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ABSTRACT

Capturing dynamic control dependence is critical for mayyasic
program analysis such as dynamic slicing, dynamic infoionat
flow, and data lineage computation. Existing algorithmsnaostly

a simple runtime translation of the static definition, whfaHls to
capture certain dynamic properties by its nature, leadingeffi-
ciency. In this paper, we propose a novel online detecticinrtigue
for dynamic control dependence. The technique is based apon
new definition, which is equivalent to the existing one in the
traprocedural case but it enables an efficient detectioorighgn.
The new algorithm naturally and efficiently handles inteqadu-
ral dynamic control dependence even in presence of irregola
trol flow. Our evaluation shows that the detection algoritiows
down program execution by a factor of 2.57, which is 2.54 §me
faster than the existing algorithm that was used in priorkwor
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1. INTRODUCTION

Control dependence, an important concept in many prograia an
ysis, captures the effects of predicate statements on phbtion
and thus program behavior. Informally, a statemerstatically
control depends on a predicate statemelift p directly decides

lot of applications such as program slicing [18], prograndem
standing [13], information flow analysis[10], compiler bpiza-
tions [6], and so on. Over years, researchers have beerilgtead
pursuing the goal of improving the definition and computatid
control dependence from well structured programs [6] tg@ams
with arbitrary control flow [4, 15, 3, 14], and from intrapexural

to interprocedural [7, 16].

While the aforementioned concept is knowrsgetic control de-
pendencegdynamic control dependendatroduced with the notion
of dynamic slicing [8, 2], reveals the runtime effects of exted
predicate instances on the program behawithin a single exe-
cution According to a recent study [20] of the fault localization
effectiveness of dynamic slicing, dynamic control depewgeis
critical in containing the root causes of many program faisu
Besides dynamic slicing, dynamic control dependence ieas
ingly drawing attention in many other applications. Fortamse,
dynamic information flow [12, 11] is a very effective techng]
to track information leak and prevent zero-day attacks. diag
dynamic control dependence has been known as a great d®llen
in dynamic information flow. Data lineage [19] captures tle¢ s
of relevant input elements given a specific output elemenis |
invaluable in facilitating scientists in verifying comational re-
sults. The acquisition of precise lineage, in many casesgyesi on
accurately handling dynamic control dependence. In [2h§ri et
al. propose a technique that can handle execution omissiorse
The key component of the technique is about aligning two liigh
similar executions: one is the original execution and theeois
generated by flipping one predicate instance in the origgratu-
tion. With the technique proposed in this paper, a very effici
online alignment algorithm can be developed. Furthermetecu-
tion alignment has applications in debugging [22], de-ebétion,
preventing time-channel attacks, etc.

Despite the importance of efficiently capturing dynamictooin
dependence, existing algorithms fall short in various etspeCur-
rently, there are two types of algorithnmnlineandoffline Offline
algorithms have been popular in the past, for example, irpthe
vious research of dynamic slicing [2, 23, 17]. These alpani
require collecting control flow traces, which becomes isiiele as

whethers gets executed. Control dependence is widely used in a the execution exceeds a certain length of time, usually astew
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onds. Given a statement executignrepresenting théh instance
of statemens, offline algorithms backward traverse the execution
trace and identify the latep} such that statically control depends

on p, denoted by sed, p. This procedure makes handling recur-
sive functions intrinsically difficult.

The difficulty can be demonstrated by the example in Figure 1.
The code is presented on the left while an execution traceeis p
sented in the middle with different indents representirféedint

scd scd

call stack frames. As we can se&e,— 1 and3 — 1. Offline



code trace
f(n) { 1
1:if (n>0) { 21
2: f(n-1); 1o
3. sl 25
} 13
4: 82; 44
} 31
42
39 *
43 EXIT

Figure 1: The Limitation of Offline Algorithms.

algorithms can easily recognize that ded, ., denoting2; dy-

namically control depends an, and2; 4ed, 1,. Now assume we
want to identify the controlling predicate 8§, backward traversal
finds1s while the correct answer is . The root cause is that the al-
gorithm does not look for the latest execution of a statidieing
predicatein the same call stack framd-urthermore, simulating a
call stack when traversing backward is difficult especialith the
existence of irregular control flow suchsst j np andl ongj np.

The second category is online algorithms. An online detecti
algorithm was presented in [20]. The algorithm couples rabiale-
pendence detection with call stack maintenance on the flighwh
solves the problem caused by recursive functions. How@évier,
troduces new problems. First, the coupling causes a lotodfiems
for library functions which are compiled by various compiler
even hand written. Secondly, it is not efficient in handlinggr-
procedural dynamic control dependence. It may violate #séred
semantics of dynamic control dependence in presence guiae
interprocedural function calls. Finally, it is suboptimalterms of
runtime overhead.

The limitations of the existing algorithms, both online aofd
fline, are rooted at the fact that computation of dynamic rbile-
pendence has been taken for granted as a straightforwaticheun
rendering of the static concept. There exists evidence isigothat
such a simple rendering is not efficient due to the differerdtlg
and properties between static and dynamic control depeeden
For example, in program slicing, the static notioncofrectness
dictates that a slice preserves the original semanticseqgftbgram
[14, 18, 3, 4], which is a major concern in defining static con-
trol dependence. In contrast, many applications of dynaroic
trol dependence such as fault localization and dynamicrimée
tion flow pay more attention to the cause effect relation ketwa
predicate execution and its dependents. Moreover, whilicatly
a statement may have multiple controlling predicates, &@stent
instance always dynamically control depends on one prezlioa
stance.

In this paper, we present a refined definition of dynamic con-
trol dependence. Based on the refined definition, an efficient
line detection algorithm is developed. The key observaisainat
the nested structure of the language constructs that cdysamic
control dependence to occur is very analogous to the nested s
ture of calling contexts. Thereby, a stack based technigjdevel-
oped to efficiently handle dynamic control dependence.

The rest of this paper is organized as follows. In Sectiom2xa
isting algorithm is discussed. The proposed techniquessrizd
in Section 3. In Section 4, the technique is extended to leaintir-
procedural dynamic control dependence. Experimentalteeare
presented in Section 5. Related work is discussed in Se@tard
conclusions are made in Section 7.

2. EXISTING ONLINE DETECTION

Existing online detection algorithms are discussed in seis-
tion. For simplicity, only intraprocedural execution isnsidered.

In other words, we assume the entire run is the execution ef on
function. Dependence caused by interprocedural executiibbe
discussed in later sections.

To the best of our knowledge, dynamic control dependence has
not been explicitly defined. However, researchers [17, PBa%e
been following the below informal definition to compute dygmia
control dependence.

Note that an execution defines a total order for all the exetut
statement instances assuming only sequential executmmnisd-
ered. Theith instance of a statemenntis represented by;, z; <
y; if and only if z; is executed beforg;.

DEFINITION 1 (Dynamic Control Dependence)
An execution instance; dynamically control depends on another
instancey; if and only if

D)y <z
@ =%y,
(B) Azmpst yij<zm <z N x 2,

Algorithm 1 presents the detection algorithm used in [20jiclu
is based on Definition 1.

Algorithm 1 Dynamic Control Dependence Detection Based On
Definition 1
1: Predicate(p;)

SHADOW(p) = <getcurrenttimestamp()p; >;

. GetControlDeg(s;)
A
mazxz=0;
inst=NULL;

scd

10: for (eachp such thatt — p) {

11: if (max < SHADOW(p).first) {
12: maxz= SHADOW(p).first;
13: inst= SHADOW(p).second,;
14: }

15:

16: return {nst)

17: }

If a predicate statement is executed, functiwadicate()is called.

A shadowvariable is allocated for each predicate statement, which
can be accessed by calling functi&ADOW() which allocates
two words for each static predicate, referenced by fiéitdsand
second Inside functionPredicate() the current timestamp and the
current predicate instance are stored in these fields.

In order to detect dynamic control dependence, functmat-
ControlDep()is called upon the entry of each basic block. Inside
the function call, the algorithm scans through the shadavabbes
of all the predicates that the instruction statically cohttepends
on and identifies the one with the largest timestamp. Theeeorr
sponding predicate instance is returned as the dynamicaiomg
predicate ofs;.

The inefficiency of the algorithm partly lies in the searchtfoe
predicate instance with the largest timestamp, espeacidin the
instruction has multiple static controlling predicatesor® limita-
tions are imposed by interprocedural dependence detection



An example of this algorithm will be given and explained in a
later section.

3. EFFICIENTDETECTION OF INTRAPRO-
CEDURAL DYNAMIC CONTROL DEPEN-
DENCE

While static control dependence is computed by static obntr
flow analysis which considers all possible program pathsuat
time, only one program path is taken, the executed one. The ke
observation is that dynamic control dependence contekésda a
stack-like structure that is analogous to calling contexts

3.1 Definitions

In order to better present the idea, we consider only int@gr
dural control dependence in this section. The discussitmisrsec-
tion is general to both structural and unstructural corftosl. The
unstructural control flow can be causedtoyeak, r et ur n, and
got o statements.
will be discussed in Section 5.

DEFINITION 2  (Dynamic Post Dominance)
A statement instance; dynamically post-dominateg;, denoted

by x; dpd, y; ifand only ify; < x; andx statically strict post-

dominategy, denoted by spd, y, and there does not exisf, such

thatyj < xR < T;.

Based on Definition 2, a new definition of dynamic control de-
pendence is given as follows. The definition is equivaleriDedi-
nition 1 if only intraprocedural execution is consideredt ibleads
to a more efficient detection algorithm.

DEFINITION 3  (Dynamic Control Dependence (NEW))
An execution instance; dynamically control depends on the largest
y; < z; if and only ifz; dynamically post-dominates amy in be-
tweeny; andz; but noty;.

THEOREM1 (Equivalence)
Definitions 3 and 1 are equivalent.

PROOF Assumez; ded, y; based on Definition 1. Let; be
the largest statement instance satisfyijg< z < z; andz;
does not dynamically post-dominate. In other words,z stati-
cally post-dominates all the statements in betweeand z; but

notz. Thereforeyx sed according to the definition of static con-

trol dependence. This contradicts ded, y; based on condition
(3) in Definition 1.
The other way of the equivalence can be proved similarly

In order to develop a detection algorithm, next we introdiinee
concept ofregion A statement is said to be dranching point
(BP), denoted by, if and only if s has more than one successors in
the CFG. Predicate statements &wd t ch statements are exam-
ples of BPs. LetI PD(3) be theimmediate static post dominator
of §, and thus an immediate dynamic post-dominatog bfs the
form of IPD(3)., in whichm is just a place holder, indicating it
is a dynamic instance dfPD(3).

A regionis defined as follows.

DEFINITION 4 (Region).
Given an executed instance of a BR let /PD(3;)., be the im-
mediate dynamic post-dominator &f, the region directed by;,
represented byr(s;), is defined as:
R(8) = (xj]8 < z; < IPD(8)m)
3, is called the director of the region.

In other words,R(3;) is an ordered set that is comprised of the
executed statement instances in betw&eand the first instance of
the immediate post-dominator éthat is executed since.

PROPERTY1 (Region).
Given anyz; € R(8;), the upper bound of the regioiPD(8),,
dynamically post-dominates;.

PROOF Assumel PD($),, does not dynamically post-dominate
z;, then
(). IPD(3) does not statically post-dominate
or (ii). thereisal PD(3),, suchthatr; < IPD(8), < IPD(5)m.

Assume(i) is true, there must be a program path framto
EXIT, which does not includé PD(s). Therefore,§ ~ x ~
EXIT is a path froms to EX IT and it does not contaihP D(3).
This is contradictory to the precondition b D($) post-dominating
55— (1).

Assume(ii) is true, then/PD(§), should be the immediate
dynamic post-dominator of;, which contradicts the condition of

Interprocedural dynamic control dependence I PD(3),, being the upper bound d?(s;) — (2).

The combination of (1) and (2) completes the prodil

According to Definition 4, each branching point instance-dur
ing an execution directs a region and thus there are usuahym
regions in an execution.

THEOREMZ2 (Region).
Regions in an execution are either disjoint or nested.

PROOF Assume there aré; < i;, and they direct the regions
of R(3:) = (5, IPD(8)m) andR(t;) = (£;, IPD(#)»). Let us
further assume these two regions overlap but they are ntedes
such that,

fj S R(§Z), (I)
IPD(8)m € R(t;); (i)
dynamically post-dominates.

Therefore,R(f;) = (t;,z < IPD(8).m), which is a contradic-
tion. [

According to Property 1/ PD(3)m

THEOREM3 (Dynamic Control Dependence)
A statement instance; is dynamically control dependent on the
director of the smallest enclosing region.

PROOF Letz; 42, y; based on Definition 3 an&(7) =
(7x, IPD(7)m) be the smallest enclosing region ©f, now we
provey; = 7.

Assumey; < Tk, T dpd, 71 according to Definition 3. There
must be aIPD(7), < x; < IPD(#)n such thatR(7y)
(7x, IPD(7)»), which is a contradiction. Thereforg, < y; —

- (2).

Assumer, < y;. Apparently,y must be a branching point.
Besides,/ PD(#),, dynamically post-dominateg; according to
Property 1. As a consequence, reg(@n, I PD(§)n < IPD(#)m)
is a smaller region thaf,, IPD(7)). This region must con-
tainx;. Otherwise, according to Definition 3; dynamically post-

dominatesI PD(§) sincex; ded, 95, and thusz; dynamically

post-dominategy;. This leads to a contradiction to Definition 3.

Thereforey; < 7, — (2).
Combine (1) and (2)y; = 7.

O

The merit of region is that it induces a very efficient onliredet-
tion algorithm. Moreover, it provides better solutions iiaterpro-
cedural dynamic control dependence and easily handlesugnst
tural interprocedural control flow causedlbgngj np, exi t , and



so on. Another benefit of the new definition is that it can bélyas
extended to accommodate indirect control dependencedinten
in[13].

3.2 Online Detection Algorithm

Theorem 2 discloses that regions are either disjoint oredest
which is critical for devising the detection algorithm. Aask struc-
ture akin to call stack can be applied to maintaining nestgibns
and consequently dynamic control dependences. We cabtéi&
thecontrol dependence sta¢kDS).

Algorithm 2 Detecting Intraprocedural Dynamic Control Depen-
dence

1: Branching (3;, IPD(3))

2: {

3 if (CDS.top().seconet IPD(8) {
4 CDS.top().firstz;;

5 } else{

6: CDS.push{ 5;, IPD(3) >);
7: }

8:

9: Merging (t;)

10: {

11: if (CDS.top().seconet t)

12: CDS.pop();

13: }

Detecting region-based dynamic control dependence iegatv
strumentation at two kinds of statementbranching pointgBPs)
andimmediate post-dominatof$PDs). Static control flow analy-
sis is first applied to identify all the BPs and IPDs. As a BP &t m
during an execution, functioBranching( )is called as illustrated
in Algorithm 2. The first parameter is the current executetisince
of the BP, the second parameter is the the IPD of the BP, the firs
instance of the IPD encountered serves as the terminatioh qo
the region directed by the BP.

Lines 3 and 4 present an important optimization of the atgori
If two BP instances in the CDS share the same terminating stat
IPD, the two corresponding regions will be ended by the sd?ie |
instance. Therefore, there is no need to maintain two enimiéhe
CDS for the purpose of detecting dependence. Consequgiviy
a BP instance, the algorithm checks if it has the same tetm@ia
IPD as the top entry. If so, the top entry is simply replacettwie
incoming BP instance. If it is not the case, at line 6, the adgm
simply pushes the current BP instance and the expectedtating
IPD onto the CDS.

As an IPD is met, functioerging () is called. The function
first checks if the IPD is the terminating IPD of the currergioa.

As will be shown by an example, the first IPD met since the last

if (pl |l p2) {
sl;
s2;
}
if (p3) {
while (p4) {
s3;
}
}else {
ift (p5) {
return;

. }
TR
s4; 7

—»
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control flow edge
Branching ()

Merging ()

Figure 2: An Example For Intraprocedural Dependence.

have more than one static controlling predicates are imsnted
by calls toGetControlDep ()

Table 1 shows an execution trace of the example program and th
instrumented executions for the two algorithms. For Alton 1,
one extra assignment to the shadow variable is needed upon th
execution of a predicate such pf@\h, E@\ll, and5;. Since
there are two predicates at statement 1, wepisel andp2@1
to represent them. Comparisons of shadow variables aréredqu
on the execution of a statement which has more than one static
controlling predicates such as, 31, 14;.

For the region based Algorithm 2, a push onto the CDS or a re-
placement of the top entry is executed on the execution of a BP
depending on whether the current executed BP instancedthen
same terminating IPD with the instance on top of the CDS. for i
stance, botrpT@Tl and ;ﬁ@ﬁ expect the same terminating IPD
of 5, therefore at the second step of the execution, the top entry
< @1,5 > is replaced with< @1,5 >. This optimiza-
tion is extremely important for the case of loops. At runtjnae
loop creates as many nested regions as the number of exécuted
erations. For example, if the loop consisted of statemeiatsds7
gets executed faK times before it exits, it creates entries on the
CDS without the optimization. The CDS will overflow if th€ is
large enough. One important observation is that thesenegidll
be terminated by the same IPD instance, and thus we only peed t
maintain the latest region. In other words, even though dlog |

BP may not be the IPD of the BP even though regions are always may be executed fak times, there is always only one entry on the

nested at a particular execution point. If it is the expedted,

the top entry is popped from the CDS, which means the current

region is left and the parent region is entered. The pop tipera
is implemented by simply substracting the stack pointer BSC
which is very cheap.

Next, we use an example to demonstrate the algorithm. The pro
gram and its control flow graph are presented in Figure 2.eStat
mentss1 ands2 have two controlling predicatespt andp2. Sim-
ilarly, s4 has two controlling predicateg3 andp5, because of the
return atline 11. As shown by the figure, all the BPs are instru-
mented with calls tdBranching( )and the IPDs are instrumented
with calls toMerging( ). In contrast, if Algorithm 1 is used, BPs
are instrumented by calls Rredicate () and the statements which

CDS.

Upon the execution of an IPD, Algorithm 2 first checks if the ex
ecuted IPD is the expected terminating point of the curregion.
If it is, the top entry is popped. Popping the top entry in thsecof
aloop, such as the one in our example, has the effect of pgppin
nested regions at a time. Note that it is possible the exddBte is
not the terminating IPD of the current region. For instamssume
the execution takes the paih — 10, — 14;, Statement4 is an
IPD, which post-dominates B&. However, the current region is
directed by10,, which will be terminated by» X IT. Therefore,
the execution o4, has no effect on the CDS.

In comparison with Algorithm 1, the cost of pushing an entry
is similar to that of setting the shadow variables and the obs



Table 1: Instrumented Runs for Algorithms 1 and 2

Trace Algo 1 instrumentation Algo 2
instrumentation | CDS
pl@1, % S(pl) =< 1,pl@1; > pushk pl@1,,5 >) [<pl@l1,,5 >]
p2@1; | S(p2) =< 2,p2@1; > replace top with€ p2@1,,5 >) | [< p2@1,,5 >]
21 (S(pl).first > S(p2).first) ? pl@Q1; : p2@1, | - same as above
31 (S(pl).first > S(p2).first) ? pl@Q1; : p2@1, | - same as above
51 S(p3) =< 5,51 > pop() R K
pushk 51, EXIT >) [< 51, EXIT >]
61 S(p4) =< 6,61 > pushk 61,14 >) [<51, EXIT > | <61,14 >]
71 - - as above
62 S(p4) =< 8,62 > replace top with€ 62,14 >) [<5:, EXIT > | <62,14>]
14, (S(p3).first > S(p5).first) 251 : NULL pop() [< 5., EXIT >]
EXITy | - pop() 0

** S(x) denotes the shadow variable of predicate1@1 denotes the1 sub-statement of

the pop operation is trivial. Algorithm 1 incurs extra oveald of
accessing and comparing of timestamps in the case of a satem
control depending on multiple predicates. In contrast,rbsted
structure of regions in Algorithm 2 efficiently handles thelgem
and thus requires no additional operations.

difference is that interprocedural flow makes a statememays
execute in certain context. Executions of the same statemen
different contexts should be treated as executions ofréifiiestate-
ments, in other words, they should be context-sensitive.

The acquisition of dynamic control dependence for each exe- code execution (1)  execution (2)
cuted statement is omitted from the computation Table 1 Alfgw- fO { 11 11
rithm 1, the dynamic depended predicate instance can hevexdr 1:if (P) 21 44
by looking at the shadow variable of the predicate if thererity 2: g0; 61 61
one such predicate. Otherwise, it is the winner of the tiaragt 3: else 51 51
comparison. For Algorithm 2, the dynamic depended preéitat 4: g0; 62 62
the director of the current region, which can be easily egail 5:9();
by looking at the top entry of the CDS. For example in Table 1, }

62 2% 6, because< 61, 14 > is the top entry at the moment that
62 gets executed. 90 {
6: s1;
}

4. DYNAMIC CONTROL DEPENDENCEIN
INTERPROCEDURAL EXECUTION

In previous sections, we assume the whole execution is nwithi
a function. In practice, interprocedural control flow giwese to
interprocedural dynamic control dependence at runtimés ot
clear from previous work [17, 5] how interprocedural dynaicon-
trol dependence is handled. Part of the reason is that nogdu-
ral dynamic control dependence is not as important as oyfper t
of dependences such as interprocedural data dependerteedp-t
plication of dynamic slicing. However, it is no longer thesean
the applications of dynamic information flow, data lineaayed dy-
namic data race detection. For example, missing a dynamic in
terprocedural control dependence may lead to leak of contfale
information. In this section, we discuss computation ofaiyic
control dependence.

Figure 3: Context-sensitivity

For example in Figure 3,; taking either th& RUE branch or the
FALSE branch eventually results th being executed. However, it
is wrong if one conclude tha does not control depend dn. In-
stances; in execution (1) should be considered different from that
in execution (2) because they have different contexts. hirast,
62s have identical contexts.

The second key difference lies in that interprocedural flas h
different semantics than intraprocedural flow. For exampée |
andr et ur n are often corresponding to each other. In other words,
certain interprocedural flow is mandated by previous oeclifiiow.
Therefore, turning interprocedural flow into intraprocesdiy do-
ing simple function inlining might lose some important series
and eventually the accuracy in computing dynamic contrpede
dence.

Our definition of interprocedural dynamic control deperzen
needs to accommodate these differences. First of all, wealtdfe
calling context of a statement instance.

4.1 Detecting Dependence For Regular Inter-
procedural Control Flow

There exist two types of interprocedural control flowegular
andirregular flow. Regular interprocedural control flow is stemmed
by normalcal | andr et ur n instructions, which maintain the
LIFO property of the call stack. Irregular interprocedufialw,
which is also referred to abitrary interprocedural control flow,
is usually caused bgxi t , | ongj np, exception handling, etc. It
is often manifested as a callee not returning to the call site

Interprocedural control flow has different properties thrapro-
cedural control flow, which make it hard to deal with. The fisy

DEFINITION 5 (Calling Context).
Given a statement instaneg its calling context, denoted yC'(s; ),
is an ordered list of call sites with the forma ¢, 2, ..., /=1, &7, ..., ¢ >,
in which s; is executed in the function called @t and any¢’ is in
the function called at its predecessér .

Here superscripts are used to create unique symbolic \esiab



DEFINITION 6  (Dynamic Post Dominance (REFINED))

Y e, s, ifand only if associating: with CC(z;), all the possi-
ble program paths, including both intraprocedural and ipece-
dural, betweernr and the end of program pagswith CC(y;) and
there does not exist; < yr < y; that satisfies the aforementioned
condition.

In the execution trace presented in Figur€'t;(13) =< 21,22 >
andCC(31) =< 21 >. If 1 is associated with the calling context
of < 21,2, >, all the paths from to the end of the program have

to pass3 with the context of< 2; >. Therefore,3; dpd, 13.
Similarly, 32 dpd, 31.
Note that it is impossible for two instances of the same state

dpd . . . . .
ments; —= s; if only intraprocedural execution is considered.

In the execution (1) of Figure 3. dpd, 61, 62 pd, 1,, 61 does

not dynamically post-dominate; because of the existence of the
program path as demonstrated in execution (2).

Let §; be a BP instance anfiDPD(3;) be its immediate dy-
namic post-dominator based on Definition 6. Note that prestio
we used/ PD(3),, to denote thentraproceduralimmediate dy-
namic post-dominator.

THEOREM4 (Calling Context).

If only regular interprocedural control flow is considered,
CC(8;) = CC(IDPD(8;)).

PROOFR AssumeC'C'(3;) # CC(IDPD(3;)). Therefore there
are only two cases:

@i). (CC(8:)NCC(IDPD(3;:)) < CC(3);
(i). CC (%)) < CC(IDPD(8)).

Heren and< denote the common prefix and comparison opera-
tions on ordered lists.

In case(i), the executed path fror; to IDPD(s;) must en-
counter the context diC'C'(3;)NCC(IDPD(5;)). In other words,
the control flow has to return to the common calling ancesfor o
both §; and IDPD(3;). In other words, the return of the en-
closing function ofs;, denoted byRET'(8;);, must satisfys; <
RET(8:); < IDPD(3;). Moreover, since regular interprocedu-
ral control flow has only one return point for each function,

RET (8:); g s contradictory to/ DPD(3;) being the
immediate dynamic post-dominator —- (1).

In case(ii), CC(8;) is a prefix of CC(IDPD(3;)). Let
CC(IDPD(3;)) = CC(3;)] < ¢, ¢, ... >, , in which the
executed instance) has the same context asands; < ¢} <
IDPD(3;) Apparently, any program path, starting wittC'(3;),
has to pasg’ with CC(3;) in order to encounte®C (I DPD(3;)).
Therefore ¢} Al g Itis contradictory tol DPD(3;) being the
immediate dynamic post-dominator —- (2).

Combining (1) and (2), the theorem is proved.]

Based on this theoreni,D P D(3;) is also an intraprocedural im-
mediate dynamic post-dominator &f and therefore has the form
of IPD(3;)m.

Given the new definition of dynamic post-dominance. The defi-
nition of interprocedural dynamic control dependence riasiaen-
tical to Definition 3. Since a region is still delimited by a BRd
its immediate dynamic post-dominator, Theorem 3 and Tie&e
hold. Proofs can be carried out in a similar way. Due to thespa
limit, they are omitted in this paper. The examples of intecedu-
ral regions and dynamic control dependences can be founidin F

ure 1 and 3. In Figure ]R(il) = (11,43). Thereforel» ded, 11
and4, 2% 1;. In the execution (1) in Figure 8, dedq,,

Based upon Theorem 4, the terminating point of a region has to
be in the same calling context of the director of the regiohe T
equivalence test of calling contexts can be efficiently qaned by
comparing the timestamped call stack frame base pointers.

Algorithm 3 Detecting Dependence With Regular Interprocedural
Control Flow

1: Branching (s;, IPD(3), bp)

2: {

3 if (CDS.top().secone= I PD(5)% {
4: CDS.top().first#;;

5: } else{

6: CDS.push 3, IPD(3)% >);
7

8

)

9: Merging(t;, bp)

10: {

11: if (CDS.top().seconek t°7)
12: CDS.pop();

13: }

A refined algorithm which accommodates regular interpraeed
ral control flow is presented by Algorithm 3. Varialdle represents
the timestamped call stack pointer&f The algorithm labels the
expected terminatind PD with bp and performs identity check
before it pops an entry from the CDS. The last column of Table 2
presents an example of computing interprocedural depeeden
Figure 1.

Effect On Intraprocedural Dependence. Interprocedural exe-
cution can affect computation of intraprocedural dynanaotoml
dependence especially when functions are recursivelgaal not
handled correctly, recursive execution may result in wrdegen-
dence.

Let us revisit the example in the introduction, Table 2 pn¢se
the computation table for the example trace. Assume we veant t
compute the controlling predicate 3&”1, in which the superscript
bpl is the calling context label. According to the previous Algo
rithm 1, it is retrieved fromS(1), the shadow variable dfs static
depended predicate. The resuliljs which is wrong. The correct
answer would bd ;. A similar effect is also observed in Algo-
rithm 2.

The key to this problem is that the calling context should be
taken into account when computing intraprocedural dynasoic
trol dependence in case of interprocedural execution. trpmvi-
ous work [20], we coupled the shadow variables in Algorithm 1
with the call stack by allocating shadow variables on theliapp
cation’s call stack, which can be achieved by manipulatitagls
pointers. In other words, the same predicate may have railtip
shadow variables depending on if there exist multiple aatalling
contexts that contain the predicate. For example, as showhei
third column of Table 2, at the execution pointt_fj”?’, predicate
1 has three active shadow variables, allocated in threeeastack
frames pointed bypl, bp2, andbp3. At the moment 01‘327’1
being executed, the shadow variable in the current callamgext,
which is referred to a$®”'(1), contains the depended predicate
instancel ;.

However, our experience shows that in practice it is very har
to manipulate the stack pointers for certain functions.eegly
when those functions are from libraries that may be compited
ing various compilers or even written by hands. The reastmais
allocating shadow variables on a stack frame entails ifj@mdj the
particular instruction that allocates stack space forllvaesiables



Table 2: Computation of The Execution In Figure 1.

[ Trace [ Algo1l | Refined Algo 1 | CDS in the Refined Algo 2
PP T G(1) =< 1,11 > | SPI(1) =< 1,11 > | [< 1,,4%! >]
20T _ - same as above
177 [S()=<3,15> | S (1) =< 3,13 > | [< 1,47 > — < 15,47 >]
2072 _ - same as above
17 [ S(1) =<5,15> [ S"5(1) =< 5,15 > [ [< 11,4 > — < 15,47 > — < 15,4"7 > ]
4073 ; - [< 11,41 > — < 15,4%2 >]
3072 _ - same as above
17 . - [< 11,4%1 >
3opt - - same as above
e - I

** the superscript describes the current stack frame pointe

and/or parameters, usually by pattern matching. While geher-
ated by commonly used compilers suclyas has unique patterns,
library functions, especially a lot ¢fi bc functions, do not follow
these patterns.

The problem can be easily overcome by Algorithm 3. As shown
by the last column in Table 2, the expected terminating IPDs o
regions are labeled with stack pointers. For instance, tieect
depended predicate 67! can be retrieved from the top entry of
the CDS, which id ;.

Handling Function Pointers. Function pointers are used quite
often in some C and C++ programs. They do not impose any
new challenges to our technique. We treat the call sites rd-fu
tion pointers as branching points whose immediate postiutors
are the return sites. In other words, a call site that has Itiane
one outgoing call edges and its return site delimit a regtai@
time, all the executed statement instances within the neaie di-
rectly/indirectly control dependent on the call site imsiz.

4.2 Detecting Dependence For Irregular In-
terprocedural Control Flow

The most intriguing cases happen when irregular interghaee
control flow occurs becauselbbngj np, exi t, and so on. As ob-
served in earlier work on static interprocedural contrgletelence
[15, 3, 14], it is no longer true that a function has only onieime
point. A function may not return or have multiple return site

Irregular Flow Caused by | ongj np. A typical type of irregu-
lar interprocedural control flow is caused$gt j mp andl ongj np,
which is commonly used to implement exception handling and e
ror recovery. Figure 4 presents a sample program with nieltip
functions and an irregular flow caused $gt j np andl ongj np.
Let us look at the following execution trace.

11 21 31 71 111 121 22 51;
A | ongj np is performed in the execution. Following our def-
initions of dynamic post-dominance in Definition 6 and dyimam

control dependence in Definition 3, instarfﬁeﬂ 11, because
all the possible paths fronml to 5, if constrained by the calling
contexts, have to take either the executed path or the jpath-
14 — 8 — 5. Moreover,5; = IDPD(11,) because neither2,
nor 2, dynamically post-dominatesl;. Therefore,

R(111) = (111, 51) = {121, 22}

. and thugs 2<% 11,.

The observation is that even though our definitions stilbatc
modate irregular interprocedural flow. Theorem 4 no longdd$
In other words, a region may be bounded by instances witbrdiff
ent calling contexts as demonstrated/®fi1; ).

A0 1. setjm
1. { setjmp (env),
2. i (D) {
3. B();
4. }
5. s1;
6 )

7.C

BO)

9. } ‘/ ‘,'
|| EXITg | |

10. C() i N
11. { if (p2) { ! :
2 e e,
13. i
14. s3; !

}

—control flow <#-call —»return  —>> irregular

Figure 4: An Example For set j np and| ongj np

Our solution is demonstrated by Figure 5.

For the function that contairset j np, a dummy edge is added
between the call site of the function that may intemgj np and
the control flow successor afet j np. For example, a dummy
edge is added from 3 to 2 in the CFG 4f). This edge turns the
call site into apseudo-predicatewhich is taken into consideration
when computing post-dominance. However, it is not instnotee
as a BP at runtime.

For functions that do not contaiget j np but may lead to a
| ongj np, aDUM MY node is added and dummy edges are in-
troduced between tHeongj np or the call site leading tbongj np
and theDU M MY node, and between tiéX 17" and the
DUMMY nodes. The modified CFGs fd () andC/() are pre-
sented in Figure 5. The dummy nodes and edges affect computa-
tion of post-dominance but they do not correspond to anyiment
instrumentation.



A B C

‘ 1. setjmp ‘

12. longjmp

|:| pseudo BP

A Merging ()

—»control flow = dummy edge

© Branching ()

Figure 5: Handling | ongj np flow

The fact that a BP is statically post-dominated by e M MY
node can be interpreted at runtime as the immediate dynawste p
dominator of the BP being the post-dominator of the pseudd-pr
icate. For example]1 hasDUM MY as itsIPD. During the

aforementioned sample executi@n,ﬂ 11,.

Next we prove the correctness of this statement.

Let s be the pseudo-predicate in the procedBreith set j np.
Given an executed instaneg, let IPD(5)., be the first instance
of s's intraprocedural immediate post-dominator executedesin

THEOREM5 (Longjmp Flow).
For any3; < ¢; < TPD(8), such thatt is a real BP in a proce-
dureG # PandIPD(i) = DUMMY,
IPD(8)m = IDPD(t;).

The theorem says tha® D(§)., is the immediate dynamic post-
dominators for all the executed predicates in betwgemdI PD(5)»,
whosel PDs areDU M MY nodes. Therefore,PD(§),, serves
as the upper bound for not onR(3;) but also allR(%;)s.

PROOF. According to Definition 6, we need to prove:
() IPD(8)m 2L £ )
(i) There does not existy in betweert; andI PD($),, such that

dpd -~
Rl — tj

Itis easy to prove that given ay < z;, < IPD(8)m,

IPD(3)m e, because all program paths fromto the end
of execution have to reach”D(3), with CC(3).
In order to prove(ii), assume there is; such thatt; < z, <

IPD(8)m andzs LLLN t;. Let us further assume there is an edge
between a call siteand DUM MY in G. In other words, the func-
tion called atc may not return. Therefore, there exist a program
path fromé; to TP D(3).», the calling contexts of the path follows
the below pattern:

CC(iJ) — CC(EJ)l <c > — CC(@H < Clyeee > — .l
CC(t)| < ety > — CC(IPD(8)m) = CC(5:).

SinceI PD(t) = DUMMY , there is a program path that does
notincludec. As aresult, the calling context 61C ()| < e, ... >
never happens along that path.

According to the definition of dynamic post-dominance in Befi
nition 6, (a). CC(zx) = CC(t;) or(b). CC(zr) = CC(8;). Case
(a) is impossible because? D(f) = DUMMY . Neither is case
(b) possible becauseP D(35)., is the intraprocedural immediate
post-dominator.

—

Therefore z;, does not exist, which completes the proof]

This theorem explains why we do not instrument statement 14 o
either of theDU M MY nodes. Because we only need to check the
termination of regions even those directeddy. at statement 5.
The instrumentation remains almost identical as AlgorithnThe
only change required is to pag$’D($) as the expected termina-
tion point and theép of CC(s;) for ¢;s. Note that; ands; belong
to different functions.

AQ) A B
{ if (D) ¢
B();

© N o

—»control flow == dummy edge |:| pseudo BP @ Branching ()

Figure 6: An Example Forexi t .

Irregular Flow Caused by exi t . Another type of irregular in-
terprocedural flow is caused lexi t statements, which terminate
program execution.

Figure 6 presents a sample program with multiple functiors a
an irregular flow caused bgxit. Let us look at the following
execution trace.

11215181 4

According to the definition of dynamic post-dominance, none
of the execution instances after dynamically post-dominates,
because of the path — 6. The same holds for,. Therefore, all
the execution instances after directly or indirectly dynamically

control depends on it. In other words, <% 5, and4; %% 5;.
Intuitively, the executions df; and4, are controlled by the branch
outcome of; .

The observation is théihe CDS never needs to pbpor beyond
Figure 6 shows how we deal with this case. In the figure, dummy
edges are introduced to turn thi@D of 1 from 4 to DUMMY
and that of5 from 8 to DUM MY . Here, thel PD of a BP being
the DUM MY node means that the correspondiBganching()
instrumentation flushes the entire CDS and pushes the ¢BRn
instance, which will never be popped by aiMyerging(). The
previous Algorithm 3 can be easily extended to accommodiage t
case. The detail is omitted here for brevity.

5. IMPLEMENTATION AND EVALUATION

In this section, we discuss the implementation strategyesat
uate the efficiency of our algorithm for detecting dynamiatcol
dependence. We also compare the overhead of the algoriteim pr
sented here with the previous algorithm that is based oit st@n-
trol dependence.

Our dynamic detection algorithm is integrated into usegpam
through instrumentation. To build the instrumentationltage
choose the Diablo/Fit [1] toolkit. Diablo is a link time bina
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a.out .o .map file
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Instrumented
a.out

Figure 7: Tool Implementation and evaluation setup.

rewriting tool and Fit is an instrumentation tool generabased
on Diablo. With Fit, we can code our detection algorithm irotw

Benchmark | Base(s)| DCD(s) | Overhead
008.espresso 1.35 5.03 3.73x
124.m88ksim 0.18 0.64 3.55x
129.compress 115 255 2.22x
132.ijpeg 40 73 1.83x
164.9zip 3.7 12.6 3.41x
175.vpr 24 81 3.37x
181.mcf 90 127 1.41x
197.parser 23 52 2.26x
256.bzip2 36 71 1.97x
300.twolf 39 79 2.02x
| Avg. | - | - | 2.57x]

Table 3: Overhead of our detection algorithm.

We reimplemented this algorithm for this experiment. We aise

separate c files. We then feed these two files to Fit to generate our separate stack to store the timestamps of branch pointppased

customized instrumentation tool. Our tool accepts apptioabi-
naries and produces instrumented versions (In order to isg#d)
the binaries have to be produced by the compiler from thehaoh
shipped with Diablo). One can then run the instrumentediegpl
tion to collect dynamic control dependence trace. This wipob-
cess is shown in Figure 7.

Implementing our algorithm is mostly straightforward. How
ever, there are some difficulties that we have to overcomenwhe
recording the function calling contexts as discussed irAtgm
3. Conceptually, since we are working on X86 architectune, t
value of the base frame pointer, i.e. t&EBPregister, could be
used to denote a calling context. However, we found that én th
assembly code, this register is sometimes manipulatedcakpl
for example, being used to store a temporary value. This sidke
unusable for our purpose. We handle this by using a globkhgal
context ID that is increased (decreased) at function eetti)(

For benchmarks, we use those from the Trimaran tool kit.-It in
cludes subsets of SPEC2000 and SPEC95. The infrastruatiee f
for the benchmarkgcc andvort ex. All data are collected on
an Intel Pentium 11l 1GHz machine with 500MB memory, running
Gentoo Linux (kernel 2.6.14).

Efficiency. In order to show the efficiency of our algorithm, we
compare the execution time of applications with and withayt
namic control dependence detection code. The executi@stare
presented in Table 3. THgasecolumn shows the execution time of
code without instrumentation (in seconds), t€D column with
dynamic control dependence detection code. On averagehbiut
2.57 times slower when running with the detection code. Wekth
that this is generally an affordable price to pay. Furtheemae
are exploring ways inside Diablo that will allow us to selesly
inline instrumentation functions. Since the instrumentede size
is relatively small, especially for thiger gi ng function, inlining
may provide further room for reducing the runtime overhefolo
algorithm. There are also optimization opportunities rdiey loop
entry basic blocks.

Comparison with the previous approach.In our previous work
on dynamic control dependence detection, we devised arithlgo
that is based on static control dependence data. As brisftussed
in Section 2, each branch point (BP) is assigned an ID andestim
tamp. As the branch points are encountered during execukiein
timestamps are updated. Each basic block’s dynamic codé&-ol
pendence are determined by finding the largest timestamp@mo
its static control dependent basic blocks. Basic block$ wéro
or only one static control dependence do not need searclindor t
largest timestamp.

to allocating space in the current function frame on the staitk,
as suggested in the previous approach. We thus avoid theassu
sociated with library code. Branch points in each functionsat-
ically assigned an 10-bit ID (functions with more than 1024rich
points are the rare case), starting from 0. Upon method ,eoriey
word is allocated for each branch point in that function on ¢
the stack. When dynamic dependence is determined for a,iteck
static dependent BPs’ IDs are packed into words and passed to
Get Cont r ol Dep function to find the BP with the largest times-
tamp. With 2 words, a maximum of 6 static dependences can be
checked. Again, basic blocks with more that 6 static depecee
are the rare case.

In order to do a fair comparison, interprocedural contrglate
dence also needs to be detected for this algorithm. We achiéey
by pushing an additional entry to the stack at a function siad!.
The entry will be the PC of the basic block that is the dynamit-c
trol dependence of the basic block invoking the call. Witthie
called function, basic blocks with 0 static control deperatewill
have this entry as their dynamic dependence.

As seen from the above discussion, our reimplementatiait- str
egy is fairly optimized. We implemented this algorithm ie ftame
Diablo/Fit framework. The performance data are shown iéfdb
The DCD column corresponds to the algorithm in this paper, and
the Old column corresponds to the previous algorithm. As seen
from the table, our new algorithm are, on average, 2.54 tiamsr
than the old algorithm. Both algorithms have to update soata d
structure when a branch point is executed, but for checkiagly-
namic control dependence, the new algorithm is much falsiéne
new algorithm, the dynamic control dependence is alwaysilsea
available on top of the control dependence stack, while erCii
approach, a number of comparisons are required, lineaetoutm-
ber of static control dependences of the current basic block

6. RELATED WORK

In this section, we discuss some previous work on program con
trol dependence, both static and dynamic.

Static Approaches Among the static approaches, Ferrante et al. [6]
studied the using of dependence graphs in compiler opttioiza
They proposed the concept Bfogram Dependence Grapthat
combines both data and control dependence relations inrapé.g
They then demonstrated how certain compiler optimizatéamsbe
done more efficiently on this kind of graph. Our efforts todar
clear definitions for dynamic post-dominance and dynamitrobd
dependence are generalized from the definitions they adidpte



Benchmark | DCD(s) | Old(s) | Improvement
008.espresso 5.03 14 2.78x
124.m88ksim 0.64 1.98 3.09x
129.compress 255 657 2.58x
132.ijpeg 73 160 2.19x
164.9zip 12.6 37 2.94x
181.mcf 127 196 1.54x
197.parser 52 175 3.37x
256.bzip2 71 128 1.80x
[ Avg. | - ] -] 2.54x |

Table 4: Comparison with our old detection algorithm.

the static counterparts.

Horwitz et al. [7] worked on dependence graphs in the coraext
precise static program slicing. They introduced what isdebys-
tem Dependence Graphat combines both data and control depen-
dence as well as interprocedural data dependence thattisredp
by the concept ofransitive flow dependence edgegich in turn
are computed by a technique borrowed from Attribute Grammar
Based on this graph, they developed an efficient two-phasagl!
algorithm that curbs the loss of precision due to mergedsitdb
in previous methods.

Sinha et al. [15, 16] extended the work by Horwitz et al. to
specifically handle what they caflotentially non-returning call
sites (PNRCs) They are caused by statements sucleast ,
setj np/ 1 ongj np, try/catchin popular languages like
C/C++ and Java. The way they handled these cases inspitesf par
our solution. We adopt a similar view when we define interpche
ral dynamic control dependence in light of arbitrary inteqedural
control flow in this paper.

Kumar et al. [9] worked on how to efficiently compute static
source-level executable program slice in light of irregwantrol
flow like swi t ch andgot o in C. They discussed a series of defi-
nitions, with each one refined over the previous one, for wbat
stitutes as aorrect slice starting from a definition Weiser had
in [18]. In the process, they discussed how these irregubav fl
can be handled. This process is very similar to our work jteske
in this paper except that we are working in the dynamic cdntex
and we are working on the binary level. Also, since we are not
concerned about reproducing program fragments at souveg le
we can treat the irregular flow likewi t ch andgot o the same
as other branching or fall-through basic blocks. Theseudifices
also apply when comparing our work with the all other stapie a
proaches.

Dynamic Approaches Research on dynamic program
control/data dependence are drawing increasing attentidfang
et al. [17] addressed the space cost issue that is assowiited
collecting dynamic traces in dynamic slicing. They devisedal-
gorithm to compress Java bytecode traces and demonsti@iet h
perform dynamic slicing by directly backward traversing ttom-
pressed traces. During the backward traversing, staticaate-
pendence information is consulted for finding dynamic carde-
pendence for a bytecode. They did not discuss how intergtoaé
control dependence are discovered.

Vachharajani et al. [12] worked on architecture supportifier
formation flow analysis that is based on dynamic data and-@ont
dependence. In their proposed framework, security lalrelas
signed to data/control memory locations and these labelprap-
agated as instructions execute. Finally when data areanrtitt cer-
tain channels (files, sockets etc.), their security labedschecked
against a user policy. Besides data flow dependence, dyreamic

trol dependence information is crucial for their work. Thibgt not
discuss how dynamic control dependence can be detecte@dim th
paper, so that our work here is a good compliment.

Zhang et al. [20] worked on using dynamic slicing in the con-
text of fault location. In their work, efficient dynamic cool de-
pendence detection algorithms are required. The compawss
made clear in the main body of the paper.

In summary, we consider that our work presented in this paper
good compliment for some of the previous work done in thiglfiel
Furthermore, to our best knowledge, our formulation on dyica
control dependent and dynamic post-dominator relatioasing
into consideration the interprocedural case, is the fifetetoward
such a goal.

7. CONCLUSIONS

In this paper, we introduce a novel definition of dynamic coint
dependence that accommodates both intraprocedural aargriort
cedural cases even in presence of irregular control flone@®apon
this definition, an efficient online detection technique risgosed.
The experimental results show that our algorithm incury @7
times slowdown to program execution. Compared to the exgsti
algorithm, it improves the performance by a factor of 2.54eG
the critical role of dynamic control dependence in many dyica
program analyses, our technique has the potential to fostee
efficient new designs and implementations for those anslyse
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