associations
that must be tested because of that edit.

3.4. Actionsfor Differ ent Types of Edits

This section considers consider the way in which we useBackwardWalkand ForwardWalk to identify the

def-use pairs that are affected by a program change.Algorithm FindDUAssns(S, Edit), given in Figure 7, inputs

statementS where the edit occurs, along with the type of editEdit that occurred atS. After processing the edit,

FindDUAssnsreturns the def-use associations,DefUseAssns, that are affected by the edit.FindDUAssnsuses sev-

eral variables during its processing.DefsOfXstores statements/nodes in the control flow graph representing defini-

tions in the program.NewAssns, ValuePathAssns, Triples andTriple s′ represent sets of def-use associations.CFG

andCF G′ represent control flow graphs,V represents a set of program variables, andDefsOfV, DefsOfY, DefsOfVp

andDefsOfVtrepresent sets of variable definitions.Finally, Def(i) is a function that returns the variable defined by

statementi . Each action has access to this set of global variables.In the following discussion, we detail the action

(function) taken as a result of each edit.

Insert a use of variable X in statementS: Y: = . . X. .�
���

Inserting a use of variableX causes new def-use associations between statements containing definitions ofX

that reach the new use atS. First, functionInsertUseusesBackwardWalkto locate all definitions ofX that reach the

new use ofX in S; these definitions are returned inDefsOfX. Each of the definitions inDefsOfXtogether with the

use ofX in S represents a newly created def-use association that is added toNewAssns. Then,ForwardWalkcom-

putesValuePathAssns, which are def-use associations that have experienced value changes because of the change in

the value ofY at S, or def-use associations that are control dependent on an affected predicate.Finally, the set of

affected def-use associations,DefUseAssns, is computed as the union ofNewAssnsandValuePathAssns.

- 14 -

Y:=2

X:=3

A>1?

B:=A B:=X

Y:=X

T F

A>B?

Z:=Y A:=X

X:=Z

T F

0

1

2

3 4

5

6

7 8

9

Change1: insert use of X in
statement 5

Change2: delete use of X
in statement 5

BackwardWalk(5,{X}): ForwardWalk({(5,Y)}, false):
definition of X in statement
1 reaches statement 5;def-
use association to be tested
is (1,5,X)

def-use associations to be
retested are (5,7,Y) and
(7,9,Z)

ForwardWalk({(5,Y)}, false):
def-use associations to be
retested are (5,7,Y) and
(7,9,Z)

Change3: insert definition
of Y in statement 5

Change4: delete definition
of Y in statement 5

ForwardWalk({(5,Y)}, false): BackwardWalk(5,{Y}):
def-use associations to be
retested are (5,7,Y) and
(7,9,Z)

definition of Y in statement
0 reaches statement 5
ForwardWalk({(5,Y)}, false):
def-use associations to be
retested are (0,7,Y) and
(7,9,Z)

Figure 8. Change1 inserts a use of X in statement 5.BackwardWalk identifies the def-use associations to the new
use of X andForwardWalk identifies the def-use associations that are affected by the change in the definition of Y in
statement 5.Change2 deletes the use of X in statement 5.ForwardWalk identifies the def-use associations affected
by this change in the definition of Y. Change3 inserts a definition of Y in statement 5.ForwardWalk identifies the
def-use associations to be retested.Change4 deletes the definition of Y in statement 5.BackwardWalk identifies the
definitions of X that reach statement 5 to form new def-use associations to be tested.Then,ForwardWalk identifies
the def-use associations affected by the change in statement 5.

function InsertUse(S,X) /* use the modified CFG */
DefsOfX= BackwardWalk(S,{X}) /* find statements with definitions ofX that reachS*/
NewAssns=

Si � DefsOfX
∪ {(Si , S, X)} /* form new def-use associations */

ValuePathAssns= ForwardWalk({S, Y)}, false) /* find indirectly affected def-use associations */
DefUseAssns= NewAssns∪ ValuePathAssns /* combine new and affected def-use associations */

end InsertUse

To illustrateInsertUse, consider Change1 in Figure 8; assume that the use ofX in statement 5 has just been inserted.

BackwardWalkon (5,{X}) finds the definition ofX in statement 1, and (1,5,X) is added toNewAssns. Then,

ForwardWalk on (5,Y) identifies the ValuePathAssns(5,7,Y) and (7,9,Z) because the change in the value ofY

affects these def-use associations.

- 15 -

Delete a use of variable X in statementS: Y: = . . X. .� ���

Deleting a use ofX causes the value ofY to change but introduces no new def-use associations.Function

DeleteUseusesForwardWalk to identify all def-use associations that are affected by the change in the value ofY.

If these def-use associations involve predicate statements, then the affected path associations for those predicates are

also identified duringForwardWalk. The returned set of def-use associations is assigned toDefUseAssns.

function DeleteUse(S, X) /* use the modified CFG */
DefUseAssns= ForwardWalk({(S,Y)}, false) /* find all affected def-use associations */

end DeleteUse

For example, if the use ofX in statement 5 in Figure 8 (Change2) is deleted,DeleteUseusesForwardWalkon (5,Y)

to detect the def-use associations (5,7,Y) and (7,9,Z) that experience value changes; no affected path associations are

found.

Insert a definition of variable Y in statementS: Y: = . .� ���

When a definition ofY is inserted in statementS, there are new def-use associations betweenSand statements

containing reachable uses ofY; there are also affected def-use associations due to the change in the computed value

at S. InsertDefinitionusesForwardWalk to identify the newly created def-use associations for the inserted defini-

tion of Y. Other definitions that experience value changes because of the change inS are also found.If any of the

def-use associations involve predicates, the def-use associations affected by those predicates are also identified dur-

ing ForwardWalk. The set of all new and affected def-use associations returned byForwardWalk is assigned to

DefUseAssns.

function InsertDefinition(S, Y) /* use the modified CFG */
DefUseAssns= ForwardWalk((S, Y), false) /* fi nd all affected def-use associations */

end InsertDefinition

Assume that statement 5 in the example of Figure 8 is an inserted definition ofY (Change3).ForwardWalkyields

new association (5,7,Y) because the newly computed value ofY is used in statement 7.Additionally, ForwardWalk

identifies value association (7,9,Z) because the value ofZ in statement 7 is affected.

Delete a definition of variable Y in statementS: Y: = . .���

When a definition of variableY is deleted from statementS, there are new def-use associations since other

definitions ofY now reach uses that were previously blocked by the deleted definition ofY. Additionally, there are

def-use associations affected by the change in the computed value atS. DeleteDefinitionusesBackwardWalkto

identify the definitions ofY that reachS, the statement containing the deleted definition ofY, and adds them to

DefsOfY. Now that the definition ofY in S is deleted, the definitions ofY in DefsOfYreach uses previously reached

- 16 -

by the definition ofY in S. Additionally, the value and path associations that are affected by the deleted definition of

Y are computed.Then,ForwardWalk identifies the def-use associations that are created by the edit at statementS,

the value associations whose values are affected, and path associations dependent on affected predicates; these asso-

ciations are returned inTriples. Those uses ofY reachable fromS are associated with the definitions ofY in

DefsOfY and stored in NewAssns. Then the remaining def-use associations inTriples are assigned to

ValuePathAssns. Finally, DefUseAssnsis the union ofNewAssnsandValuePathAssns.

function DeleteDefinition(S, Y) /* use the modified CFG */
DefsOfY = BackwardWalk(S,{Y}) /* find statements with definitions ofY that reachS*/
Triples= ForwardWalk({(S,Y)}, false) /* find affected def-use associations */
NewAssns= { (Si ,S′,Y): (S,S′,Y) � TriplesΛ Si � DefsOfY} / * f orm new def-use associations */
ValuePathAssns= { (d,u,v: (d,u,v)� TriplesΛ d ≠ S} / * fi nd indirectly affected def-use associations */
DefUseAssns= NewAssns∪ ValuePathAssns /* combine new/affected def-use associations */

end DeleteDefinition

For example, if statement 5 in Figure 8 is deleted (Change4),BackwardWalkfirst identifies the definitions ofY that

reach statement 5.The result is the definition ofY in statement 0.Next, ForwardWalkbegins at statement 5 withY

as a reference and finds the affected value association (5,7,Y).Since the definition ofY at statement 5 has been

deleted, definition 5 in def-use association(5,7,Y) is replaced by the definition ofY in statement 0 that was found

by BackwardWalk. The changed def-use association is (0,7,Y).The def-use association (7,9,Z) is also found by

ForwardWalkdue to a change in the value ofZ.

Change operator or value of a constant operand in statementS: Y: = . .���

If the operator or a constant operand used in an assignment statement is altered, no new def-use associations

are created.However, the value of the variable defined by this altered statement changes, which causes value asso-

ciations and possibly path associations.OperatorChangeusesForwardWalkto identify both value and path associ-

ations affected by this edit, and they are stored inDefUseAssns.

function OperatorChange(S) /* use the new CFG */
DefUseAssns= ForwardWalk({(S,Y)}, false) /* find all affected def-use associations */

end OperatorChange

To illustrateOperatorChange, consider Change1 in Figure 9; assume that there is an operator change in statement 1.

ForwardWalk on statement 1 identifies the value associations that are affected by the change: (1,4,X), (4,7,B),

(4,(6,7),B), (4,(6,8),B), (7,8,Z) and (8,9,A).

- 17 -

Z: =2

X:= 3+Z

A>1?

B:=A B:=X

X:=A

T F

A>B?

Z:=B

A:=Z+X

write A

T
F

0

1

2

3 4

5

6

7

8

9

Change1: change operator
in statement 1

Change2: change condi-
tion in statement 6

ForwardWalk({(1,X)}, false): BackwardWalk(6,{Z,B,X}):
def-use associations to be
retested are (1,4,X), (4,7,B),
(4,(6,7),B), (7,8,Z), (8,9,A)

definition of Z in statement
0, definitions of B in state-
ments 3 and 4, and defini-
tion of X in statement 5
reach statement 6
ForwardWalk({(6,Z),(6,B),
(6,X)}, true): finds Triples
(6,7,B), (7,8,Z) and (8,9,A),
yielding def-use associa-
tions; def-use associations
(3,7,B), (3,(6,7),B),
(3,(6,8),B), (4,7,B),
(4,(6,7),B), (4,(6,8),B),
(7,8,Z) and (8,9,A)

Figure 9. Change1 modifies the operator in statement 1.ForwardWalk identifies the def-use associations to be
retested. Change2modifies the condition in statement 6.Both BackwardWalk andForwardWalk are used to identify
def-use associations affected by the change in statement 6.

Change operator or value of a constant operand in a branch condition in statementS�
���

Changing the operators of a branch condition statementS creates no new def-use associations.Since the

branch condition does not define any variable it does not directly affect the values of any def-use associations.(An

example is changing a condition ‘‘X<Y’ ’ to ‘‘X>Y’ ’.) However, all value and path associations influenced by the

result ofS must be identified.ConditionChangeidentifies the definitions that reachS using BackwardWalk, and

stores them inDefsOfV. The uses of these definitions that are reachable fromSand are control dependent onSare

identified usingForwardWalk; the result is stored inTriples. Triplescontains two types of def-use associations: (1)

those def-use associations whose definition appears beforeSand whose use is control dependent onSand (2) those

def-use associations whose definition is control dependent onS. FunctionConditionChangecomputes those def-use

associations of type (1) and stores them inDefUseAssns. Then,ConditionChangecomputes the def-use associations

of type (2) and stores them inValuePathAssns. The final set of affected def-use associations is found by adding the

set ofValuePathAssnsto DefUseAssns.

- 18 -

function ConditionChange(S) /* use the new CFG */
DefsOfV= BackwardWalk(S,V) /* find statements with definitions ofV that reachS*/
Triples= ForwardWalk({(S, Vi): DefsOfVcontains a /* find value and path associations */

definition ofVi }, true)
DefUseAssns= { (Si ,S′, V): (S,S′,V) � TriplesΛ Si � DefsOfV} / * def-use associations of type (1) */
ValuePathAssns= { (d,u,v): (d,u,v)� Triples and d≠ S} / * def-use associations of type (2) */
DefUseAssns= DefUseAssns∪ ValuePathAssns /* find all affected def-use associations */

end ConditionChange

Consider Figure 9 where there is a condition change in statement 6 (Change2).First,BackwardWalk on statement 6

identifies definitions that reach the changed predicate (i.e., definition of Z in statement 0, definitions of B in state-

ments 3 and 4, and definition of X in statement 5).ThenForwardWalk is called with pairs {(6,Z),(6,B),(6,X)}, and

the Namesflag set. The Triples returned from this walk are used to form the def-use associations ((0,8,Z), (3,7,B),

(3,(6,7),B), (3,(6,8),B), (4,7,B), (4,(6,7),B), (4,(6,8),B) and (5,8,X).Def-use associations (7,8,Z) and (8,9,A) are

also affected and identified bytForwardWalk for retesting.

Insert an edge (p,t) from statement p to statement t�
���

Inserting an edge (p,t) can cause creation of new def-use associations since definitions may reach uses over

the new paths created by (p, t). Thevariables defined by statements corresponding to uses of the new def-use asso-

ciations may have their values affected. Thus,all def-use associations that depend on the values of affected vari-

ables must be identified.First, InsertEdgeusesBackwardWalk to find all definitions that reach statementt in the

altered control flow graph,CF G′; these definitions are stored inDefsOfV. Next, ForwardWalk is used to locate

def-use associations in the old control flow graph,CFG, that depend on the definitions inDefsOfV; Triples is used

to store these def-use associations.To identify the new and affected def-use associations involving the new edge

(p, t), ForwardWalk is used to computeTriple s′ on CF G′. After removing the common def-use associations in

Triples andTriple s′, Triple s′ stores the new def-use associations,NewAssns. Then aForwardWalk from t yields

the value and path associations inValuePathAssns. The set of affected def-use associations,DefUseAssns, is the

union of NewAssnsandValuePathAssns. Since the addition of an edge modifies the control dependence informa-

tion the modified flow graph must be reanalyzed to compute control dependences.Since the ForwardWalk is per-

formed on both the old and the modified flow graphs, the control dependence information for both graphs must be

made available.

- 19 -

action InsertEdge(p, t)
DefsOfV= BackwardWalk(t,{V}) on CF G′ /* find definitions that reacht in new cfg */
Triples= ForwardWalk({(s, Def(s)): s� DefsOfV}, false) on CFG

/* find def-use associations on old cfg */
Triple s′ = ForwardWalk({(t, Vi): DefsOfVcontains a definition ofVi andVi ≠ Def(t)}, true) on CF G′

/* find def-use associations on new cfg */
Triple s′ = { (s, t): s� DefsOfV, Def(s) � ref (t)} ∪ {(si , s) : si � DefsOfVand (p, s, Vi) � Triple s′}
NewAssns= Triple s′ - Triples /* find new def-use associations */
ValuePathAssns= ForwardWalk({(s, Def(s)): oppE(r , s) � NewAssns}, false) on CF G′

/* find affected def-use associations */
DefUseAssns= NewAssns∪ ValuePathAssns /* all affected def-use associations */

end InsertEdge

To see the effects of inserting an edge in the control flow graph, consider Figure 10.In the figure, a partial original

program and a modified version are given.Control flow graphs are shown for the original program (a), a modified

version after an edge is deleted (b), and a modified version after an edge is added (c).(The general approach to

translating higher level edits to lower level edits is discussed in Section 3.5.) First,BackwardWalk from statement 3

finds the definition of A in statement 1.ThenForwardWalk from statement 3 in the control flow graph for the origi-

nal program (a) yields (1,5,A) and (5,6,X);ForwardWalk on the control flow graph for the new program (c) yields

((3,6,X). Thus,NewAssnscontains (3,6,X), which must be tested.

Delete an edge (p,t) from statement p to statement t� ���

Deleting an edge may cause the deletion of some def-use pairs but it does not create any new pairs.However,

there are def-use pairs that are affected by the deleted edge.An affected def-use pair is one that has not been deleted

although the use was reachable by the definition through the deleted edge.First, DeleteEdgeidentifies the defini-

tions,DefsOfVp, that reach statementp usingBackwardWalk. Using this information the definitions,DefsOfVt, that

reacht via the deleted edge are identified.Next ForwardWalk is used to locate def-use associations,Triples, in the

old control flow graph,CFG, that depend on definitions inDefsOfVt. ForwardWalk on the new control flow graph,

CFG’, is used to locate def-use associations,Triples’, that depend on definitions inDefsOfVtand are present in the

modified control flow graph.By removing the def-use associations that have been eliminated due to edge deletion,

we obtain the set of affected def-use associations,DefUseAssns. As was the case for edge addition, following edge

deletion we must recompute control dependence information.

action DeleteEdge(p, t)
DefsOfVp= BackwardWalk(p,{V}) on CFG /* find definitions that reachedp in old CFG */
DefsOfVt= {p} ∪ {n: n∈DefsOfVp and Def(p)≠ Def(n)} /* find definitions that reachedt via p in old CFG */
Triples= ForwardWalk({(t, Vi): DefsOfVtcontains a definition ofVi andVi ≠ Def(t)}, true) on CFG
Triples= { (s, t, Def(s)): s� DefsOfVt, Def(s) � ref (t)} ∪ {(si , s) : si � DefsOfVtand (p,s,Vi) � Triples}

/* find old def-use associations through (p, t) * /
Triple s′ = ForwardWalk({(s, Def(s)): s� DefsOfVt}, false) on CF G′

/* find new def-use associations inCF G′ */
DefUseAssns= Triples - (Triples− Triple s′) /* set of affected def-use associations */

end DeleteEdge

- 20 -

Original Program (partial)

. .
A := ..
if A > 0 then

X := . .
gotoL

elseX := . .
L: X := X + A
L′: .. := X

. .

Modified Program (partial)

. .
A := . .
if A > 0 then

X := . .
gotoL′

elseX := . .
L: X := X + A
L′: . . := X

. .

A:= ..

A>0?

X:= .. X:= ..

X:=X+A

T F

.. := X

(a) Original Program

1

2

3 4

5

6

A:= ..

A>0?

X:= .. X:= ..

X:=X+A

T F

.. := X

(b) Modified Program
after deleting edge

(1,5,A) and (5,6,X)
must be retested

1

2

3 4

5

6

A:= ..

A>0?

X:= .. X:= ..

X:=X+A

T F

.. := X

(c) Modified Program
after adding edge

(3,6,X) must be tested

1

2

3 4

5

6

Figure 10. A partial program and its modified version.The control flow graph for the original program is shown
on the left, and control flow graphs for the modified version are shown in the center and on the right.

To see the effects of deleting an edge in the control flow graph, consider Figure 10.BackwardWalk from statement 3

determines that the definition of variable A in statement 1 reaches statement 5 via the deleted edge (3,5).Then the

ForwardWalk from statement 5 yields def-use associations (1,5,A) and (5,6,X). Since these def-use associations are

not deleted in the modified program, both must be tested.

3.5. Translating High Level Edits to Low Level Edits

The approach to translating higher level edits into lower level edits for processing by our algorithms is:

a) makestructural changes to the control flow graph;

b) add/modifyassignment statements;

c) add/modifypredicates.

- 21 -

Original Program Segment

. .
A := Z
if A > 0 then

X := 1
else

X := 2
X := X + A
A := X + 1
. .

Modified Program Segment

. .
A := Z
if A > 0 then

X := 1
else

X := 2
if Z > 0 then

Z := Z + 1
gotoL

X := X + A
L: A := X + 1
. .

A:= Z

A>0?

X:= 1 X:= 2

X:=X+A

T F

A:=X+1

(a) Original Program

1

2

3 4

5

6

A:= Z

A>0?

X:= 1
X:= 2

X:=X+A

T
F

A:=X+1

(b) Insert edge

1

2

3
4

5

6

7

A:= Z

A>0?

X:= 1
X:= 2

X:=X+A

T
F

A:=X+1

(c) Insert assignment
statement

Z:=Z+1

1

2

3
4

5

6

7

8

A:= Z

A>0?

X:= 1
X:= 2

Z > 0?

X:=X+A

T
F

F

A:=X+1

(d) Insert predicate

Z:=Z + 1
T

1

2

3
4

5

6

7

8

Figure 11. A partial program on the left and the modified versions that result in a predicate change in the program.

Figure 11 shows an example of inserting a predicate statement.In the figure, both the original program segment and

the modified program segment are shown.The control flow graph in (a) represents the original program segment.

The control flow graph in (b) shows the insertion of the edge to the target of the conditional branch.Then, in (c), the

body of the conditional statment is inserted; here only an assignment statement is inserted.Finally in (d), the predi-

cate statement is added to the control flow graph.In each step, the algorithms presented in this paperare used to

process the edit and identify those def-use associations to (re)test.

After each low level edit, the def-use associations that must be retested are identified.After all low level edits

have been processed the set of all possible def-use associations that may require retesting are known.Since the later

low level edits may cause some of the previously identified def-use associations to be invalidated, a single pass over

the def-use associations is required to identify and remove these def-use associations.The backward walk algorithm

- 22 -

is used to determine the validity of the def-use associations.The invalid associations are discarded and the remain-

ing def-use associations are now tested.It is important to note that although a high level edit may translate into sev-

eral low level edits, testing is not performed after each low level edit but rather it is performed once per high level

edit.

4. Testing Affected Def-Use Associations

Next, the regression testing technique is illustrated using an example.Consider the program whose control

flow graph is shown in Figure 12.The program should compute the square root for input variable X by repeatedly

halving the interval between the two estimates, X1 and X2.The table on the right in Figure 12 gives the def-use

associations for the program that are required to satisfy the all-uses data flow testing criterion.The program has

read(X)

X1 := .00001

X2:=X

(X2-X1)≤.00002?

F

X3:=(X1+X2)/2

(X32-X)*(X12-X)<0?

X2:=X3 X1:=X2

T F

goto 4

T stop

1

2

3

4

5

6

7 8

9

10

Def-use Information

node definition def-use associations

1 X (1,3,X), (1,6,X)
2 X1 (2,(4,5),X1), (2,(4,10),X1), (2,5,X1),

(2,(6,7),X1), (2,(6,8),X1)
3 X2 (3,(4,5),X2), (3,(4,10),X2), (3,5,X2)

(3,8,X2)
5 X3 (5,(6,7),X3), (5,(6,8),X3), (5,7,X3)
7 X2 (7,(4,5),X2), (7,(4,10),X2), (7,5,X2)

(7,8,X2)
8 X1 (8,(4,5),X1), (8,(4,10),X1), (8,5,X1),

(8,(6,7),X1), (8,6,8),X1)

Figure 12. Program to compute the square root of X that contains an error in statement 8 that must be changed to
‘‘ X1:=X3’’.

an error in statement 8: statement 8 should read ‘‘X1:=X3’ ’. Correctingthe error requires two actions: (1) delete the

use of X2 in statement 8 and (2) insert the use of X3 in statement 8.The sequel shows how the algorithms handle

the changes.

- 23 -

(1) Deletethe use of X2 in statement 8.

Because X2is deleted, ForwardWalk first finds the uses of X1 in statements 4, 5 and 6.Thus, detected def-

use associations for X1 are (8,(4,6),X1), (8,(4,5),X1), (8,5,X1), (8,(6,7),X1) and (8,(6,8),X1).Since the definition of

X3 in statement 5 may be affected, def-use associations for X3, (5,(6,7),X3), (5,(6,8),X3) and (5,7,X3) are detected.

The use of X3 in statement 7 may affect the definition of X2 and def-use associations for X2 (7,(4,5),X2),

(7,(4,10),X2) and (7,5,X2) are identified.Although the definition of X3 in statement 5 may be affected by this use

of X2, the processing stops since def-use associations for this definition of X3 are already detected.

(2) Insertthe use of X3 in statement 8.

First, BackwardWalk on statement 8 for X3 finds the reaching definition of X3 in statement 5 and returns the

def-use association (5,8,X3) for X3.Since ForwardWalk on X3 in statement 8 is identical to the ForwardWalk per-

formed during the above deletion of the use of X2 in statement 8, the same def-use associations are returned.Figure

13 lists the def-use associations that are affected after the program change and must be tested to satisfy the all-uses

criterion.

node definition def-use associations

5 X3 (5,(6,7),X3), (5,(6,8),X3) (5,7,X3) (5,8,X3)
7 X2 (7,(4,5),X2), (7,(4,10),X2), (7,5,X2)
8 X1 (8,(4,6),X1), (8,(4,10),X1), (8,5,X1)

(8,(6,7),X1), (8,(6,8),X1)

Figure 13: Def-use Associations for Regression Testing

Although this paper has described the use of the sliced-based algorithms to satisfy the all-uses criterion, the

technique is applicable to the other data flow testing criteria.For a given change, these algorithms identify the

directly and indirectly affected def-use associations in the program.Thus, these are the only def-use associations

that must be considered for adequacy when retesting the program.If the user desires all-du-paths coverage instead

of all-uses, then instead of finding a test that executes some subpath from the definition to the use, tests would be

required to execute all du-paths between the definition and the use.If the all-defs coverage is desired, then instead

of satisfying all def-use associations, only one of them would be required for each definition.

After the affected def-use associations are identified (see Figure 13), tests must be executed to exercise these

def-use associations.One technique is to maintain a test suite that is used to retest the program.If a test suite is

maintained, tests are selected from the test suite to retest the def-use associations after a program change and the test

suite is updated to reflect the change.The test suite typically contains an association between each def-use pair and

the test used to test that pair. Information about the test includes the input values and the execution path.The test

suite is examined to determine the tests that satisfy the affected def-use associations and the changed code.These

tests arererun and we check to see which affected associations are satisfied by a test, as well as updating the test

suite. If a def-use pair does not have an associated test, then a new test can be generated.This technique requires

fewer tests than previous methods since we do not execute all tests that traverse the changed node. For the example

in Figure 13 the def-use associations due to statements 1, 2, and 3 are not tested following the program change.

- 24 -

To save the overhead involved in storing and updating test suites, another approach is to generate tests only

for the changed parts of the program during regression testing.Since the sliced-based algorithms explicitly identify

both directly and indirectly affected def-use associations, the only tests that must be run are those that satisfy these

associations and all-uses data flow testing coverage of the program will still be provided.Thus, unlike other regres-

sion testing techniques, the sliced-based method identifies affected def-use associations without the overhead of

maintaining and updating a test suite.

In either of the scenarios given above, new tests may be required.Tests can be generated manually by the

user or automatically using a test generator. When a new test is required, a program slice can be computed based on

the affected def-use associations to assist in generation of tests.This program slice contains those statements that

are needed to traverse all affected and untested def-use associations.If tests are generated manually, the program

slice enables the user to focus on the program statements pertinent to the affected def-use associations.If the tests

are automatically generated, the test generator only considers the program statements that are in the slice.In either

case, using the slice reduces the test generation effort since only the input variables on the slice are considered.

Additional details of our slicing algorithm and its use in test generation can be found in references [7,8].

Another approach to regression testing based on slicing was developed by Bates and Horwitz[2].This

approach uses backward slicing algorithms on program dependence graphs to determine the affected parts of a pro-

gram that require retesting.Following program changes the program dependence graph must be reconstructed

before slicing algorithms can be applied for identifying the affected parts of the program.This construction of a

program dependence graph requires the exhaustive recomputation of all def-use associations in the program or the

incremental update of changed def-use associations based on previous def-use associations.A dif ferent approach to

regression testing, alsobased on slicing, was developed by Rothermel and Harrold[17, 18]. This approach also

uses a program dependence graph representation to identify the changed def-use pairs for regression testing.Unlike

the above approaches to slicing, the approach presented in this paper only requires partial data flow analysis follow-

ing program changes and does not depend on any def-use history. Rothermel and Harrold also consider interproce-

dural regression testing while in this paper we focus on intraprocedural testing.However, since the slicing algo-

rithms presented in this paper are based on Weiser ’s technique [20] which handles interprocedural slicing, these

algorithms can also be extended to allow interprocedural regression testing.

The problem of performing partial data flow analysis is also addressed by a demand driven data flow frame-

work described in Reference [4].However, this framework does not apply to analyses that require consideration of

control dependence information. Therefore, although the framework could be used to derive theBackwardWalk

algorithm, it cannot be used in developing theForwardWalk algorithm.

- 25 -

5. Conclusion

This paper has a regression testing technique that utilizes slicing.This technique identifies both directly and

indirectly affected def-use associations.The use of the slice for regression testing is efficient in terms of both mem-

ory and time overhead.Unlike previous regression techniques, this approach neither needs to completely recompute

data flow information after a change nor maintain a history of previous data flow computation for incremental

updates. Instead,the approach recomputes the partial data flow that is needed, as driven by the program changes.

Also, the approach does not need the overhead of maintaining a test suite, which includes the input, output and

updates of the test suite.If the test suite is maintained, the approach reduces the number of tests that must be rerun

to provide full testing coverage and to update the test suite.Although the technique has been presented to satisfy the

all-uses criterion, it could easily be modified for other data flow testing criteria.Using interprocedural slicing, the

technique can also be extended to interprocedural regression testing.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman, inCompilers, Principles, Techniques, and Tools, Addison-Wesley Pub-
lishing Company, Massachusetts, 1986.

2. S. Bates and S. Horwitz, ‘‘Incremental program testing using program dependence graphs,’’ Conference
Record of 20st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 384-396,
January 1993.

3. L. A. Clarke, A. Podgurski, D. Richardson, and S. Zeil, ‘‘A comparison of data flow path selection criteria,’’
Proceedings 8thInternational Conference on Software Engineering, pp. 244-251, August 1985.

4. E.Duesterwald, R. Gupta, and M.L. Soffa, ‘‘Interprocedural data flow analysis on demand,’’ Proceedings of
the 22nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 37-48,
January 1995.

5. J.Ferrante, K. J. Ottenstein, and J. D. Warren, ‘‘The program dependence graph and its use in optimization,’’
ACM Transactions on Programming Languages and Systems, vol. 9, no. 3, pp. 319-349, July 1987.

6. P. G. Frankl and E. J. Weyuker, ‘‘An applicable family of data flow testing criteria,’’ IEEE Transactions on
Software Engineering, vol. SE-14, no. 10, pp. 1483-1498, October 1988.

7. R. Gupta and M. L. Soffa, ‘‘Employing static information in the generation of test cases ,’’ Journal of Soft-
ware Testing, Verification and Reliability, vol. 3, no. 1, pp. 29-48, December 1993.

8. R.Gupta and M. L. Soffa, ‘‘A framework for partial data flow analysis,’’ Proceedings of International Confer-
ence on Software Maintenance, pp. 4-13, September 1994.

9. M. J. Harrold and M. L. Soffa, ‘‘An incremental approach to unit testing during maintenance,’’ Proceedings of
the International Conference on Software Maintenance, pp. 362-367, October 1988.

10. M. J. Harrold, ‘‘An approach to incremental testing,’’ Technical Report 89-1 Department of Computer
Science, Ph.D. Thesis, University of Pittsburgh, January 1989.

11. S. Horwitz, T. Reps, and D. Binkley, ‘‘Interprocedural slicing using dependence graphs,’’ ACM Transactions
on Programming Languages and Systems, vol. 12, no. 1, pp. 26-60, January 1990.

12. B.Korel and J. Laski, ‘‘A tool for data flow oriented program testing,’’ ACM Softfair Proceedings, pp. 35-37,
December 1985.

13. S.C. Ntafos, ‘‘An evaluation of required element testing strategies,’’ Proceedings of 7th International Confer-
ence on Software Engineering, pp. 250-256, March 1984.

- 26 -

14. T. J. Ostrand and E. J. Weyuker, ‘‘Using data flow analysis for regression testing,’’ Proceedings of Sixth
Annual Pacific Northwest Software Quality Conference, pp. 58-71, September 1988.

15. A. Podgurski and L. Clarke, ‘‘A formal model of program dependences and its implications for software test-
ing, debugging, and maintenance,’’ IEEE Transactions on Software Engineering, vol. 16, no. 9, pp. 965-979,
September 1990.

16. S.Rapps and E. J. Weyuker, ‘‘Selecting software test data using data flow information,’’ IEEE Transactions
on Software Engineering, vol. SE-11, no. 4, pp. 367-375, April 1985.

17. G.Rothermel and M.J. Harrold, ‘‘A safe, efficient algorithm for regression test selection,’’ Proceedings of the
International Conference on Software maintenance, pp. 358-367, September 1993.

18. G.Rothermel and M.J. Harrold, ‘‘Selecting tests and identifying test coverage requirements for modified soft-
ware,’’ Proceedings of the International Symposium on Software Testing and Analysis, pp. 169-184, August
1994.

19. A. M. Taha, S. M. Thebut, and S. S. Liu, ‘‘An approach to software fault localization and revalidation based
on incremental data flow analysis,’’ Proceedings of COMPSAC 89, pp. 527-534, September 1989.

20. M. Weiser, ‘‘Program slicing,’’ IEEE Transactions on Software Engineering, vol. SE-10, no. 4, pp. 352-357,
July 1984.

