
Argus: Online Statistical Bug Detection�

Long Fei1, Kyungwoo Lee1, Fei Li2, and Samuel P. Midkiff1

1 School of Electrical and Computer Engineering
2 School of Industrial Engineering,

Purdue University,
West Lafayette, IN 47907, USA

{lfei, kwlee, li64, smidkiff}@purdue.edu

Abstract. Statistical debugging is a powerful technique for identifying
bugs that do not violate programming rules or program invariants. Previ-
ously known statistical debugging techniques are offline bug isolation (or
localization) techniques. In these techniques, the program dumps data
during its execution, which is used by offline statistical analysis to dis-
cover differences in passing and failing executions. The differences iden-
tify potential bug sites. Offline techniques suffer from three limitations:
(i) a large number of executions are needed to provide data, (ii) each
execution must be labelled as passing or failing, and (iii) they are post-
mortem techniques and therefore cannot raise an alert at runtime when
a bug symptom occurs. In this paper, we present an online statistical bug
detection tool called Argus. Argus constructs statistics at runtime using
a sliding window over the program execution, is capable of detecting
bugs in a single execution and can raise an alert at runtime when bug
symptoms occur. Moreover, it eliminates the requirement for labelling all
executions as passing or failing. We present experimental results using
the Siemens bug benchmark showing that Argus is effective in detecting
102 out of 130 bugs. We introduce optimization techniques that greatly
improve Argus’ detection power and control the false alarm rate when a
small number of executions are available. Argus generates more precise
bug reports than the best known bug localization techniques.

1 Introduction

Program correctness and reliability are two of the greatest problems facing
the developers, deployers and users of software. The financial implications are
tremendous – a recent NIST report estimates that $59.6 billion dollars a year, or
0.6% of the GDP, are lost every year because of software errors [17]. Single fail-
ures of software can disable businesses like Charles Schwab and eBay for hours
or days, costing millions of dollars in revenues. Moreover, purely malicious and
politically motivated sociopaths exploit software errors to disrupt civil society.
Simultaneous with the increasing risks of bug-ridden code has been the rise in
� This work was supported by the National Science Foundation by grants 0325603-

CCR and 0313033-CCR, and by the Indiana Utility Regulatory Commission. The
opinions expressed are those of the authors, and not the National Science Foundation.

L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, pp. 308–323, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Argus: Online Statistical Bug Detection 309

size and complexity of software, which makes software debugging an increasingly
challenging task. In order to relieve the programmers from laborious debugging,
automated debugging techniques have been extensively studied. Among these,
bug detection techniques focus on determining the existence/nonexistence of a
bug; bug isolation/localization techniques focus on determining the cause of ob-
served bug symptoms. In both cases, an effective bug report that distinguishes
the potential bug site(s) (or their vicinities) will greatly expedite the debugging
process. While the effectiveness of a bug isolation tool is typically measured by
its precision in locating bug sites, the effectiveness of a bug detection tool is mea-
sured by three factors: the detection rate, the false alarm rate, and the precision
with which it locates bug sites. The detection rate reveals the power of the tool
in determining a bug has occurred; the false alarm rate measures the likelihood
of raising an alarm when there is no bug; and the precision in locating bug sites
measures the quality of a bug report generated by the tool.

Statistical debugging techniques have recently caught the attention of the de-
bugging research community. These techniques isolate software bugs by compar-
ing the data collected from a large number of passing and failing executions using
statistical methods (e.g. logistic regression [13], conditional probability [14], and
hypothesis testing [15]). Because these techniques identify differences in runtime
information that is correlated with program behaviors, they have the potential
to isolate software bugs that do not violate programming rules or program in-
variants – the bugs that are most difficult to isolate using traditional debugging
techniques.

However, existing statistical debugging techniques share some drawbacks.
First, they require a large number of passing and failing executions to facili-
tate offline statistical analysis. While the passing executions may be obtained
from in-house regression testing before software release, a large number of failing
executions are usually unavailable. This requirement has three consequences in
reality. First, the debugging process relies on the Internet to collect data from a
large number of executions, which restricts the applicability of these techniques
in devices with limited connectivity and increases the complexity of the software.
Second, collecting execution data from customers raises the question of sensi-
tive information leaking, which restricts the applicability of these techniques in
sensitive environments. Third, the software vendor cannot respond timely to a
product failure until it accumulates enough failures. This contradicts the ethics
of debugging in that the customers have to suffer many more failures (and the
resulting damage) even though the software vendor is well aware of the existence
of a bug after the first observed failure!

Second, existing statistical debugging techniques require labelling passing and
failing executions. This requirement has two consequences. First, it is expensive
to construct test cases and their corresponding expected results, and requires
extensive domain knowledge. Second, it is infeasible to apply these techniques
to applications where the correctness of an outcome can not be easily verified
or the expected outcome is unknown a priori. Although a program crash is a
typical symptom of failure, many failures are non-crashing.

310 L. Fei et al.

Third, existing statistical debugging techniques are postmortem techniques,
i.e. they are bug isolation/localization techniques, not bug detection techniques.
They cannot raise an alert when bug symptoms occur. An alarm at the time
of failure can give the user more time to respond to the failure and to reduce
the damage caused by the failure. This is particularly important in mission-
critical programs where an incorrect operation can initiate a chain of catastrophic
consequences.

In this paper, we present an online statistical bug detection technique, called
Argus. Argus detects software bugs at runtime using an anomaly detection ap-
proach. Argus overcomes the three drawbacks mentioned above by constructing
runtime statistics on a sliding window over an execution rather than the whole
execution, which makes it possible to accumulate multiple observations in a sin-
gle execution. Argus runs in two modes: training and detection. In the training
mode, Argus builds statistical models from one or multiple passing executions.
In the detection mode, Argus can detect bugs in a single execution. Argus does
not require labelling of passing and failing executions. Argus can sound an alarm
at runtime when bug symptoms occur. Our experiments show that Argus is ef-
fective in detecting 102 out of 130 bugs in the Siemens bug benchmark. We also
introduce optimization techniques to greatly improve Argus’ bug detection power
and achieve a low false alarm rate when a small number of detection executions
are available. Argus generates a precise bug report that outperforms the best
known bug localization techniques on the Siemens benchmark. Our experiments
on the SPEC2000 benchmark show that Argus runtime overhead is comparable
to that of many existing successful tools.

We make the following contributions:

– We propose the first online statistical bug detection technique that can detect
bugs with a single execution. We present its design and implementation.

– We propose mathematically-rigorous formulas and their implementations to
maximize the detection rate, to minimize the false alarm rate, and to mini-
mize the number of executions required to meet a given detection rate and
a given false alarm rate when multiple executions are available.

– We present the experimental results using the Siemens bug benchmark and
SPEC2000 showing the effectiveness of our technique.

Supplemental discussions and code used in this paper can be found on the Ar-
gus web site (https://engineering.purdue.edu/Apollo/research/argus).

2 Related Work

Existing runtime bug detection techniques can be placed into two categories [25]:
programming-rule based and statistical-rule based. Tools in the former category
(e.g. Purify [10], SafeC [1], and runtime assertion) check runtime violations
against programming language specifications, programming paradigms, or user-
specified program-specific rules (e.g. dereferencing a NULL pointer or memory
leak); tools in the latter category check runtime violations against program in-
variants (e.g. value invariants [7, 8], PC invariants [25]). Runtime statistical-rule

Argus: Online Statistical Bug Detection 311

based checking differs from Argus in that the judgement in runtime statistical-
rule based checking is based on whether a single sample violates an existing
invariant, while the judgement of Argus is based on whether a runtime statistic
computed from an aggregation of samples fits an existing statistical model.

Recently several statistical bug isolation/localization tools have been devel-
oped. Earlier work by Burnell et al. use a Bayesian belief network as a supplement
to program slicing to find the root of a bug by analyzing a program dumpfile [2].
State of the art techniques collect runtime information from a large number of
executions, and apply statistical techniques in offline data mining to discover
the differences between passing and failing executions. Liblit et al. use logistic
regression to select suspicious value predicates associated with a bug [13], and
later use a technique based on probabilistic correlations of value predicates and
program crash [14]. Liu et al. propose a technique based on hypothesis testing
in [15].

Statistical methods have been used for other debugging problems. Dickinson
et al. find program failures through clustering program execution profiles [6].
Podgurski et al. use logistic regression to select features and cluster failure re-
ports on selected features [18]. Cluster results are shown to be useful in priori-
tizing software bugs.

Sekar et al. detect anomalous program behavior by tracing system calls using
an FSA-based approach [22]. Dallmeier et al. propose a postmortem defect local-
ization technique for Java based on the differences in frequencies of certain class
method calling sequences showing up in passing and failing runs [5]. A sliding
window is used to divide the calling sequences into subsequences for efficiency
in comparison.

3 Argus Statistical Model

Argus detects bugs at runtime using an anomaly detection approach. Argus
collects samples of runtime statistics characterizing program’s runtime behavior.
In the training run(s), samples of these runtime statistics are used to build
statistical models. In the detection run, samples of these runtime statistics are
tested against the learned statistical models. If the samples significantly deviate
from the learned statistical models, an alarm is raised.

3.1 Extended Finite State Automaton

We use an extended finite-state-automaton (ext-FSA) to characterize the pro-
gram’s runtime control-flow behavior. In our ext-FSA, each state is a runtime
event, and each transition is a transition from one runtime event to the next
runtime event. Runtime events are defined to be the set of {program start,
program exit, procedure entrance, procedure return, loop start, loop
exit, compound statement entrance, compound statement exit}. Each tran-
sition is augmented with the distribution of transition frequency (Figure 1(a)).
We assume that anomalous transition patterns are indicators of buggy behaviors.

312 L. Fei et al.

A

B C

(a) Extended Finite-

State-Automaton

A�B

A�B

A�C

A�B

A�C

A�B

…

Runtime

Transitions

B, B, C

B, C, B

C, B, C

B, C, B

…

B, B

B

Window

Content

y
A�C

: 1/3

y
A�B

: 2/3

y
A�C

: 2/3

y
A�B

: 2/3

…

Y

N/A

N/A

(b) Argus Runtime Statistics

Collection (window size = 3)

Fig. 1. Argus Statistical Model

3.2 Modelling State Transition Statistics

Using the states in Figure 1(a) for example, we define random variable XA→B

to be: XA→B = 1 if transition A → B takes place; and XA→B = 0 if transition
A → C takes place, where C is a state other than B. The random variable
XA→B has an unknown distribution ΘX,A→B . Let {XA→B,i} be an independent
and identically distributed (i.i.d) sample from the distribution. According to
Central Limit Theorem [3], the following statistic

YA→B = (Σn
i=1XA→B,i)/n (1)

conforms to a normal distribution N(µYA→B , σ2
YA→B

) as n → ∞, with mean
µYA→B and variance σ2

YA→B
. Intuitively, XA→B’s distribution is dictated by the

conditional probability: Pr{transitionA → B|stateA}; and YA→B is the fre-
quency of transition A → B being taken in the past n accesses to A, which is an
estimator of the conditional probability: Pr{transitionA → B|stateA} based
on past n accesses to A.

To determine if an observation yA→B comes from an existing model ΘY,A→B

(in our case N(µYA→B , σ2
YA→B

)), we adopt a hypothesis testing [3] approach. Our
null hypothesis H0 is: yA→B belongs to N(µYA→B , σ2

YA→B
). Let the probability

density function (pdf) of YA→B be fYA→B(y|θYA→B), where θYA→B denotes the
parameters of the normal distribution. The likelihood function of observation
yA→B coming from N(µYA→B , σ2

YA→B
) is

L(θA→B|yA→B) = fYA→B(yA→B |θYA→B) (2)

We reject the null hypothesis if the likelihood is smaller than a threshold, which
indicates that yA→B is significantly different from the existing model.

We make several assumptions to make this method practical for bug detec-
tion. First, we assume that YA→B computed from a window containing K con-
secutive XA→B’s (when n = K in Equation 1) approximately conforms to a
normal distribution, where K is a system parameter (window size). Second,
we assume YA→B ’s we compute from different windows are i.i.d. samples from
YA→B’s underlying distribution. Our experiments show that these assumptions
are reasonable approximations of the theoretical properties.

In order to perform runtime bug detection, Argus computes runtime statistics
using Equation 1 on a sliding window of size K rather than the full execution

Argus: Online Statistical Bug Detection 313

trace. For each state A, let SA be the set of states that are possible targets of
transitions from A. At runtime, if we observe transition A → B, where B ∈ SA,
we compute yA→B by applying Equation 1 on the last K transitions from A.
Figure 1(b) shows how Argus computes y’s at runtime. In this example, K is set
to 3. A window size of 10 works well in our experiments.

We augment each transition A → B in our ext-FSA with a distribution of
the corresponding statistic YA→B. Mean and variance of the distribution are
estimated from samples of the statistic {yA→B,i} collected in training executions:

µYA→B = (ΣN
i=1yA→B,i)/N (3)

and

σ2
YA→B

=
1

N − 1
ΣN

i=1(yA→B,i − µYA→B)2 (4)

where N is the number of samples. During a detection run, each yA→B is tested
against the null hypothesis. For simplicity, we test the normalized statistic:

ZA→B = (YA→B − µYA→B)/σYA→B (5)

against the null hypothesis “H
′

0: zA→B belongs to N(0, 1)1”. The correspond-
ing pdf of this normalized statistic is f(z) = 1√

2π
e−z2/2. For computational

efficiency, we measure the log likelihood and ignore the constant coefficient 1√
2π

:

logL(θ|z) = −z2/2 (6)

If the log likelihood falls below a threshold t, an alarm is sounded to indicate
the possible existence of a bug.

For each state A, frequencies of transitions to different states in SA are usually
inversely correlated. For example, in Figure 1(a), large YA→B leads to small
YA→C , and vice versa. Therefore, Argus tests the log likelihood of yA→B only
when yA→B >= µYA→B , where µYA→B is the mean of the learned distribution.
The underlying strategy is that anomalously small yA→B values will be reflected
by an anomalously large yA→C and thus Argus only needs to sound one alarm.

3.3 Alarm Threshold

Given a program P , Argus can be considered as a binary function of an execution
e and the log likelihood threshold t. ArgusP (e, t) yields 1 if Argus raises alarm
on e, and 0 otherwise.

Given a set of failing executions {ei}i=1...m, and a log likelihood threshold t,
we define the detection rate of Argus to be:

D(t) = (Σm
i=1ArgusP (ei, t))/m (7)

1 For simplicity and computational efficiency, here we use a normal distribution to
approximate Z’s distribution(t-distribution).

314 L. Fei et al.

Intuitively, D(t) is the fraction of buggy executions that Argus raises an alarm.
Accordingly the false alarm rate given a set of passing executions {e′i}i=1...n and
t is defined to be the fraction of normal executions that Argus raises alarms:

F (t) = (Σn
i=1ArgusP (e′i, t))/n (8)

Intuitively, the larger the threshold t is, the larger D(t) and F (t) are. Therefore,
the detection power of Argus is largely constrained by the number of false alarms
the user is willing to tolerate. Let f be the false alarm limit, we have t = F−1(f),
and the corresponding detection rate is a function of f :

D
′
(f) = D(F−1(f)) (9)

In Argus, t is a tunable system parameter. F can be found by measuring the
false alarm rates with different t’s using the passing executions from the test
cases before software release. This allows the user to tune Argus based on the
false alarm rate he/she is willing to tolerate.

3.4 Optimizing the Effectiveness over Multiple Executions

Although Argus is capable of detecting bugs using a single detection execution,
Argus’ power is not confined to a single execution. Argus can benefit from mul-
tiple detection executions to improve the overall detection rate and to reduce
the overall false alarm rate. Now the question is: if multiple detection executions
are available, how can a user maximize the overall detection rate, minimize the
overall false alarm rate, and minimize the number of detection runs needed?

Let {fi}i=1...m be the set of different false alarm rates (sorted in ascending
order), with fm being the upper bound on the false alarm rate the user is willing
to tolerate. The corresponding detection rates are {di}i=1...m. Let R denote the
total number of detection executions, and ri denote the number of detection
executions under false alarm rate fi, Σm

i=1ri = R. We have the overall miss rate:

M({di}, {ri}) = Πm
i=1(1 − di)ri (10)

which is the joint probability of the bug going undetected in all the detection
executions. Correspondingly, the overall detection rate is:

D({di}, {ri}) = 1 − M({di}, {ri}) = 1 − Πm
i=1(1 − di)ri (11)

Although actual {di} are not known a priori, they can be estimated by run-
ning Argus against bugs found and fixed in the testing phase.

Problem 1: Given {fi}, {di}, R, and overall false alarm rate limit f , how are
values for {ri} chosen to maximize the overall detection rate?

Rather than solving this problem, we attack the dual problem instead: how
do we minimize the overall miss rate. This problem can be described as the
following linear programming problem:

minimize: Σm
i=1rilog(1 − di)

subject to: Σm
i=1ri = R, 0 ≤ ri ≤ R

Σm
i=1fi × ri ≤ f × R (12)

Argus: Online Statistical Bug Detection 315

Here we take the log of M({di}, {ri}) to make it linear. The constraints are:
the total number of executions under different false alarm limits is R, and the
total number of false alarms under different false alarm limits must be smaller
than the total number of false alarms allowed. The optimal detection rate is a
function of {fi}, {di}, f , and R under the constraints:

Dopt({fi}, {di}, f, R) = argmax
{ri}

(1 − exp(Σm
i=1rilog(1 − di))) (13)

which uses the result from Equation 12.

Problem 2: Given {fi}, {di}, R, and overall detection rate requirement d, how
do we choose values for {ri} to minimize the overall false alarm rate?

The corresponding linear programming problem is:

minimize: Σm
i=1fi × ri

subject to: Σm
i=1ri = R, 0 ≤ ri ≤ R

Σm
i=1rilog(1 − di) ≤ log(1 − d) (14)

Here we minimize the total number of false alarms under the constraints the
total number of executions is R, and the overall miss rate must be smaller than
(1 − d). The optimal false alarm rate is a function of {fi}, {di}, R, and d under
the constraints:

Fopt({fi}, {di}, R, d) = argmin
{ri}

(
1
R

Σm
i=1fi × ri) (15)

which uses the result from Equation 14.

Problem 3: Given {fi}, {di}, the overall false alarm rate limit f and the overall
detection rate requirement d, how many detection runs are sufficient?

The corresponding linear programming problem is:

minimize: Σm
i=1ri

subject to: 0 ≤ ri, i = 1 . . .m

Σm
i=1fi × ri ≤ f × Σm

i=1ri

Σm
i=1rilog(1 − di) ≤ log(1 − d) (16)

where the constraints are: total number of false alarms must be smaller than the
number of false alarms allowed, and the overall miss rate must be smaller than
(1 − d). The optimal number of executions needed is a function of {fi}, {di}, f ,
and d under the constraints:

Ropt({fi}, {di}, f, d) = argmin
{ri}

(Σm
i=1ri) (17)

which uses the result from Equation 16.
Equations 12, 14, and 16 are easily solvable using linear programming tools.

Sample code written in GAMS (http://www.gams.com) can be found on the Argus
web site.

316 L. Fei et al.

4 Argus Design and Implementation

Argus is implemented as a runtime library for C. We use the Cetus C com-
piler [12] to instrument the program source with calls to the Argus runtime li-
brary. Cetus instruments the following program points: program start, program
exit, procedure entrance, procedure return, loop entrance, loop exit, compound
statement entrance, and compound statement exit. Argus monitors the transi-
tions of these events, and computes the runtime statistic y for each transition
using Equation 1. Argus intercepts crashing signals (SIGSEGV, SIGABRT, and
SIGTERM), and monitors event transitions even at a program crash.

If Argus is running in training mode, it also estimates the distribution pa-
rameters for each transition. Because Equations 3 and 4 require storing every y
(sample of the runtime statistic Y) computed using Equation 1 at runtime, they
are not scalable. Instead, we estimate the distribution parameters recursively
using the following equations [24]:

µt =
t − 1

t
µt−1 +

1
t
yt (18)

σ2
t =

t − 1
t

σ2
t−1 +

1
t − 1

(yt − µt)2 (19)

The estimated distribution parameters are dumped into a transition distribution
profile at the end of each training execution. The profile is then loaded at the
initialization phase of a detection execution.

If Argus is running in detection mode, it performs likelihood test for each
y computed at runtime using Equations 5 and 6. A bug report is generated at
the end of each detection run. The bug report contains the top k most sus-
picious transitions (transitions with lowest log likelihood values), where k is a
configurable parameter.

5 Experiments

In this section, we evaluate the effectiveness of Argus at detecting bugs, its
runtime overhead, and the profile size. To test Argus’ bug detection power, we
apply Argus to the Siemens bug benchmark [11]. To measure the cost of applying
Argus to real world applications, we use the SPEC2000 benchmark to measure
Argus’ runtime overhead and profile size.

The Siemens benchmark was originally used by Siemens Corporation Re-
search to study test adequacy criteria [11]. The siemens benchmark contains
seven small programs: print tokens, print tokens2, replace, schedule,
schedule2, tcas, and tot info. Each program has multiple versions. Each
version is injected with one bug. Altogether there are 130 faulty versions, sim-
ulating a wide variety of realistic bugs. A number of previous works in the
field of bug isolation have reported their results using this benchmark, includ-
ing [4, 9, 15, 19, 20, 21].

Argus: Online Statistical Bug Detection 317

5.1 Bug Detection Power

We measure the bug detection power of Argus on the Siemens benchmark. Our
goal is to reveal the average detection rate and the effectiveness of Argus with
regard to given false alarm limits. We consider Argus effective in detecting bugs
in a faulty program if the alarm raised by Argus is more likely to be a true
alarm rather than a false alarm. We define the effective function on a given
faulty program P as (using ternary expression semantics):

EP (f) = (D′(f) > f ? 1 : 0) (20)

where D′() is defined in Equation 9. That is, given a false alarm rate f , if the
corresponding detection rate is larger than f , we consider Argus effective. Given
a set of faulty programs {Pi}i=1...m, and a false alarm rate f , the effective rate
is defined as:

ER{Pi}(f) =
1
m

Σm
i=1EPi(f) (21)

Intuitively, the effective rate measures the overall effectiveness of Argus on a set
of faulty programs. Specifically, our goal is to establish Equation 9 and Equa-
tion 21. We use 10 as our sliding window size.

Each program in the Siemens benchmark has a bug-free version. We partition
the test cases randomly with a 9 : 1 ratio as follows. We apply Argus in training
mode on the bug-free version with 90% of the test cases to learn a statistical
model for each transition. We then apply Argus in detection mode on the bug-free
version with the remaining 10% of the test cases. The smallest log likelihood value
observed in each execution is recorded and sorted in ascending order. Among
the sorted log likelihood values, the one with x% of the values smaller than it is
recorded as the log likelihood threshold corresponding to false alarm limit of x%.
Intuitively, if we use this as the threshold, Argus will sound an alarm on x% of
the normal executions. We discover the log likelihood thresholds corresponding
to false alarm rates {5%, 10%, 15%, 20%, 25%, 30%} (assuming 30% is the upper
limit of user tolerance) in this way. Each application has its own set of thresholds.

0%

20%

40%

60%

80%

100%

5% 10% 15% 20% 25% 30%

False Alarm Rate

A
v

e
r
a

g
e

 D
e

te
c

ti
o

n
 R

a
te

(a) Average Detection Rate on All Faulty
Versions

0%

20%

40%

60%

80%

100%

5% 10% 15% 20% 25% 30%

False Alarm Rate

E
ff

e
c

ti
v

e
 R

a
te

(b) Effective Rate on All Faulty Versions

Fig. 2. Argus Bug Detection Power

318 L. Fei et al.

50%

60%

70%

80%

90%

100%

2 4 8 16 32

total # of executions

d
e

te
c

ti
o

n
 r

a
te

(a) Overall False Alarm Rate = 10%

0%

5%

10%

15%

20%

25%

30%

95% 90% 85% 80% 75%

detection rate limit

fa
ls

e
 a

la
r
m

 r
a

te

(b) Total Number of Executions = 4

Fig. 3. Argus Overall False Alarm Rate, Overall Detection Rate, and Total Number
of Execution

We note that Argus does not rely on bug-free version to discover thresholds.
Thresholds discovered in this way are equivalent to thresholds discovered on test
cases where no bug sites are covered, which corresponds to the whole passing
test suite before software release in real world. In our experiment, an alternative
is discovering the thresholds for each faulty version using passing cases on that
particular version. We consider it less proper because the passing cases in each
faulty version may not be a general representative of normal cases (while the
whole test suite is assumed to be general).

We then measure the detection rates under these thresholds by running each
of the faulty versions of each application through all the test cases. For each
faulty version, Argus (in training mode) learns a transition distribution profile
from the passing executions. We then use the set of thresholds corresponding
to that application discovered above, and measure on how many of the failing
executions Argus (in detection mode) raises alarms under the false alarm limits
{5%, 10%, 15%, 20%, 25%, 30%}. The detection rate under a false alarm limit is
then computed using Equation 7. The average detection rate over the 130 faulty
versions with regard to different false alarm levels are shown in Figure 2(a).

Effectiveness (Equation 20) is measured by comparing the detection rate on
each faulty version with the corresponding false alarm limit. The effective rate
(Equation 21) is then measured by averaging the results of Equation 20 on all
the 130 faulty versions. The average effective rate is shown in Figure 2(b).

Argus sounds an alarm on 118 out of 130 faulty versions. On average, Argus
has 32.89% chance to detect the bug in each faulty version using a single de-
tection run when the false alarm tolerance is 5%. This average detection rate
increases almost linearly to 52.27% when the false alarm tolerance is 25%. It is
further increased to 53.54% when the false alarm tolerance is 30%. When the
false alarm tolerance is {5%, 10%, 15%, 20%, 25%, 30%}, Argus is effective (as
defined in Equation 20) in detecting bugs in {74, 73, 77, 81, 83, 84} of the faulty
versions. Altogether, 102 out of 130 bugs can be effectively detected by Argus
under at least one of the false alarm rate configurations.

Argus: Online Statistical Bug Detection 319

Using the {fi} and average {di} values discovered above, we can maximize
the detection rate, minimize the false alarm rate, and assess how many exe-
cutions are sufficient when multiple executions are available. Equations 13,15
and 17 can be written in short forms as Dopt(f, R), Fopt(R, d), and Ropt(f, d),
respectively. These three functions can be plotted with 3D charts. For simplicity
and readability reasons, we project them onto 2D charts by fixing one variable
at a reasonable value and then plot the relationship between the remaining two
(Figure 3). Interested readers can find other values of interest using the code
provided on Argus web site. Due to space constraints, we present only two of
the projections. The remaining projections can be found on Argus web site. From
Figure 3, we can see that when the false alarm tolerance is 10%, 8 executions are
sufficient to guarantee a 98% detection rate; if we have only 4 runs, we can let
the overall detection rate slip to 80% to bring the overall false alarm rate down
to 6%. These results show that the detection power of Argus increases rapidly
with a small number of executions, and the false alarm rate can be kept to a low
level. This in turn implies that, in general, using Argus can greatly reduce the
number of test cases needed, leading to a shorter debugging cycle.

5.2 Bug Report Quality

To measure the quality of the bug report generated by Argus, we adopt a
paradigm which was proposed by Renieris et al. [20] and was later adopted
by Cleve et al. in CT [4] and Liu et al. in SOBER [15]. This paradigm estimates
the human effort to locate the bug based on the bug report. The measure was
based on the size of the subgraph of the program dependence graph (PDG) the
human must explore (starting from the statements pointed out by the bug re-
port) vs. the size of the full PDG. Because Argus detects anomalous transitions
rather than statements, we use a variant of the paradigm:

1. The FSA is a connected graph G, where each state is a vertex and each
transition is an edge.

2. If A → B is a transition, and if the buggy statement is executed after event A
(with no other events in between) yet before event B (with no other events in
between), we consider A → B a defect edge. Note that one buggy statement
may cover multiple defect edges depending on runtime control flow. We use
Vdefect to denote the set of vertices covered by defect edge(s).

3. Given a bug report, the set of vertices covered by the top k suspicious tran-
sitions reported by Argus is denoted Vblamed.

4. A programmer performs a breadth-first search from Vblamed until a vertex
in Vdefect is reached. The set of vertices covered by the breadth-first search
is denoted Vexamined.

5. The T-score is defined as:

T = |Vexamined|/|V | × 100% (22)

where |V | is the size of graph G.

320 L. Fei et al.

0

20

40

60

80

100

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

T-Score: Percentage of Examined States (%)

P
e

rc
e

n
ta

g
e

 o
f

L
o

c
a

te
d

 B
u

g
s

 (
%

)

tcas

print_token

print_token2

schedule

schedule2

replace

tot_info

Average

Fig. 4. Argus Bugs Located (cumulative) vs. Average T-score, k = 5

The T-score estimates the human effort to reach the buggy transition from
the top k suspicious transitions reported by Argus. A high T-score corresponds
to more human effort, and in the worst case a score of 100% indicates the whole
program must be examined. We measure the T-score of Argus bug report for
each buggy execution in each faulty version.

Although Argus’ major design goal is runtime bug detection, the bug report
it generates is precise enough that it can be used for efficient bug localization as
well. Figure 4 shows the number of bugs that can be localized vs. the average
T-score (percentage of states examined in ext-FSA, as defined in Equation 22).
Since SOBER yields best performance when k = 5 (where k is the number of
the most suspicious statements to start the breadth-first search from), we use
k = 5 to make the results more comparable, where k is the number of the most
suspicious transitions to start bread-first search from. On average, when 10% of
the states are examined, Argus can help the user localize 56.82% of the bugs.
As presented in our previous work [15], SOBER is able to localize 52.31% of the
bugs in Siemens benchmark when 10% of the statements are examined; while
other known techniques like Scalable Statistical Bug Isolation (Liblit et al. [14])
and CT (Cleve et al. [4]) are able to localize 40.00% and 26.36% of the bugs
respectively in the same benchmark. If we assume that the effort in examining
x% of the total states is comparable to x% of the total statements, then Argus
outperforms the best known bug localization techniques. On the Argus web site,
we present discussion showing that if Argus and a statement-based scheme (e.g.
SOBER) have the same T-score value, the user needs to examine fewer statements
using Argus. The high precision of the Argus bug report and Argus’ capability
in generating the bug report using a single execution make it a powerful bug
localization tool even if we do not need its runtime bug detection capability.

5.3 Runtime Overhead and Profile Size

Because Siemens benchmark programs are small (138 – 516 LOC), they are not
suitable testbeds to measure Argus’ runtime overhead in large, more realistic ap-

Argus: Online Statistical Bug Detection 321

0

10

20

30

40

50

60

70
1

6
4

.g
z
ip

1
7

5
.v

p
r

1
7

7
.m

e
s

a

1
7

9
.a

rt

1
8

1
.m

c
f

1
8

3
.e

q
u

a
k

e

1
8

6
.c

ra
ft

y

1
8

8
.a

m
m

p

1
9

7
.p

a
rs

e
r

2
5

4
.g

a
p

2
5

5
.v

o
rt

e
x

2
5

6
.b

z
ip

2

3
0

0
.t

w
o

lf

A
v

e
ra

g
e

ti
m

e
s

 s
lo

w
d

o
w

n

Training Detection

(a) Training and Detection Overhead

0%

20%

40%

60%

80%

100%

120%

140%

1
6

4
.g

z
ip

1
7

5
.v

p
r

1
7

7
.m

e
s

a

1
7

9
.a

rt

1
8

1
.m

c
f

1
8

3
.e

q
u

a
k

e

1
8

6
.c

ra
ft

y

1
8

8
.a

m
m

p

1
9

7
.p

a
rs

e
r

2
5

4
.g

a
p

2
5

5
.v

o
rt

e
x

2
5

6
.b

z
ip

2

3
0

0
.t

w
o

lf

A
v

e
ra

g
e

p
ro

fi
le

 s
iz

e
 /
 e

x
e

c
u

ta
b

le
 s

iz
e

(b) Argus Transition Distribution Profile
Size

Fig. 5. Argus runtime overhead and transition distribution profile size on SPEC2000

plications. We use the standard SPEC2000 benchmarks to study Argus runtime
overhead and the transition distribution profile size. We use all SPEC C pro-
grams2 except 176.gcc, which the Cetus compiler cannot properly compile. All
the experiments are run on a DELL Precision 350 workstation (3.06GHz Pen-
tium IV, 1.5G memory) running RedHat Linux 9.0 with the Intel C/C++ compiler
icc 8.1. All of the programs are compiled with the recommended optimization
flag icc -O2

Figure 5 shows Argus runtime overhead in training and detection modes and
the ratio of the transition distribution profile size to the original executable
size. On average, Argus suffers 24.6X overhead in training mode and 13.8X
overhead in detection mode. The corresponding standard deviations are 16.9
and 8.7. The detection overhead of Argus is comparable with runtime detection
tools like DIDUCE [8], rtcc [23] and SafeC [1], and is considerably lower than
tools like Purify [10] and runtime type checking [16]. Argus’ detection scheme
is compatible with random sampling [13]. It can use random sampling to achieve
low runtime overhead at the cost of more detection executions. Therefore, Argus
is also a good technique to be used in production runs. The transition distribution
profile size is 38.6% of the original executable size on average, with a standard
deviation of 28.3%.

6 Conclusions and Future Work

Statistical debugging is a powerful technique for identifying bugs that do not
violate programming rules or program invariants. In this paper, we present an
online statistical bug detection technique called Argus. Argus is capable of de-
tecting bugs in a single execution and can raise an alert at runtime when bug
symptoms occur. Argus eliminates the requirement for labeling passing and fail-
ing executions. Argus generates more precise bug reports than the best known
bug localization techniques.

2 164.gzip, 175.vpr, 177.mesa, 179.art, 181.mcf, 183.equake, 186.crafty,
188.ammp, 197.parser, 254.gap, 255.vortex, 256.bzip2, and 300.twolf

322 L. Fei et al.

The authors are investigating making Argus capable of detecting bugs re-
flected in program behaviors other than runtime control flow. Second, we want
to develop implementations for other languages (like Java), and to reduce the
runtime overhead.

References

[1] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient detection of all pointer and
array access errors. In Proceedings of the ACM SIGPLAN 1994 conference on
Programming Language Design and Implementation, pages 290–301, 1994.

[2] L. Burnell and E. Horvitz. Structure and chance: melding logic and probability
for software debugging. Communications of the ACM, 38(3):31–ff., 1995.

[3] G. Casella and R. L. Berger. Statistical Inference. Duxbury Press, second edition,
2001.

[4] H. Cleve and A. Zeller. Locating causes of program failures. In Proceedings of the
27th International Conference on Software Engineering, pages 342–351, 2005.

[5] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight defect localization for java. In
Proceedings of the 19th European Conference on Object-Oriented Programming,
2005.

[6] W. Dickinson, D. Leon, and A. Podgurski. Finding failures by cluster analysis of
execution profiles. In ICSE ’01: Proceedings of the 23rd International Conference
on Software Engineering, pages 339–348, 2001.

[7] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly detecting
relevant program invariants. In Proceedings of the 22nd International Conference
on Software Engineering, pages 449–458, 2000.

[8] S. Hangal and M. S. Lam. Tracking down software bugs using automatic anomaly
detection. In Proceedings of the 24th International Conference on Software Engi-
neering, pages 291–301, 2002.

[9] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi. An empirical inves-
tigation of the relationship between fault-revealing test behavior and differences
in program spectra. Journal of Software Testing, Verifications, and Reliability,
10(3):171–194, 2000.

[10] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and access
errors. In Proceedings of the USENIX Winter Technical Conference, 1992.

[11] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments of the effective-
ness of dataflow- and controlflow-based test adequacy criteria. In Proceedings of
the 16th International Conference on Software Engineering, pages 191–200, 1994.

[12] T. A. Johnson, S.-I. Lee, L. Fei, A. Basumallik, G. Upadhyaya, R. Eigenmann,
and S. P. Midkiff. Experiences in using cetus for source-to-source transformations.
In Proceedings of the 17th International Workshop on Languages and Compilers
for Parallel Computing (LCPC), 2004.

[13] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via remote
program sampling. In Proceedings of the ACM SIGPLAN 2003 conference on
Programming Language Design and Implementation, pages 141–154, 2003.

[14] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable statis-
tical bug isolation. In Proceedings of the ACM SIGPLAN 2005 conference on
Programming Language Design and Implementation, 2005.

Argus: Online Statistical Bug Detection 323

[15] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. Sober: Statistical model-based
bug localization. In Proceedings of The fifth joint meeting of the European Software
Engineering Conference and ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE 05), 2005.

[16] A. Loginov, S. H. Yong, S. Horwitz, and T. W. Reps. Debugging via run-time
type checking. In Proceedings of the 4th International Conference on Fundamental
Approaches to Software Engineering, pages 217–232, 2001.

[17] Software errors cost U.S. economy $59.5 billion annually, 2002. NIST News Re-
lease 2002-10.

[18] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and B. Wang.
Automated support for classifying software failure reports. In Proceedings of the
25th International Conference on Software Engineering, pages 465–475, 2003.

[19] B. Pytlik, M. Renieris, S. Krishnamurthi, and S. P. Reiss. Automated fault local-
ization using potential invariants. In Proceedings of the 5th International Work-
shop on Automated and Algorithmic Debugging, pages 287–296, 2003.

[20] M. Renieris and S. P. Reiss. Fault localizationwith nearest neighbor queries. In
Proceedings of the 18th IEEE International Conference on Automated Software
Engineering, pages 30–39, 2003.

[21] G. Rothermel and M. J. Harrold. Empirical studies of a safe regression test
selection technique. IEEE Transactions on Software Engineering, 24(6):401–419,
1998.

[22] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast automaton-based
method for detecting anomalous program behaviors. In Proceedings of the 2001
IEEE Symposium on Security and Privacy, page 144, 2001.

[23] J. L. Steffen. Adding run-time checking to the portable C compiler. Software
Practice and Experience, 22(4):305–316, 1992.

[24] K. Teknomo. Recursive simple statistics tutorial. online document.
http://people.revoledu.com/kardi/tutorial/RecursiveStatistic/.

[25] P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff, and J. Torrellas. Ac-
cMon: Automatically detecting memory-related bugs via program counter-based
invariants. In Proceedings of the 37th Annual IEEE/ACM International Sympo-
sium on Micro-architecture (MICRO’04), 2004.

	Introduction
	Related Work
	Argus Statistical Model
	Extended Finite State Automaton
	Modelling State Transition Statistics
	Alarm Threshold
	Optimizing the Effectiveness over Multiple Executions

	Argus Design and Implementation
	Experiments
	Bug Detection Power
	Bug Report Quality
	Runtime Overhead and Profile Size

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

