
Instrumenting Where it Hurts—
An Automatic Concurrent Debugging Technique∗

Rachel Tzoref
IBM, Haifa Research Lab
Haifa University Campus

Haifa, 31905, Israel
rachelt@il.ibm.com

Shmuel Ur
IBM, Haifa Research Lab
Haifa University Campus

Haifa, 31905, Israel
ur@il.ibm.com

Elad Yom-Tov
IBM, Haifa Research Lab
Haifa University Campus

Haifa, 31905, Israel
yomtov@il.ibm.com

ABSTRACT
As concurrent and distributive applications are becoming
more common and debugging such applications is very dif-
ficult, practical tools for automatic debugging of concurrent
applications are in demand. In previous work, we applied
automatic debugging to noise-based testing of concurrent
programs. The idea of noise-based testing is to increase the
probability of observing the bugs by adding, using instru-
mentation, timing ”noise” to the execution of the program.
The technique of finding a small subset of points that causes
the bug to manifest can be used as an automatic debugging
technique. Previously, we showed that Delta Debugging can
be used to pinpoint the bug location on some small pro-
grams.

In the work reported in this paper, we create and evaluate
two algorithms for automatically pinpointing program loca-
tions that are in the vicinity of the bugs on a number of in-
dustrial programs. We discovered that the Delta Debugging
algorithms do not scale due to the non-monotonic nature
of the concurrent debugging problem. Instead we decided
to try a machine learning feature selection algorithm. The
idea is to consider each instrumentation point as a feature,
execute the program many times with different instrumen-
tations, and correlate the features (instrumentation points)
with the executions in which the bug was revealed. This idea
works very well when the bug is very hard to reveal using
instrumentation, correlating to the case when a very specific
timing window is needed to reveal the bug. However, in the
more common case, when the bugs are easy to find using in-
strumentation (i.e., instrumentation on many subsets finds
the bugs), the correlation between the bug location and in-

∗This work is partially supported by the European Com-
munity under the Information Society Technologies (IST)
programme of the 6th FP for RTD - project SHADOWS
contract IST-035157. The authors are solely responsible for
the content of this paper. It does not represent the opinion
of the European Community, and the European Community
is not responsible for any use that might be made of data
appearing therein.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’07, July 9–12, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-734-6/07/0007 ...$5.00.

strumentation points ranked high by the feature selection
algorithm is not high enough. We show that for these cases,
the important value is not the absolute value of the evalua-
tion of the feature but the derivative of that value along the
program execution path.

As a number of groups expressed interest in this research,
we built an open infrastructure for automatic debugging al-
gorithms for concurrent applications, based on noise injec-
tion based concurrent testing using instrumentation. The
infrastructure is described in this paper.

Categories and Subject Descriptors
D.2.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids

; D.2.2.4 [Software Engineering]: Software/Program
Verification—Statistical methods

General Terms
Verification, Algorithms

Keywords
Concurrency, Debugging, Feature Selection

1. INTRODUCTION
The increasing popularity of concurrent programming—

on the Internet as well as on the server side—has brought
the issue of concurrent defect analysis to the forefront. This
is true also on the client side as almost every CPU available
these days is multi-core, so applications have to become con-
current to take advantage of it. Concurrent defects, such as
unintentional race conditions or deadlocks, are difficult and
expensive to uncover and analyze, and such faults often es-
cape to the field.

One reason for this difficulty is that the number of possible
interleavings is huge, and it is not practical to try them all.
Only a few of the interleavings actually produce concurrent
faults; thus, the probability of producing one is very low.
Since the scheduler is deterministic, executing the same tests
many times does not help, because the same interleaving
is usually created. The problem of testing multi-threaded
programs is compounded by the fact that tests that reveal
a concurrent fault in the field or in a stress test are usually
long and run under different environmental conditions. As a
result, such tests are not necessarily repeatable, and when a
fault is detected, much effort must be invested in recreating
the conditions under which it occurred.

27

Much research has been done on testing multi-threaded
programs. Research has examined detecting data races [19],
[20], [14], replaying in several distributed and concurrent
contexts [4], static analysis [22], [13], [7], and the problem of
generating different interleavings for the purpose of reveal-
ing concurrent faults [8] [23]. Model checking [21], coverage
analysis [17] [8], and cloning [12] are used to improve testing
in this domain.

The work described in this paper is part of SHADOWS,
an EU project whose goal is to create technology for self-
healing. For intermittent bugs whose manifestation depends
on specific interleaving, it may be possible to automatically
detect and remove the bug-causing interleaving. The first
part of this ambitious goal is to automatically pinpoint the
location in the program that is the cause of the bug. There
are a number of characteristics of the concurrent domain,
elaborated in the paper, which cause the problem of finding
the root cause to be much harder than in the sequential do-
main. In a previous paper [6] we showed, on small programs,
that the combination of a delta debugging (DD) technique
and testing via noise generation yields a concurrent debug-
ging technique. The technique we tried was similar to the
techniques expressed in a thread of papers on DD [5], [26],
[27]. In these papers, a set of program changes is used to
induce a bug, with the goal of finding a minimal subset. The
set of changes comes from the difference between two pro-
gram versions: the old one that works and the new one that
contains a bug. In our domain, where the problem is to find
the minimal instrumentation that causes the bug, the set of
changes that induces bugs is calculated using instrumenta-
tion testing technology.

The DD search algorithm assumes the problem to be mono-
tonic; if a set of instrumentations reveals the bug, then any
superset of this set also reveals the bug. In [1] and [6] it was
shown that concurrent programs are not necessarily mono-
tonic but it was not established if real programs possess this
property. One of our first findings was that real programs
are not monotonic, and that therefore DD-based search al-
gorithms do not work. In Section 2 we explain why DD
algorithms do not work.

It is clear to us that creating good search algorithms that
find the root causes of bugs in concurrent programs is a very
interesting research topic with clear industrial applications.
As we have a number of partners in our research who are
interested in trying out different search algorithms, we set
out to create an open infrastructure that enables researchers
in the field to write search algorithms that can search on the
instrumentation and can take into account runtime informa-
tion such as that found by race detection tools. The infras-
tructure for search algorithms is described in Section 3, and
is available for external users by contacting ur@il.ibm.com.

For our first search algorithm, we used feature selection
from the domain of machine learning, treating each instru-
mentation as a feature. We ran the program with many sub-
sets and looked for correlations between features and pro-
gram failures. Then we tried to see if a few of the features
with the best scores reveal the bugs. We tried it on a very
difficult problem for which it is very hard to make the bug
manifest (see Section 4) and it worked very well.

We then tried it out on programs for which it is easy to
find a small subset that finds the bug, as many small sub-
sets find the bug, but which are hard to automatically debug
and find the root cause. Feature selection alone is insuffi-

cient, as instrumentations that cause the bug to manifest
are not necessarily located near the root cause of the bug
and therefore the locations may not be helpful to the pro-
grammers. Section 5 details our elaboration of the feature
selection algorithm to pinpoint the location of the bug.

The contributions of this paper are as follows:

• Show that using feature selection when searching for
the root cause of hard-to-find bugs works well.

• Create a new algorithm for pinpointing root causes of
bugs when many instrumentations reveal the bug.

• Show on real programs that the search problem for
instrumentations that manifest the bug is not mono-
tonic.

• Create an open infrastructure on which search algo-
rithms can be evaluated.

2. BACKGROUND
Debugging is one of the most common activities in the

development of computer programs and much thought has
been given to its automation. In concurrent programming,
which is one of the domains studied, the same test may
sometimes fail and sometimes succeed. The testing of multi-
threaded applications by inserting schedule-modifying state-
ments (”noise”), such as sleep and yield, has been studied
in [8], [23]. This is an effective technique for discovering
whether a bug exists, but it does not look for the root cause
of the bug.

Studies on bug patterns in multi-threaded programs [11],
[16] reveal that most bug patterns can be exposed using
very few instrumentation points, and sometimes only one.
However, the instrumented noise must be non-deterministic,
i.e., noise that does not impact the interleaving every time
it is executed. This requirement means the testing checks
whether the noise is in the correct place and is itself non-
deterministic. Sometimes, even if the noise is in the correct
place, it fails to produce the bug. Therefore, the test suc-
ceeds in finding the bug if it finds the bug with a sufficient
probability.

Once a test finds a bug, the goal of automatic debugging
is to find a minimal subset of the changes required to pro-
duce the bug. Finding such a minimal subset is useful for
understanding the core requirement of this bug.

2.1 Using Delta Debugging for Automatic
Debugging

One approach for automatic debugging is Delta Debug-
ging (DD) [5], [26], [27], a well-known algorithm for search-
ing for sets of changes. Given a set of program changes that
induces a bug, the algorithm searches for a minimal subset
that still induces the bug. The set of changes comes from the
difference between two program versions: the old one that
works, and the new one that contains a bug. An example of
this can be seen in [26], where two versions of the program
exist—one that works and another that has a bug. The
difference between these programs is 178,000 lines of code.
DD automatically pinpointed the single line that caused the
bug. Similar ideas are applied in another domain where the
test is reduced to the essential part required to display the
bug [27]. The algorithms used in these applications can be
found in [26].

28

T1 T2

1) x=1 1) x=1

2) if (x!=0) 2) x=2

3) y = 1/x 3) x=3

4) x=0

5) x=4

Figure 1: A non-monotonic program

When applied to concurrent bugs, the set of changes that
induces bugs is calculated automatically using testing in-
strumentation technology and is not related to user pro-
gram changes. In [5], DD found places in the interleaving
that were indicative of failure. These locations were identi-
fied using a replay tool called DEJAVU, used on a special
deterministic JVM. In a previous paper [6], we applied a
new version of the DD algorithm to code from the concur-
rent bugs benchmark [10]. Using the DD approach and an
AspectJ-based implementation of the instrumentation, we
were able to pinpoint the bug location in several examples.
However, the DD approach assumes monotonicity. A set of
changes is monotonic if, for every set that finds bugs, all
its supersets also find bugs [26]. The existence of interrela-
tions between instrumentations may cause the problem to
be non-monotonic. In the case of concurrent bugs, stud-
ies have shown that these interrelations may exist [1], i.e.,
inserting too much noise may mask the bug.

The example in Figure 1 illustrates the problem of non-
monotonicity in multi-threaded programs. The execution
starts with thread T1. For the bug to manifest itself, a
thread switch must occur after T1.2, and another switch
must occur after T2.4. So {T1.2, T2.4} is a minimal set
that induces the bug. Its superset {T1.1, T2.2, T1.2, T2.4}
also induces the bug and can be given as an initial set to
DD. However, if we remove T2.2 from this set, the bug does
not occur, even though the set {T1.1, T2.4, T1.2} is still a
superset of the minimal set. Therefore, when we ran DD on
this program, it was not able to find the minimal solution.

An important question is whether real applications are
monotonic. One of our first findings was that, in fact, real
applications are not monotonic, and thus the DD approach
does not work for them. In Section 4, we describe such
a real application. These examples led us to develop a new
approach for automatic debugging of concurrent bugs, which
does not assume monotonicity of the problem. The new
approach is based on presenting the problem as a feature
selection problem from the domain of pattern classification,
and is described in Section 4. First, some background on
feature selection is presented in Subsection 2.2.

2.2 Feature Selection
Feature selection is the process of finding a minimal sub-

set of indicators that best represent the data [25]. It is well
known in the machine learning field that noisy or irrelevant
features (indicators) are detrimental to pattern recognition
in that they cause poor generalization, increase the compu-
tational complexity, and require many training samples to
reach a given accuracy [2]. In the case of non-monotonic
programs, irrelevant features may mask the bug or cause

it to appear with a very low probability, thereby requiring
many runs of the program to elicit the bug.

A brute force approach to feature selection, i.e., trying all
possible feature combinations, is possible only for very small
feature sets. For example, testing all possible combinations
for 100 features requires testing approximately 1030 configu-
rations. However, 100 instrumentation points is well within
the range of medium sized programs. Therefore, other meth-
ods should be used for selecting the best features.

In general, feature selection methods can be divided into
three classes [2]: wrapper methods, where feature selection
is performed around (and with) a given classification algo-
rithm; embedded methods, where feature selection is em-
bedded within a classification algorithm; and filter methods,
where features are selected for classification independently
of the classification algorithm.

In this work, we applied a filter method for selecting the
most relevant features in the sample, as explained in Subsec-
tion 4.1. We chose such methods so as to create the smallest
dependence between the feature selection stage and other
stages of the debugging process.

3. EXPERIMENTAL SETUP
The following actions are required by a typical search al-

gorithm whose goal is to find a minimal instrumentation
that pinpoints the location of a concurrent bug:

1. Extract the set S of all possible locations of the pro-
gram under test where we may want to add noise.

2. Instrument noise at any subset s ∈ S.

3. Run the instrumented program.

4. Determine if the executed test displays a concurrent
bug.

As an infrastructure for our automatic debugging, we have
implemented a generic search algorithm that provides these
capabilities. The generic algorithm is written in Java and
implements two functions: getAllPoints(), which returns
the set of all possible locations of the program under test;
and runIteration(Set locations, int numRuns), which in-
struments the program in the given locations, runs it
numRuns times, and returns the number of runs in which
a bug was found. Note that we enable running multiple
times with the same set of locations since the runs can be
non-deterministic. Thus, determining whether a set of loca-
tions finds a bug may require several runs. The algorithm
is designed as an open architecture, meaning that external
users can implement their own search algorithms that derive
the functionality of the generic search algorithm. Using the
open architecture, we implemented two variants of the DD
algorithm. The first is the DD algorithm described in [26],
and the second is the new DD version from [6].

Our generic algorithm is implemented on top of Con-
Test [8], a tool developed in IBM for testing, debugging, and
measuring the coverage of concurrent Java programs. The
basic principle behind ConTest is quite simple. The instru-
mentation stage transforms the class files, injecting calls to
ConTest runtime functions at selected places. At runtime,
ConTest sometimes tries to cause context switches in these
places. The selected places are those whose relative order
among the threads can impact the result: entrance and exit

29

from synchronized blocks, access to shared variables, etc.
Context switches are attempted by calling methods such as
yield() or sleep(). The decisions are random so that different
interleavings are attempted at each run. Heuristics are used
to try to reveal typical bugs. Note that there are no false
alarms; all interleavings that occur with ConTest are legal
as far as the JVM rules are concerned.

The generic algorithm uses ConTest to extract the set of
possible locations to which noise can be added, and to instru-
ment and run the program with a given subset of locations.
ConTest does not know whether a bug has actually been
revealed; it has no notion of how the program is expected
to behave. The user should provide a test to the generic al-
gorithm, indicating which program run is considered correct
and which indicates a bug.

In addition to the open architecture for search algorithms
for minimal noise, ConTest implements a Listener Architec-
ture, which is a library that can be used by people writing
tools that need to hook into given programs under test, for
example, race detectors. ConTest Listeners provide API for
doing things when certain types of events happen in the
program under test. The events that can be listened to in-
clude entry and exit to synchronized blocks, calls to meth-
ods such as wait() and join(), thread start and finish, and
access to member fields. Thus, the combination of archi-
tectures enables external users of the tool to use dynamic
information when implementing a search algorithm. For ex-
ample, one can implement a race detector using the listener
architecture, and use its output as guidance to the search
algorithm.

4. FEATURE SELECTION BASED
AUTOMATIC DEBUGGING

As explained in Subsection 2.1, concurrent programs may
exhibit non-monotonic behavior. We first encountered the
non-monotonicity problem in a real application when run-
ning variants of DD on a web crawler algorithm, embedded
in an IBM product. The skeleton of the algorithm has 19
classes and 1200 lines of code. In [8] it is described how Con-
Test found an unknown race condition in the algorithm. The
fault was a null pointer exception, caused by the following
code: if(connection! = null) connection.setStopF lag(). If
the connection variable is not null and then a context switch
occurs, the connection variable might be set to null by an-
other thread, before connection.setStopF lag() is executed.
If this happens, a null pointer exception is taken. An even
more insidious manifestation of the bug, which causes a secu-
rity risk, is when the connection variable is set to a non-null
value, since in this case, the wrong connection is stopped.
To fix this bug, the above statement and all other accesses
to the connection variable should be executed within an ap-
propriate synchronized block.

The race condition is very rarely manifest, since it oc-
curs in a very small percentage of all possible interleav-
ings. Without instrumentation we have never seen the bug.
When instrumenting all possible locations, it appears on av-
erage only in 1 out of 750 runs. Since the bug is so rare,
we set a probability of 1% (1 out of 100 runs) as a suffi-
cient probability for a test to find the bug. In this exam-
ple, we already knew the root cause of the bug: the line
if(connection! = null) connection.setStopF lag(), and an-
other line executed by another thread that sets the con-

nection to null. When instrumenting only the two points
corresponding to these two lines, the bug appears in 10 out
of 100 runs.

When we ran DD on the web crawler example, it failed to
find a minimal instrumentation, due to the non-monotonic
nature of the bug – supersets of the minimal instrumentation
do not necessarily induce the bug with a sufficient probabil-
ity. As a result, given a set of instrumentations that induces
the bug, all the subsets tried out by DD did not induce the
bug, contradicting the basic assumption of the algorithm.

Thus, a new approach is required for automatically pin-
pointing the location of the bug. Our approach is based on
feature selection: we treat each instrumentation point as a
feature, and generate samples containing subsets of the fea-
tures. For each sample, we run the program instrumented
only in the points of the sample, and determine whether
the sample induces the bug with a sufficient probability.
Once all samples are classified, we score each instrumen-
tation point based on the correlation between its appear-
ance in samples and whether they induce the bug. We then
choose the highest scored points as locations that are likely
to be correlated to the bug, and thus should be presented to
the user as the probable root cause of the bug. The exact
process of samples generation and the points scoring method
are described next.

4.1 Sample Generation and Feature Scoring
Method

As noted above, our API enables the instrumentation of
the program under test in any subset of the instrumenta-
tion points. To achieve the best possible indications of the
usefulness of the features, our first step was to use this func-
tionality to create an optimal sampling of the input space.

Design of Experiments are a class of methods to actively
manipulate a system in order to best elicit its different modes
of behavior. In our work, we used the D-optimal design [24],
a method which maximizes Fisher’s information matrix.

Assume a program can be instrumented in N points and
run for M experiments. Let X denote a matrix of size N ×
M , where xij = 1 if and only if the j-th experiment was
instrumented in point i. A D-optimal design maximizes the
determinant of X: |X ′ · X|.

Finding X which maximizes |X ′ · X| is a difficult compu-
tational problem. We therefore created 500 instances of a
random sampling matrix X and chose the matrix that had
the largest |X ′ · X|.

This sampling matrix was then used as the input for run-
ning the program.

After running the programs with the given sampling ma-
trix, each sample was marked as successful (found the bug)
or unsuccessful (did not find the bug). Our goal was then
to find those points that were most likely to find the bug.
This is the feature selection stage of the algorithm.

We used the likelihood ratio test [18] scoring function to
score the features. Let P (Success|Xi) denote the sample
probability that tests which instrumented the i-th instru-
mentation point will result in a bug, and P (!Success|Xi)
denote the same for the case where the bug is not found.
We assign each point the score:

Score(i) = P (Success|Xi)/P (!Success|Xi)

The points with the highest score are assumed to be most
indicative for the location of the bug. Such a scoring func-

30

tion assumes no correlation between instrumentation points,
that is, if a bug requires that two points be instrumented in
a correlated fashion, it may not be found using this scoring
function. Our current experience is that, in practice, this
scoring function is sufficient, but we are currently examin-
ing additional scoring functions that do take such interaction
into account.

Once the features are weighted, it is necessary to select
the features most indicative of the bug. In the current paper
we begin by running the program with the highest rank-
ing point, then the two highest points, etc., until the bug
appears with high probability. The set of instrumentation
points which caused the bug to appear in this probability is
then reported to the user as the most indicative points for
locating the bug.

Tarantula [15] uses a similar metric for ranking suspicious
lines of code in programs. Based on their appearance in
failed and successful runs of a program, Tarantula assigns a
value called hue to each line. The hue is computed as:

hue(i) = P (Success|Xi)/(P (Success|Xi)+P (!Success|Xi))

This scoring is a heuristic, similar to the likelihood score.
The authors suggest examining lines according to their hue,
starting from the lowest values of the hue. The authors do
not address the issue of how to sample the program, assum-
ing instead that sampling is performed in an independent
manner by users.

The authors of [28] developed a method for sampling pro-
grams and identifying probable bug locations in single-thread
programs. Their instrumentation is performed using asser-
tions placed in the code, which are randomly sampled at run
time. This implies that they require a diverse sample of runs
in order to execute all the assertions. The authors then use
a utility function to build a classifier whose goal is to cor-
rectly predict the outcome of runs (success of failure) based
on the outcomes of the assertions. The weights of the util-
ity function then serve as indicators for the location of the
bug. Their debugging process requires tuning the param-
eters of the classifier using a training set and then finding
the weights of the classifier using an optimization algorithm.
This method, while effective for small programs, seems incur
a high computational cost and requires manually setting the
assertions in the code.

GeneticFinder [9] is a noise-maker that uses a genetic al-
gorithm as a search method, with the goal of increasing the
probability of the bug manifestation, and minimizing the set
of variables and program locations on which noise is made.
The search is performed at run-time, i.e., all program lo-
cations are instrumented, and at each point it is decided
during run-time whether to apply noise. From our expe-
rience, instrumentation alone can change the scheduling of
the program. Thus, the approach of partial instrumentation
is much more accurate.

4.2 Automatically Debugging A Web Crawler
In the web crawler example (described at the beginning of

this section) there were 314 possible instrumentation points.
We decided to generate 5000 samples. This number was
determined according to our available computing resources
and total run time estimation. The average number of points
in each sample was 157. The program was run with each
sample 100 times. A sample was considered to induce the
bug if the bug appeared in at least one run out of the 100

runs. We ran the samples in parallel on 10 Linux machines.
The average time for a single program run was 10 seconds.

There are two instrumentation points corresponding to
the root cause of the bug. The first point is the location
where the connection is set to null, and the second corre-
sponds to if(connection! = null). These two points affect
the timing between the execution of the two statements.
After running the first 500 samples for about 14 hours, the
two highest scoring points were exactly the two points of the
root cause of the bug, and they remained the highest scor-
ing points throughout the experiment, which took 6 days.
Thus, using feature selection, we were able to automatically
pinpoint the location of the bug.

In fact, when we started the experiments on the web
crawler example, we detected an additional bug, in the form
of a ”max stack exceeded” exception. Similarly to the first
bug, the second bug also appeared only for some subsets of
instrumentations. However, if it was induced by a certain
subset, then it was consistently induced. We did not know
at first what the root cause of the bug was, and decided to
include it in our experiments, i.e., a sample was classified as
inducing a bug if it induced either of the two bugs, without
considering which of them was induced. The scoring of the
points also did not consider whether the first or the second
bug was found. As reported above, the fact that a second
bug appeared in the results did not prevent us from finding
the root cause of the first bug. After locating the first bug,
we wanted to find the root cause of the second bug, based on
the samples we already ran. Therefore, we removed all sam-
ples in which the root cause of the first bug appeared, and
scored the points according to the remaining samples. The
results were again very accurate: the first point was scored
2.03, significantly higher than the other points (the next
10 points score between 1.48 and 1.32). When instrument-
ing with this point alone, the second bug appeared. Using
the single instrumentation point, the debugging process was
very easy. The bug was in the instrumentation itself—not
enough stack space was allocated when instrumenting this
point. This bug was sometimes masked by additional in-
strumentations, since they allocated sufficient stack space
for the run.

Of the 5000 samples, 777 induced a bug. 461 induced the
first bug (with an average probability of 10%) and 316 in-
duced the second bug (with a probability of 100%). We
again emphasize that the process of classifying the sam-
ples and the scoring of the points did not take into account
which of the two bugs was found, and yet our technique was
able to pinpoint the location of both bugs. The fact that
with partial instrumentation the first bug was found with a
higher probability than with full instrumentation (in which
the probability was 1 out of 750 runs), corresponds to the
observation that too much noise may mask the bug [1].

We return to the example in Figure 1. We also ran our
technique on a program that contains the two threads ap-
pearing in the example (the main thread was omitted from
Figure 1 for clarity). The program contains 32 possible in-
strumentation points. The threshold probability of finding
the bug was set to 5% (1 out of 20). 1000 samples were gen-
erated, with an average number of 16 points in each sample.
The total run time was 20 minutes. 222 samples out of 1000
found the bug, with an average probability of 10.4%. The
results were again accurate: the two highest scores were of
the points corresponding to T2.4 and T1.3, respectively, pin-

31

Wait Thread Notify Thread

1) x=1 1) x=2

2) x=1 2) x=2

3) x=1 3) x=2

4) x=1 4) x=2

5) x=1 5) x=2

6) synchronized (lock){ 6) synchronized (lock){

7) lock.wait() 7) lock.notify()

8) } 8) }

9) x=1 9) x=2

Figure 2: A lost notify bug

pointing the location of the bug. When instrumenting only
these two points, the bug was found with a probability of
90%.

5. ZOOMING IN ON BUG LOCATIONS
The examples described so far exhibit rare bugs, i.e., a

low percentage of instrumentation subsets induce the bug.
In the web crawler example, 9% of the generated samples
induce the first bug, and only 6% induce the second bug.
In the example in Figure 1, 22% of the samples induced
the bug. An interesting question is whether our approach
will work well when many subsets of instrumentations in-
duce the bug. Consider, for example, the simple program in
Figure 2. The execution starts with the wait thread. This
program contains a deadlock that is manifest when the call
to notify() precedes the call to wait(). The main thread was
omitted for clarity, as were the try and catch blocks for the
call to wait(). Any instrumentation that delays the call to
wait() will induce the bug. Therefore, many subsets of in-
strumentations induce the bug, including instrumentations
remote from the bug location, making the goal of finding an
instrumentation that pinpoints the location of the bug more
challenging.

The program contains 63 instrumentation points. We gen-
erated 5000 samples, with an average number of 31 points
in each sample. Each sample was run 20 times. The total
runtime was 3 hours. The average number of times each
sample found the bug was 5. We did not predetermine the
threshold probability for finding the bug, but rather used the
average probability in which the bug was found (including
samples that did not find the bug at all) as the threshold,
and classified the samples only after all of them were run.
Our experiments show that using the average probability as
the threshold probability is significantly more accurate than
using a predetermined threshold probability. 3632 samples
(72%) found the bug at least once, and 2079 (41%) found it
at least 5 times and were classified as inducing the bug, con-
firming the fact that the bug is common, i.e., easily induced
by instrumentation (without instrumentation we have never
seen the bug manifest).

When we look at the feature selection scores of the points,
they do not correlate well with the location of the bug. The
problem is that many points receive high scores, since they
induce the bug, but they are not necessarily in the vicin-

ity of the bug. One such point is the location where the
main starts the wait thread. Naturally, delaying the start of
the wait thread induces the bug. However, this point does
not contain sufficient information to explain the bug. We
also observed in additional examples that the start() call of
threads that are involved in concurrent bugs usually receives
high feature selection scores. Our policy is to consider these
type of points as indicating the problematic threads, but not
to consider them when trying to pinpoint the exact location
of the bug. Additional points that receive high feature selec-
tion scores but are not in the vicinity of the bug correspond
to lines 1-5 of the wait thread. Naturally, delaying their ex-
ecution also delays obtaining the lock by the wait thread,
thus inducing the bug.

The conclusion is that for bugs that are found by many
subsets of instrumentations, the feature selection score of
single instrumentation points is not sufficient. Thus, an en-
hancement to our technique is required. The basic idea of
our enhancement is to look not at the absolute values of the
points scores, but at the derivative of the scores along the
program execution path. For example, in the program in
Figure 2, we expect high scores for the points corresponding
to lines 1-5 of the wait thread, and then a drop in the score
for the point corresponding to obtaining the lock in line 6
of the wait thread, since if notify() has not yet been called
and then the lock is obtained by the wait thread, the call to
wait() cannot be delayed to follow the call to notify(). Simi-
larly, we expect a rise in the score of the point corresponding
to obtaining the lock in line 6 of the notify thread, since the
points corresponding to the previous lines delay the call to
notify() and hence mask the bug.

For the general case, our enhanced technique works as
follows: we look at the control flow graph of the program,
mark each node of the graph with the feature selection score
of the corresponding instrumentation point, and search for
pairs of consecutive nodes with maximal decrease and in-
crease in the score. In fact, instead of searching for pairs of
nodes, we can simply mark each edge of the graph with the
difference between the scores of its entry and exit nodes,
and look for the edges with maximal and minimal values
(indicating maximal drop and maximal rise in the score).

As a good approximation of the control flow graph of the
program, we used the graph induced by the concurrent event
pairs coverage provided by ConTest. When this coverage
information is requested, ConTest lists pairs of concurrent
event program locations that appeared consecutively in a
run, and whether they were performed by the same thread.
We ran the program several times with ConTest to induce
different interleavings, and built the graph from the pairs of
locations that were executed by the same thread.

The basic intuition behind the enhancement of our tech-
nique is that most consecutive points in the program have
a similar effect on inducing the bug, except for the points
that are clearly correlated to the root cause of the bug. If
our intuition is correct, we expect the difference in score be-
tween consecutive points along the program execution graph
to be usually around zero, unless this is the vicinity of the
bug. We expect the distribution of the difference score be-
tween arbitrary points to be less concentrated around zero.
The distribution of the difference score for pairs of consec-
utive points (in black), and for arbitrary pairs of the pro-
gram points (in grey) is depicted in Figures 3 and 4, for
the program in Figure 2, and for a real application that will

32

Figure 3: Distribution of difference score for lost
notify. Consecutive points in black, others in grey.

Figure 4: Distribution of difference score for server
loop. Consecutive points in black, others in grey.

be described in Subsection 5.1. As we can see, the distri-
butions are statistically significantly different (p < 1e − 4,
two-sample Kolmogorov-Smirnov goodness-of-fit hypothesis
test), and support our hypothesis.

Figure 5: Difference score graph for lost notify bug

The difference score graph for the two threads from Fig-
ure 2 is depicted in Figure 5. Each node represents an in-
strumentation point of the program. There is a directed
edge from node a to node b if and only if the pair of in-
strumentation points (a, b) appears in the concurrent event
coverage produced by ConTest, i.e., the concurrent events
in points a and b were executed consecutively by a thread in
the program. The maximal and minimal edges in the graph
are marked with thick lines. The maximal edge (marked
with +) connects between the point where the lock variable
is read by the wait thread and the point where it is obtained
(line 6 of the wait thread). The minimal edge (marked with
−) connects between the point where the lock variable is
read by the notify thread and the point where it is obtained
(line 6 of the notify thread). These two locations pinpoint
the bug location.

5.1 Automatically Debugging A Server Loop
We ran our enhanced technique on a real application that

implements a server loop and contains a deadlock due to
a lost notify. The server loop performs database transac-
tions according to clients requests. It loops on a global
variable stop, waiting indefinitely for transaction requests
from clients. The server can be externally shut down by
calling a function that sets the value of stop and notifies the
server. The shutdown mechanism is depicted in Figure 6.
It contains a deadlock, since the reading and writing of stop
are performed outside the synchronized block. Thus, if the
server reads the value of stop and next the shutdown func-
tion is executed, then the call to notify() precedes the call
to wait(), and the server enters a deadlock. After extracting
the business code that is not related to concurrency [3], the
program contains 72 possible instrumentation points.

The deadlock is easily induced. Random sampling of 2
points induces the bug in 25% of the samples, and random
sampling of 3 points induces the bug in 33%. Thus, many
small subsets of instrumentations reveal the bug. Despite
this fact, DD was unable to find a minimal instrumentation.

33

Server Shutdown Function

1) while (! stop){ 1) stop = true

2) business code 2) synchronized (lock){

3) synchronized (lock){ 3) lock.notify()

4) if (request){ 4) }

5) business code

6) }

7) else{

8) lock.wait()

9) }

10) }

11)}

Figure 6: Skeleton of shutdown mechanism for
server loop

The reason is again the non-monotonic nature of the bug.
For example, if we instrument the point corresponding to
reading the lock variable in line 3 of the server code, just
before obtaining it, then we delay the call to wait() and
therefore the bug is induced with a very high probability.
However, if in addition we instrument the point correspond-
ing to reading the value of stop in line 1 of the server code,
then the probability of inducing the bug drops to almost 0.
The reason is as follows: the wait() is still delayed due to
the instrumentation in line 3, but so is the reading of stop
by the server. Thus, in most interleavings, the shutdown
function sets stop to true before it is read by the server, the
server exits the loop, and the deadlock is avoided.

For the server loop example we generated 5000 samples,
with an average number of 36 points in each sample. Each
sample was run 20 times. The total runtime was 4 hours,
running in parallel on 10 Linux machines. The average num-
ber of times that each sample found the bug was 1.6. Thus,
the threshold probability for finding the bug was set to 5%
(1 out of 20 runs). The bug was found by 3899 samples
(78%), confirming the fact that the bug is common.

The difference score graph for the server loop, stripped of
irrelevant business code, is depicted in Figure 7. It contains
three threads, corresponding to the server thread, client
thread, and main thread. For clarity, some points that are
irrelevant to the explanation were omitted.

The maximal edge connects between the point where the
lock variable is read by the server and the point where it is
obtained. The minimal edges connect between the release of
the lock by the server and reading stop in the loop condition,
and between reading stop and reading the lock by the server.
These locations depict the events whose timing is crucial for
inducing the bug: obtaining the lock by the server should
be delayed, and reading stop by the server should not be
delayed.

We return to the web crawler example from Section 4. Its
difference score graph is depicted in Figure 8. The maximal
and minimal edges are marked with thick lines, and with a
number denoting whether they represent the first or the sec-
ond bug. Of the 400 edges in the approximated control flow
graph, our technique was able to detect the few edges that
pinpoint the location of the two bugs. The highest scored

edge connects between setting the value of the connection
variable to null and the next point, and the lowest scored
edge connects between setting the value of the connection
variable to null and the previous point. Another pair of
edges with extreme values are before and after the state-
ment if(connection! = null). These four edges pinpoint the
location of the first bug. Other edges with extreme values
belong to the second bug, though the marking is less ac-
curate (only two of the three edges are exactly before and
after the problematic instrumentation point). However, an
accurate difference score graph for the second bug is created
when removing the samples in which the root cause of the
first bug appears.

6. CONCLUSIONS AND FUTURE WORK
Concurrent, distributive, and multi-threaded applications

are becoming the norm in the client as well as in the server
space. The ability to find and debug concurrent bugs effi-
ciently is becoming paramount. While there is a lot of theory
in the field, most of the solutions that work well for small
programs do not scale. One concurrent testing technique
that scales well is that of instrumenting the application with
”noise” to increase the likelihood of finding bugs. A natu-
ral debugging technique for bugs found using the ”noise”
testing technique is to look for small subsets of the instru-
mentations that cause the bugs to manifest. The intuition
is that if a small set of instrumentation points can be found
that causes the bug to manifest, showing the relevant loca-
tions to the developers will be useful in understanding the
root cause of the bug and in fixing it.

A prominent automatic debugging algorithm that can be
used on this problem is the Delta Debugging algorithm (DD).
While we have shown in previous work that it can work on
small programs, we were not sure that it would scale, as it
requires the monotonicity property. We have shown in this
paper that finding subsets of instrumentations is not mono-
tonic and therefore DD algorithms of different flavors do not
work.

We tried to find relevant instrumentations using feature
selection algorithms. The feature selection algorithm proved
successful in finding a small subset of the instrumentations
that reveal the bug. When the bug is hard to find, i.e., very
few of the small subsets reveal it, the instrumentations we
found are usually in the vicinity of the bug. We showed that
on a web crawler algorithm, which is part of WebSphere, the
found minimal instrumentation helps locate the bug.

Many of the concurrent bugs are easily revealed using in-
strumentations, i.e., it is easy to find a test that reveals the
bug. In this case, automatic debugging using feature selec-
tion or any other search algorithm is not as useful. The
problem is that the location of the root cause of the bug
may be far (in program lines) from the found minimal in-
strumentations and therefore showing the location of the
instrumentation to the developer is of limited value. We
postulated that given an event whose timing is central to
revealing the bug there will be a large difference between
creating the noise before the event or after it. This is in
contrast to instrumenting an event, which helps in finding
the bug, but so would instrumenting the previous or fol-
lowing events. When changing the focus from the value of
events to the derivative of that value along program execu-
tion paths, we have been able to point to the root cause of
the bug even when many instrumentations reveal it.

34

Figure 7: Difference score graph for server loop

Figure 8: Difference score graph for crawler

35

The automation involved with automatic debugging is
complex. First, there is the question of deciding if a subset
of the instrumentations reveals the bug. Due to the proba-
bilistic nature of the problem, false negatives as well as false
positives are common. Therefore, every test needs to be ex-
ecuted a number of times and usually a threshold needs to
be set to decide if the specific instrumentation reveals the
bug. Second, the test needs to be prepared for the concur-
rent bug. If the bug, for example, is some type of deadlock,
the testing environment needs to return and decide that the
test failed. In addition, the manifestation of the bug may
depend on the hardware used, and this issue needs to be
factored out. As the creation of the infrastructure needed
for testing different automatic debugging algorithms may re-
duce the research in this important field, we have put much
thought into how to make such research as accessible as pos-
sible. To this end, we have created an open infrastructure
that includes instrumentation, partial instrumentations, a
number of noise-making algorithms, and testing infrastruc-
ture for running multiple tests and setting thresholds. We
have also linked it to our Listener Architecture so that the
search may combine compile and runtime decisions. For ex-
ample, information from race detection algorithms can be
used to determine the locations where instrumentation is
performed. We consider the infrastructure to be one of the
contributions of this research.

The work on practical automatic debugging of concurrent
programs is in its infancy. Many directions can be explored
for improving the search algorithms. For example, our us-
age of sampling and analysis methods in this article do not
take into account the full possible strength of such methods.
With regards to sampling, our next step will be to integrate
the sampling process into the testing phase, that is, instead
of generating a sampling matrix before running the program
we will use active sampling methods. These methods start
with a small number of sampling instances and then gen-
erate additional sampling instances based on the outcome
of previous runs of the program. This should enable our
methods to require much fewer samples for identifying the
bugs.

Our current analysis method scores instrumentation points
without taking into account any interactions between them
which are more than pair-wise interactions. We plan to in-
vestigate methods which take into account higher-order in-
teractions as well as to use the structure of the program
as input to our analysis method. This should enable us to
better pinpoint the location of the bugs.

Finally, using our current method only ranks points and
pairs of points in order of likelihood for the location of the
bug in them. This requires running the program with the
highest ranked points instrumented, but it is currently an
open question how many of the top-ranked points should be
instrumented. We are working to solve this question so as
to identify the subset of highest-ranked points which should
be instrumented for the most indicative run of the program.

Another promising direction on which we are currently
working is combining static and dynamic search algorithms.
Each has built-in weaknesses and strengths and their com-
bination may yield better algorithms than each by itself.

The next phase is healing concurrent bugs (or at least con-
cealing them). This phase, on which we have done the pre-
liminary work, is the object of SHADOWS, the EU project
under which this research is funded. Healing can be achieved

by identifying the location of the bug, recognizing the bug
pattern and then correcting it; for example, by removing po-
tential race using additional synchronization. Healing has to
be done with care as there is a risk of inserting new bugs.
Healing may be done automatically or a fix may be sug-
gested to the developer. Concealing bugs may be done by
causing the interleaving that reveals the bug not to appear;
for example, by turning a section to be atomic, or by causing
the interleaving that reveals the bug to be less likely.

While the work started in this paper and suggested in this
section is very challenging, we expect rapid assimilation into
commercial tools. There is great demand for working tools
to automatically debug concurrent programs. The research
shown in this paper is already translated into practice, and
we see a clear path from experimental research to viable,
commercial tools.

7. REFERENCES
[1] Y. Ben-Asher, Y. Eytani, E. Farchi, and S. Ur. Noise

makers need to know where to be silent - producing
schedules that find bugs. In International Symposium
on Leveraging Applications of Formal Methods,
Verification and Validation (ISOLA), 2006.

[2] A.L. Blum and P. Langley. Selection of relevant
features and examples in machine learning. Artificial
Intelligence, 97:245–271, 1997.

[3] H. Chockler, E. Farchi, Z. Glazberg, B. Godlin,
Y. Nir-Buchbinder, and I. Rabinovitz. Formal
verification of concurrent software: Two case studies.
In PADTAD ’06: Proceeding of the 2006 workshop on
parallel and distributed systems: Testing and
debugging, pages 11–22, 2006.

[4] J.-D. Choi and H. Srinivasan. Deterministic replay of
Java multithreaded applications. In Proceedings of the
SIGMETRICS Symposium on Parallel and Distributed
Tools, August 1998.

[5] J.-D. Choi and A. Zeller. Isolating failure-inducing
thread schedules. In ISSTA ’02: Proceedings of the
2002 ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 210–220, New
York, NY, USA, 2002. ACM Press.

[6] S. Copty and S. Ur. Toward automatic concurrent
debugging via minimal program mutant generation
with AspectJ. In TV ’06: Proceedings of
Multithreading in Hardware and Software: Formal
Approaches to Design and Verification, pages 125–132,
2006.

[7] J. C. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu,
R., S. Laubach, and H. Zheng. Bandera: Extracting
finite-state models from Java source code. In Proc.
22nd International Conference on Software
Engineering (ICSE). ACM Press, June 2000.

[8] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur.
Multithreaded Java program test generation. IBM
Systems Journal, 41(1):111–125, 2002. Also available
as http://www.research.ibm.com/journal/sj/411/-

edelstein.html.

[9] Y. Eytani. Concurrent Java test generation as a search
problem. In Proceedings of the Fifth Workshop on
Runtime Verification (RV), volume 144(4) of
Electronic Notes in Theoretical Computer Science,
2005.

36

[10] Y. Eytani and S. Ur. Compiling a benchmark of
documented multi-threaded bugs. In IPDPS, 2004.

[11] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns
and how to test them. In IPDPS (PADTAD), page
286, 2003.

[12] A. Hartman, A. Kirshin, and K. Nagin. A test
execution environment running abstract tests for
distributed software. In Proceedings of Software
Engineering and Applications, SEA 2002, 2002.

[13] K. Havelund and T. Pressburger. Model checking Java
programs using Java PathFinder. International
Journal on Software Tools for Technology Transfer,
STTT, 2(4), April 2000.

[14] E. Itzkovitz, A. Schuster, and O. Zeev-Ben-Mordehai.
Towards integration of data-race detection in DSM
systems. Journal of Parallel and Distributed
Computing. Special Issue on Software Support for
Distributed Computing, 59(2):180–203, Nov 1999.

[15] J. A. Jones and M. J. Harrold. Empirical evaluation of
the tarantula automatic fault-localization technique.
In ASE ’05: Proceedings of the 20th IEEE/ACM
international Conference on Automated software
engineering, pages 273–282. ACM Press, 2005.

[16] B. Long and P. A. Strooper. A classification of
concurrency failures in Java components. In IPDPS,
page 287, 2003.

[17] Y. Malaiya, N. Li, J. Bieman, R. Karcich, and
B. Skibbe. Software test coverage and reliability.
Technical report, Colorado State University, 1996.

[18] A. Papoulis. Probability, random variables, and
stochastic processes. McGraw-Hill Books, 1991.

[19] B. Richards and J. R. Larus. Protocol-based data-race
detection. In Proceedings of the 2nd SIGMETRICS
Symposium on Parallel and Distributed Tools, August
1998.

[20] S. Savage. Eraser: A dynamic race detector for
multithreaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, November 1997.

[21] S. D. Stoller. Model-checking multi-threaded
distributed Java programs. In Proceedings of the 7th
International SPIN Workshop on Model Checking,
2000.

[22] S. D. Stoller. Model-checking multi-threaded
distributed Java programs. International Journal on
Software Tools for Technology Transfer, 4(1):71–91,
October 2002.

[23] S. D. Stoller. Testing concurrent Java programs using
randomized scheduling. In Proceedings of the Second
Workshop on Runtime Verification (RV), volume
70(4) of Electronic Notes in Theoretical Computer
Science. Elsevier, 2002.

[24] G. Upton and I. Cook. Oxford Dictionary of Statistics.
Oxford University Press, Oxford, UK, 2002.

[25] E. Yom-Tov. An introduction to pattern classification.
In O. Bousquet, U. von Luxburg, and G. Ratsch,
editors, Advanced Lectures on Machine Learning,
LNAI 3176. Springer, 2004.

[26] A. Zeller. Yesterday, my program worked. Today, it
does not. Why? In ESEC/FSE-7: Proceedings of the
7th European software engineering conference held
jointly with the 7th ACM SIGSOFT international
symposium on foundations of software engineering,
pages 253–267, London, UK, 1999. Springer-Verlag.

[27] A. Zeller and R. Hildebrandt. Simplifying and
isolating failure-inducing input. IEEE Trans. Softw.
Eng., 28(2):183–200, 2002.

[28] A. Zheng, M. Jordan, B. Liblit, and A. Aiken.
Statistical debugging of sampled programs. In
Advances in Neural Information Processing Systems,
2003.

37

