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Abstract

A critical component in the design of secure processors is memory encryption which provides protection for the privacy

of code and data stored in off-chip memory. The overhead of the decryption operation that must precede a load requiring an

off-chip memory access, decryption being on the critical path, can significantly degrade performance. Recently hardware counter-

based one-time pad encryption techniques [13, 16, 11] have been proposed to reduce this overhead. For high-end processors

the performance impact of decryption has been successfully limited due to: presence of fairly large on-chip L1 and L2 caches

that reduce off-chip accesses; and additional hardware support proposed in [16, 11] to reduce decryption latency. However, for

low- to medium-end embedded processors the performance degradation is high because first they only support small (if any)

on-chip L1 caches thus leading to significant off-chip accesses and second the hardware cost of decryption latency reduction

solutions in [16, 11] is too high making them unattractive for embedded processors. In this paper we present a compiler-

assisted strategy that uses minimal hardware support to reduce the overhead of memory encryption in low- to medium-end

embedded processors. In addition to the global counter used in [13], our technique uses additional counters. These counters,

which are compiler controlled, are maintained using a small number of dedicated on-chip registers. Our experiments show that

the proposed technique reduces average execution time overhead of memory encryption for low-end (medium-end) embedded

processor with 0 KB (32 KB) L1 cache from 60% (13.1%), with single counter, to 12.5% (2.1%) by additionally using only 8

hardware counter-registers.

Keywords: Code and data privacy, memory encryption, counter-registers, keys, one-time-pad.

1 Introduction

There is a significant interest in the development of secure execution environments which guard against

software piracy, violation of data privacy, code injection attacks etc. [9, 16, 13, 6, 17, 18, 14]. Memory

encryption is a critical component of such secure systems. While the code and data residing on-chip

are considered to be safe, code and data residing off-chip can be subject to attacks. Thus, for example,

to provide defense against software piracy and to protect the privacy of data, memory encryption is
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employed. Data leaving the chip must be encrypted before being sent off-chip for storing and when this

data is referenced again by the processor, and brought on-chip, it must be decrypted.

The overhead of decryption operations that precede loads requiring access to off-chip memory can be

very high and hence can lead to significant performance degradation. Techniques based on one-time-pad

encryption or counter mode block ciphers [16, 13, 11] have been proposed that encrypt/decrypt data using

a one-time-pad derived from a key and a mutating counter value. This enables the computation of the

one-time-pad to be decoupled from the reading of encrypted data from off-chip memory. For high-end

processors the performance impact of decryption has been successfully limited due to two reasons. First,

the presence of fairly large on-chip L1 and L2 caches reduce the frequency of off-chip accesses. Second in

[16, 11] additional hardware support has been proposed to reduce decryption latency. The techniques in

[16] and [11] enable the one-time-pad to be precomputed while data is being fetched from off-chip memory

by caching counter values and predicting them respectively. While the combination of above techniques is

quite effective in limiting performance degradation in high-end processors, they rely on significant on-chip

hardware resources. An additional cache is used [16] for caching the counter values. It is well known that

caches occupy most of the on-chip space (about 50%) in embedded processors [21]. For this reason, several

embedded processors are built without a cache as shown in Table 1. To obviate a large counter cache, the

prediction technique [11] uses multiple predictions to predict the value of the counter and speculatively

perform the multiple decryptions. As it performs multiple decryptions, 5 decryptions are performed in

parallel, this technique requires multiple decryption units. In the prototype implementation of the AEGIS

single-chip secure embedded processor [12], each encryption unit causes significant increase in the gate

count (3 AES units and an integrity verification unit caused a 6 fold increase in the logic count). Thus, the

hardware cost of decryption latency reduction solutions in [16, 11] is too high making them unattractive

for low- to medium-end embedded processors. For such processors the performance degradation is high

because first they do not support on-chip L2 data caches and they only support small (if any) on-chip L1

data caches thus leading to significant off-chip accesses. Table 1 presents a list of commercial embedded

processors which have no on-chip L2 cache, many of them have no on-chip L1 data cache while others have

L1 data caches varying from 2 KB to 32 KB.

In this paper we develop a compiler-assisted strategy where the expensive task of finding the counter

value needed for decrypting data at a load is performed under compiler guidance using minimal hardware

support. Thus, the need to either cache or predict counter values using substantial on-chip hardware

resources is eliminated. In addition to the global counter, our technique uses multiple compiler allocated

counters for each application. The additional counters are implemented as special registers which reside on

chip. The compiler allocates these counters for store instructions. Instructions that compute the one-time-

pad (using the allocated counter value) are introduced preceding the stores and loads by the compiler. For

a store, the counter value used is the one that is allocated to it. For a load, the counter value used is the

one belonging to its matching store – this is the store that frequently writes the values that are later read
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Table 1. Data Cache Sizes of Embedded Processors.

D-Cache Embedded Processor – 20 MHz to 700 MHz

0 KB [21] ARM7EJ-S, ARM Cortex-M3, ARM966E-S
[22] SecureCore SC100/110/200/210
[23] NEC V850ES-20, Motorola MRC555-40
[23] Renesas M32R/E-40

2 KB [23] STMicro ST20C2 50
4 KB [19] NEC V832-143, Infineon TC1130

[19] NEC VR4181, Intel 960IT
8 KB [23] NEC V850E-50, Infineon TC11B-96

[19] NEC VR4181A, Hitachi AH7750S
[19] Motorola MPC823E, IBM Power PC 405CR
[19] Xilinx Virtex IIPro

16 KB [19] Motorola MPC8240, Alchemy AU 1000
32 KB [23] MIPS 20Kc, AMD K6-2E, AMCC 440GX

[23] AMCC PPC440EP, Intel XSscale Core

by the load. Through its allocation policy, the compiler tries to ensure that when a load is executed, the

value of the counter allocated to its matching store has not changed since the execution of the store. Thus,

the pad needed for decryption can usually be determined correctly preceding the load using the counter

associated with the matching store. In other words, a prediction for the counter that is to be used for a

load is being made at compile-time and hard coded into the generated code. Our experiments show that for

vast majority of frequently executed loads and stores, matches can be found that produce highly accurate

compile-time predictions. When a prediction fails, the value of the pad is computed using the information

fetched from off-chip memory (the counter value used in encryption). The global counter is used to handle

all loads and stores that cannot be effectively matched by the compiler. Our experiments show that this

compiler-assisted strategy supports memory encryption at a reasonable cost: minimal on-chip resources;

and acceptable code size and execution time increases.

The remainder of this paper is organized as follows. In section 2 we review how encryption/decryption

is performed and motivate this work by showing the high overhead of memory encryption for low- and

medium-end embedded processors. In section 3 we present our compiler-assisted strategy in detail. Ex-

perimental results are presented in section 4. Additional related work is discussed in section 5 and we

conclude in section 6.

2 Background and Motivation

Let us begin by reviewing the encryption/decryption scheme used in [13] – the organization of secure

processor is shown in Fig. 1. When a plaintext data value p is to be written to off-chip memory, the

corresponding ciphertext c that is actually written is computed as follows:

c = p ⊕ Encrypt(K,Addr + Counter)
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Figure 1. Secure Processor.

where ’+’ is the concatenation operator, K is the key that is kept secure inside the processor chip, Addr

is the (block) address to which p is to be written, and Counter is a value that is used once to produce

the one-time-pad and hence is incremented after being used. A mutating counter is needed because in its

absence the same pad, i.e. EncryptK(Addr), will be repeatedly used during sequence of writes to the same

memory location. Thus, a skilled attacker will be able to easily crack the ciphertexts stored in memory

[16]. It should be noted that counter is needed only in case of data but not for code since code is read-only

and thus never written back to off-chip memory.

Ciphertext read from the off-chip memory is decrypted by the following operation performed on-chip:

p = c ⊕ Encrypt(K,Addr + Counter).

The off-chip memory is augmented with additional memory locations where the actual counter value used

during encryption of data is stored. Thus, the counter value can be fetched along with the data so that

decryption can be performed. However, doing so causes load latency to increase because computation of

one-time-pad cannot be performed till the Counter value has been fetched. In the presence of an on-chip

data cache, blocks of data are transferred across the chip boundary. All data items in a given block share

the same counter value. Therefore, as described in [13], when a cache block is fetched from off-chip memory,

the counter value which is one word can be fetched much faster than the larger cache block and therefore

the computation of one-time-pad can be partly performed while the cache block is being fetched. This

optimization takes advantage of the difference in sizes of a cache block and the counter and hence is more

effective for high performance processors which have bigger cache blocks. It should be noted that the

counter values are not stored in encrypted form because from these values an attacker cannot decrypt the

data values stored in memory [2].

We measured the execution time overhead of supporting memory encryption according to [13] as de-

scribed above for two processor configurations: a low-end processor configuration is based upon parameters

provided in [23, 7]; and a medium-end processor configuration uses parameters consistent with Intel Xscale.

The decryption latency was computed based upon two real implementations of encryption and decryption

hardware units described in [24] – the high performance implementation is used for medium-end processor

configuration and lower performance implementation is assumed for low-end processor configuration. For

low-end configuration we considered data cache sizes of 0, 2, and 4 KB while for medium-end configuration
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Low-end parameters
Processor speed : 100 Mhz

Issue: inorder
L2 cache: none

Data cache: 0, 2, 4 KB, 16B line
Instruction cache: 8 KB

Memory latency (first chunk): 12 cycles
Memory bus: 100 Mhz 4-B wide

Load/store queue size: 4
Decryption latency : 14 cycles

Source: http://www.eembc.org/ and
http://www.eecs.umich.edu/mibench/ [7]
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Medium end parameters
Processor speed: 600 Mhz

Issue: inorder
L2 cache: None

Data cache: 8, 16, 32 KB, 32B line
Instruction cache: 32 KB

Memory latency (first chunk): 31 cycles
Memory bus : 600 Mhz 8-B wide

Load/store queue size : 8
Decryption latency: 31 cycles

Source: http://www.intel.com/design/intelxscale/
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Figure 2. Memory Encryption Overhead.

we considered data cache sizes of 8, 16, and 32 KB. The overhead results for programs taken from MiBench

test suite [7] are presented in Fig. 2. For low-end configuration the average overhead is 60% in absence of

on-chip L1 data cache while it is 12.3% and 9.9% for 2 KB amd 4 kb L1 data caches. For medium-end

configuration the average overhead is 20.2%, 14.3%, and 13.1% for 8 KB, 16 KB, and 32 KB L1 data caches

respectively.

3 Compiler-Assisted Encryption

In this section we show that determining the appropriate counter value can be transformed into a

software (compiler) intensive task with minimal hardware support beyond the single global counter used in

[13]. This transformation requires that we provide a small number of additional on-chip counters. These

additional counters are allocated by the compiler to stores to ensure that matching loads (loads that read

values written by the stores) can at compile-time determine which counter is expected to provide the

correct counter value.

We illustrate the basic principle of the above approach using the example in Fig. 3. Let us assume that

function f in Fig. 3a contains a store Storef and its matching load Loadf as they both reference the same

address Af . Following Storef and preceding Loadf the call to function g results in execution of Storeg

zero or more times. For the time being let us assume that Ag can never be the same as Af . Fig. 3b shows

how the key K and counter C0 are used preceding the stores to generate the one-time-pad by the technique

in [13]. However, when we reach Loadf the generation of the one-time-pad requires the counter value Cfind
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function f() {
....
Storef Af

g();
Loadf Af

....
}

function g() {
while (..) {

....
Storeg Ag

....
}}

function f() {
....
Encrypt(K, Af +++ C0)
Storef Af

g();
Encrypt(K, Af + Cfind)
Loadf Af

....
}

function g() {
while (..) {

....
Encrypt(K, Ag +++ C0)
Storeg Ag

....
}}

function f() {
....
Encrypt(K, Af + Cid1 +++ C1)
Storef Af

g();
Encrypt(K, Af + Cid1 + C1)
Loadf Af

....
}

function g() {
while (..) {

....
Encrypt(K, Ag + Cid0 +++ C0)
Storeg Ag

....
}}

(a) Original Code. (b) Single Counter. (c) Multiple Counters.

Figure 3. Making Counter Predictable by Compile-time Alloc ation of Additional Counters

– this value is fetched from off-chip memory in [13], found using caching in [16] and using prediction in

[11]. Instead let us assume we are provided with additional on-chip counter-register C1. We can use C1

to generate one-time-pad for Storef and then regenerate this pad at Loadf again by using C1 as shown in

Fig. 3c. C1 is guaranteed to contain the correct counter value for Loadf because Storeg does not modify

C1 as it still relies on counter C0. Thus by using a separate counter-register for Storef and its matching

load Loadf , we are able to avoid the interference created by Storeg. Under the assumption that Af and

Ag are never the same, the one-time-pad produced in the above manner for Loadf is always correct.

From the above discussion it is clear that we need to use a separate counter-register for Storef . However,

as we can see, we have also introduced a prefix to the counters, counter-id (Cid). Next we explain the

reason for adding the counter-ids. Recall that in the above discussion we assumed that Af and Ag are

never the same. Now we remove this assumption and consider the situation in which Storef Af and

Storeg Ag can write to the same address. Since these stores use different counter-registers, the values of

these counter-registers can be the same. When this is the case, the pads they use to write to the same

address will also be the same. Obviously this situation cannot be allowed as the purpose of using counters

to begin with was to ensure that pads are used only once. Hence by using a unique prefix (counter-id)

for each counter, we ensure that the one-time-pads used by Storef and Storeg are different even if their

counter-register values match (C1 = C0) and they write to the same addresses. In other words, the counter,

in our scheme is composed of the counter-id and the contents of the counter-register. Since the counter-

registers are allocated at compile time, the counter-id of each allocated counter-register is known at compile

time. Hence the counter-ids are hard coded into the instructions that are introduced (before stores and

loads) to compute the pads.

Finally, we would like to point out that in the above example when Af and Ag happen to be the same,
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it has another consequence. The pad computed at Loadf in Fig. 3c will be incorrect. One way to view our

technique is that it relies on the compiler to specify the identity of the counter that is likely to contain the

needed counter value at a load but not guaranteed to contain it. When the counter value is incorrect, first

we must detect that this is the case. As is the case in [13], when off-chip memory is written to, in associated

storage the counter value that was used to produce the value is also stored. In our case, since each counter

is prefixed by a counter-id, in addition to the counter value, the counter-id is also written. When data is

fetched from memory, the counter-id and counter value are also fetched and compared with the counter-id

and and counter value used to precompute the pad. If the match fails, we must recompute the pad before

performing decryption; otherwise decryption can proceed right away and latency of computing the pad is

hidden. Thus, incorrect precomputation of a pad does not impact the correctness of decryption but rather

it affects the performance as pad computation time cannot be hidden.

The task of the compiler is to identify matching (store,load) pairs and allocate counter-registers (and

counter-ids) accordingly. Finally, the counter register and counter-id assignments made to the stores and

loads are communicated to the hardware through special instructions described in the next section which

are introduced preceding the appropriate stores and loads. Stores and loads that cannot be effectively

matched are simply handled using the global counter – in other words no instructions are introduced to

handle them.

Fig. 4 summarizes the modified secure processor model needed by our technique. The global counter

(C0) is used in the encryption/decryption of all data written/read by stores that do not have any match-

ing counterparts. Counter-registers (C1, C2, ...Cn) are the counters that are allocated by the compiler to

stores. Data memory contents are now encrypted and for each block of memory in it, a word of memory

containing additional information is present which includes the counter-register value and the counter-id

that was used to encrypt the data.

Security of scheme: Note that the use of multiple counters does not adversely affect the security of the

encryption scheme. The concatenation of the (counter-id, counter value) pair in our scheme can be consid-

ered as the unique counter and hence our compiler-assisted encryption scheme is a direct implementation

of the counter-mode encryption scheme, which is proved to be a secure symmetric encryption scheme [2].

Further it is shown that the the counters may be safely leaked without compromising the security [2].

Hence the counter values and counter-ids are not stored in encrypted form.
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Figure 4. Secure Processor.

In the absence of an on-chip L1 cache, each load and store involves movement of a single word across
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the chip boundary. Each time a value is stored in memory the corresponding (counter-id, counter value)

pair is also written. In the presence of an on-chip L1 cache, a cache block is transferred across the chip

boundary. In this case when a store is performed, the (counter-id, counter value) pair may be written to

the L1 cache. These pairs can then be written to the memory when the block is written back. In this

case, the space overhead of holding (counter-id, counter value) pairs in cache is 12.5% for 32B cache block.

To avoid the space overhead the (counter-id, counter value) pairs can be updated in memory in a write

through fashion.

We have explained the basic principles of our technique. Obviously, the number of counter-registers

needed for a program to carry out the above task is an important issue, since counter-registers require

additional on chip hardware. The size of the counter-id field is directly depend on the number of counters

allocated. Although counter-ids do not take up on-chip resource, it is still desirable to keep the size of this

field minimal, since counter ids are to be stored along with each memory block. As our experiments later

show, with careful allocation of counters, it is sufficient to support 8 counter-registers and generate up to

32 counters (5 bits of counter-id).

In our implementation we use 32 bits to store the combined counter-id and counter value. When data

value stored is encrypted using the Global Counter, we indicate the use of Global counter by having the

most significant bit as 1 and remaining 31 bits represent the Global Counter Value. When data stored is

encrypted using an allocated counter-register, the most significant bit is always 0, next 7 bits represent

the counter-id (this restricts the maximum number of counter-ids to 128, which is more than sufficient),

and the remaining 3 bytes are used to store the counter-register Value. Using 3 byte counter-register is

sufficient in our design because multiple counter- registers are used and each such register is shared by a

smaller number of stores. The Global Counter, on the other hand, is shared by a larger number of stores

and therefore we maintain a 31 bit Global Counter. Our experiments presented later confirm that smaller

size counters are adequate.

3.1 Compiler Support

Next we describe the compiler algorithm used to assign counter-ids and counter-registers to selected

stores and the generation of code based upon counter-registers used for matching loads. Before we present

this algorithm we first discuss how opportunities for sharing counter-registers across multiple stores arise

and can be exploited.

Sharing Counter-Registers We assign different generated counter-ids to different static stores.

Therefore, two stores being handled using two different counter-ids need not always use different counter

values and hence different counter-registers. Two different counter-registers are necessary only if these two

static stores interfere with each other as was illustrated by our example in Fig. 3. Next we show that

the above observation can be exploited to enable counter-register sharing in certain cases. We describe

two general categories of sharing opportunities: intraprocedural sharing and across procedure sharing. We
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describe these opportunities using examples given in Fig. 5.

In the first example in Fig. 5, function f contains three stores which have all been assigned different

generated counter-ids (Cid1, Cid2, and Cid3). Let us assume that we have a counter-register Cf which

is incremented each time the function f is entered. The counter Cf ’s value can be used without any

restriction by Store1 and Store3 since they are executed at most once in the function. While Store2 is

executed multiple times, if the compiler can determine that during each iteration of while loop address A2

changes, then Store2 can also use Cf ’s value that is computed upon entry to f for deriving its pad. In

other words, during a single invocation of f , it is safe for all three stores to use the same value of Cf to

derive their pads, as they use different counter-ids. The load at the end of the function now knows to refer

to counter-register Cf irrespective of which of the three stores it is matched to and the counter-id Cidl is

one of the three depending upon which store the load is matched to based upon the profile data.

function f() {
C++

f ;

....
Enc(K, A1 + Cid1 + Cf )
Store1 A1

while (..) {
....
Enc(K, A2 + Cid2 + Cf )
Store2 A2

....
}
Enc(K, A3 + Cid3 + Cf )
Store3 A3

....
Enc(K, Al + Cidl + Cf )
Load Al

....
}

function f() {
C++

fg ;

....
Enc(K, Af + Cidf + Cfg)
Storef Af

.... no (in)direct calls to f/g()
Enc(K, Af + Cidf + Cfg)
Loadf Af

....
}

function g() {
C++

fg ;

....
Enc(K, Ag + Cidg + Cfg)
Storeg Ag

.... no (in)direct calls to f/g()
Enc(K, Ag + Cidg + Cfg)
Loadg Ag

....
}

(a) Intraprocedural Sharing. (b) Across Procedure Sharing.

Figure 5. Sharing Counters Across Multiple Stores.

The above example showed how three different stores shared the same counter registers. But note that

the three stores used unique counter-ids. The second example in Fig. 5 illustrates across procedure sharing

of both counter-ids and counter-registers. In this example two functions are shown such that each of these

functions contains a counter-register to handle its local pairs of matching stores and loads: (Storef , Loadf )

in function f and (Storeg, Loadg) in function g. Moreover these functions are such that in between the

matching pair in one function, no function call exists that can lead to the execution of either function. In

other words, execution of matching store load pair in one function cannot be interleaved by execution of
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the matching pair in the other function. Thus, when we reach a store (Storef or Storeg), counter Cfg

is incremented and used and when we reach a load (Loadf or Loadg) Cfg’s value can be used as it has

not changed since the execution of the corresponding store. Since the execution of functions can never be

interleaved, sharing the same counter-register by the two functions does not lead to any interference. It

should be noted that due to sharing of the counter-register, the two store load pairs in this example are

guaranteed never to use the same counter value and thus they can safely share the same counter-ids. Thus

across procedural sharing can lead to reduction of counter-ids as well as counter-registers.

In conclusion, first code can be analyzed intraprocedurally to allow sharing of counters among multiple

stores in a function. Then, by analyzing the call graph and hence the lifetimes of pairs of functions, we can

determine if two functions in a pair can use the same counter. Based upon the examples already presented,

the conditions under which we allow sharing are as follows:

• Intraprocedural sharing. Given a function, a subset of stores in the function share the same

counter register, if each of the stores in the subset writes to a unique address during a single invocation

of the function. To simplify counter-register allocation, we assign at most one counter to each function

and this counter is used to cover a subset of stores that satisfy the above condition. The remaining

stores make use of the default global counter.

• Across-procedure sharing. Given two functions, they can be assigned the same counter (counter-

id, counter-register) if there does not exist a pair of store live ranges, one from each function, such

that the execution of these live ranges interfere (i.e., can be interleaved with each other). Here a store

live range is the program region that starts from the store instruction and extends up to and including

all of its matching loads. If a function call is present within a store live range of one function that

can lead to the execution of another function and hence its store live range, then the execution of

two store ranges interfere with each other. To simplify the analysis for computing interferences, we

apply this optimization only to those functions whose store live ranges are local to the function (i.e.,

the store and all its matching loads appear within the function).

Counter-id and Counter-register Allocation Algorithm Now we are ready to describe the

steps of the complete compiler algorithm required by our technique. This algorithm operates under the

constraint that we are given a certain maximum number of counter-ids (NK) and counter-registers (NC).

1. Match Stores and Loads. The first step of our algorithm is to carry out profiling and identify matching

static store and load pairs. If a load matches multiple stores (as at different times during execution

it receives values from different static stores) only the most beneficial matching pair is considered

because in our technique a load is matched to a single store. Note that a store may match multiple

loads during the above process, this is allowed by our technique.
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2. Find Counter-register Sharing Opportunities. We look at one function at a time and identify the

subset of stores in the function that satisfy the intraprocedural counter sharing condition given

earlier. Given a function fi, fi.Stores denotes the subset of stores identified in this step. During

counter allocation in the next step, if a function fi is allocated a counter-register, then the stores in

fi.Stores will make use of that counter. For every pair of functions fi and fj we determine whether

these functions can share the same counter according the across procedure counter sharing condition

presented earlier. In particular, we examine the interferences among live ranges of stores in fi.Stores

and fj.Stores. If sharing is possible, we set Share(fi, fj) to true; otherwise it is set to false.

3. Allocate Counter-registers. For each function fi we compute a priority which is simply the expected

benefit resulting from allocating a counter-register to function fi. This benefit, which is computed

from profile data, is the total number of times values are passed from stores in fi.Stores to their

matching loads. In order of function priority, we allocate one counter per function. Before allocating

a new counter-register to a function fi, we first check if a previously allocated counter-register can

be reused. A previously allocated counter-register C can be reused if Share(fi, fj) is true for all

fj’s that have been assigned counter-register C. If a previously allocated counter-register cannot be

reused, a new one is allocated if one is available. After going through all the functions in the order

of priority this step terminates.

4. Assign Counter-ids. For each counter-register C, we examine the set of functions F that have been

assigned this counter-register. Each function f ∈ F will use as many counter-ids as the number

of stores in the f.Stores set. However, the same counter-ids can be shared across the functions in

F . Therefore the number of generated counter-ids that are needed to handle the functions in F

is the maximum size of the f.Stores set among all f ∈ F . The above process is repeated for all

counter-registers. It should be noted that in this process we may exceed the number of counter-ids

available NK . However, this situation is extremely rare. Therefore we use a simple method to handle

this situation. We prioritize the counter-ids based upon the benefits of the stores with which the

counter-ids are associated. The stores corresponding to the low priority counters are then handled

using the global counter such that the number of generated counter-ids does not exceed NK .

5. Generate Code. All static stores that have been assigned a generated counter-id and allocated a

counter register, and their matching loads, are now known. Thus we can generate the appropriate

instructions for computing the pad preceding each of these instructions. All stores and loads that

have not been assigned a generated counter-id and a counter register during the above process will

simply make use of the global counter and thus no code is generated to handle them.
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4 Experimental Evaluation

We conducted experiments with several goals in mind. First and foremost we study the effectiveness of

our approach in reducing execution time overhead of memory encryption over the scenario where memory

encryption is implemented using simply the global counter-register. This study is based on the low- and

medium-end processor configurations with varying L1 cache sizes as described in Fig. 2. We also evaluate

the effectiveness of our compiler techniques in detecting opportunities for counter sharing. Since code

size is an important concern in embedded systems, we measure the static code size increase due to our

technique. Finally, we study the impact of using smaller sized counter-registers (31 bits for global counter

and 24 bits for additional counter-registers).

Our implementation was carried out using the following infrastructure. The Diablo post link time

optimizer [20, 5] was used to implement the compiler techniques described in the paper. Diablo requires

executables to be generated using a patched version of gcc 3.3 for the arm-linux platform built with

the uClibc C library. The binary rewriting capabilities of Diablo were used to generate modified binaries

which include the instructions introduced preceding matching store and load instructions. We have already

mentioned that the two new instructions introduced were implemented using an unimplemented opcode in

ARM instruction set. The Simplescalar/ARM simulator [3] was used to collect profiles and simulate the

execution of modified binaries. As we mentioned earlier, the processor configurations (low and medium)

from Fig. 2 are used. We use the 128 bit AES algorithm to compute the one-time-pad using a crypto unit

in hardware as mentioned before.

Experiments were performed on the MiBench benchmark suite [7]. The small datasets from MiBench

were used to collect profiles and the large datasets were used in the experimental evaluations. Not all the

benchmarks could be used in the experiments because at this point all of them do not go through the

Diablo infrastructure being used.

4.1 Evaluation of Sharing Optimizations

We studied the effectiveness of our counter sharing strategy by conducting the following experiment.

For each program we examined the profile data and identified all of the matching store load pairs, i.e.

pairs that can benefit by our technique. The number of statically distinct stores covered by these pairs

represents the number of counter-ids, and hence the number of counters, that will be needed if no counter

sharing is performed. Application of sharing techniques reduces this number greatly. While the intrapro-

cedural sharing reduces the number of counter-registers, the across-procedural sharing reduces both the

number of counter-ids and counter-registers. Next we present results that show the reductions in number

of counter-registers and counter-ids that is achieved by our optimizations. These results are given for dif-

ferent thresholds, where the threshold represents the percentage of dynamic loads covered during counter

allocation. Here the percentage is with respect to all dynamic loads that can derive some benefit from our

technique if enough counter-registers were available.
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Table 2. Number of Counter-registers Used: APS+IS:IS:Unop t.

Benchmark Threshold of Dynamic Loads Covered
100% 99% 98%

bitcount 19:46:106 (20%) 3:8:40 (8%) 2:5:16 (1%)
sha 24:55:161 (15%) 2:3:25 (8%) 1:2:24 (4%)

adpcm 12:29:58 (21%) 7:19:46 (15%) 7:18:44 (16%)
fft 23:59:191 (12%) 8:20:108 (7%) 8:19:102 (8%)

stringsearch 16:34:69 (23%) 8:18:48 (17%) 8:17:45 (18%)
crc 23:52:137 (17%) 15:35:88 (17%) 12:28:54 (22%)

dijkstra 25:60:174 (14%) 6:14:76 (8%) 5:13:67 (7%)
rijndael 21:47:226 (9%) 8:17:140 (6%) 7:15:130 (5%)

jpeg 40:138:560 (7%) 10:24:217 (5%) 6:19:178 (3%)
lame 49:144:1344 (4%) 9:30:811 (1%) 7:23:660 (1%)
qsort 25:57:164 (15%) 7:15:52 (13%) 5:11:45 (11%)

Table 3. Number of Counter-ids Used APS:Unopt Sharing.

Benchmark Threshold of Dynamic Loads Covered
100% 99% 98%

bitcount 62:106 (58%) 29:40 (73%) 13:16 (81%)
sha 98:161 (61%) 16:25 (64%) 15:24 (63%)

adpcm 32:58 (55%) 25:46 (54%) 24:44 (44%)
fft 109:191 (57%) 69:108 (64%) 65:102 (65%)

stringsearch 43:69 (62%) 30:48 (63%) 29:45 (64%)
crc 89:137 (65%) 52:88 (59%) 31:54 (57%)

dijkstra 95:174 (55%) 40:76 (53%) 38:67 (57%)
rijndael 148:226 (65%) 100:140 (71%) 91:130 (70%)

jpeg 338:560 (60%) 130:217 (60%) 115:178 (65%)
lame 705:1344 (52%) 468:811 (58%) 377:660 (57%)
qsort 109:164 (66%) 31:52 (60%) 45:45 (100%)

In Table 2 we present the number of counter-registers that are needed for each program in following cases:

(APS+IS) with both Across-Procedure and Intraprocedural Sharing, (IS) only intraprocedural sharing,

and (Unopt) without sharing. In addition, the number of counter-registers used with full sharing as a

percentage of counter-registers needed without any sharing is also given. As we can see, this number

is computed by threshold settings of 100%, 99% and 98%. From the data in Table 2 we draw three

conclusions. First the counter sharing strategy is highly effective. For example, for threshold of 100%,

the number of counter-registers used after sharing ranges from 4% to 23% of the number used without

sharing (on an average we have a 5 fold reduction). Second we observe that even if we set the threshold to

99%, in all cases 16 counter-registers are sufficient. Third we observe that both intraprocedural and across-

procedure sharing optimizations contribute significantly although intraprocedural sharing contributes more

than across-procedure sharing.

In Table 3 the number of counter-ids(counters) used with and without sharing are given. In addition,

the number of counters used with sharing as a percentage of counters needed without sharing, is also given.
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As we can see, across-procedure sharing results in use of 55% of number of counters needed without sharing

(i.e., we have roughly 2 fold reduction). Note that Intraprocedural sharing does not cause reduction in

counter-ids(counters). Although the counter-ids do not represent a hardware resource, reducing the number

of counter-ids(counters) is beneficial as the size of counter-id allocated can be reduced.

4.2 Execution Time Overhead

Next we conducted experiments to study the effectiveness of our strategy in reducing execution time

overhead. We present the overheads of the two techniques: (Encrypted Optimized) which is our compiler-

assisted strategy; and (Encrypted Unoptimized) which is the version in which memory encryption was

performed using simply the global counter (i.e., this corresponds to [13]). Execution times were normalized

with respect to the execution time of the (Unencrypted) configuration, i.e. the configuration that does not

perform memory encryption. The results of this experiment are given in Fig. 6 and in Fig. 7 for low-end and

medium-end processor configurations respectively. For each benchmark the three bars correspond to the

three cache sizes. Each bar is stacked to allow comparison of the overheads of the (Encrypted Optimized)

and (Encrypted Unoptimized).

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

bit
cn

t
sh

a

ad
pc

m fft
str

ing crc

dij
ks

tra

rijn
da

el
jp

eg
la

m
e

qs
or

t

mea
n

Benchmark

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

encrypted:unoptimized
encrypted:optimized
unencrypted0k 2k 4k

Figure 6. Overhead of Memory Encryption - Low
.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

bit
cn

t
sh

a

ad
pc

m fft
str

ing crc

dij
ks

tra

rijn
da

el
jp

eg
la

m
e

qs
or

t

mea
n

Benchmark

N
o

rm
al

iz
ed

 E
xe

cu
tio

n
 T

im
e

encrypted:unoptimized
encrypted:optimized
unencrypted8k 16k 32k

Figure 7. Overhead of Memory Encryption -
Medium.

As we can see, for a low-end processor configuration, while the average overhead of (Encrypted Unopti-

mized) method is 60% (0 KB), 12.4% (2 KB), and 9.9% (4 KB), the overhead of our (Encrypted Optimized)

method is 12.5% (0 KB), 2.3% (2 KB), and 1.9% (4 KB). Thus, the benefits of using our technique are

substantial for the low-end processor configuration. As expected, we observe that the benefit of our tech-

nique is greatest for processors that support no on-chip L1 cache. Moreover, our technique is beneficial

for all benchmarks in this case. However, when an on-chip L1 data cache is provided, due to very low

data cache miss rates, some of the benchmarks (bitcount, sha, adpcm, and fft) do not benefit from our
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technique. In case of the medium-end configuration the savings are substantial again (excluding the first

four benchmarks that have very low miss rates). While the average overhead of (Encrypted Unoptimized)

method is 20.1% (8 KB), 14.3% (16 KB), and 12.3% (32 KB), the overhead of our (Encrypted Optimized)

approach is 5.0% (8 KB) 2.8% (16 KB), and 2.1% (32 KB).

In the above experiment we always used 8 counter-registers and up to 32 generated counter-ids. Next

we wanted to see if more counter-ids and counter-registers would further produce significant savings in the

execution time overhead. Therefore we conducted an experiment in which we compared the execution time

overhead for (8,32) configuration with (16,64) configuration. We considered the low-end configuration with

0 KB cache for this experiment because this is the configuration that needs the most counter-registers and

counter-ids. As we can see from the results in in Fig. 8, the (8,32) configuration performs nearly as well as

(16,64) configuration. Therefore we conclude that 8 counter registers and up to 32 generated counter-ids

are sufficient across the set of benchmarks used.
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Figure 9. Loads that Benefit.

Finally, we present the distribution of dynamic loads in terms of how they are treated by our technique.

We divide the dynamic loads into three categories: (unoptimized) dynamic loads to which our technique

could not be applied; (prediction correct) dynamic loads that benefited from our technique; and (prediction

wrong) dynamic loads to which our technique was applied but it failed as the value loaded was produced

by a different store than the one to which the load was matched by the compiler. The results of this

experiment for the low-end configuration with 0 KB cache size are shown in Fig. 9. As we can see, a

substantial percentage of dynamic loads benefit from the application of our technique. Only in case of

sha, lame, and jpeg the compile time matches that failed to produce correct pads account for over 10%

of dynamic loads. For other programs we observe that our profile-guided approach of matching loads to

stores turns out to be highly accurate.

4.3 Static Code Size Increase

Since static code size is an important concern in embedded systems, we also measured the increase in

static code size due to the introduction of additional instructions. The results of this experiment are given
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in Fig. 10 for the two configurations of our architecture. As we can see, with aggressive application of

our approach, i.e. for (16,64) configuration, the maximum increase in static code size is only 4%. For the

(8,32) configuration the maximum code size increase is around 3% while for many programs this increase

is 1% or less. Thus, we conclude that code size increases that result from our technique are quite small.
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Figure 10. Code Size Increase.

4.4 Counter Sizes

Recall that our technique requires that we store both the counter-id and counter value used to derive

the pad used in encryption along with encrypted data. We use 1 word of storage to store both counter-id

and counter value while the technique in [13] uses 1 word to store only the counter value. We present the

maximum counter values reached if one global counter is used versus if one global counter and 8 additional

allocated counters are used in Table 4. As we can see, the values of counters used by our technique are

lower than that of one global counter used in [13]. The data in Table 4 confirms that using 31 bit global

counter instead of a 32 bit counter is not a problem as our global counter is incremented significantly

fewer times for nearly all the benchmarks. Also three byte additional counters are enough because their

maximum value is quite small (the number given in the table is the maximum of the highest values reached

by all 8 counters). From these observations we can conclude that although the use of multiple counter-ids

caused us to use smaller counters, overall there was no adverse affect as use of multiple counters ensures

that smaller sized counters are sufficient.

Finally we would like to point out that if a counter overflows, data in off-chip memory must be rencrypted

using a new key and the counter is reinitialized. However, as shown in [13], although memory reencryption

is expensive, need for it arises rarely. In fact in all our program runs we did not encounter counter overflow

situation. In our technique the allocated counter values are quite small so they are not expected to overflow.

The maximum value of 31 bit global counter in our technique is much lower than the maximum value of

32 bit counter in case of [13]. Thus, reencryptions due to global counter overflow in our technique are not

expected to be more frequent than observed in [13].
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Table 4. Maximum Counters Values Observed.

Benchmark Global Only Compiler-assisted (Million)
(Million) Global Allocated (Max. of 8)

bitcount 2.8 1.50 0.900
sha 12.5 2.90 0.005

adpcm 9.6 8.60 0.394
fft 13.5 8.20 0.222

stringsearch 4.2 1.97 0.064
crc 54.0 0.12 0.006

dijkstra 23.1 11.17 0.221
rijndael 15.5 3.5 0.120

jpeg 53.6 20.20 0.287
lame 68.2 32.18 0.315
qsort 10.2 1.80 0.007

5 Related Work

We have already shown the benefits of using a small number of additional compiler controlled counter-

registers over the basic technique of [13] which only uses a single global counter. As mentioned earlier,

hardware enhancements to [13] have been proposed in [16] and [11]. However, significant on-chip resources

are devoted for caching [16] or prediction [11] which makes these solutions unattractive for embedded

processors. The techniques in [16, 11] differ from [13] in that they use a separate counter per L2 cache

block. To solve the decryption latency problem in [16] the counter values are cached on-chip; and in [11]

counter values are predicted. The counter value is fetched along with the ciphertext. If caching is being

used, and the counter value is not found in on-chip cache, the fetched value is used to perform decryption.

If prediction is being used, then the fetched counter value is used to confirm the correctness of prediction

and hence the correctness of the precomputed one-time-pad. In other words when counter value cannot

be found in the cache or cannot be predicted, latency of computing the one-time-pad cannot be hidden.

In these techniques all values in a L2 cache block share the same counter value. This sharing significantly

reduces the cost of caching and predicting the counter values. However, since many embedded processors

are designed without any on-chip data cache, writing of each word to memory will require a different

counter value. Under this scenario techniques of caching or predicting counter values require unrealistic

amount of on-chip resources.

Consider the caching technique [16]. Only one counter value (a word) was associated with a 128 byte L2

block. In addition, good results are obtained in [16] when a cache of size 64KB is used for caching counter

values. In the embedded processor scenario it is clearly undesirable to support such a large on-chip cache

for counter values. In the prediction technique [11] to achieve good prediction rates, multiple predictions

must be made for a load, so that at least one will be correct (in [11] five predictions are performed).

We discussed earlier how this caused additional decryption units on chip. Also this is not preferable for

embedded processors where power is a very important consideration.

We would like to mention that our technique is in one way similar to [16]. By introducing additional
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counter-registers, and allocating them appropriately, our technique enables compile time prediction of

counter-registers that are used at loads. To the extent that our technique relies on prediction and uses

multiple counters, it is similar to [11] with one important difference. While in [11], hardware is used to

perform multiple predictions of counter values, our technique uses multiple compiler controlled counter-

registers such that the compiler can predict the identity of the counter-register that is likely to contain the

needed counter value at a load. Memory predecryption [10] is also a technique used to hide the latency of

the decryption. The basic idea here is to prefetch the L2 cache line. Prefetch can increase workload on the

front side bus and the memory controller. Moreover in the absence of on-chip L1 cache prefetch would be

needed for every load making this approach too expensive.

A recent trend in embedded processors is to provide on-chip compiler managed scratch-pad memory

as an alternative to on-chip caches [1, 8, 15]. Our technique is also applicable in presence of scratch-pad

memories. Since the presence of these memories will reduce traffic to off-chip memory, the cost of memory

encryption will be reduced further.

Our paper deals essentially with support for memory encryption in embedded processors which is useful

for among other things for protecting the privacy of code and data in off-chip memory. Other types of

attacks have also been considered by researchers which we briefly discuss next.

Work has been carried out to detect tampering of information stored in off-chip memory [9, 6]. The

hardware cost of detecting tampering is very high. In context of embedded processors where on-chip

resources are limited, it is more appropriate to follow the solution proposed by the commercial DS5002FP

processor [25]. Tamper-detection circuitry is provided that prevents writes to be performed to off-chip

memory. However, off-chip memory can be read; hence techniques are still needed to protect privacy of

code and data in off-chip memory.

Address leakage problem has been studied and techniques have been proposed for its prevention in

[17, 18]. However, this is orthogonal to the problem we have studied. The solutions proposed in [17, 18]

are still applicable. Defense against code injection attacks is also an important problem which is being

extensively studied (e,g., see [4, 14]). Memory encryption techniques, such as what we have described in

this paper, are also a critical component in building a defense against remote code injection attacks [4].

6 Conclusions

In this paper we argued that existing techniques for caching [16] and predicting [11] counter values for

reducing memory encryption overhead, although suitable for high-performance processors, are not suitable

for low- and medium-end embedded processors for which on-chip hardware resources are not plentiful.

Therefore we developed a strategy in which a small number of additional counter-registers are allocated in

a manner that enables that the counter-register to be used at each load is determined at compile-time. The
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specified counter-register is expected to contain the correct counter value needed for decryption. The only

hardware cost is due to small number of counter-registers that must be supported on-chip. The compiler

optimizes the use of counter-registers by identifying opportunities for their sharing and as our results

show, the sharing is highly effective. As a result, our technique significantly reduces average execution

time overhead of memory encryption using a small number of counter-registers. Our experiments show

that the proposed technique reduces average execution time overhead of memory encryption for low-end

(medium-end) embedded processor with 0 KB (32 KB) L1 cache from 60% (13.1%), with single counter,

to 12.5% (2.1%) by additionally using only 8 compiler controlled counter-registers that accommodate 32

different counters.
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