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ABSTRACT

We develop a method for matching dynamic histories of pnogra
executions of two program versions. The matches produced ca
be useful in many applications including software piraciedgon

and several debugging scenarios. Unlike some static agipeea
for matching program versions, our approach does not reqaf
cess to source code of the two program versions because @ynam
histories can be collected by running instrumented vessaipro-
gram binaries. We base our matching algorithm on comparison
of rich program execution histories which include: contilolw
taken, values produced, addresses referenced, as weltaadeada
pendences exercised. In developing a matching algorithrhagle
two goals: producing aaccurate matctand producing iguickly.

By using rich execution history, we are able to compare tlee pr
gram versions across many behavioral dimensions. Thetrigsul
a fast and highly precise matching algorithm. Our algoritfimst
uses individual histories of instructions to identify nipik poten-

tial matches and then it refines the set of matches by mat¢hiang
data dependence structure established by the matchimgdtishs.

To test our algorithm we attempted matching of executiomohis
ries of unoptimized and optimized program versions. Ouultes
show that our algorithm produces highly accurate matchdéshwh
are highly effective when used in comparison checking aggro

to debugging optimized code.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors-Bebuggers
D.2.5 [Software Engineering]: Testing and Debugging-Bebug-
ging aids, Tracing
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Algorithms, Measurement, Reliability
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1. INTRODUCTION

In many application areas, including the areas of softwabeld-
ging, maintenance and piracy detection, situations anisghich
there is a need for comparirig/o versionsof a program. An ex-
isting class of algorithms that compare two program versiore
static differencingalgorithms [1, 3, 8, 9]. While these algorithms
report static differences between code sequences, inisitgavhere
the two program versions correspond to original and transtd
versions of a program, it is desirable to match code seqsaheg¢
dynamically behave the same even though they staticallgaagp
be different.

In this paper we describe the design and implementation of an
algorithm formatching binaries of two versions of a program us-
ing their dynamic execution historieket us consider the applica-
tions such as software piracy detection and debugging ahogetd
code. In these two applications one program version is edelay
transforming the other version. In the first applicationeotfus-
cation transformations may have been performed to hidey[&
13]. In the second application transformations are appbegen-
erate an optimized version from the unoptimized version.pBy
forming matching based upon execution histories, we carthmat
corresponding computations by comparing the results mexdiby
them. Static differencing approaches, on the other handiared
at finding apparent differences and thus are not suitablatiove
applications. In case of software piracy detection we wll mave
access to the source or intermediate code of the piratembrmerad
thus matching should be performed using binaries. Our géser
lution to matching execution histories relies only on thaikability
of binaries as dynamic execution histories can be colldoyedin-
ning instrumented program binaries [7, 11].

A General Matching Algorithm. In developing an algorithm for
matching execution histories of two versions of a progranhese
two goals: developing an algorithm thatfast i.e. presence or
absence of matches can be determined quickly without exeess
search; andccuratematches are found, i.e. true matches are re-
ported and very few matches are missed. To address thesevgmal
use the following approach. We begin by conservatively tifien
ing potential matches so that real matches are not missedsiBy
rich execution history, we are able to compare the program ve
sions across many behavioral dimensions. This leads tdyrinss
matches being found. Moreover, the number of possible reatch
that we need to consider greatly reduces when multiple kafds
information is used thereby resulting in a fast matchingatgm.
Thus, by basing our algorithm on performing many differémise
matches, instead of fewer very complicated matches, wernata
execution history matching algorithm that is both fast aretise.



Matching for Comparison Checking. While matching has many
applications, in this paper we demonstrate the benefitsrahatch-
ing algorithm in context oEomparison checkingt, 5], a technique
that determines whether erroneous behavior of optimizesioris
being caused by a bug in the original unoptimized versiohwizas
unmasked by optimizing transformations or whether it is ttua
bug that was introduced due to an error in the optimizer. Gomp
ison checking works by comparing the values computed byeeorr
sponding execution instances of statements in the unagirand
optimized program versions. If no mismatch in values is thun
then the error must be present in the original unoptimizedmm.

A mismatch of values on the other hand indicates that the prust
have been introduced by the optimizer. In order to perfoom-
parison checkingthe compiler writer must write additional code
that generatemappingbetween execution instances of statements
in the unoptimized and optimized versions.

Modifying the compiler to generate the mappings is a tedious
and time consuming task and in fact in some situations thig ma
not be a viable option. In particular, if a commercial optiing
compiler is being used, we will not be able to modify it to gexte
such mappingsln absence of mappings and/or compiler source,

Addresses referenced (Local). For a memory referencing in-
struction a stream of addresses referenced by the instnuitiring
a program execution are captured. While the actual addresse
countered during executions of corresponding instrustiohthe
two program versions may vary, the relative address offerts
hibit similar patterns. Therefore these patterns provigleayother
means for matching instructions.

Control flow (Global). The whole program path followed dur-
ing an execution is captured. This history enables tempochr-
ing of all interesting events (e.g., I/O operations). Theskerings
provide a good starting point for search when events of angive
type from the execution histories of two program versiores tz-
ing matched with each other.

Dependences exercised (Global). For each execution of an
instruction its data and control dependence history isuragtand
used in conjunction with the value and address historiesrée p
duce accurate matches. Note that value and address hésasrie
sentially perform matching of individual instructions ahere is a
chance that some coincidental or false matches will be mexiu
By matching the dynamic data dependence graphs, we canraonfir
with much greater certainty that the instructions trulyrespond to

the algorithm we present in this paper can be used to match the each other. Matching of dynamic data dependence graphsrosnfi

executions of unoptimized and optimized versiolisa complete

matchis found then the bug must have been present in the unop-

timized program. If a&complete matclis not found, then the parts
of the execution histories that cannot be matched can beiegdm
by the programmer to identify the likely source of the bugisit
important to note that the static approaches for comparniogram
versions will not be effective for this application where want to
compare specific executions.

We tested our matching algorithm by matching the executien h
tories of unoptimized and optimized program versions. @sults
show that our algorithm is very effective as it produeesurate
matches that amneearly completéi.e., there are few false or missed
matches).

The remainder of the paper is organized as follows. In sectio
2 we describe the form of dynamic execution histories useHig
work. Our matching algorithm is described in detail in setB.
The results of our experiments are presented in section katdrle
work is discussed in section 5. Conclusions are given iriaeét

2. PROGRAM EXECUTION TRACES

We recently proposed thé&/hole Execution TracéNVET) [16]
representation that stores comprehensive executiomyisita pro-
gram in a highly compacted form as annotations to the stejier
sentation of executable code. We demonstrated that ereduis-
tories of realistically long program runs (few billion ingttions)
can be kept in memory. Below we briefly describe the infororati
contained in the execution history and how it is useful inchitg
program versions. The dynamic information can be categdriz
broadly into two categoriedocal - values and addresses involved
in execution of a specific instruction; amtbbal - relative execu-
tion order and dependences between different instructi@rdy
the summary of some of the above information is needed by our
matching algorithm. Therefore, execution histories ofnelanger
runs can be easily collected and stored for matching.

Values produced (Local). A stream of results produced by an
instruction during a program execution are captured. If pro-
gram versions are expected to produce the same results an a pr
gram input, the streams of values for vast majority of inginns
are expected to be the same in the two versions. Therefose the
streams of values can be compared to find matching instngtio

the collective correctness of the matches for a group oftinsbns.
Thus, it effectively reduces false matches.

Other. System calls, 1/0 operations, and memory allocation
deallocation operations are examples of special evertatbaap-
tured. Since these events are likely to change little from joro-
gram version to another, matching them using the tempodarer
ing is quite useful.

From the discussion it should be clear that matching of pro-
gram versions is based upon comparison of program behdwitg a
many behavioral dimensions. This is key to the success odpur
proach as it prevents inaccurate matches from occurring.

3. MATCHING EXECUTION HISTORIES

The goal of the matching process is to automatically esthbli
a correspondence betweexecuted instructionsom the two pro-
gram versions. We assume that the two versions of the program
resulted after one version was transformed into anotheutjir se-
mantics preserving program transformations. In finding &cha
ing it is our goal to produce highlgccuratematches. Accuracy
has two dimensionscompletenesswe would like to discover as
many true matches as possible; adrectness we would like to
discover only true matches.

Given a pair of execution histories for two versions of a paog,
we establish a correspondence between the executed timtsic
by examining thedynamic data dependence grapfbDGSs) of
the two versions as well as the histories of individual instions
in the dDDGs. A dDDG contains a node for eaabtruction that is
executed at least on@and an edge for eactata dependence that is
exercised at least onaduring the program execution. The match-
ing process consists of three main algorithms:

Signatures. Based upon the local execution history of a given
instruction, a signature is computed. The signatures afiogons
are compared to determine potential matches or excludehestc
throughout the two algorithms identified next.

Root Nodes. We begin by matching the roots of the dynamic
data dependence graphs of two program versions. The mgtchin
is assisted by global information in form of the temporalesrih
which the root nodes are executed and local informationrim fof
signatures of individual instructions.



Dependant Nodes. Given the matching of the roots, an itera-
tive algorithm is used to match the remaining nodes in thedyo
data dependence graphs. For each instruction in one depsnde
graph, the algorithm finds a set of matching candidate instmis
in the other data dependence graph through iterative reinens-
ing the structure of the dynamic data dependence graph.

Next we discuss the details of the root matching and depénden
node matching algorithms. During these algorithms we \ggiane
that signatures are already available. Finally we disdussiétails
of sighature generation and matching.

3.1 Matching Root Nodes

Before we present the root matching algorithm, we make the fo
lowing observations. First a root node of a dDDG may come from
any point in the program’s control flow graph. This is because
root nodes correspond to instructions such as variablaliné-
tions, reads, memory allocations etc. all of which can appeg
where in a program. Second semantic preserving prograrsftnran
mations that may have been used to create another versite of t
program can have significant affects on these instructitmpar-
ticular, an instruction may badded or deletedt may bemerged
with another instruction osplit into two instructions, it may be
reorderedwith respect to other instructions, or it may have been
simply movedcausing its execution frequency to change.

Version b

Version a

Affect | Transformation |

Add x*—n

Delete m — %

Move freq(d) |

Move freq(g) |
Merge & Reorder| (b, (co,c1)) — (¢, b)
Reorder & Split | (h,i) — ((i0,71),h)

Figure 1. Matchingrootsof program versions.

An example in Figure 1, illustrates the above observati6irst
all instructions shown, which are indicated by letters,assumed
to be root nodes that are spread throughout the control flaptgr
The dotted edges between the two versions indicates thespamn-
dence between these instructions. The table in the figur@ssho
the transformations that resulted in generatioiVefsion b from
Version a. To distinguish between corresponding instruction in
the two versions we use the notatiomndi. When multiple in-
structions in one version correspond to one instructioméndther
version, subscripts are used.

Next we present a root matching algorithm that has been de-

signed taking into account the above observations. Givenver-

sions of a programyersion a andVersion b, we begin by first
generatingemporally orderedists of the root nodesaRoots and
bRoots, as follows. Each root node appears once in the list. The
order in which nodes appear corresponds to the order in which
their first executionsook place. This ordering is determined from
the full control flow trace. Given the two lists, a call to ftion
Match(aRoots,bRoots) in Figure 2 produces a matching of the
root nodes. The outcome of the matching process is idertifica

of pairs of nodes fronaRoots andbRoots that match and set of
nodesaUnMatched andbUnMatched that contain the nodes that
do not have a corresponding matches.

Match(aRoots,bRoots)
Matched «<— aUnMatched <— bUnM atched «— ¢;
i < first(aRoots);
j < first(bRoots);
while aRoots # ¢ do
if sign(a;) = sign(b;) then
Matched «— Matched U {(a;,b;)};
if freq(a;) = freq(b;) then
i < next(aRoots);
j < next(bRoots);
aRoots «— aRoots — {a;};
bRoots < bRoots — {b; };
esef freq(a;) < freq(b;) then
i < next(aRoots);
aRoots «— aRoots — {a;};
freq(by) «— freq(by) — freq(a;);
esaf freq(a;) > freq(b;) then
j < next(bRoots);
bRoots < bRoots — {b; };
freq(ai) — freq(ai) - freq(b;);

endif

else
j < next(bRoots);
if j = nil then

aUnMatched — aUnMatched U {a;};
i < first(aRoots);
j < first(bRoots);
endif
endif
endwhile
if bRoots # ¢ then
for each b € bRoots do
if A(a,b) € Matched then
bUnMatched — bUnMatched U {b};
endif
endfor
endif
return(M atched,aUnM atched,bUnM atched)

Figure 2: Matching temporally ordered roots.

Our algorithm takes one instruction froafRoots at a time (de-
noted asu;) and finds the instruction(s) frommRoots that match
this instruction. To find a match, the signatureagf sign(a;), is
compared with the signatures of instructionsbiRoots one at a
time. If a match is found with instructioby in bRoots, number of
cases arise. If frequency of the matching instructionsésstme,
we consider matching of botl; andb; to be complete and they
are removed from the lists. If the frequencyafis lower, then we
consider the matching af; to be complete but not that 6§ — thus,
a; is removed but nob;. If the frequency ob; is lower, then we
consider the matching &f to be complete but not that af. Using
the above algorithm we enable one instruction in one versidre
matched with multiple instructions in the other version.s@l all
instructions in each version that do not match any instondti the
other version are also identified.



While the above algorithm appears to be quite simple, it iy ve
effective in practice. We apply the above algorithm to thanax
ple of Figure 1 and show how our algorithm identifies the adrre
match. Let us first consider executions of the two versionthef
program on the same input. Let us assume that the executibn pa
followed during these executions is as follows:

Version a: m a
Version b: a ¢

fg fg_

code f
€10 1hjkn

bea
f fgi
From the above control flow paths we can find ordered list of
the root nodes based upon when the instructions were exethde
first time in the above trace. In addition, we can also comthae

number of times each instruction is executed. Below we diee t
ordering and frequency of the executed instructions.

deh
hje

mstructwn m abcdehijgea fgk
aRoots (“S ) T § 3 T 55553 1 381
'Lnstructzon éééééiﬁiigiéﬂ
bRoots (S5 c0™*): 1 23 T2 T 35351 T 11

Now let us consider the matching of the above lists. We stigint w
matchingm from aRoots but no match is found even after travers-
ing the entirebRoots list. Therefore it is put int@UnMatched.

a andb are successfully matched withandb and since their fre-
guencies match, they are removed from the lists. Th#séth is
updated to reflect the found matches. Nexis matched withe.
However, since has a higher frequency it is not removed from the
bRoots list. d, ¢, andh are matched next with, e, andh. i is
matched withip ands;. j is matched withyj. c; is matched withe
and this timez is removed fronbRoots. f, g, andk are matched
with £, g, andk. Now aRoots is empty and sincbRoots contains

n, it is moved tobUnMatched.

Match = {(a, a), (b, D), ), (e,€), (h, ), (i, 0), (i, 1),

(4,9), (e1,0), (f7f)7(
aUnMatched = {m}
bUnMatched = {7}

S~
\‘3‘/
mj&

Thus, we see that despite the numerous apparent differerees
tween the two program versions, all roots have been exacttgmad
for the above example.

3.2 Matching Dependent Nodes

After matching the root nodes we proceed to the matchingeof th
dependent nodes, i.e. the internal nodes and the leaf nodks i
dDDGs of the two versions. In this step of the matching preces
we have more information available than the root matchieg.st
For dependent nodes not only do we have the local signatdires o
individual instructions that are used in matching; in aiddit the
dependence structure of the dDDG is also matched. For amatte
noden in one dDDG version to match an internal nadein the
other dDDG version, the following conditions must hold:

e signatures ofi andn’ must match;

e signatures ofall corresponding parents of and n’ must

match since the parents supply the operand values; and

signatures ofomecorresponding children of non-leaf nodes
n andn’ must match as the results must have similar uses.

The dependence structure matching not only enables mouesec
matching, since both the signatures and data dependencesef
sponding instructions must match, it also enables fastéchimg
as the signature of an instruction in one version need onbobe
pared with signatures of limited number of instruction sitymes

from the other version. The latter is true because the majcisi
driven by the dependence structure.

The matching we describe next consists of multiple passes du
ing which for each instruction in the dDDG of one versioMatch
set containing the corresponding matching instructiorthérother
version are determined. Tihdatch sets are conservatively overes-
timated and the iterative process continues to refine thetseti#
eventually no more refinement occurs. The refinement isezhrri
out by repeatedly applying two passe$pavard passand aback-
ward pass. Given an instruction in a dDDG, it may be directly
connected by edges to two types of nodes, its parent nodeissand
child nodes. During the forward pass, for a given instructio
in dDDG of one version, potential matching candidates from t
dDDG of the other version are identified by considering thécha
ing relationships of parent nodesf This estimate is further re-
fined by considering the matching relationships of child esdf
n in the backward pass. The refinement process is iteratiyely a
plied by repeating the forward and backward passes till ninéun
refinement is possible.

sign(a) = sign(a); sign(b) = sign(b) = sign(i);
sign(c) = sign(c) = sign(g);
sign(d) = sign(d) = sign(h);
sign(e) = sign(€); sign(f) — no match

Figure3: Initial root matches.

We first illustrate the matching process using a simple examp
and then present a detailed algorithm. Consider the two d®DG
shown in Figure 3 and the relationships between signaturas o
structions from the two versions. According to the signegigiven,
and the dependence structure, nodes, ¢, d, ande match with
nodesa, b, ¢, d, ande respectively. Now we illustrate how the
matching process is carried out.

First theroot matchingis performed using the algorithm de-
scribed in the preceding section. Let us assume that it pesiu
the result shown above, i.&/atch(a) = {a} and Match(b) =
{b, 1}. Theforward passinds matches for remaining nodes as fol-
lows. It examines the nodes in an order consistent with the-to
logical sort order of the nodes in the dDDG. First it examinede
c. To find corresponding instructions it first finds a candidsge
Sincec has one parentg, and Match(a) = {a}, the children
of a, i.e. {¢, g}, can be the potential matches foand thus they
form the candidate set. Now the signatureca$ compared with
signatures ofc and g. Since the signatures match, the first ap-
proximation of Match(c) is {¢, g}. Similarly we determine that
Match(d) = {d, h}. Next we examine nodewhich has two par-
entsc andd. The matching nodes efandd are examined and we
find that there are two nodes in the candidate set this tiraad f.
This is because both these nodes also have two parentsiikieh
come from setd/atch(c) and Match(d) respectively. However,
this time when we match signatures, while we find thegmains a
viable match,f is not a match foe. Thus at the end of the forward
pass, the\latch sets are as shown in Figure 4.



thatsign(e) = sign(f), thenc, d, ande will match pairs of nodes
{¢, g}, {d, h}, and{e, f} respectively.

The example considered so far has illustrated the key ideas b
hind our matching algorithm. However, the example consider
was simple in one respect. The dDDG of the first version was con
tained in its exact same form in the corresponding larger G2
the other version. However, as mentioned during the devetop
of the root matching algorithm, the second version may bierdif
ent from the firstin its form due to program transformatiosedito
derive the second version from the first. Lets consider amatk-
ample to illustrate that the same basic algorithm that wasrésed
above with some simple but important modifications also wdok
more general situations.

Version a

Figure4: Forward pass: Matching dDDGs.

Now let us perform thévackward pass In this pass we make
use of theM atch set for the only leaf node to refine theM atch
sets of its parent nodesandd and eventually the root nodes. In
other words the nodes are examined again in the reverseotppol
ical order this time. Lets consider nodefirst. Nodec has one

a

! ! ) | Transformation
child nodee such thatM atch(e) = {&}. The matching candidates Add (copy/move) e = (co.e1)
for c are nodes andd as they are the two parents @f However, Delete (spill/St-Ld) (f2, fa) — *
after matching the signaturesjs eliminated whilec remains. By Merge (redundancy) (fo, f1) = f
intersecting this backward estimate fofatch(c) with the earlier Split (rematerialization) h — (ho,h1)
forward estimate we conclude thafatch(c) = {¢}. Similarly Semantic (reassociation) (k(i(f1,h), €)) — (k(f,n(h1, €1))

Match(d) gets refined tdd}. When we continue the above pro-
cess to the roots, we find that whiM atch(a) = {a} remains the

same Match(b) is refined to{b}. Note that theM atch sets at this

point represent the desired results (see Figure 5).

. . Desired Matching
Figure5: Backward pass: Matching dDDGs.

While in the above example we performed the forward pass once Figure6: Another example of matching dDDGs.
and backward pass once, in general we may have to apply them
repeatedly till theM atch sets stabilize. The number of repeated In Figure 6 two versions of a dDDG are shown that are differ-
applications is bounded by the depth of the dDDG. However, in ent in their structure due to the transformations appliedexve
practice repeated application is almost never requiredhodigh version b of the program fromversion a. Lets look at how the
in the above example each instruction in the first dDDG matche transformations have changed the graph. Differences intezgl-
with exactly one instruction in the second dDDG, in genehné t location decisions for example, can resultauidition anddeletion
may not be the case. For example, if we change the example suchof nodes. Corresponding to nodeve have two nodeg, andeé;



in theversion b —¢; corresponds to a MOV instruction that moves
the result of, from one register to another causing the addition of
a node. Nodeg, and f5 correspond to spill code f» stores the
result of fo while f3 reloads this value for use by Better regis-
ter allocation may eliminate this spill leading version b of the
graph. Inversion a fy and fi perform the same computation and
thus they are merged during redundancy elimination. Thes,
sion b contains a single nodg corresponding to nodef, f1, fo,
and f3 in theversion a. Nodeh has been split inté, andh; due

to rematerialization. Reassociation has been performesirtgin-
termediate computationin version a to be replaced by a different
intermediate computation in version b.

Version a

o

Version b

Figure 7: Shapesof matching portions.

The correct matching for this example is also shown in Figure
and the matching portions of the two versions are shown ipédty
in Figure 7. The important thing to note here is that, unitke pre-
vious example discussed, in this case the correspondinghetit
portions of the dDDGs do not have an identical size or strectu
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Figure 8: Matching candidates.

Similar changes are made to the backward pass. During the
backward pass, given a nodea corresponding noden that is
a candidate for matching with was related ta as follows. There
was a child ofn, sayc(n), such thai(n) matchedmc(n) anden
was a parent ofnc(n). This rule is generalized as follows. First
c(n) need not be an immediate childwefout rather it is the closest
descendant of that has a non-empty match set. Again this rule
is needed to get across nodes that do not have any corresgondi
matches. Second oneec(n) is known, the candidates for match-
ing that are considered must inclugiez(n) and all direct or indi-
rect ancestors afic(n). Again, this rule is needed because chains
of nodes in one version may match a single node in anotheiovers
This modified relationship betweenandcn during the backward
pass is illustrated in Figure 8.

If we reconsider the example in Figure 7, we can see how the
above generalized rules will enable the match shown to lmdis
ered. When the subgraphis matched tal, first we are able to
match the chairfo. f2. f3 to f. Second even though the immediate
child of f1, i.e. ¢« has an empty match set, we are able cross over
i and matchk with k& the immediate child off. Thus f; is also
successfully matched witli. For similar reasons we are able to
successfully match to {ho, b1, h2} ande to {eo, €1 }.

We conclude by presenting the detailed matching algoritBea.

Let us now consider how such matches can be discovered. Con-fore presenting this algorithm we give the precise defingiofim-

sider the forward pass as illustrated earlier. Given a noieone
version of the dDDG, a corresponding nagein the other dDDG
that is a candidate for matching with was related tan as fol-
lows. There was a parent af sayp(n), such thap(n) matched
mp(n) andcn was a child ofmp(n). Of course there may be many
nodes that satisfy this criteria and hence they all are densd as
matching candidates. This rulegeneralizeds follows. Firsp(n)
need not be an immediate parentdut rather it is the closest an-
cestor ofn that has anon-empty match setThis rule is needed

to get across nodes that do not have any corresponding msatche
Note that such nodes may be introduced by transformatioes: S
ond oncemp(n) is known, the candidates for matching that are
considered must include:p(n) and all direct or indirect descen-
dants ofmp(n). This rule is needed because after transformations
have been applied, we may have chains of nodes in one vehgibn t
match a single node in another version. The modified relstign
betweem andcn is illustrated in Figure 8.

mediateancestors/descendantslf.c/iDes) andall ancestors/ de-
scendantsAnc/Des). These definitions are key to finding candi-
date sets during matching and incorporate the rules justisied.
Let us denote a dDDG a3(N, £), whereV is the set of nodes
and¢ is the set of edges. Furthermore lets denteto be the
subset of edges ifi such thag~ (A, £7) forms anacyclicgraph.
The definitions ofll andimmediateancestors and descendants are
given in Figure 9. Note that the computationimfmediateances-
tors/descendants depends uponithetch sets being empty or not.
The detailed matching algorithm is given in Figure 9 whickewh
giventwo dDDGsdD DG, = G(A, &) anddDDGy = G(B, &),
computes thél/ atch set for each node in A to be the subset of
nodes inB that are found to match. As already discussed, follow-
ing initialization the algorithm iterates over forward apackward
passes. During the computation Ghind set for a node: in the
forward pass it is ensured through the use of the interseofer-
ator that if a node in/ersion a uses two operands, the matching



node inVersion b also uses two operands. On the other hand, dur- cuted may increase or decrease. Thus, the list of resultaoy

ing the computation of'and set for a node: in the backward pass
it is ensured through the use of union operator that the nuoes
of value computed by node can vary between the two versions.
The algorithm terminates when all atch sets stabilize. Following
this, the unmatched nodesdiD DG, are the ones whosk/ atch
sets are empty and the unmatched node&MD G, are those that
do not belong ta\/ atch set of any node itd.

Anc(n) :=={n} U U Anc(p)
(p—n)e€~
Des(n) :={n} U U Des(c)
(n—c)e&—
tAnc(n) == ( {a})
(a—n)eE~ AMatch(a)#¢
U ( iAnc(a) )
(a—n)eE~ AMatch(a)=¢
iDes(n) := ( U {ar)
(n—d)eE~ AMatch(d)#¢
U ( tDes(d) )
(n—d)eE~ AMatch(d)=¢

MatchDataDependenceGraphs(D DG, DDG)) {
Given:
Let DDGq, = G(A, Eq); DDGy = G(B, &);
Initialization of Match sets.
for each noden € A do
if n is a root nodehen
Match(n) is found by the root matching algorithn.
ese
Match(n) — B
endif
endfor
Iterative refinement of Match sets.
While M atch sets continue to changi®
— Forward Pass:
Let topo.A be the topological sort ordering of
for each noden € topoA excluding rootslo
Cand = N Des(n) )
a€iAnc(n) n€Match(a)
Match(n) = Match(n) N
{¢: ¢ € Cand A sign(c) = sign(n)}
endfor
— Backward Pass:
Lettopo.A~1 be the reverse topo. sort ordering.4f
for each noden € topo.A~! excluding leaveslo
Cand = U ( U Anc(n) )
a€iDes(n) n€EMatch(a)
Match(n) = Match(n) N
{¢: ¢ € Cand A sign(c) = sign(n)}

endfor
endwhile
}
Figure9: Matching data dependence graphs.
3.3 Signature Matching

Now we describe how the local histories of instructions aedu
to form their signatures and how signature matching is peréal.
When we match the local histories of two instructions, weepss
tially match the stream of results produced by the instonsti The
results produced by an instruction can either represemearstof
data values or a stream of addresses. The most obvious appsoa
to look for an exact match between the stream of values. Heryvev
this is not a good way to match instructions. Recall that @oy
transformations may alter the order in which instructiostamces
are executed and also the number of times an instructioneis ex

instructions are unlikely to match exactly. One reason fange
in the number of executions is due to elimination of deadimses.
By eliminating all dead instances from both versions of tge d
namic histories we can avoid this problem. However, remov¥al
dead instances is not the only reason. Several other optiioies,
redundancy elimination and speculative code motion, atace
such changes. Therefore we derive simpler signatures fxact e
list of results such that the derived signatures can beyaasitched
even if program transformations have affected the cormdipg
instructions. For instructions with long execution higsrsuch
simplifications are unlikely to cause signatures of indtams that
do not correspond to each other to match. In case executssn hi
tories for some instructions are very small, there is a iigi
of coincidental matches. However, in such cases the mataifin
dependence structure is likely to avoid false matches.

Matching Data Value Streams. An ordered stream of data
values is converted into a simpler representation congisii a
vector ofunique valuegU). When matching execution histories,
we simply look forconsistencyot equality. Given two instructions
I, and I, we consider their value vectofg; and U, to match
if either U1 and U, contain the same set of values or all values
contained inU; (Uz) are contained ir> (U;). If values inU;
are a subset of values Uk, we consider instructiod; to be fully
matched and> to be partly matched.

Matching Address Streams. When considering address streams
we cannot simply match the unique addresses because tlessesr
will vary even if they correspond to each other. For enahtiragch-
ing of addresses, we first convert them to offsets. In casehebp
address the offset is measured from the base address of pnemor
block allocated from the heap. In case of a stack addresdfdet o
is measured with respect to the first access via the stackepoin
Once this conversion has been carried out, the comparisad-of
dress streams can be performed in the same fashion as thatufer
streams. This approach is effective because assume thasaiyg
memory layout optimizations are not performed.

4. EXPERIMENTAL RESULTS

Matching has been implemented in tfigmaran system [17].
Our implementation differs from the presented algorithnthiaat it
performs exhaustive comparisons during root matchingatsbf
using temporal ordering to speedup root matching. We gestetra
two versions of VLIW machine code supported under the Tranar
system by generating amoptimizedand anoptimizedversion of
programs. We ran the two versions on the same input, collecte
their detailed whole execution traces. The execution hesoof
corresponding functions were then compared. The IMPACT sys
tem on which Trimaran is based supports a wide range of opti-
mizations. To enable function by function comparison ofaiyic
histories, we turned off function inlining.

To evaluate our matching algorithm we carried out two sets of
experiments. First we used it to match unoptimized and dpéch
versions where no errors were present in the optimizer. &xtpsr-
iment was conducted to see how effective (fast and accusapey
matching algorithm in finding matches when they exist. Sd&a
periment was carried out to evaluate the effectiveness téhiray
during comparison checking where errors were introduceithén
optimized code. Before presenting the results of experisnese
describe the benchmarks used in this study.

4.1 Benchmark Characteristics

The program versions used in this evaluation are summairized
Table 1. For each program characteristics of two versianep-



timized(.U) and optimized(.O), are given. The number of exe-
cuted functions (functions present) in each program arengithe
static number of instructions in each version and the nuraber-
structions executed during program runs are given. As wesean
the static code size and the number of instructions exedlitienls
significantly for the two versions. This is because of aggjves
optimizations carried out by IMPACT. Optimization lev@l = 4
was used which performs constant propagation, copy projpaga
common subexpression elimination, constant combiningstemt
folding, code motion, strength reduction, dead code reinaval
loop optimizations etc.

Table 1: Program characteristics.

Program Functions Instructions U/O
Exec. (Exist) Static Num.] Exec. (millions)

li.U/O 118 (357) 37491/29637 64.7/65.1
m88ksim.U/O 25 (252) 68349/53522 62.0/61.8
twolf.U/O 51 (191) 125260/92807 64.0/63.3
go.U/O 277 (372) || 123702/92918 61.7/62.4
vortex.U/O 307 (923) || 307526/243678 61.7/60.8
parser.U/O 32 (324) 56526/47560 61.9/62.1

Since the comparison is being carried out between optinaned
unoptimized versions of a program, if our algorithm is efffies;
it should match a very high percentage of instructions friwe t
optimized version with corresponding instructions in threpti-
mized version. The number of instructions in unoptimizedeco
that match something in the optimized code is expected toveerl
because many statements are eliminated by the optimisgiog.,
redundancy elimination, dead code removal, copy propagatFi-
nally we expect some instructions in optimized code not techna
anything in the unoptimized version due to special feat(imes
structions) of the VLIW machine that are exploited by IMPACT
only during generation optimized code (e.g., branch angiment
instructions used in software pipelined code, load spéewdad
load verify instructions).

In Table 2 we present the characteristics of &i2DG's of un-
optimized and optimized versions of the executed functioFise
average number of executed root nodes, leaf nodes, andahter
nodes across all executed functions in each program argiakso.
As we can see, the versions differ significantly not only & tlum-
ber of nodes they execute but also in the shapes of the dyminic
pendence graphs as all three types of nodes differ in thaibeua
This is because the IMPACT system performs both machine inde
pendent and machine dependent optimizations very aggedssi

Table2: dDDG characteristics.

Program. Avg. Exec. Num. Across Funcs U/O
\ersion Roots [ Leaves] Internal Nodes
1i.U/O 17.2/15.1 8.7/7.5 22.5/14.0
m88skim.U/O| 20.7/18.3| 14.4/10.8 40.1/268.0
twolf.U/O 67.1/57.7] 28.1/25.0 150.3/102.0
go.U/O 38.8/34.8| 29.9/22.5 105.4/65.4
vortex.U/O 53.0/45.4] 26.2/21.8 66.9/39.0
parser.U/O 17.7/16.0| 12.3/10.2 29.2/19.1

4.2 Accuracy and Cost of Matching

each program version. This number of executed nodes comdsp
to the total number of executed nodes matched in all of the-fun
tions combined. These are also the nodes that our algorithm a
tempts to match with each other. The percentage on thess imode
each version for which matches were found in the other versio
given. On an average, for over 95% of the nodes in the optinize
code, one or more corresponding matches were found. Fonthe u
optimized code this number is lower as expected. This isusexa
after aggressive optimization, the average number ofunstms

in the unoptimized version is nearly 25% less than in the tinop
mized version (12909 vs. 17292). Many of these instructienge

no corresponding instruction in the optimized code.

Table 3;: Nodes matched.

Program Optimized Unoptimized
Nodes | Matched (%) || Nodes| Maiched (%)
li 4325 97.0 4989 82.1
ma88skim 1398 95.1 1882 81.9
twolf 9419 94.2 || 12517 86.8
go 28701 91.0 || 40753 76.9
vortex 32583 97.7 || 44857 81.7
parser 1450 96.1 1893 84.8
[ Average ][ 12909 ] 95.2 ] 17292 ] 82.4 |

Although some of the instructions were not matched by ouchzat
ing algorithm, this does not necessarily mean that the reatshould
have been found but were missed by our matching algorithmmeSo
instructions are not matched due to the features of the VLI&Y m
chine used only by the optimized version and optimizatianshs
as strength reduction which introduce computations thadlyre
different intermediate results in the two versions. Themfto de-
termine the completeness of the above matches we examiaed th
codes and the matches generated. Since this process hageo be
formedmanually we could not perform it for all the functions. We
first looked at many small functions and found that their mesc
were almost always 100% complete. Then for each program we se
lected an executed function based upon its complexity: \ee
the largest functionfor which the number of distinct executed in-
structions in the two versions differed the mo3the number of
distinct instructions executed in the optimizefla(ec.O) and un-
optimized Exec.U) versions of selected functions are given in
Table 4. We manually found thactual total number of match-
ing pairs of instructions by considering all executed nstions
from the optimized code. By comparing these matching paitls w
those found by our algorithm, we determined the number akpai
that aremissedand the number that afalsematches. The results
of this experiment given in Table 4 show that we miss very few

Table 4: Matching accuracy.

Fn.Program.|| Exec.O | Exec.U Matches
\ersion Actual | Missed | False
li 78 131 112 0 37
m88ksim 313 426 823 4 72
twolf 765 989 1067 0 220
go 596 939 1362 0 69
vortex 399 677 840 21 336
parser 194 257 243 0 29

Now we present results when unoptimized version was matched
with an optimized version that had no errors introduced byithe pairs although we do find some more false matches. This is not
optimizer. The goal of this experiment is to study the accyand surprising since our signature matching is conservatiwk tans
cost of our matching algorithm. we are less likely to miss matches and more likely to find some

In Table 3 we summarize the extent to which the execution his- false matches. However, having some false matches is nabase
tories of program versions were matched. The total numbstadf problem for two reasons. First, for every instruction thatfaund

ically distinct nodes that were executed at least once amndbr a false match, we also found the true matches. Second, wavéeeli



that false matches can be further reduced without changngro-

posed algorithm. Longer and/or multiple runs of the two paog

versions can be used to refine the matches found by a single run
Finally we claim that missed matches are more harmful the¢fa

ported instructions is small if. In other cases where the number is
large, by examining the instructions in the order they aexated,
erroneous instructions can be quickly isolated. Othermepan-
structions are merely dependent upon the instructionsatteathe

matches because user can examine the matches found and elimiroot causes of the errors. For exampletdrvl f, out of the over

nate false matches but finding missed matches is far moreudi
Therefore we have designed our algorithm to be on the coaibesv
side, more matches are found than truly exist.

2000 reported instructions at the end of second interval, we only
need to examine the fir$t reported instructions in temporal order
to find an erroneous instruction. Note that even when no e

Table 5 gives the total space (in MegaBytes) and time (in sec- encountered, some instructions in the optimized versiemaver-

onds) cost of matching. The space cost mainly arises dueeto th
dynamic history used while the time represents the effardkies

to match all of the execution functions. As we can see the time
and space costs are reasonable to match executions ofléaigly
programs involving execution of hundreds of distinct fuoics.

Table5: Cost: Space, time, and iterations (aver ages).

Program | Space| Time Iterations
(MB) | (sec.)|[ dDDG | Num. | After | Final
Depth | Iter. | 1lter. | Iter.
li 45 302 5.13 181 | 375 ] 1.61
m88skim [ 29.3 289 5.96 1.88 | 5.66 | 2.50
twolf 52.0 362 1261 | 2.06 | 715 | 2.74
go 18.0 387 12.07 | 1.93 | 742 | 3.10
vortex 7.8 467 5.89 1.96 711 | 1.89
parser 5.1 265 5.53 200 | 293 | 204

We also studied how quickly our iterative matching algarith
stabilizes. In Table 5 the average depth of the dDDGs acilbss a
functions is given (dDDG Depth). The average number of itens
(Num. Iter.) it actually took for sets to stabilize is alsoayi. As we
can see, although the depths of the graphs can be large, riteenu
of iterations required before the atch sets stabilize is small. The
average match set sizes after first iteration (After 1 ltengl after
algorithm stabilized (Final) are also given to show thatythee
indeed reduced significantly by our iterative algorithm.

4.3 Matching for Comparison Checking

Next we evaluated matching in context of comparison check-
ing. We injected three different errors into the first thremdh-
marks. These errors simulate the effect of erroneous datero
sults forcommon subexpression eliminaticopy propagatiorand
dead code eliminatianDuring comparison checking matching is
used to match as many instructions as possible betweengbatex
ing unoptimized and optimized versions at regular inter{akecu-
tion of 8 million instructions). The instructions that dotmoatch
are reported to the user for examination as they may contear-a
ror. We plotted the number of distinct reported instructias a
percentage of distinct executed instructions over timavimditua-
tions: when optimized program had no error and when it copthi
an error (see Figure 10). The points in the graph are alsaateub
with the actual number of instructions reported. The irdeduring
which error point is encountered during execution is marked

As we can see, compared to the optimized programs without er-
rors, the number of reported instructions increases shaffgr the
error interval point is encountered. For two out of the three bench-
marks, the increases are sharg% to 14% for m88ksim and
3% to 35% for twol f. In fact when we look at the actual num-
ber of instructions reported immediately before and afterexe-
cution interval during which error is first encountered, tiuenber
reported increases by an order of magnitude. Fdhe error is
such that erroneous results are not propagated far and gnsgav
a smaller increase. User examining the reported instmgto@n
fairly quickly focus on erroneous instructions as the nundfee-

theless reported. The reporting of some instructions isaidable
even with a perfect matching algorithm because there is n@co
sponding match for them in the unoptimized version.
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Figure 10: Statementsreported for checking.

From the results of the above experiment we can see that erro-
neous behavior is caught very effectively by our matchirgpal
rithm. Thus, we can conclude that our matching algorithmesak
the task of implementing comparison checking simple as é&sdo
not require the compiler writer to generate mappings betvwee
optimized and optimized instructions. Moreover, if the qiler
does not provide such mappings and no source for the conipiler
available (e.g., itis a commercial compiler), we can stilpiement
comparison checking using our matching algorithm.



5. RELATED WORK

Static differencing algorithmsAn existing class of algorithms
that compare two program versions atatic differencingalgo-
rithms [1, 3, 8, 9]. These algorithms perform differencingliéer-
ent levels: [9] finds differences using line by line companis[1,

8] find differences by comparing control flow graphs, and [&he
pares input/output dependences of procedures. With thepéra
of [3], these algorithms report statements that appear ttiffszent
as being different. Moreover, these algorithms work withrse or
intermediate code representations of the program versioreon-
trast our matching algorithms work at binary level and theatah
instructions that dynamically behave the same even thohgh t
statically appear to be different.

Differencing dynamic historiesResearch has been carried out
ondifferencing dynamic historiesf program executions. The ben-
efits of such algorithms for software maintenance have besogr
nized. In [10] Reps et al. made use of path profiles to recegniz

Y2K bugs in programs. Wilde [14] has developed a system that

enables a programmer to visualize the changes in the dyrizamic
havior of a program. However, in these works dynamic higsori
of different executions, corresponding to two differeruts, of a
single version of a program are compared. In contrast, ouk wo
considers matching of dynamic histories of two program ivess
on the same input.

Existing matching techniquesThere are some existing tech-
niques for matching: procedure extraction [6] requiresrs®Lwor
intermediate code matches while BMAT [12] works on binaries
BMAT matches binaries to enable propagation of profile data c
lected by executing one binary to a transformed binary sbréia
execution of the latter could be avoided. Given the naturthisf
application, it made sense to match binaries staticallytherother
hand, in applications such as comparison checking and aadtw
piracy detection we are interested in matching the dynameiab-
iors of two versions and the execution profiles of the two ieers
are already available.

6. CONCLUSIONS

In this paper we presented an algorithm for matching exewuti
histories of two program versions. Since results produgedthb
structions are used to perform the matching, we are able tohma
instructions that appear to be different but compute theeseam
sults. In this way we overcome the problem of matching ircstru
tions in presence of different program transformationg thay
have been applied in generating the two versions. To avdse fa
matches when instructions coincidentally produce the sasdts,
we also match the dynamic data dependence structures afitie ¢
putations. Again our algorithm for matching the dependestngc-
ture succeeds in matching dependence graphs that behasantiee
but appear to be different. We demonstrated that using rimatch
we can enable implementation of comparison checking evérein
absence of source code of the optimizing compiler. Our orgyoi
work is exploring the use of matching in software piracy deéts.
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