
Dynamic Slicing Long Running Programs through
Execution Fast Forwarding

Xiangyu Zhang Sriraman Tallam Rajiv Gupta
Department of Computer Science

The University of Arizona
Tucson, Arizona 85721� xyzhang,tmsriram,gupta � @cs.arizona.edu

ABSTRACT
Fixing runtime bugs in long running programs using tracing based
analyses such as dynamic slicing was believed to be prohibitively
expensive. In this paper, we present a novel execution fast forward-
ing technique that makes it feasible. While a naive solution is to
divide the entire execution by checkpoints, and then apply dynamic
slicing enabled by tracing on one checkpoint interval at a time, it
is still too costly even with state-of-the-art tracing techniques. Our
technique is derived from two key observations. The first one is
that long running programs are usually driven by events, which has
been taken advantage of by checkpointing/replaying techniques to
deterministically replay an execution from the event log. The sec-
ond observation is that all the events are not relevant to replaying
a particular part of the execution, in which the programmer sus-
pects an error happened. We develop a slicing-like technique on the
event log such that many irrelevant events are successfully pruned.
Driven by the reduced log, the replayed execution is now traced
for fault location. This replayed execution has the effect of fast
forwarding, i.e the amount of executed instructions is significantly
reduced without losing the accuracy of reproducing the failure. We
describe how execution fast forwarding is combined with check-
pointing and tracing based dynamic slicing, which we believe is the
first attempt to integrate these two techniques. The dynamic slices
of a set of reported bugs for long running programs are studied to
show the effectiveness of dynamic slicing, which is a significant
step forward compared to our prior work.

1. INTRODUCTION
During the procedure of debugging, it is often the case that the

programmer is interested in a very little part of the entire execu-
tion. How to get to this region quickly has been haunting the re-
searchers since debugging long running programs became an issue.
The traditional debugging tactics, such as iteratively setting break-
points and then restarting the program, hardly work because of the
re-execution consumes enormous amount of time. More sophis-
ticated methods to tackle this problem include tracing and check-
pointing/replaying.

Tracing is a technique with long history. It was invented for the
purpose of replaying an execution. More and more applications
have been developed such as performance analysis, software relia-
bility, software understanding, and compiler optimizations. Traces
are usually collected once and then they are analyzed multiple times
starting from any point. Furthermore many heavy duty analyses
can be performed on traces efficiently. As a result, software er-
rors become much more recognizable if appropriate traces are gath-
ered. For example, dynamic slicing, proposed by Korel and Laski
[5], is a tracing based technique to help programmers in the pro-

cess of debugging. The dynamic slice of a value computed at a
program point in the execution trace includes all those executed
statements which were directly or indirectly involved in computa-
tion of the value. Our prior work [18, 3, 19, 20] has demonstrated
that dynamic slicing is quite effective in automatically isolating the
cause effect chain from the root cause to the failed point. Unfor-
tunately, tracing based techniques do not scale for long executions
even though state-of-the-art techniques can achieve the space effi-
ciency of 0.1-4 bits per instruction [17, 2]. A simple task as starting
Mozilla and browsing a html page may create traces with the size
of a few giga bytes.

Checkpointing/replaying is a very attractive technique, the merit
of which is the capability of replaying from the intermediate points
of the execution once a checkpoint is created. It was invented to
facilitate debugging parallel and distributed programs [8, 16]. It
quickly gained popularity in general application debugging[11, 12].
A lot of research has been carried out on how to reduce its cost [15,
7] and improving its usability [13]. Most of the existing check-
pointing techniques focus on how to faithfully replay an execution.
They rarely discuss what to do with the replayed execution or sim-
ply suggest that the replayed execution can be debugged with gen-
eral debuggers such as gdb. However, these debuggers are usually
much less powerful than tracing based tools.

Our goal is to apply dynamic slicing, a tracing based technique,
to long running programs. A natural question to ask is ”Can we
combine tracing and checkpointing?”. It seems tracing and check-
pointing are complimentary. Checkpoints divide the whole execu-
tion into intervals. Tracing can be applied to one interval at a time,
usually the one that interests the programmer. However, this so-
lution is not as simple as it appears for two reasons. First, trac-
ing requires instrumenting the original program. There are two
kinds of instrumentation techniques – static and dynamic. Static
instrumentation, in which the program is instrumented by compil-
ers, introduces non-trivial execution overhead as tracing cannot be
easily turned off. Dynamic instrumentation adaptively instruments
the program. It can easily switch from executing the original code
to executing the instrumented code or vice versa. Dynamic instru-
mentation engine usually resides in the process’s virtual space and
manipulates the virtual memory intensively such that the status of
the application process is substantially mixed with the instrumenta-
tion engine’s status. While checkpoints are often produced by tak-
ing snapshots of the virtual memory, it becomes hard to discretely
checkpoint the application process. Second, tracing can handle ex-
ecutions up to a few seconds given the speed and storage capacity
of todays desktops. Since checkpointing usually produces virtual
memory snapshots with the size of a few mega bytes, it is not some-
thing that we can afford to perform every second. Checkpoints are

usually created in the interval of, more or less, minutes. The gap
between seconds and minutes suggests that it is still too costly to
trace a checkpoint interval.

In this paper, we present a novel execution fast forwarding (EFF)
technique that fills the gap between tracing and checkpointing. It
enables dynamic slicing on long executions. Figure 1 illustrates
the basic idea. The left part illustrates that an execution, or part
of an execution delimited by checkpoints, is usually heavily instru-
mented for the purpose of dependence tracing. The heavy instru-
mentation introduces very high runtime overhead and constructs
a huge dependence graph, which makes it impractical if the exe-
cution gets long. In the right part the fast forwarding technique
takes advantage of the characteristics of many long running pro-
grams – being driven by events. More precisely, it first collects a
full event log from the original execution; given a specific part of
the execution that the programmer wants to replay, a meta slicing
technique, which is analogous to dynamic slicing but performed on
logged events instead of executed instructions, is applied to prune
the events irrelevant to replaying the desired execution region. The
reduced event log is used to drive the replay, which is also called
the fast forwarded execution. Compared to the original run, the
fast forwarded execution is much smaller as the volume of events
passed to the program is significantly lower. As a result, a smaller
dependence graph is generated that can be collected through trac-
ing. The contributions of our paper are summarized as follows.

� We propose a novel EFF technique that performs meta slicing
on the event log to eliminate the events that are not relevant
to replaying a specific part of the execution. The reduced
event log is used to drive the replay to achieve the effect of
fast forwarding.

� To implement the EFF technique, we solve the problem of
combining tracing and logging/checkpointing. As far as we
know, this is the first attempt to put an application process un-
der the supervision of both dynamic instrumentation and log-
ging/checkpointing. Given the strength of these techniques,
we believe integrating them has very high potential to impact
the existing debugging procedures.

� As the ultimate goal of EFF, dynamic slicing is applied on a
set of long running programs, which was not possible previ-
ously due to the extremely high expense. The results strongly
support our claim in the prior work – dynamic slicing is very
effective in isolating the cause effect chain from the root cause
to the failure.

The remainder of the paper is organized as follows. In section
2 we describe the EFF technique in detail. The system, which is
an integration of EFF, tracing and checkpointing, is introduced in
section 3. The results of our experiments are presented in section
4. In section 5 we studied the effectiveness of dynamic slicing on
long running programs. Conclusions are given in section 6.

2. EXECUTION FAST FORWARDING
Often when a program runs for a long time it is not because it

performs a very long and complicated task. Instead, it is often be-
cause the program processes a long sequence of simple tasks. For
example, programs processing streaming data such as audio, video,
and packet data usually carry out the same computation e.g. FFT
transformation on a sequence of data; the computation on each data
piece tends to be relatively lightweight and independent from each
other. Programs that require user interactions display similar prop-
erties: the programs spend most of their execution time in handling

user actions and the computation dedicated for each user action is
usually simple. Server programs deal with thousands of requests,
most of which set off simple computations such as reading a file
or retrieving a piece of data from a database. A common feature
of these programs is that they are driven by events. The events
divide the whole execution into small tasks, each one of which cor-
responds to handling some event. An event is defined as one inter-
action between the application and the OS. The interaction could be
in the forms of: system calls such as open, read, and mmap2; asyn-
chronous or synchronous signals such as kill and segfault. These
events are used to provide OS services, for instance reading/writing
a file/socket, to the application program, or to notify something has
happened.

The EFF technique is derived from the following observation –
all the events do not need to be replayed in order to replay a par-
ticular part of the execution. Given the fact that the execution is
driven by events, we may be able to shrink the replayed execution,
and yet reproduce the desired part, if we can prune the irrelevant
events.

Figure 2 presents a motivation example. In the original run, the
key ’ � ’ was first pressed in order to change the folder name after
Mutt, a text based mail user agent, was started; string ”imaps://xyz-
hang@email.cs.arizona.edu/inbox” was typed in as the email ac-
count, which was followed by the password; after logging in the
account, a couple of email messages were accessed; then ’ � ’ was
typed again and string ”Hello” was provided as the new folder
name. Since ”Hello” was not a valid folder name, a warning mes-
sage was printed on the screen. The events were logged in a file
as shown on the left hand side of the figure. The first a few thou-
sands of events present the startup phase of the execution, which
is mainly about loading dynamic libraries, allocating virtual mem-
ory, and initializing the program state. The shaded events starting
from byte position 4898 to position 594803 correspond to the exe-
cution related to accessing the email account. Events starting from
594804 contribute to entering the invalid folder name and the warn-
ing message was printed by the event at 595007. Let us assume the
programmer is interested in reproducing the warning message. Ap-
parently, replaying the entire execution with the full log is an option
but not the optimal one. For the event at 595007 to be correctly re-
played, we need to replay events at 594804, 594825, ..., 594890,
etc. Events from 4898 to 594803 are actually irrelevant to replay-
ing the event at 595007. We constructed a new log by removing all
the irrelevant events and then drove the replay with the reduced log.
The same warning message was successfully reproduced. The exe-
cution was actually fast forwarded to the desired point by skipping
the irrelevant part.

The EFF technique poses two challenges. The first one is how
to identify and remove the irrelevant events; the second one is how
to replay with the reduced event log. The following subsections
describe how we handle these issues.

2.1 Event Dependence Graph
In dynamic slicing, given a value that is observed to be incorrect

by the programmer (incorrect value may correspond to an incorrect
output or a value that causes the program to crash). A set of exe-
cuted statements that contributed to the value of the specified vari-
able are computed as its dynamic slice. The executed statements
not in the dynamic slice are not relevant to the investigated value.
An analogous solution can be applied on the executed events to
identify the set of irrelevant events for replaying a given execution
region.

Computation of dynamic slices normally consists of two steps:
building the dynamic dependence graph (DDG) for a program ex-

�������

��	��
����

���	������

�������������

��	��
������������

��������� ���������
������������ ���

�������������

�������������
�����������
�
����������

������	��
������������

����������������� ��������� �����������
�
����������� ���������

Figure 1: Execution Fast Forwarding.

ecution (where dependences include both data and control depen-
dences); and then traversing the dynamic dependence graph to com-
pute the dynamic slice of the wrong value. To simplify the descrip-
tion, we assume the execution starts from the beginning. We will
discuss how to deal with executions starting from checkpoints in
later sections.

DEFINITION 1. The Dynamic Dependence Graph of a pro-
gram run, DDG

���������
, consists of a set of nodes

�
and a set of

directed edges
�

where: each node 	�
� � corresponds to �����
execution instance of statement 	 in the program; and each edge����� 	
 � � corresponds to a dynamic data dependence, dy-
namic control dependence, or potential dependence of � ��� execu-
tion instance of statement 	 on the � ��� execution instance of state-
ment � .

In a DDG, an executed statement is abstracted as � � ������� � , which
means the � instance of statement � .

�
denotes the set of values

used by � � and
�

denotes the set of values defined. For exam-
ple, the execution of statement ”store !#" , [!%$]” can be abstracted as
”...(
�'& � !#" � !%$ � �(�)& �+* !%$(, � ”, in which

* !%$-, represents the mem-
ory location addressed by ! $. A data dependence exists between
two executed statements if the

�
set of one statement overlaps the�

set of the other. A control dependence is introduced if the ex-
ecution of one statement depends on the values in

�
of the other

statement, usually a predicate statement. One executed statement� � potentially depends on another executed statement, usually a
predicate, if and only if the value of the executed statement could
have changed if the predicate had taken a different branch. More
details about potential dependence can be found in [4, 18].

We already discussed how an executed statement is abstracted.
As an event usually corresponds to multiple executed statements,
it is important to understand how we deal with events during the
DDG construction. Since an event is usually handled inside the
OS kernel, a tracing engine which runs in the application space is
not able to trace into the kernel. Hence the dependences within the
event handler are not captured. Our solution is to summarize the
execution of an event into the same abstraction,

� � ���.��� � , accord-
ing to the specifications of events. For instance, event ”n=read(fd,
Buf, size)” can be abstracted as ”...(

�/& �
fd, seek pointer(fd), size,

Buf � ,
�0& �

seek pointer(fd), Buf[0], Buf[1], ... Buf[n-1] � . Note
that only the first 	 elements of Buf are defined according to the
specification of event read. This event both defines and uses the
seek pointer of file fd.

An analogous dependence graph, Event Dependence Graph (EDG),
can be constructed to reveal the dependences within events, which
can be later on used to prune the irrelevant events.

DEFINITION 2. The Event Dependence Graph of a program

run, EDG
���������

, consists of a set of nodes
�

and a set of di-
rected edges

�
where: each node 	
 � � corresponds to the����� execution instance of event 	 in the program; and each edge�1�2� 	
 � � denotes that there exists a dependence path from�1� to 	
 , and there are no other executed events than �1� and 	

on the path.

�
��
���������	
����������

�
��
��
������������������

�
��
�����	�����������������

�
��
��
������������������

�
��
����������������� ���

!
��
�	�������"��#������

$�
�

$�
�

$�
�

$�
�

$�
�

$�
�

$�
�

$�
�

Figure 3: An example of Dynamic Dependence Graph (DDG)
and Event Dependence Graph (EDG).

Figure 3 presents an example to illustrate DDG and EDG. The
left hand side presents the DDG for the execution of a small piece of
code. Statement executions 3 " and 4 " data depend on 5 " because
they use the file descriptor defined at 56" . 47" data depends on 3+"
because 3+" changes the file seek pointer. The graph on the right
hand side shows the EDG. Event execution

��8 " depends on
� 3 "

because of the dependence path 3+" � 49" . Event execution
� 47"

depends on
� 3 " due to the dependence path 3 " � 8 " �;: " �=< " .

Note that the read events
� 3 and

�>8
are considered as different

events because they occur at different program locations.
Control dependence between statements can also lead to depen-

dence between events as demonstrated by another example in Fig-
ure 4, where event

�>8 " depends on event
� 3 " as the result of

8@? "
control depending on 3+5A" and 3#5A" data depending on 3 ? " . The
dependence between

� 3 " and
�>8 " belongs to control dependence

as the execution of
��8 " is due to the result of

� 3+" . However, in
EDGs we do not distinguish data dependence and control depen-
dence edges.

Precisely constructing the EDG requires accurately tracing each
data/control/potential dependence. According to our experience,
exactly tracing each data/control dependence on the fly triggers the
slow down of up to two orders of magnitude. Potential dependence
is even more expensive to trace hence it is usually implemented
as a post-mortem analysis. Thus, building precise EDG is a lux-
ury that becomes worthy only when the cost can be amortized by
a large number of replays. Otherwise, programmers would rather

����������������	
�����������

��������	
�������������������

���������	����������������

���������	����������������

�����

�����

�����������������	
	� !

�

�����������������	
	� �

�

�����������������	
	� "

�

�����������������	
	� 	

�����

�����

�������������������	
	� !

�

�������������������	
	� #

�

�������������������	
	� $

�����

�������������������	
	� %�

���

���������������������&�'
�����

�����

�����

()��
�*$+

����������������	
�����������

��������	
�������������������

���������	����������������

���������	����������������

�����

�����

�������������������	
	� !

�

�������������������	
	� #

�

�������������������	
	� $

�����

�������������������	
	� %�

���

���������������������&�'
�����

�����

�����

,��!���()��
�*$+

-�����.! �
$�!�	�+���$����/

0$������	"��1�"	������'��	�+2��3/

-�$!�����+��"	����

-�����.! �
$�!�	�+���$����/

0$������	"��1#���$3/

(��$��"���	+��1#���$�����$
�	���4

5��
�	���	
�$�

Figure 2: Getting the same warning message by replaying the reduced log for Mutt 1.4.2.1i. The numbers mean the byte positions of
the corresponding events in the log.

replay the entire log, which is equivalent to doubling the execution
time, than endure the two orders of magnitude slow down in the
first place and attain speed up in just a few replays later on. To
address this issue, we have to be conservative by constructing an
approximate EDG, in which one event depends on the other if and
only if they are related by a static dependence path. In other words,
we only demand a static dependence graph, instead of a dynamic
one, together with the event log to build the approximate EDG.
The only runtime overhead we pay is for event logging, which is
significantly cheaper than tracing each dependence. Because the
dependences between events are usually much simpler than the de-
pendences between normal statements, which can be highly com-
plicated due to pointer aliasing, being conservative in EDG con-
struction introduces much less imprecision compared to being con-
servative in building DDG.

2.2 Meta Slicing on Event Log
Similar to dynamic slicing, given an EDG and an event, which

the programmer wants to reproduce, meta slicing on the EDG com-
putes the set of events that are needed in order to replay the given
event.

DEFINITION 3. Given EDG
���������

, an event dependence graph,
the Meta Slice of �
 � � denoted by MS

� �
 � is the subgraph of
EDG

���������
which includes �%
 as well as all other nodes and edges

from which �%
 is reachable, i.e.
� � � �
 � & � � �
 � � � ��� � & � � � �
 � � � ��� �

�	��
�����
� � � � � �

For example in Figure 3, MS
��� 47" � & � � 5A" ��� 3+" �(� 49" � . Note

that we ignore the edges in MS for simplicity. We need to replay� 5A" , which opens the file, and
� 39" , which reads some data from

the file, in order to correctly replay
� 47" , which prints some value

resulted from the computation over the inputed data. In Figure 4,
MS
���>8 " � & � � 5@" ��� 3+" ���>8 " � .

� 3#" has to be replayed otherwise
the control would not flow to

�>8 " .
We have discussed how to find the set of relevant events in or-

der to replay a given event. However, in reality it could be a spe-
cific executed statement 	 � that the programmer wants to replay.
In this case, we need to find out the set of closest events reachable
from 	 � in the DDG, denoted as ECut

� 	 � � , and then compute the
meta slices on these events. For example in Figure 4, ECut

� 4 ? " � &� 3 ? " � , the corresponding meta slice MS
� 3 ? " � & � 5 ? " � 3 ? " � . In-

tuitively, both
� 5@" and

� 3+" need to be replayed in order to replay
statement �.5 .

THEOREM 1. The events in MS
�
ECut

� 	 � ��� are sufficient to re-
play 	 � .

Proof Let us assume there is an event �	� not in MS
�
ECut

� 	 � ��� ,

��
�

��
�

���������

��
��
����	
�������������������

���������

��
��
���������
����	
�������������

��
��
����������������

�

 �
�

��	
�������������������

�

!�
�

"��

�

��������#

���������

�
�

Figure 4: Another example of Event Dependence Graph.

and � � needs to be replayed in order to replay 	 � . We infer there
must exist an executed statement, event or non-event, �
 s.t. 	 � is
reachable from �
 and �
 is reachable from � � . In other words,	 � directly/indirectly depends on �
 and �
 directly/indirectly de-
pends on � � . Otherwise, executing 	 � would not require executing
� � . If there is no executed events along the path �	� � �
 � 	 �
other than � � , � � � ECut

� 	 � � , which is contradictory to the as-
sumption; if there exists some executed event other than � � along
the path, let us assume � � � is the executed event closest to 	 � on the
path s.t. � � � � eCut

� 	 � � , � ��� MS
� � � � � according to the definitions

of EDG and meta slicing. It is a contradiction to the assumption.
This completes the proof.

Note that in practice ECut has to be conservatively computed as
we do not have dynamic dependence information. Our experience
shows that it is not a problem because the events in ECut tend to
be very close to the desired statement instance in the dependence
graph such that very limited number of spurious dependences are
brought in during the computation of ECut.

2.3 Replaying with A Reduced Event Log
We have described how meta slicing can be applied to identify

the set of events in the log that are relevant to replaying given part
of the execution. However, meta slicing is not yet the ultimate so-
lution. It is often the case that a meta slice can not be used di-
rectly to drive the replayed execution. For example, in Figure 3,
MS
��� 47" � & �%� 5A" ��� 3#" ��� 47" � . Replaying with the meta slice

fails because
�>8 " was expected when the control flows to state-

ment 47" . This suggests that some events, even though irrelevant to
replaying the desired part of the execution, cannot be pruned due
to the control flow structure. In this subsection, we are going to
describe how an event log is reduced with regard to the meta slice
and the intrinsic control flow structure of the application.

Before we present the algorithm, let us first study an example
that clearly explains how it is made possible to reduce a log with-
out losing the validity. In Figure 5, the program displayed in the
left column takes user commands from stdin. Different actions are
taken based on different commands. For instance, messages are
printed on the screen if ’ � ’/’ � ’ is pressed; a file is opened if ’ � ’
is pressed; the opened file is read if ’ ! ’ is read; if the data read
does not match the size required, an error message is delivered.
The event log for a particular execution is presented in the right
column. During the execution, a file is opened and then read for
twice; the second read does not satisfy the size wanted such that an
error message is printed at

� 47" ; in between of these events, a num-
ber of events happen as the results of ’ � ’/’ � ’ being pressed. Let us
assume

� 47" is the event we want to replay. MS
� � 4 " � is denoted as

the shaded events in the log. Apparently, the meta slice is not legit-

��������������	
����

��������

��������������

�����������

������������������������������

��

�� ���������

�� ������ �	�!�����"# $�%

�� ��

�� ���������

�� ������ �	�!�����&# $�%

�� ��

'� ���������

'� ���	
������ �((()�!�$�%

�� ��

*� ���������

*� ��� ������
��	
)�+,)���-��%

*�������������	� .���-����

*������������������������	
����

*/ ���������� �	�!0������� # $�%

���1

�����������1

�����1

�
�
�����������	
��

��
�
���������

��
�
����� �	�!(("(($�

��
�
���������

'�
�
�����

��
�
���������

��
�
����� �	�!(("(($�

��
/
���������

��
�
����� �	�!((&(($�

��
�
���������

*�
�
�����

��
2
���������

��
�
����� �	�!((&(($�

��
3
���������

��
�
����� �	�!((&(($�

��
'
���������

*�
�
�����

*�
�
����������	
��

*/
�
����� �	�!0���4�

05� ��6��

Figure 5: An example on reducing the event log. The shaded
events are those in MS

� � 47" � .

imate for replay as event : " (gettimeofday), which is not in the meta
slice, is expected at the beginning of the replayed execution. While: " is not removable, events 3 ? " and

8 5A" can be removed without
any problem. The important observation here is that 3 ? $ and 3 ? "
are compatible and thus 3 ? $ can be moved up to replace 3 ? " such
that the event in between,

8 56" , is pruned.

DEFINITION 4. An event execution �%
 is compatible with an-
other event execution � � iff their calling contexts are identical and
they occur at the same program point.

All the events 3 ? � in Figure 5 are compatible to each other. This
example suggests we are able to alter the replayed execution by
replacing an event with its compatible peer.

The algorithm to reduce a log given the meta slice is presented
as follows. Get next event() gets the next event from the log file;
get next marked event() gets the next event belongs to the meta
slice, which we assume is precomputed, in the log file. These
two methods share the same file seek pointer, which can be set by
set file pointer(...).

Input: the original log Log
Output: the reduced log RLog
Initialize: RLog ���
while (� =get next marked event(Log))!=EOF do
	 =get next event(Log)
for each 	 � from 	 to 	 � in Log do

if 	 ��
 context �	 �
 context then
goto � "

endif
Rlog � Rlog ��	 �endfor

� " :
Rlog � Rlog ��	 �
set file pointer(Log, 	 �)

endwhile

The basic idea of the algorithm is that given a marked event � � ,
an event in the meta slice, we find the earliest compatible event � �
in between � and � � s.t. moving � � up to replace � � maximizes the
savings. All the events between � and � � including � are copied to

the new log to satisfy the control flow structure confinement. The
events between � � and � � are discarded.

Table 1 presents the reduction procedure of the example in Fig-
ure 5. As shown in the table, during iteration one, : " is the first
event retrieved from the log, and 3 ? $ is the first marked event. 3 ? $
can be moved up to replace 3 ? " such that : " and 3 ? $ are the two
events appended to the new log. During the second iteration, � ? "
is the next event and also the next marked event such that it is sim-
ply copied to the new log. In iteration three, moving 3 ?�� up to
replace 3 ?�� results in cutting the events from 3 ?�� to : ? " . The final
reduced log is shown in the last row of the table. The reduce log
can be used to drive the replayed execution to reproduce the error
message at

� 47" .

Table 1: Computation table for figure 5.
Iteration 	 	 � RLog
1 � " ��� $ � "	��� $
2
 �A"
 �A" � "	��� $
 �A"
3 ��� � ��� � � "	��� $
 �A"���� �
4 �� " �� " � "	��� $
 �A"���� � �� "
5 ����� ����� �A" ��� $�
 � " ��� � �� " �����
6 �� $ �� $ � "	��� $
 �A"���� � �� "���� � �� $
7 ��� " ��� " � "	��� $
 �A"���� � �� "���� � �� $ ��� " ��� "

2.4 Dynamic Slicing during Replaying
Dynamic slicing was believed to be too expensive to apply for

long executions. With sophisticated compression techniques [17]
we can achieve the space efficiency of four bits per executed in-
struction, which is still not powerful enough for executions that run
for minutes, hours, or days. The EFF technique can reproduce the
failure without going through most of the irrelevant part of the ex-
ecution. As a result, dynamic slicing becomes feasible for the fast
forwarded executions. According to our previous study [18], dy-
namic data slicing, in which slices are computed by considering
only the data dependence, is quite effective for memory type of
bugs. Therefore, we only compute data slices in this paper due to
the fact that crashes are usually the type of bugs reported for long
running programs. In the rest part of the paper, we mean dynamic
data slices when we mention dynamic slices. Note that the dynamic
slicing in this phase is different from the meta slicing mentioned
earlier: meta slicing is performed on the event dependence graph
and generates a reduced log; dynamic slicing is performed on the
statement level dynamic dependence graph which is constructed
during the fast forwarded replay.

3. THE EFF SYSTEM
As we mentioned earlier, tracing can handle the execution of up

to a few seconds, whereas checkpoints are usually created in the
intervals of minutes. The ultimate goal of EFF is to fill the gap
between tracing and checkpointing such that dynamic slicing can
be applied. We have discussed how EFF fast forwards an execution
from the beginning by replaying a reduced log. However, there
is nothing fundamental that prevents EFF from being applied to
executions resumed from checkpoints. Therefore, in this section
we are going to describe how EFF, checkpointing, and tracing are
integrated together. The composed system can be used to debug
long running programs.

The system is presented in Figure 6. It consists of four compo-
nents: dynamic instrumentation component, whose primary duty
is to provide the infrastructure for tracing; logging/checkpointing
component; slicing component; and the EFF component. The sys-

�������

��	
����
�
���

��������

��������
���
��������	
	���

	�����

�
���

���

�����������������������

������	
��
����

�
������
�

���
���

�
���
�

���

��
�������

������������

�����

Figure 6: System infrastructure.

tem works as follows. In the original run, the slicing component
is deactivated to reduce runtime overhead. The dynamic instru-
mentation engine traps each system call and forwards it to the cor-
responding handler in the logging model, which in turn logs the
event. Checkpoints are created occasionally until a crash happens.
In the replayed run, a smaller log file produced by EFF is sup-
plied to drive the replay; in the mean time, the slicing component
is turned on to trace the exercised data dependences till the crash
point. The constructed dependence graph is studied to identify the
root cause of the crash.

Dynamic Instrumentation The dynamic instrumentation engine
is adapted from valgrind [14], which takes a x86 binary and before
executing any new (never instrumented) basic blocks it calls the
instrumentation function provided. The instrumentation function
instruments the given basic block and returns the new basic block
to valgrind. Valgrind executes the instrumented basic block instead
of the original one. The instrumented basic block is copied to a
new code space and thus it can be reused without calling the in-
strumenter again. The instrumentation is dynamic in the sense that
the user can enforce the expiration of any instrumented basic block
such that the original basic block has to be instrumented again (i.e.,
instrumentation can be turned on and off as desired). In our case,
we can easily turn on/off the slicing component for the sake of per-
formance or for certain part of the code, e.g. library code.

Logging/Checkpointing Our logging component is modified from
jockey [13], which is an industry-strength checkpointing/replaying
library executed in the application’s space. Compared to the check-
pointing techniques executed in the kernel space, jockey has su-
perior usability. Setting LD LIBRARY PRELOAD=libjockey.so
is the only command required to activate jockey. Once loaded in,
jockey calls the initialization method before the application gains
control. During the initialization, jockey scans through all the bi-
naries including the libraries loaded by the application, looking for
any system call sites. Those system calls are redirected to jockey in
order to log the corresponding events or, during the replay, retrieve
the events from the log file without actually passing them on to the
OS. Checkpoints can be created by setting a timer, such that the
application is not even aware of the existence of jockey, or by mak-
ing a library call to jockey inside the application. In the latter case,
the application has to include jockey’s header file and be explic-
itly linked with the library. On receiving a checkpointing request,
jockey obtains the layout of the application’s virtual space, which
is jockey’s space as well, by parsing /proc/self/maps. A checkpoint
is created by dumping all the virtual memory segments that do not
belong to jockey.

Slicing The slicing component is inherited from our prior work
[18]. The main difference is that we do not trace control depen-
dence in this system because according to our study [18] tracing
only data dependence is powerful enough to capture the root causes
of memory bugs, which are the ones usually reported for long run-
ning programs. Another difference is that we augment the com-

ponent such that it stops at the execution points where an illegal
memory access occurs, for example writing to an unallocated ad-
dress. These points are usually earlier than the actual crash points.

EFF The EFF component implements the technique described in
previous section. It takes an event log file dumped by the logging
model and then computes the meta slice for a given set of events.
The meta slice is used to prune the event log. The resulting smaller
event log is used to drive the replayed execution. The computation
of meta slice requires a static dependence graph, which is created
by profiling the executed dependences in a few profiling runs due to
the lack of an implementation of points-to analysis for x86 binaries.

One of the greatest challenges is to integrate logging/checkpointing
model into the dynamic instrumentation engine. The integration is
very meaningful because of the following reasons. Dynamic instru-
mentation is becoming more and more widely used in recent years.
Not only is it attractive for the purpose of adaptive profiling/tracing,
but also performance improvement can be achieved by executing a
regular application on a dynamic instrumentation engine. Binary
translation, a very promising technique that is derived from dy-
namic instrumentation, can virtually execute an architecture spe-
cific binary on a different architecture. Logging/checkpointing, on
the other hand, has already been very popular for fault tolerance,
debugging, etc. We believe logging/checkpointing should become
a standard functionality of a dynamic instrumentation infrastruc-
ture in the near future. Therefore, the issues we are addressing here
may be general to the integration of tools with similar functional-
ities. The first issue is the separation of the virtual space. Both
valgrind and jockey are residents in the application’s space. They
both assume total control over the entire virtual space such that they
reserve certain address space for their own purposes. The reserva-
tions conflict each other. For instance, jockey reserves 0x7200000-
0x7800000 for its heap, the mapping of the log file, etc. The same
address space is also reserved by valgrind for tracing. Our solution
is to make them aware the existence of each other by separating
the application’s address space into two parts – the valgrind’s space
and the jockey’s space. The application is actually executed within
the valgrind’s space. The second issue is about adjusting the sys-
tem call trapping mechanism in jockey. Jockey traps system calls
by directly overwriting the application’s code. As a result, valgrind
traces into jockey and tries to instrument the jockey code, which
is undesirable. Our solution is to avoid any direct interactions be-
tween the application code and the jockey code. Jockey can only
interface with valgrind. More precisely, we use valgrind to trap the
system calls and then call the jockey event handlers inside valgrind.
The third issue is to discretely checkpoint the execution. A naive
solution only checkpoints the application’s program status. The re-
ality is that the application’s program status is so mixed up with
the valgrind’s status that valgrind fails to resume from the check-
points during replay if only the application’s status has been check-
pointed. Our solution is to treat the valgrind’s status as part of the
application’s status such that it is checkpointed as well. Some of
the valgrind’s status should be excluded such as the valgrind’s log
file descriptor, which should be reopened at the beginning of the
replay. There are some other minor issues in order to make both
valgrind and jockey run correctly such as some of the valgrind’s
sanity checks have to be turned off. We are not able to cover all
these issues due to the space limit.

4. EXPERIMENTATION
The evaluation was hard to carry out. The first issue is that what

benchmarks we should use. The programs we select should be able
to run for a long time. We looked at the set of bugs studied in [6,

10, 9] and picked the programs that can execute for a long time.
Table 2 presents the set of programs we selected. Most of them are
user interactive programs. We ignored apache since apache creates
multiple processes while our logging model can handle only one
process at the current stage. The second issue is that we need the
input that can drive the execution for a long time and then crash
the execution. On the other hand, the execution should not be so
long that it becomes too heavy a task for us to collect the data. Un-
fortunately, the input coming with the selected bugs usually leads
to very short executions. Given the fact that most benchmarks are
interactive, we constructed a long input by first performing a lot
of user actions and then apply the failure inducing input –the in-
put comes with the benchmarks. For example in mutt, we took the
following actions: (i) opening an email account; (ii) going through
all the emails one by one, the total is about six hundreds; (iii) try-
ing to switch to an invalid folder; repeating steps (ii) and (iii) two
more times; providing the failure inducing input and crashing the
program. We collected the user time as the performance indicator
since the real time may significantly differ each time depending on
the user’s behavior.

Table 2: Description of the benchmarks

Benchmark Description LOC Bug Type

bc-1.06 interactive calculator 14.4K heap overflow
mc-4.5.55 file manager 86.2K stack overflow

mutt-1.4.2.1i email client 453.6K heap overflow
pine-4.44 email client 211.9K stack overflow
pine-4.44 email client 211.9K heap overflow
squid-2.3 web proxy cache server 93.5K heap overflow

We investigated four execution scenarios: orig. denotes the orig-
inal execution; traced denotes the original execution plus the de-
pendence tracing; logged represents the original execution plus log-
ging; EFF represents the fast forwarded execution plus the depen-
dence tracing. In the logged run, an event log is created. The EFF
technique is applied to reduce the log. The statement instance we
want to replay is where the crash happened. The EFF technique is
able to reproduce the crash in a much shorter execution. Due to the
complexity of our system, our implementation is not sound at the
current stage. Some times we have to hard code a few event depen-
dences, otherwise the reduced log is not valid to drive the replay
which is manifested as an event missing when it is expected or the
presence of an extra event. We expect to have it fixed in the camera
ready version if the paper gets accepted.

Table 3: Performance comparison of different execution sce-
narios.

Benchmark Orig. (sec.) Traced (sec.) Logged (sec.) EFF (sec.)

bc-1.06 13.6 2040.4 16.2 0.05
mc-4.5.55 11.3 499.3 -(1) -

mutt-1.4.2.1i 19.7 3237.7 26.1 0.06
pine-4.44(stack) 14.4 2088.4 36.8 0.12
pine-4.44(heap) 13.9 2102.2 34.4 0.20

squid-2.3 14.6 1131.6 25.6 0.17
Benchmark Traced/Orig. Logged/Orig. Traced/EFF (sec.)

bc-1.06 150.6 1.19 40808.8
mc-4.5.55 44.5 - -

mutt-1.4.2.1i 164.5 1.32 53960.8
pine-4.44 (stack) 145.1 2.55 17403.6
pine-4.44 (heap) 151.5 2.47 10510.9

squid-2.3 77.3 1.75 6656.4
(1) mc crashed our system for some reason that we are still investigating.

Table 3 compares the performance under the four scenarios. We

can see the original runs, which were terminated by crashes, con-
sume user time ranging from 11.3 to 19.7 seconds, which corre-
sponds to the real time of a few minutes. They are not long by sim-
ply looking at the absolute numbers, but they well exceed the ca-
pability of our dependence tracing technique. We can easily extend
the executions by repeating the user actions. The side effect is the
increased difficulty of collecting the time for the executions in the
traced scenario. Note that even though checkpointing is supported
in our system, the original execution does not last long enough to
trigger it. Fortunately, it does not affect the evaluations of the EFF
technique and the effectiveness of dynamic slicing on long running
programs. From table 3, we have the following observations.

� Dependence tracing introduces 44.5 to 164.5 times slow down.
A programmer may bear it for a short run but highly unlikely
for a long run.

� The slow down factors for logging range from 1.19 to 2.55,
which are significantly smaller than the tracing slow down
factors. For user interactive programs, the overhead is not
noticeable.

� EFF can greatly shorten the executions such that dependence
tracing becomes bearable.

Table 4: Comparison of the event logs.

Benchmark # of events in Orig. # of events in EFF Orig./EFF

bc-1.06 340509 7 48644.0
mc-4.5.55 - - -

mutt-1.4.2.1i 262559 489 536.9
pine-4.44 7365830 3028 2432.6
pine-4.44 8707316 27279 319.2
squid-2.3 1620988 795 2038.9

Table 5: Comparison of the dependence graphs.

Benchmark # of dep. in Orig. # of dep. in EFF Orig./EFF

bc-1.06 �

� � "�� �
 �

� �
�

44489.8
mc-4.5.55 �

��� � � "�� - -
mutt-1.4.2.1i �

� � � "�� �
 �
� ��� 1154.4

pine-4.44
 ���
� � "�� �

�
 � � � 727.61
pine-4.44 �

�
 � � "��
 ���
� � � 179.4

squid-2.3

� � "��
 ���

� � � 5699.5

Table 4 compares the numbers of events before and after event
reduction. We can see the reduction factors range from 319.2 to
48644.0, which well explain why the fast forwarded executions
become so short. Table 5 presents the numbers of the exercised
data dependences in the original and the fast forwarded executions.
We want to point out that these numbers are collected after the
intra-basic-block optimization [17] which eliminates considerable
redundant dependences. We can tell that the numbers for the fast
forwarded executions are much smaller. The constructed depen-
dence graphs can be stored even without further compression [17].

5. DYNAMIC SLICING ON A SET OF LONG
RUNNING BUGS

The performance of a set of long running bugs has been studied
in the last section. As the original motivation, dynamic slicing is
applied and evaluated to show the effectiveness.

5.1 Mutt
Mutt [21] is a text based mail user agent (MUA) for Unix based

Operating Systems. It has many features including customizability,

POP3 and IMAP support, and ability to handle multiple mailbox
formats. According to [22], mutt version 1.4 has a known memory
bug which is as follows. The Mutt Mail User Agent (MUA) has
support for accessing remote mailboxes through the IMAP proto-
col. When mutt has to convert the name of the folder from its inter-
nal UTF-8 representation to UTF-7 it calls the function utf8 to utf7
in module imap/utf7.c. When this function does the conversion, it
miscalculates the length of the output string. To conduct our exper-
iment, after Mutt is executed for a long time, we supply a UTF-8
folder name that contains some special characters. The heap buffer
is overflowed and a segmentation fault is flagged. We reduce the
event log using EFF and then replay the execution with the new
log. Dynamic slicing is activated in the replayed execution. Figure
7 shows the computed dynamic slice.

���������	
��

�

��	������	
���� ��������������

�

��� ����	���	����������������������

�	�
���������

���

������!�"�#$�#�%%��!�&��#$
	����

���'����()���

�*� �������+,-

���

.

�

�** �������/()0!�1�2��%��!�&&�34

�

��� �3�&��# �3�5��(�

�#� �������/()0!�1�2��%��!�&&�34

���

.

Figure 7: Mut 1.4.2.1i

As we mentioned earlier, our slicing component also monitors
for any attempt for illegal memory access. After detecting a write to
a memory region not allocated at line number 5 � � , we now inspect
the data slice to find the root cause. We find that the last instance
of line 5 � � is data dependent on line 3 ? 3 and vice-versa through
variable ’� ’. The arrows indicate the data dependence. The data
dependence chain in the slice leads us to the first instance of line5 � � which is data dependent on line 5 � 3 and this in turn is data
dependent on line 5 : 3 , because of variable ’� ’, which is the root
cause of the bug as there is an error in calculating the buffer length
at this point. We needed to inspect just � static statements before
getting to the root cause, and the dependence chain provides a very
clear explanation on the cause effect relations.

5.2 Pine
Pine [25] is a popularly used application for reading, sending

and managing email messages and is distributed with the Linux
operating system. Pine version 4.44 has two buffer overflow errors.
One is a stack overflow and the other is a heap overflow. We look
at both errors in the following subsections.

5.2.1 Pine Stack Overflow

According to [26] pine has a stack overflow error. Pine calls an
error prone API when it accesses mailboxes. By asking pine to
handle a mailbox that has some special characters this bug can be
triggered causing pine to crash.

We are able to capture the root cause of the bug again using dy-
namic slicing. Our tracking infrastructure reports an illegal mem-
ory access at line number : � � of file mail.c, where the statement is
”for (...;(c=*t++)!=’”’;) ”. We look at the slice at this point and find
that there is a loop carry self dependence. This line is also the root
cause of the BUG as variable ’t’, which is the pointer to a string, is
incremented beyond its allocated region (on stack) if the provided
string does not have the end quote. We needed to inspect 3 static
statements to nail the root cause.

5.2.2 Pine Heap Overflow
According to [27] pine has a bug that when triggered can over-

flow the heap memory causing a potential crash. This can occur
when pine processes the ”From” field of email headers. Certain
special characters in the header can cause the bug. Figure 8 shows
the code where the bug is present.

����������	��
��

�����������	���

�

���� ��������

�

��������	������� ��!

"

����������	��
��

�	
���	��
������
��#�����

�

�$�� ��������	
�����%�#�������������	�
�����!

�

�$�&
%�&���'
����	��
�����(����������!

"

�������
%�&����

����
%�&����	� ��	
������������

���

��������
��������!

)��������*+,!

�

���!����
-�
.��
��+///+�!�����

�
��-0���������!

��������!

��)��������*//,!

)��������)!

"

"

Figure 8: Pine 4.44 heap overflow.

There is an illegal heap access detected by our infrastructure at
line number 3 < ? in file rfc822.c. However, the root cause of the
bug is at line number �A3 < � of file bldaddr.c. The buffer ������� in
rfc822 cat is allocated in addr list string. The size of the alloca-

tion is miscalculated in est size because it does not consider special
characters. The figure shows the dependences that we tracked to
get to the root cause from the error point. This is an example where
the root cause and the symptom are in different functions. We had
to examine 5 ? static code statements to get to the root cause.

5.3 Midnight Commander
Midnight Commander

�
mc � [23] is an open source file manager

for free operating systems. It has high degree of portability and
can be compiled and run on a number of operating system includ-
ing Linux. We used mc version 4.5.55 for our experiment. This
version has a known buffer overflow error. According to [24], the
bug is triggered when midnight commander is used to process sym-
bolic links in tgz archives. Absolute symbolic links in the archives
are translated into links relative to the start of the tgz file. The buffer
that is used to form the relative link is never initialized and hence
can be overflowed inside the strcat procedure. Unfortunately, our
system failed in logging the extended mc execution and thus EFF
can not be applied. We used the failure inducing input only to con-
duct the study. Figure 9 shows the code corresponding to the bug.

�����������	
���

�������	
������������������������	��������

��������������� �!"#$%&'����	�	(��)

*

����))+,,���

*

���-+���

./0 �
�(
����'1�)

��	�
)

2

2

*

.3/ �	������$4�!�56��	���	
�����*�)

2

Figure 9: Mc 4.5.55

We use our infrastructure to determine the root cause of the bug.
A segment fault occurs at line number

8 � � . Now, when we look at
the slice at this point we find an abnormal data dependence between
line

8 � � and line
8 � : . We conclude that a stack buffer overflow

happened at line
8 � : , which is the root cause of the bug, such that

it corrupted one of the variables used at line
8 � � . We just needed

to inspect 3 static statements to get to the error.

5.4 Squid
Squid [28, 6] is a fully featured web proxy cache that supports

proxying and caching of HTTP, FTP and other URLs. It is designed
to run on Unix based systems. We use squid version 2.3 for our
experiment. It has a known heap buffer overflow error. When an
input request contains some special characters, squid miscalculates
the length of the heap buffer that is used to hold the request. As
a result, the buffer is overflowed and then the server crashes. [29]
explains it in more details. Figure 10 shows the portion of the code
that contains the bug.

On running squid using our infrastructure we find that there is
a heap buffer overflow at line number 5 ? 3 4 . Inspecting the slice
at this point leads us to the root cause of the bug at line number5 ?@? : , at which the extra padding space of size 64 is not enough to

���������	
�

����������	

��	���������������	��������������	��������

�

���� �������

���� !�"��������	�����#$"���

������

��%� ��&����'�����(��)

�

�
�"���*	������

��% "�������(�����+,-.�"��	�.	������	�����#$"����)

/

Figure 10: Squid 2.3

accommodate the special characters. We had gone through : static
statements before we reached the root cause.

5.5 bc
Bc [1] is a numeric processing language that supports arbitrary

precision numbers. It is generally distributed along with the Linux
operating system and is a part of the GNU project. We used bc-1.06
for our experiment. This version has a known heap overflow error.

[6] describes the bug that is triggered when bc is used. A certain
heap buffer is not declared wide enough and overflows. The code
corresponding to the error is shown in Figure 11. The heap array
arrays declared at line number 5 < � is overflowed.

���������	
����

����

�	
���

�������

�

��� �

����������
��

��������������	��

���	����������	 ������
��

�����!

������

��� 	
�!���"#�$����	���!���"#%%�

��� �

���&��"#'���()**!

+

Figure 11: Bc-1.06

Our tracking infrastructure detects a heap memory violation at
line number 5 � � . Looking at the slice at this point we see that the
root cause of the bug is at line number 5 < � . This is because a count
entries have been declared but v count entries are accessed. We
needed to inspect just these

8
statements to find the root cause.

From the studies we find that the microthese bugs are not as mys-
terious as they appear, under the micro-inspection of dynamic slic-
ing. They usually require examining a few static statements before
the root cause is located. Two conclusions can be drawn: dynamic
slicing is very effective to handle memory type of bugs even in
the long running programs examined; the real challenge is to iso-
late the part of the execution that is relevant to the error and hence
dynamic slicing can be applied. The EFF technique is designed
for the purpose. According to our experience in [18, 3, 19], most
non-memory bugs still have very good locality even though not as

apparent as memory bugs. We firmly believe EFF plus dynamic
slicing will still be highly effective for non-memory bugs in long
running programs. Unfortunately, most bugs that are reported and
studied for those programs are memory bugs. We plan to mine
some software repositories of long running programs to get more
interesting non-memory bugs in the future.

6. CONCLUSIONS
We have enabled dynamic slicing on a set of long running pro-

grams by developing a novel execution fast forwarding technique.
Fast forwarding can be achieved by driving the replay with a re-
duced event log file. Given a desired execution region, a large
portion of the events are not relevant to replaying it. Meta slic-
ing is designed to eliminate this redundancy in the log file. With
the execution fast forwarding technique, the replayed execution be-
comes substantially shorter and yet the wanted execution region
is precisely reproduced. Hence dynamic slicing can be practically
applied to isolate the cause effect chain leading to the failure. Our
studies show that most of the reported memory bugs for long run-
ning programs are trivial to locate with dynamic slicing once the
execution has been shortened to an affordable level.

7. REFERENCES
[1] GNU bc. http://www.gnu.org/software/bc
[2] S. Bhansali, W-K. Chen, S. de Jong, A. Edwards, R. Murray, M.

Drinic, D. Mihocka, and J. Chau, “Framework for instruction-level
tracing and analysis of program executions,” Virtual Execution
Environments Conference, Ottawa, Canada, June 2006.

[3] N. Gupta, H. He, X. Zhang, and R.Gupta, “Locating Faulty Code
Using Failure-Inducing Chops,” 20th IEEE/ACM International
Conference on Automated Software Engineering, pages 263-272, Long
Beach, California, Nov. 2005.

[4] T. Gyimothy, A. Beszedes, I. Forgacs, “An efficient relevant slicing
method for debugging,” 7th European Software Engineering
Conference/ 7th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, Toulouse, France, 1999.

[5] B. Korel and J. Laski, “Dynamic program slicing,” Information
Processing Letters, Vol. 29, No. 3, pages 155-163, 1988.

[6] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou, “BugBench: a
benchmark for evaluating bug detection tools”, Workshop on the
Evaluation of Software Defect Detection Tools, 2005.

[7] R.H.B. Netzer and M.H. Weaver, “Optimal Tracing and Incremental
Reexecution for Debugging Long-Running Programs”, ACM SIGPLAN
Conference on Programming Language Design and Implementation,
Orlando, FL, USA, pages 313-325, June 1994.

[8] D.Z. Pan and M.A. Linton, “Supporting reverse execution of parallel
programs,” ACM workshop on parallel and distributed debugging,
Madison, WI, USA, May 1988.

[9] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou, “Rx: treating bugs as
allergies - a safe method to survive software failures”, the 20th ACM
Symposium on Operating Systems Principles Brighton, UK, pages
235-248, Oct. 2005

[10] M.C. Rinard, C. Cadar, D. Dumitran, D.M. Roy, T. Leu, and W.S.
Beebee, “Enhancing Server Availability and Security Through
Failure-Oblivious Computing”, the Sixth Symposium on Operating
System Design and Implementation San Francisco, California, pages
303-316, 2004

[11] M. Ronsse, K. De Bosschere, M. Christiaens, J.C. de Kergommeaux,
and D. Kranzlmller, “Record/replay for nondeterministic program
executions”, Communication of the ACM 46(9), pages 62-67, 2003

[12] M. Ronsse, K. De Bosschere, and J.C. de Kergommeaux, “Execution
replay and debugging”, Fourth Workshop on Automated and
Analysis-Driven Debugging, Munich, Germany, August 2000.

[13] Y. Saito, “Jockey: a user-space library for record-replay debugging”,
Sixth International Symposium on Automated and Analysis-Driven
Debugging, Monterey, California, September 2005.

[14] J. Seward et al. “Valgrind: A GPL’d system for debugging and
profiling x86-linux programs”, http://valgrind.ked.org/, 2004.

[15] S.M. Srinivasan, S. Kandula, C.R. Andrews, and Y. Zhou,
“Flashback: a lightweight extension for rollback and deterministic
replay for software debugging”, USENIX Annual Technical Conference,
Boston, MA, USA, June 1994.

[16] L.D. Wittie. “Debugging distributed C programs by real time replay,”
ACM workshop on parallel and distributed debugging, pages 57-67,
Madison, WI, USA, May 1988.

[17] X. Zhang and R. Gupta, “Whole Execution Traces,” IEEE/ACM 37th
International Symposium on Microarchitecture, pages 105-116, 2004.

[18] X. Zhang, H. He, N. Gupta and R. Gupta, “Experimental evaluation
of using dynamic slices for fault location,” Sixth International
Symposium on Automated and Analysis-Driven Debugging, Monterey,
California, September 2005.

[19] X. Zhang, N. Gupta, and R. Gupta “Locating Faults Through
Automated Predicate Switching,” IEEE/ACM International Conference
on Software Engineering, Shanghai, China, May 2006

[20] X. Zhang, N. Gupta, and R. Gupta “Pruning Dynamic Slices With
Confidence,” ACM SIGPLAN Conference on Programming Language
Design and Implementation, Ottawa, Canada, June 2006

[21] Mutt Website. www.mutt.org
[22] Mutt Buffer Overflow.

http://www.securiteam.com/unixfocus/5FP0T0U9FU.html
[23] Midnight Commander. www.ibiblio.org/mc
[24] Midnight Commander exploit. www.securityfocus.com/bid/8658
[25] Pine Website. www.washington.edu/pine/
[26] Pine Stack Buffer Overflow Error.

http://www.xatrix.org/advisory.php?s=7408
[27] Pine Heap Buffer Overflow Error.

http://www.securityfocus.com/bid/6120
[28] Squid Website. http://www.squid-cache.org/
[29] Squid Buffer Overflow.

http://www.securiteam.com/unixfocus/5BP0P2A6AY.html

