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ABSTRACT
We develop a method for matching dynamic histories of program
executions of two program versions. The matches produced can
be useful in many applications including software piracy detection
and several debugging scenarios. Unlike some static approaches
for matching program versions, our approach does not require ac-
cess to source code of the two program versions because dynamic
histories can be collected by running instrumented versions of pro-
gram binaries. We base our matching algorithm on comparison
of rich program execution histories which include: controlflow
taken, values produced, addresses referenced, as well as data de-
pendences exercised. In developing a matching algorithm wehad
two goals: producing anaccurate matchand producing itquickly.
By using rich execution history, we are able to compare the pro-
gram versions across many behavioral dimensions. The result is
a fast and highly precise matching algorithm. Our algorithmfirst
uses individual histories of instructions to identify multiple poten-
tial matches and then it refines the set of matches by matchingthe
data dependence structure established by the matching instructions.
To test our algorithm we attempted matching of execution histo-
ries of unoptimized and optimized program versions. Our results
show that our algorithm produces highly accurate matches which
are highly effective when used in comparison checking approach
to debugging optimized code.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Debuggers;
D.2.5 [Software Engineering]: Testing and Debugging—Debug-
ging aids, Tracing

General Terms
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1. INTRODUCTION
In many application areas, including the areas of software debug-

ging, maintenance and piracy detection, situations arise in which
there is a need for comparingtwo versionsof a program. An ex-
isting class of algorithms that compare two program versions are
static differencingalgorithms [1, 3, 8, 9]. While these algorithms
report static differences between code sequences, in situations where
the two program versions correspond to original and transformed
versions of a program, it is desirable to match code sequences that
dynamically behave the same even though they statically appear to
be different.

In this paper we describe the design and implementation of an
algorithm formatching binaries of two versions of a program us-
ing their dynamic execution histories. Let us consider the applica-
tions such as software piracy detection and debugging of optimized
code. In these two applications one program version is created by
transforming the other version. In the first application code obfus-
cation transformations may have been performed to hide piracy [2,
13]. In the second application transformations are appliedto gen-
erate an optimized version from the unoptimized version. Byper-
forming matching based upon execution histories, we can match
corresponding computations by comparing the results produced by
them. Static differencing approaches, on the other hand areaimed
at finding apparent differences and thus are not suitable forabove
applications. In case of software piracy detection we will not have
access to the source or intermediate code of the pirated version and
thus matching should be performed using binaries. Our general so-
lution to matching execution histories relies only on the availability
of binaries as dynamic execution histories can be collectedby run-
ning instrumented program binaries [7, 11].

A General Matching Algorithm. In developing an algorithm for
matching execution histories of two versions of a program wehave
two goals: developing an algorithm that isfast, i.e. presence or
absence of matches can be determined quickly without excessive
search; andaccuratematches are found, i.e. true matches are re-
ported and very few matches are missed. To address these goals we
use the following approach. We begin by conservatively identify-
ing potential matches so that real matches are not missed. Byusing
rich execution history, we are able to compare the program ver-
sions across many behavioral dimensions. This leads to mostly true
matches being found. Moreover, the number of possible matches
that we need to consider greatly reduces when multiple kindsof
information is used thereby resulting in a fast matching algorithm.
Thus, by basing our algorithm on performing many different simple
matches, instead of fewer very complicated matches, we obtain an
execution history matching algorithm that is both fast and precise.



Matching for Comparison Checking. While matching has many
applications, in this paper we demonstrate the benefits of our match-
ing algorithm in context ofcomparison checking[4, 5], a technique
that determines whether erroneous behavior of optimized version is
being caused by a bug in the original unoptimized version that was
unmasked by optimizing transformations or whether it is dueto a
bug that was introduced due to an error in the optimizer. Compar-
ison checking works by comparing the values computed by corre-
sponding execution instances of statements in the unoptimized and
optimized program versions. If no mismatch in values is found,
then the error must be present in the original unoptimized program.
A mismatch of values on the other hand indicates that the error must
have been introduced by the optimizer. In order to performcom-
parison checking, the compiler writer must write additional code
that generatesmappingbetween execution instances of statements
in the unoptimized and optimized versions.

Modifying the compiler to generate the mappings is a tedious
and time consuming task and in fact in some situations this may
not be a viable option. In particular, if a commercial optimizing
compiler is being used, we will not be able to modify it to generate
such mappings.In absence of mappings and/or compiler source,
the algorithm we present in this paper can be used to match the
executions of unoptimized and optimized versions. If a complete
matchis found then the bug must have been present in the unop-
timized program. If acomplete matchis not found, then the parts
of the execution histories that cannot be matched can be examined
by the programmer to identify the likely source of the bug. Itis
important to note that the static approaches for comparing program
versions will not be effective for this application where wewant to
compare specific executions.

We tested our matching algorithm by matching the execution his-
tories of unoptimized and optimized program versions. Our results
show that our algorithm is very effective as it producesaccurate
matches that arenearly complete(i.e., there are few false or missed
matches).

The remainder of the paper is organized as follows. In section
2 we describe the form of dynamic execution histories used inthis
work. Our matching algorithm is described in detail in section 3.
The results of our experiments are presented in section 4. Related
work is discussed in section 5. Conclusions are given in section 6.

2. PROGRAM EXECUTION TRACES
We recently proposed theWhole Execution Trace(WET) [16]

representation that stores comprehensive execution history of a pro-
gram in a highly compacted form as annotations to the static repre-
sentation of executable code. We demonstrated that execution his-
tories of realistically long program runs (few billion instructions)
can be kept in memory. Below we briefly describe the information
contained in the execution history and how it is useful in matching
program versions. The dynamic information can be categorized
broadly into two categories:local - values and addresses involved
in execution of a specific instruction; andglobal - relative execu-
tion order and dependences between different instructions. Only
the summary of some of the above information is needed by our
matching algorithm. Therefore, execution histories of even longer
runs can be easily collected and stored for matching.

Values produced (Local). A stream of results produced by an
instruction during a program execution are captured. If twopro-
gram versions are expected to produce the same results on a pro-
gram input, the streams of values for vast majority of instructions
are expected to be the same in the two versions. Therefore these
streams of values can be compared to find matching instructions.

Addresses referenced (Local). For a memory referencing in-
struction a stream of addresses referenced by the instruction during
a program execution are captured. While the actual addresses en-
countered during executions of corresponding instructions of the
two program versions may vary, the relative address offsetsex-
hibit similar patterns. Therefore these patterns provide yet another
means for matching instructions.

Control flow (Global). The whole program path followed dur-
ing an execution is captured. This history enables temporalorder-
ing of all interesting events (e.g., I/O operations). Theseorderings
provide a good starting point for search when events of a given
type from the execution histories of two program versions are be-
ing matched with each other.

Dependences exercised (Global). For each execution of an
instruction its data and control dependence history is captured and
used in conjunction with the value and address histories to pro-
duce accurate matches. Note that value and address histories es-
sentially perform matching of individual instructions andthere is a
chance that some coincidental or false matches will be produced.
By matching the dynamic data dependence graphs, we can confirm
with much greater certainty that the instructions truly correspond to
each other. Matching of dynamic data dependence graphs confirms
the collective correctness of the matches for a group of instructions.
Thus, it effectively reduces false matches.

Other. System calls, I/O operations, and memory allocation
deallocation operations are examples of special events that are cap-
tured. Since these events are likely to change little from one pro-
gram version to another, matching them using the temporal order-
ing is quite useful.

From the discussion it should be clear that matching of pro-
gram versions is based upon comparison of program behavior along
many behavioral dimensions. This is key to the success of ourap-
proach as it prevents inaccurate matches from occurring.

3. MATCHING EXECUTION HISTORIES
The goal of the matching process is to automatically establish

a correspondence betweenexecuted instructionsfrom the two pro-
gram versions. We assume that the two versions of the program
resulted after one version was transformed into another through se-
mantics preserving program transformations. In finding a match-
ing it is our goal to produce highlyaccuratematches. Accuracy
has two dimensions:completeness- we would like to discover as
many true matches as possible; andcorrectness- we would like to
discover only true matches.

Given a pair of execution histories for two versions of a program,
we establish a correspondence between the executed instructions
by examining thedynamic data dependence graphs(dDDGs) of
the two versions as well as the histories of individual instructions
in the dDDGs. A dDDG contains a node for eachinstruction that is
executed at least onceand an edge for eachdata dependence that is
exercised at least onceduring the program execution. The match-
ing process consists of three main algorithms:

Signatures. Based upon the local execution history of a given
instruction, a signature is computed. The signatures of instructions
are compared to determine potential matches or exclude matches
throughout the two algorithms identified next.

Root Nodes. We begin by matching the roots of the dynamic
data dependence graphs of two program versions. The matching
is assisted by global information in form of the temporal order in
which the root nodes are executed and local information in form of
signatures of individual instructions.



Dependant Nodes. Given the matching of the roots, an itera-
tive algorithm is used to match the remaining nodes in the dynamic
data dependence graphs. For each instruction in one dependence
graph, the algorithm finds a set of matching candidate instructions
in the other data dependence graph through iterative refinement us-
ing the structure of the dynamic data dependence graph.

Next we discuss the details of the root matching and dependent
node matching algorithms. During these algorithms we will assume
that signatures are already available. Finally we discuss the details
of signature generation and matching.

3.1 Matching Root Nodes
Before we present the root matching algorithm, we make the fol-

lowing observations. First a root node of a dDDG may come from
any point in the program’s control flow graph. This is because
root nodes correspond to instructions such as variable initializa-
tions, reads, memory allocations etc. all of which can appear any
where in a program. Second semantic preserving program transfor-
mations that may have been used to create another version of the
program can have significant affects on these instructions.In par-
ticular, an instruction may beadded or deleted, it may bemerged
with another instruction orsplit into two instructions, it may be
reorderedwith respect to other instructions, or it may have been
simplymovedcausing its execution frequency to change.
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Figure 1: Matching roots of program versions.

An example in Figure 1, illustrates the above observations.First
all instructions shown, which are indicated by letters, areassumed
to be root nodes that are spread throughout the control flow graph.
The dotted edges between the two versions indicates the correspon-
dence between these instructions. The table in the figure shows
the transformations that resulted in generation ofVersion b from
Version a. To distinguish between corresponding instruction in
the two versions we use the notationi and ī. When multiple in-
structions in one version correspond to one instruction in the other
version, subscripts are used.

Next we present a root matching algorithm that has been de-
signed taking into account the above observations. Given two ver-

sions of a program,Version a andVersion b, we begin by first
generatingtemporally orderedlists of the root nodes,aRoots and
bRoots, as follows. Each root node appears once in the list. The
order in which nodes appear corresponds to the order in which
their first executionstook place. This ordering is determined from
the full control flow trace. Given the two lists, a call to function
Match(aRoots,bRoots) in Figure 2 produces a matching of the
root nodes. The outcome of the matching process is identification
of pairs of nodes fromaRoots andbRoots that match and set of
nodesaUnMatched andbUnMatched that contain the nodes that
do not have a corresponding matches.

Match(aRoots,bRoots){
Matched← aUnMatched← bUnMatched← φ;
i← first(aRoots);
j ← first(bRoots);
while aRoots 6= φ do

if sign(ai) = sign(bj) then
Matched←Matched ∪ {(ai, bj)};
if freq(ai) = freq(bj) then

i← next(aRoots);
j ← next(bRoots);
aRoots ← aRoots − {ai};
bRoots← bRoots − {bj};

elseif freq(ai) < freq(bj) then
i← next(aRoots);
aRoots ← aRoots − {ai};
freq(bj)← freq(bj) − freq(ai);

elseif freq(ai) > freq(bj) then
j ← next(bRoots);
bRoots← bRoots − {bj};
freq(ai)← freq(ai)− freq(bj);

endif
else

j ← next(bRoots);
if j = nil then

aUnMatched← aUnMatched ∪ {ai};
i← first(aRoots);
j ← first(bRoots);

endif
endif

endwhile
if bRoots 6= φ then

for each b ∈ bRoots do
if 6 ∃(a, b) ∈Matched then

bUnMatched← bUnMatched ∪ {b};
endif

endfor
endif
return(Matched,aUnMatched,bUnMatched)

}

Figure 2: Matching temporally ordered roots.

Our algorithm takes one instruction fromaRoots at a time (de-
noted asai) and finds the instruction(s) frombRoots that match
this instruction. To find a match, the signature ofai, sign(ai), is
compared with the signatures of instructions inbRoots one at a
time. If a match is found with instructionbj in bRoots, number of
cases arise. If frequency of the matching instructions is the same,
we consider matching of bothai andbj to be complete and they
are removed from the lists. If the frequency ofai is lower, then we
consider the matching ofai to be complete but not that ofbj – thus,
ai is removed but notbj . If the frequency ofbj is lower, then we
consider the matching ofbj to be complete but not that ofai. Using
the above algorithm we enable one instruction in one versionto be
matched with multiple instructions in the other version. Also, all
instructions in each version that do not match any instruction in the
other version are also identified.



While the above algorithm appears to be quite simple, it is very
effective in practice. We apply the above algorithm to the exam-
ple of Figure 1 and show how our algorithm identifies the correct
match. Let us first consider executions of the two versions ofthe
program on the same input. Let us assume that the execution path
followed during these executions is as follows:

Version a: m a b c0 d e d e h i j b c1 f g f g h i j k.
Version b: ā c̄ b̄ d̄ ē ē ī0 h̄ j̄ c̄ b̄ f̄ f̄ ḡ ī1 h̄ j̄ k̄ n̄.

From the above control flow paths we can find ordered list of
the root nodes based upon when the instructions were executed the
first time in the above trace. In addition, we can also computethe
number of times each instruction is executed. Below we give the
ordering and frequency of the executed instructions.
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Now let us consider the matching of the above lists. We start with
matchingm from aRoots but no match is found even after travers-
ing the entirebRoots list. Therefore it is put intoaUnMatched.
a andb are successfully matched with̄a andb̄ and since their fre-
quencies match, they are removed from the lists. The setMatch is
updated to reflect the found matches. Nextc0 is matched with̄c.
However, sincēc has a higher frequency it is not removed from the
bRoots list. d, e, andh are matched next with̄d, ē, and h̄. i is
matched withī0 andī1. j is matched with̄j. c1 is matched with̄c
and this timēc is removed frombRoots. f , g, andk are matched
with f̄ , ḡ, andk̄. Now aRoots is empty and sincebRoots contains
n̄, it is moved tobUnMatched.

Match = {(a, ā), (b, b̄), (c0, c̄), (d, d̄), (e, ē), (h, h̄), (i, ī0), (i, ī1),
(j, j̄), (c1, c̄), (f, f̄), (g, ḡ), (k, k̄)}
aUnMatched = {m}
bUnMatched = {n̄}

Thus, we see that despite the numerous apparent differencesbe-
tween the two program versions, all roots have been exactly matched
for the above example.

3.2 Matching Dependent Nodes
After matching the root nodes we proceed to the matching of the

dependent nodes, i.e. the internal nodes and the leaf nodes in the
dDDGs of the two versions. In this step of the matching process
we have more information available than the root matching step.
For dependent nodes not only do we have the local signatures of
individual instructions that are used in matching; in addition, the
dependence structure of the dDDG is also matched. For an internal
noden in one dDDG version to match an internal noden′ in the
other dDDG version, the following conditions must hold:

• signatures ofn andn′ must match;

• signatures ofall corresponding parents ofn and n′ must
match since the parents supply the operand values; and

• signatures ofsomecorresponding children of non-leaf nodes
n andn′ must match as the results must have similar uses.

The dependence structure matching not only enables more accurate
matching, since both the signatures and data dependences ofcorre-
sponding instructions must match, it also enables faster matching
as the signature of an instruction in one version need only becom-
pared with signatures of limited number of instruction signatures

from the other version. The latter is true because the matching is
driven by the dependence structure.

The matching we describe next consists of multiple passes dur-
ing which for each instruction in the dDDG of one version, aMatch
set containing the corresponding matching instructions inthe other
version are determined. TheMatch sets are conservatively overes-
timated and the iterative process continues to refine these sets till
eventually no more refinement occurs. The refinement is carried
out by repeatedly applying two passes, aforward passand aback-
ward pass. Given an instructionn in a dDDG, it may be directly
connected by edges to two types of nodes, its parent nodes andits
child nodes. During the forward pass, for a given instruction n
in dDDG of one version, potential matching candidates from the
dDDG of the other version are identified by considering the match-
ing relationships of parent nodes ofn. This estimate is further re-
fined by considering the matching relationships of child nodes of
n in the backward pass. The refinement process is iteratively ap-
plied by repeating the forward and backward passes till no further
refinement is possible.
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sign(a) = sign(ā); sign(b) = sign(b̄) = sign(̄i);
sign(c) = sign(c̄) = sign(ḡ);
sign(d) = sign(d̄) = sign(h̄);

sign(e) = sign(ē); sign(f̄) − no match

Figure 3: Initial root matches.

We first illustrate the matching process using a simple example
and then present a detailed algorithm. Consider the two dDDGs
shown in Figure 3 and the relationships between signatures of in-
structions from the two versions. According to the signatures given,
and the dependence structure, nodesa, b, c, d, ande match with
nodesā, b̄, c̄, d̄, and ē respectively. Now we illustrate how the
matching process is carried out.

First the root matchingis performed using the algorithm de-
scribed in the preceding section. Let us assume that it produces
the result shown above, i.e.Match(a) = {ā} andMatch(b) =
{b̄, ī}. Theforward passfinds matches for remaining nodes as fol-
lows. It examines the nodes in an order consistent with the topo-
logical sort order of the nodes in the dDDG. First it examinesnode
c. To find corresponding instructions it first finds a candidateset.
Sincec has one parent,a, andMatch(a) = {ā}, the children
of ā, i.e. {c̄, ḡ}, can be the potential matches forc and thus they
form the candidate set. Now the signature ofc is compared with
signatures of̄c and ḡ. Since the signatures match, the first ap-
proximation ofMatch(c) is {c̄, ḡ}. Similarly we determine that
Match(d) = {d̄, h̄}. Next we examine nodee which has two par-
entsc andd. The matching nodes ofc andd are examined and we
find that there are two nodes in the candidate set this time,ē andf̄ .
This is because both these nodes also have two parents likee which
come from setsMatch(c) andMatch(d) respectively. However,
this time when we match signatures, while we find thatē remains a
viable match,f̄ is not a match fore. Thus at the end of the forward
pass, theMatch sets are as shown in Figure 4.
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Figure 4: Forward pass: Matching dDDGs.

Now let us perform thebackward pass. In this pass we make
use of theMatch set for the only leaf nodee to refine theMatch
sets of its parent nodesc andd and eventually the root nodes. In
other words the nodes are examined again in the reverse topolog-
ical order this time. Lets consider nodec first. Nodec has one
child nodee such thatMatch(e) = {ē}. The matching candidates
for c are nodes̄c andd̄ as they are the two parents ofē. However,
after matching the signatures,d̄ is eliminated whilēc remains. By
intersecting this backward estimate forMatch(c) with the earlier
forward estimate we conclude thatMatch(c) = {c̄}. Similarly
Match(d) gets refined to{d̄}. When we continue the above pro-
cess to the roots, we find that whileMatch(a) = {ā} remains the
same,Match(b) is refined to{b̄}. Note that theMatch sets at this
point represent the desired results (see Figure 5).
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Figure 5: Backward pass: Matching dDDGs.

While in the above example we performed the forward pass once
and backward pass once, in general we may have to apply them
repeatedly till theMatch sets stabilize. The number of repeated
applications is bounded by the depth of the dDDG. However, in
practice repeated application is almost never required. Although
in the above example each instruction in the first dDDG matched
with exactly one instruction in the second dDDG, in general this
may not be the case. For example, if we change the example such

thatsign(e) = sign(f̄), thenc, d, ande will match pairs of nodes
{c̄, ḡ}, {d̄, h̄}, and{ē, f̄} respectively.

The example considered so far has illustrated the key ideas be-
hind our matching algorithm. However, the example considered
was simple in one respect. The dDDG of the first version was con-
tained in its exact same form in the corresponding larger dDDG of
the other version. However, as mentioned during the development
of the root matching algorithm, the second version may be differ-
ent from the first in its form due to program transformations used to
derive the second version from the first. Lets consider another ex-
ample to illustrate that the same basic algorithm that was described
above with some simple but important modifications also works for
more general situations.
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Figure 6: Another example of matching dDDGs.

In Figure 6 two versions of a dDDG are shown that are differ-
ent in their structure due to the transformations applied toderive
version b of the program fromversion a. Lets look at how the
transformations have changed the graph. Differences in register al-
location decisions for example, can result inadditionanddeletion
of nodes. Corresponding to nodee we have two nodes̄e0 and ē1



in theversion b – ē1 corresponds to a MOV instruction that moves
the result ofē0 from one register to another causing the addition of
a node. Nodesf2 andf3 correspond to spill code –f2 stores the
result off0 while f3 reloads this value for use byg. Better regis-
ter allocation may eliminate this spill leading toversion b of the
graph. Inversion a f0 andf1 perform the same computation and
thus they are merged during redundancy elimination. Thus,ver-
sion b contains a single nodēf corresponding to nodesf0, f1, f2,
andf3 in theversion a. Nodeh has been split intōh0 andh̄1 due
to rematerialization. Reassociation has been performed causing in-
termediate computationi in version a to be replaced by a different
intermediate computation̄n in version b.
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Figure 7: Shapes of matching portions.

The correct matching for this example is also shown in Figure6
and the matching portions of the two versions are shown pictorially
in Figure 7. The important thing to note here is that, unlike the pre-
vious example discussed, in this case the corresponding matched
portions of the dDDGs do not have an identical size or structure.

Let us now consider how such matches can be discovered. Con-
sider the forward pass as illustrated earlier. Given a noden in one
version of the dDDG, a corresponding nodecn in the other dDDG
that is a candidate for matching withn was related ton as fol-
lows. There was a parent ofn, sayp(n), such thatp(n) matched
mp(n) andcn was a child ofmp(n). Of course there may be many
nodes that satisfy this criteria and hence they all are considered as
matching candidates. This rule isgeneralizedas follows. Firstp(n)
need not be an immediate parent ofn but rather it is the closest an-
cestor ofn that has anon-empty match set. This rule is needed
to get across nodes that do not have any corresponding matches.
Note that such nodes may be introduced by transformations. Sec-
ond oncemp(n) is known, the candidates for matching that are
considered must includemp(n) and all direct or indirect descen-
dants ofmp(n). This rule is needed because after transformations
have been applied, we may have chains of nodes in one version that
match a single node in another version. The modified relationship
betweenn andcn is illustrated in Figure 8.
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Figure 8: Matching candidates.

Similar changes are made to the backward pass. During the
backward pass, given a noden a corresponding nodecn that is
a candidate for matching withn was related ton as follows. There
was a child ofn, sayc(n), such thatc(n) matchedmc(n) andcn
was a parent ofmc(n). This rule is generalized as follows. First
c(n) need not be an immediate child ofn but rather it is the closest
descendant ofn that has a non-empty match set. Again this rule
is needed to get across nodes that do not have any corresponding
matches. Second oncemc(n) is known, the candidates for match-
ing that are considered must includemc(n) and all direct or indi-
rect ancestors ofmc(n). Again, this rule is needed because chains
of nodes in one version may match a single node in another version.
This modified relationship betweenn andcn during the backward
pass is illustrated in Figure 8.

If we reconsider the example in Figure 7, we can see how the
above generalized rules will enable the match shown to be discov-
ered. When the subgraph1 is matched tō1, first we are able to
match the chainf0.f2.f3 to f̄ . Second even though the immediate
child of f1, i.e. i has an empty match set, we are able cross over
i and matchk with k̄ the immediate child off̄ . Thusf1 is also
successfully matched with̄f . For similar reasons we are able to
successfully matchh to {h̄0, h̄1, h̄2} ande to {ē0, ē1}.

We conclude by presenting the detailed matching algorithm.Be-
fore presenting this algorithm we give the precise definitions ofim-
mediateancestors/descendants (iAnc/iDes) andall ancestors/ de-
scendants (Anc/Des). These definitions are key to finding candi-
date sets during matching and incorporate the rules just discussed.
Let us denote a dDDG asG(N , E), whereN is the set of nodes
andE is the set of edges. Furthermore lets denoteE− to be the
subset of edges inE such thatG−(N , E−) forms anacyclicgraph.
The definitions ofall andimmediateancestors and descendants are
given in Figure 9. Note that the computation ofimmediateances-
tors/descendants depends upon theMatch sets being empty or not.

The detailed matching algorithm is given in Figure 9 which when
given two dDDGs,dDDGa = G(A, Ea) anddDDGb = G(B, Eb),
computes theMatch set for each noden in A to be the subset of
nodes inB that are found to matchn. As already discussed, follow-
ing initialization the algorithm iterates over forward andbackward
passes. During the computation ofCand set for a noden in the
forward pass it is ensured through the use of the intersection oper-
ator that if a node inVersion a uses two operands, the matching



node inVersion b also uses two operands. On the other hand, dur-
ing the computation ofCand set for a noden in the backward pass
it is ensured through the use of union operator that the number uses
of value computed by noden can vary between the two versions.
The algorithm terminates when allMatch sets stabilize. Following
this, the unmatched nodes indDDGa are the ones whoseMatch
sets are empty and the unmatched nodes indDDGb are those that
do not belong toMatch set of any node inA.

Anc(n) := {n} ∪
S

(p→n)∈E−

Anc(p)

Des(n) := {n} ∪
S

(n→c)∈E−

Des(c)

iAnc(n) := (
S

(a→n)∈E−∧Match(a) 6=φ

{a} )

∪ (
S

(a→n)∈E−∧Match(a)=φ

iAnc(a) )

iDes(n) := (
S

(n→d)∈E−∧Match(d) 6=φ

{d} )

∪ (
S

(n→d)∈E−∧Match(d)=φ

iDes(d) )

MatchDataDependenceGraphs(DDGa,DDGb) {
Given:

Let DDGa = G(A, Ea); DDGb = G(B, Eb);
Initialization of Match sets.

for each noden ∈ A do
if n is a root nodethen

Match(n) is found by the root matching algorithm.
else

Match(n)← B
endif

endfor
Iterative refinement of Match sets.

While Match sets continue to changedo
– Forward Pass:

Let topoA be the topological sort ordering ofA
for each noden ∈ topoA excluding rootsdo

Cand =
T

a∈iAnc(n)

(
S

n̄∈Match(a)

Des(n̄) )

Match(n) = Match(n) ∩
{c̄ : c̄ ∈ Cand ∧ sign(c̄) = sign(n)}

endfor
– Backward Pass:

Let topoA−1 be the reverse topo. sort ordering ofA
for each noden ∈ topoA−1 excluding leavesdo

Cand =
S

a∈iDes(n)

(
S

n̄∈Match(a)

Anc(n̄) )

Match(n) = Match(n) ∩
{c̄ : c̄ ∈ Cand ∧ sign(c̄) = sign(n)}

endfor
endwhile

}

Figure 9: Matching data dependence graphs.

3.3 Signature Matching
Now we describe how the local histories of instructions are used

to form their signatures and how signature matching is performed.
When we match the local histories of two instructions, we essen-
tially match the stream of results produced by the instructions. The
results produced by an instruction can either represent a stream of
data values or a stream of addresses. The most obvious approach is
to look for an exact match between the stream of values. However,
this is not a good way to match instructions. Recall that program
transformations may alter the order in which instruction instances
are executed and also the number of times an instruction is exe-

cuted may increase or decrease. Thus, the list of results formany
instructions are unlikely to match exactly. One reason for change
in the number of executions is due to elimination of dead instances.
By eliminating all dead instances from both versions of the dy-
namic histories we can avoid this problem. However, removalof
dead instances is not the only reason. Several other optimizations,
redundancy elimination and speculative code motion, also cause
such changes. Therefore we derive simpler signatures from exact
list of results such that the derived signatures can be easily matched
even if program transformations have affected the corresponding
instructions. For instructions with long execution histories such
simplifications are unlikely to cause signatures of instructions that
do not correspond to each other to match. In case execution his-
tories for some instructions are very small, there is a possibility
of coincidental matches. However, in such cases the matching of
dependence structure is likely to avoid false matches.

Matching Data Value Streams. An ordered stream of data
values is converted into a simpler representation consisting of a
vector ofunique values(U ). When matching execution histories,
we simply look forconsistencynot equality. Given two instructions
I1 and I2, we consider their value vectorsU1 and U2 to match
if either U1 and U2 contain the same set of values or all values
contained inU1 (U2) are contained inU2 (U1). If values inU1

are a subset of values inU2, we consider instructionI1 to be fully
matched andI2 to be partly matched.

Matching Address Streams. When considering address streams
we cannot simply match the unique addresses because the addresses
will vary even if they correspond to each other. For enablingmatch-
ing of addresses, we first convert them to offsets. In case of aheap
address the offset is measured from the base address of memory
block allocated from the heap. In case of a stack address the offset
is measured with respect to the first access via the stack pointer.
Once this conversion has been carried out, the comparison ofad-
dress streams can be performed in the same fashion as that forvalue
streams. This approach is effective because assume that aggressive
memory layout optimizations are not performed.

4. EXPERIMENTAL RESULTS
Matching has been implemented in theTrimaran system [17].

Our implementation differs from the presented algorithm inthat it
performs exhaustive comparisons during root matching instead of
using temporal ordering to speedup root matching. We generated
two versions of VLIW machine code supported under the Trimaran
system by generating anunoptimizedand anoptimizedversion of
programs. We ran the two versions on the same input, collected
their detailed whole execution traces. The execution histories of
corresponding functions were then compared. The IMPACT sys-
tem on which Trimaran is based supports a wide range of opti-
mizations. To enable function by function comparison of dynamic
histories, we turned off function inlining.

To evaluate our matching algorithm we carried out two sets of
experiments. First we used it to match unoptimized and optimized
versions where no errors were present in the optimizer. Thisexper-
iment was conducted to see how effective (fast and accurate)is our
matching algorithm in finding matches when they exist. Second ex-
periment was carried out to evaluate the effectiveness of matching
during comparison checking where errors were introduced inthe
optimized code. Before presenting the results of experiments we
describe the benchmarks used in this study.

4.1 Benchmark Characteristics
The program versions used in this evaluation are summarizedin

Table 1. For each program characteristics of two versions,unop-



timized(.U ) and optimized(.O), are given. The number of exe-
cuted functions (functions present) in each program are given. The
static number of instructions in each version and the numberof in-
structions executed during program runs are given. As we cansee,
the static code size and the number of instructions executeddiffers
significantly for the two versions. This is because of aggressive
optimizations carried out by IMPACT. Optimization levelO = 4
was used which performs constant propagation, copy propagation,
common subexpression elimination, constant combining, constant
folding, code motion, strength reduction, dead code removal, and
loop optimizations etc.

Table 1: Program characteristics.

Program Functions Instructions U/O
Exec. (Exist) Static Num. Exec. (millions)

li.U/O 118 (357) 37491/29637 64.7/65.1
m88ksim.U/O 25 (252) 68349/53522 62.0/61.8
twolf.U/O 51 (191) 125260/92807 64.0/63.3
go.U/O 277 (372) 123702/92918 61.7/62.4
vortex.U/O 307 (923) 307526/243678 61.7/60.8
parser.U/O 32 (324) 56526/47560 61.9/62.1

Since the comparison is being carried out between optimizedand
unoptimized versions of a program, if our algorithm is effective,
it should match a very high percentage of instructions from the
optimized version with corresponding instructions in the unopti-
mized version. The number of instructions in unoptimized code
that match something in the optimized code is expected to be lower
because many statements are eliminated by the optimizations (e.g.,
redundancy elimination, dead code removal, copy propagation). Fi-
nally we expect some instructions in optimized code not to match
anything in the unoptimized version due to special features(in-
structions) of the VLIW machine that are exploited by IMPACT
only during generation optimized code (e.g., branch and increment
instructions used in software pipelined code, load speculate and
load verify instructions).

In Table 2 we present the characteristics of thedDDGs of un-
optimized and optimized versions of the executed functions. The
average number of executed root nodes, leaf nodes, and internal
nodes across all executed functions in each program are alsogiven.
As we can see, the versions differ significantly not only in the num-
ber of nodes they execute but also in the shapes of the dynamicde-
pendence graphs as all three types of nodes differ in their number.
This is because the IMPACT system performs both machine inde-
pendent and machine dependent optimizations very aggressively.

Table 2: dDDG characteristics.
Program. Avg. Exec. Num. Across Funcs U/O
Version Roots Leaves Internal Nodes

li.U/O 17.2/15.1 8.7/7.5 22.5/14.0
m88skim.U/O 20.7/18.3 14.4/10.8 40.1/268.0
twolf.U/O 67.1/57.7 28.1/25.0 150.3/102.0
go.U/O 38.8/34.8 29.9/22.5 105.4/65.4
vortex.U/O 53.0/45.4 26.2/21.8 66.9/39.0
parser.U/O 17.7/16.0 12.3/10.2 29.2/19.1

4.2 Accuracy and Cost of Matching
Now we present results when unoptimized version was matched

with an optimized version that had no errors introduced in itby the
optimizer. The goal of this experiment is to study the accuracy and
cost of our matching algorithm.

In Table 3 we summarize the extent to which the execution his-
tories of program versions were matched. The total number ofstat-
ically distinct nodes that were executed at least once are given for

each program version. This number of executed nodes corresponds
to the total number of executed nodes matched in all of the func-
tions combined. These are also the nodes that our algorithm at-
tempts to match with each other. The percentage on these nodes in
each version for which matches were found in the other version are
given. On an average, for over 95% of the nodes in the optimized
code, one or more corresponding matches were found. For the un-
optimized code this number is lower as expected. This is because,
after aggressive optimization, the average number of instructions
in the unoptimized version is nearly 25% less than in the unopti-
mized version (12909 vs. 17292). Many of these instructionshave
no corresponding instruction in the optimized code.

Table 3: Nodes matched.

Program Optimized Unoptimized
Nodes Matched (%) Nodes Matched (%)

li 4325 97.0 4989 82.1
m88skim 1398 95.1 1882 81.9
twolf 9419 94.2 12517 86.8
go 28701 91.0 40753 76.9
vortex 32583 97.7 44857 81.7
parser 1450 96.1 1893 84.8

Average 12909 95.2 17292 82.4

Although some of the instructions were not matched by our match-
ing algorithm, this does not necessarily mean that the matches should
have been found but were missed by our matching algorithm. Some
instructions are not matched due to the features of the VLIW ma-
chine used only by the optimized version and optimizations such
as strength reduction which introduce computations that produce
different intermediate results in the two versions. Therefore, to de-
termine the completeness of the above matches we examined the
codes and the matches generated. Since this process had to beper-
formedmanually, we could not perform it for all the functions. We
first looked at many small functions and found that their matches
were almost always 100% complete. Then for each program we se-
lected an executed function based upon its complexity: we selected
the largest functionfor which the number of distinct executed in-
structions in the two versions differed the most. The number of
distinct instructions executed in the optimized (Exec.O) and un-
optimized (Exec.U ) versions of selected functions are given in
Table 4. We manually found theactual total number of match-
ing pairs of instructions by considering all executed instructions
from the optimized code. By comparing these matching pairs with
those found by our algorithm, we determined the number of pairs
that aremissedand the number that arefalsematches. The results
of this experiment given in Table 4 show that we miss very few

Table 4: Matching accuracy.

Fn.Program. Exec.O Exec.U Matches
Version Actual Missed False

li 78 131 112 0 37
m88ksim 313 426 823 4 72
twolf 765 989 1067 0 220
go 596 939 1362 0 69
vortex 399 677 840 21 336
parser 194 257 243 0 29

pairs although we do find some more false matches. This is not
surprising since our signature matching is conservative and thus
we are less likely to miss matches and more likely to find some
false matches. However, having some false matches is not a serious
problem for two reasons. First, for every instruction that we found
a false match, we also found the true matches. Second, we believe



that false matches can be further reduced without changing the pro-
posed algorithm. Longer and/or multiple runs of the two program
versions can be used to refine the matches found by a single run.

Finally we claim that missed matches are more harmful that false
matches because user can examine the matches found and elimi-
nate false matches but finding missed matches is far more tedious.
Therefore we have designed our algorithm to be on the conservative
side, more matches are found than truly exist.

Table 5 gives the total space (in MegaBytes) and time (in sec-
onds) cost of matching. The space cost mainly arises due to the
dynamic history used while the time represents the effort ittakes
to match all of the execution functions. As we can see the time
and space costs are reasonable to match executions of fairlylarge
programs involving execution of hundreds of distinct functions.

Table 5: Cost: Space, time, and iterations (averages).

Program Space Time Iterations
(MB) (sec.) dDDG Num. After Final

Depth Iter. 1 Iter. Iter.

li 4.5 302 5.13 1.81 3.75 1.61
m88skim 29.3 289 5.96 1.88 5.66 2.50

twolf 52.0 362 12.61 2.06 7.15 2.74
go 18.0 387 12.07 1.93 7.42 3.10

vortex 7.8 467 5.89 1.96 7.11 1.89
parser 5.1 265 5.53 2.00 2.93 2.04

We also studied how quickly our iterative matching algorithm
stabilizes. In Table 5 the average depth of the dDDGs across all
functions is given (dDDG Depth). The average number of iterations
(Num. Iter.) it actually took for sets to stabilize is also given. As we
can see, although the depths of the graphs can be large, the number
of iterations required before theMatch sets stabilize is small. The
average match set sizes after first iteration (After 1 Iter.)and after
algorithm stabilized (Final) are also given to show that they are
indeed reduced significantly by our iterative algorithm.

4.3 Matching for Comparison Checking
Next we evaluated matching in context of comparison check-

ing. We injected three different errors into the first three bench-
marks. These errors simulate the effect of erroneous data flow re-
sults forcommon subexpression elimination, copy propagationand
dead code elimination. During comparison checking matching is
used to match as many instructions as possible between the execut-
ing unoptimized and optimized versions at regular intervals (execu-
tion of 8 million instructions). The instructions that do not match
are reported to the user for examination as they may contain an er-
ror. We plotted the number of distinct reported instructions as a
percentage of distinct executed instructions over time in two situa-
tions: when optimized program had no error and when it contained
an error (see Figure 10). The points in the graph are also annotated
with the actual number of instructions reported. The interval during
which error point is encountered during execution is marked.

As we can see, compared to the optimized programs without er-
rors, the number of reported instructions increases sharply after the
error intervalpoint is encountered. For two out of the three bench-
marks, the increases are sharp –6% to 14% for m88ksim and
3% to 35% for twolf . In fact when we look at the actual num-
ber of instructions reported immediately before and after the exe-
cution interval during which error is first encountered, thenumber
reported increases by an order of magnitude. Forli the error is
such that erroneous results are not propagated far and thus we see
a smaller increase. User examining the reported instructions can
fairly quickly focus on erroneous instructions as the number of re-

ported instructions is small inli. In other cases where the number is
large, by examining the instructions in the order they are executed,
erroneous instructions can be quickly isolated. Other reported in-
structions are merely dependent upon the instructions thatare the
root causes of the errors. For example, intwolf , out of the over
2000 reported instructions at the end of second interval, we only
need to examine the first15 reported instructions in temporal order
to find an erroneous instruction. Note that even when no errors are
encountered, some instructions in the optimized version are never-
theless reported. The reporting of some instructions is unavoidable
even with a perfect matching algorithm because there is no corre-
sponding match for them in the unoptimized version.
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Figure 10: Statements reported for checking.

From the results of the above experiment we can see that erro-
neous behavior is caught very effectively by our matching algo-
rithm. Thus, we can conclude that our matching algorithm makes
the task of implementing comparison checking simple as it does
not require the compiler writer to generate mappings between un-
optimized and optimized instructions. Moreover, if the compiler
does not provide such mappings and no source for the compileris
available (e.g., it is a commercial compiler), we can still implement
comparison checking using our matching algorithm.



5. RELATED WORK
Static differencing algorithms.An existing class of algorithms

that compare two program versions arestatic differencingalgo-
rithms [1, 3, 8, 9]. These algorithms perform differencing at differ-
ent levels: [9] finds differences using line by line comparison, [1,
8] find differences by comparing control flow graphs, and [3] com-
pares input/output dependences of procedures. With the exception
of [3], these algorithms report statements that appear to bedifferent
as being different. Moreover, these algorithms work with source or
intermediate code representations of the program versions. In con-
trast our matching algorithms work at binary level and they match
instructions that dynamically behave the same even though they
statically appear to be different.

Differencing dynamic histories.Research has been carried out
ondifferencing dynamic historiesof program executions. The ben-
efits of such algorithms for software maintenance have been recog-
nized. In [10] Reps et al. made use of path profiles to recognize
Y2K bugs in programs. Wilde [14] has developed a system that
enables a programmer to visualize the changes in the dynamicbe-
havior of a program. However, in these works dynamic histories
of different executions, corresponding to two different inputs, of a
single version of a program are compared. In contrast, our work
considers matching of dynamic histories of two program versions
on the same input.

Existing matching techniques.There are some existing tech-
niques for matching: procedure extraction [6] requires source or
intermediate code matches while BMAT [12] works on binaries.
BMAT matches binaries to enable propagation of profile data col-
lected by executing one binary to a transformed binary so that re-
execution of the latter could be avoided. Given the nature ofthis
application, it made sense to match binaries statically. Onthe other
hand, in applications such as comparison checking and software
piracy detection we are interested in matching the dynamic behav-
iors of two versions and the execution profiles of the two versions
are already available.

6. CONCLUSIONS
In this paper we presented an algorithm for matching execution

histories of two program versions. Since results produced by in-
structions are used to perform the matching, we are able to match
instructions that appear to be different but compute the same re-
sults. In this way we overcome the problem of matching instruc-
tions in presence of different program transformations that may
have been applied in generating the two versions. To avoid false
matches when instructions coincidentally produce the sameresults,
we also match the dynamic data dependence structures of the com-
putations. Again our algorithm for matching the dependencestruc-
ture succeeds in matching dependence graphs that behave thesame
but appear to be different. We demonstrated that using matching
we can enable implementation of comparison checking even inthe
absence of source code of the optimizing compiler. Our ongoing
work is exploring the use of matching in software piracy detection.
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