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Abstract

Detecting code clones has many software engineering
applications. Existing approaches either do not scale to
large codebasesor arenot robust against minor codemodi-
fications. In thispaper, wepresent anefficient algorithmfor
identifying similar subtrees and apply it to treerepresenta-
tions of source code. Our algorithm is based on a novel
characterization of subtrees with numerical vectors in the
Euclidean space R

n and anefficient algorithm to cluster
these vectors w.r.t. the Euclidean distancemetric. Subtrees
with vectors in one cluster are considered similar. We have
implemented our treesimilarity algorithmasa clonedetec-
tion tool called DECKA RD and evaluated it on large code
bases written in C andJava including the Linux kernel and
JDK. Our experiments show that DECKA RD is both scal-
able and accurate. It is also language independent, appli -
cable to any language with a formally specified grammar.

1. Introduction
Many software engineering tasks, such as refactoring,

understanding code quality, or detecting bugs, require the
extraction of syntactically or semantically similar codefrag-
ments (usually referred to as “clones”). Various stud-
ies show that much duplicated code exists in large code
bases [10,11,17]. Many such duplicationscan be attributed
to poor programming practice since programmers often
copy-paste codeto quickly duplicatefunctionality. Thisten-
dency not only produces code that is difficult to maintain,
but may also introducesubtle errors [6,17].

Different approaches for clone detection have been pro-
posed in theliterature. Most of them focuson detectingsyn-
tactic similarity of codebecause checkingsemantic similar-
ity is very difficult (and in general undecidable). Roughly,
these techniques can be classified into four categories:
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Str ing-based: A program isfirst divided into strings, usu-
ally lines. Each code fragment consists of a contiguous se-
quence of strings. Two code fragments are similar if their
constituent strings match. The representative work here is
Baker’s “parameterized” matching algorithm [1, 2], where
identifiers and literalsare replaced with aglobal constant.

Token-based: A program is lexed to produce a token
sequence, which is scanned for duplicated token subse-
quences that indicate potential code clones. Compared to
string-based approaches, a token-based approach is usually
more robust against code changes such as formatting and
spacing. CCFinder [10] and CP-Miner [17] are perhaps the
most well -known amongtoken-based techniques.

Tree-based: A program is parsed to produce aparse tree
or abstract syntax tree(AST) representation of the source
program. Exact or close matches of subtrees can then be
identified bycomparingsubtreeswithin thegenerated parse
treeor AST [4,5,21]. Alternatively, different metricscan be
used to fingerprint the subtrees, and subtrees with similar
fingerprintsare reported aspossibleduplicates [15,19].

Semantics-based: Semantics-aware approaches have
also been proposed. Komondoor and Horwitz [14] suggest
the use of program dependence graphs (PDGs) [8] and
program slicing [22] to find isomorphic PDG subgraphs
in order to identify code clones. They also propose an
approach to groupidentified clones together while preserv-
ing the semantics of the original code [13] for automatic
procedure extraction to support software refactoring. Such
techniqueshavenot scaled to large codebases.

Of existing techniques, CCFinder [10], CP-Miner [17],
andCloneDR [4,5] represent thestate-of-the-art. However,
they either have limited scalabilit y or are not robust against
codemodifications. Our goal isto developapractical detec-
tion algorithm that is both scalable and robust against code
modifications.

In this paper, we introduce a novel algorithm for
detecting similar trees and a practical implementation,
DECKA RD, for detecting code clones. The main idea of
the algorithm is to compute certain characteristic vectors to
approximate structural information within ASTs and then
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Figure 1. System architecture.

adapt Locality Sensitive Hashing (LSH) [7] to efficiently
cluster similar vectors (and thuscode clones).

Figure1 showsthehigh level architectureof DECKA RD:
(1) A parser is automatically generated from a formal syn-
tax grammar; (2) The parser translates sources files into
parse trees; (3) The parse trees are processed to produce
a set of vectors of fixed-dimension, capturing the syntac-
tic information of parse trees; (4) The vectors are clustered
w.r.t. their Euclidean distances; and (5) Additional post-
processing heuristics areused to generate clone reports.

We have done extensive empirical evaluation of
DECKA RD on largesoftware (includingJDK and theLinux
kernel) and compared it against CloneDR and CP-Miner.
Results indicate that DECKA RD is both scalable and accu-
rate: it detects more clones in large code bases than both
CloneDR andCP-Miner; it ismorescalable than CloneDR,
which is also tree-based, and is as scalable as the token-
based CP-Miner.

The rest of the paper is structured as follows. We first
give adetailed overview of our algorithm and ill ustrate it
with an example (Section 2) before presenting details of
our detection algorithm (Section 3). Next, we discussour
implementation and evaluation of DECKA RD (Section 4).
Finally, we survey related work (Section 5) and conclude
with adiscussion of futurework (Section 6).

2. Overview

This section ill ustrates the main steps of our algorithm
with a small example. Consider the following two C pro-
gram fragments for array initialization:

for (int i= 0; i < n; i++)
x[i]= 0;

for (int i= 0; i < n; i++)
y[i]= "";

The parse trees for these two code segments are identical,
because the code differs only in identifier names and literal
values. The parse tree is shown in Figure 2. A pairwise
tree comparison could be used to detect such clones, but
this isexpensive for largeprogramsbecauseof thepossibly
large number of subtrees. In the following, we demonstrate
anovel, efficient technique for treesimilarity detection.

Characteristic Vectors We introducecharacteristic vec-
tors to capture structural information of trees (and forests).
Thisisakey step in our algorithm. The characteristic vector
of a subtreeis a point 〈c1, . . . , cn〉 in the Euclidean space,
where each ci represents the count of occurrences of a spe-
cific tree pattern in the subtree. For this example, we let

the treepatterns be the node kinds in a parse tree. We will
introducemoregeneral treepatterns in Section 3.2.1.

Not all nodes in parse trees are essential for capturing
treestructural information; many are redundant w.r.t. their
parents, or were introduced to simpli fy the grammar spec-
ification. We thus also distinguish between relevant and
irrelevant nodes. Example irrelevant nodes include C to-
kens ‘[’ and ‘]’ and parentheses (‘(’ and ‘)’) . In Figure 2,
nodeswith solid outlinesare relevant whilenodeswith dot-
ted outlines are irrelevant. Irrelevant nodes do not have an
associated pattern or dimension in our vectors. For the ex-
ample, the ordered dimensions of characteristic vectors are
occurrence counts of the relevant nodes: id, lit, assign e,
incr e, array e, cond e, expr s, decl, and for s. Thus,
the characteristic vector for the subtree rooted at decl is
〈1, 1, 0, 0, 0, 0, 0, 1, 0〉 becausethereisan id node, a lit node,
andadecl node.

Characteristic vectors are generated with a post-order
traversal of the parse tree by summing up the vectors for
children with the vector for the parent’s node. As an
example, the vector for the subtree rooted at assign e
〈2, 1, 1, 0, 1, 0, 0, 0, 0〉 is the sum of the vectors for ar-
ray e (〈2, 0, 0, 0, 1, 0, 0, 0, 0〉), = (〈0, 0, 0, 0, 0, 0, 0, 0, 0〉),
primary e (〈0, 1, 0, 0, 0, 0, 0, 0, 0〉), andthe additional node
assign e (〈0, 0, 1, 0, 0, 0, 0, 0, 0〉). Users may also specify
a minimum token count to suppressvectors for small sub-
trees; this helps to avoid reporting small clones which are
often uninteresting. For example, in Figure 2, with this
threshold set to three, no vector is generated for the subtree
rooted at incr e. By varying this threshold, we can system-
atically find only large clones.

Vector Merging The aforementioned technique consid-
ers only those code fragments with a corresponding sub-
tree in the parse tree. However, developers often insert
code fragments within some larger context. Differences in
the surrounding nodes may prevent the parents from being
detected as clones (seeSection 4.3.2 for a concrete exam-
ple from JDK 1.4.2). To identify these cloned fragments,
we use asecond phase of characteristic vector generation,
called vector merging, to sum upthevectorsof certain node
sequences. In this phase, a sliding window moves along a
serialized form of the parse tree. The windows are chosen
so that a merged vector contains a large enoughcode frag-
ment. In Figure 2, for example, we merged the vectors for
decl andcond e to get thevector 〈3, 1, 0, 0, 0, 1, 0, 1, 0〉 for
the combined code fragment.

The choiceof which nodes in the treeto merge is impor-
tant; thesenodesmust makegood boundariesamongcloned
code, while not frequently containing large subtrees. Roots
of expressiontrees, likely the atomic units for copy-pasting,
are usually goodchoices for merging vectors. We call such
chosen nodes mergeable nodes. In Figure 2, the mergeable
nodes are the four children of the for statement. It is not
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Figure 2. A sample parse treewith generated characteristic vectors.

necessary for mergeable nodes to be on a same level. If
we had chosen any statement to be mergeable, the entire
for loop would have been considered as one unit without
subsequences. In Figure 2, we also required each merged
fragment to contain at least five tokens. If we had required
six tokens instead, there would have been only two merged
vectors instead of three: (1) for decl and cond e, and (2)
for cond e, incr e, andexpr s.

Vector Clustering and Post-Processing After we have
selected the characteristic vectors, our algorithm clus-
ters similar characteristic vectors w.r.t. their Euclidean
distances to detect cloned code. The two sample C
code fragments both have the same characteristic vec-
tor 〈6, 2, 1, 1, 1, 1, 1, 1, 1〉, and DECKA RD reports them as
clones. Because the number of generated vectors can be
large, an efficient clustering algorithm is needed. We will
present such an algorithm in Section 3.

The subtree rooted at expr s also ill ustrates the need
for post-processing. When a particular subtree has a low
branching factor, the vectors for a child and its parent are
usually very similar andthus likely to bedetected asclones.
We employ a post-processing phase following clustering to
filter such spurious clones.

3. Algor ithm Description

In this section, we give adetailed technical description
of our tree similarity algorithm: we first formally define
a clone pair (Section 3.1), then introduce characteristic
vectors for trees and describe how to generate them (Sec-
tion 3.2), andfinally explain our vector clusteringalgorithm
for clonedetection (Section 3.3).

3.1. Formal Definitions

In this paper, we view clones as syntactically similar
code fragments. Thus, it is natural to define the notion of
similar treesfirst. Wefollow thestandard definitionand use
tree editing distance as themeasure for treesimilarity.

Definition 3.1 (Editing Distance) The editing distance of
two trees T1 and T2, denoted by δ(T1, T2), is the minimal
sequence of edit operations (either relabel a node, insert a
node, or delete anode) that transformsT1 to T2.

Definition 3.2 (TreeSimilar ity) Two trees T1 and T2 are
σ-similar for agiven threshold σ, if δ(T1, T2) < σ.

We arenow ready to define thenotion of aclonepair.

Definition 3.3 (ClonePair ) Two code fragments C1 and
C2 are called a clone pair if their corresponding treerep-
resentationsT1 andT2 areσ-similar for aspecified σ.

Such adefinition based ontree editing distancefaithfully
captures how similar two code fragments are. However, it
does not lead naturally to an efficient algorithm because:
(1) the complexity of computing the editing distance be-
tween two trees isexpensive,1 and(2) it requiresmany pair-
wise comparisons to locate similar code in large software
(quadratic in the worst case). Instead, we approximate tree
structuresusing numerical vectorsandreducethe treesimi-
larity problem to detecting similar vectors. Before describ-
ing the details, we define the two common distance mea-
sures for numerical vectors that weuse in thispaper.

Definition 3.4 (DistanceMeasures on Vectors) Let v1 =
〈x1, . . . , xn〉 and v2 = 〈y1, . . . , yn〉 be two n-dimensional
vectors. The Hamming distance of v1 and v2, H(v1, v2),
is their l1 norm, i.e., H(v1, v2) = ||v1 − v2||1 =
∑n

i=1 |xi − yi|. The Euclidean distance of v1 and v2,
D(v1, v2), is their l2 norm, i.e., D(v1, v2) = ||v1 − v2||2 =
√

∑n

i=1(xi − yi)2.

Such distancemeasures are much easier to compute and
efficient algorithms for near-neighbor queries exist for nu-
merical vectors. Based ontheseobservations, weshow how
to abstract trees into vectors and how to efficiently cluster
similar vectors to detect code clones.

1More precisely, for two trees T1 and T2 the complexity is O(|T1| ×
|T2|×d1 × d2), where |Ti| is thesizeof Ti anddi is theminimum of the
depth of Ti and thenumber of leaves of Ti [24].
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3.2. Characteristic Vectors for Trees

Recall that in Section 2 we ill ustrated the use of occur-
rence countsof relevant nodes to abstract asubtree(or sub-
trees). That example shows a special case of the general
construction that we will i ntroduce in this section. In par-
ticular, we describe ageneral technique to map a tree (or
forests) to anumerical vector which characterizes thestruc-
tureof thegiven tree. Without lossof generality, we assume
trees arebinary [12].

3.2.1 Atomic TreePatternsand Vectors

Given a binary tree, we define afamily of atomic treepat-
terns to capture structural information of a tree. They are
parametrized byaparameter q, theheight of thepatterns.

Definition 3.5 (q-Level Atomic TreePatterns) A q-level
atomic pattern is a complete binary treeof height q. Given
a label set L, including the empty label ǫ, there are at most
|L|2q−1 distinct q-level atomic patterns.

Definition 3.6 (q-Level Characteristic Vectors) Given a
treeT , its q-level characteristic vector (denoted by vq(T ))
is 〈b1, b2, . . . , b|L|2

q
−1〉, where bi is the number of occur-

rencesof the i-th q-level atomic pattern in T .

For example, in Figure 2, we used the relevant nodes as
the1-level atomic patternsandcharacterized treeswith their
1-level characteristic vectors.

Abstracting trees as q-level vectors yields an alternative
to the standard tree similarity definition based on editing
distance. Our plan is to use Euclidean distancebetween q-
level vectors to approximate the editing distanceof the cor-
responding trees. We adapt a result of Yang et al. on com-
puting treesimilarity [23] to show that this approximation
isaccurate.

Theorem 3.7 (Yang et al., Thm. 3.3 [23]) For any trees
T1 andT2 with editing distanceδ(T1, T2) = k, the l1 norm
of the q-level vectors for T1 and T2, H(vq(T1), vq(T2)), is
nomore than (4q − 3)k.

For any two integer vectors v1 and v2,
√

H(v1, v2) ≤
D(v1, v2) ≤ H(v1, v2). Thus we have the following corol-
lary that relates the tree editing distance of two trees with
theEuclidean distanceof their q-level vectors.

Corollary 3.8 For any treesT1 andT2 withediting distance
δ(T1, T2) = k, the l2 norm of theq-level vectors for T1 and
T2, D(vq(T1), vq(T2)), is no more than (4q − 3)k and no
lessthan thesquare root of the l1 norm, i.e.,
√

H(vq(T1), vq(T2)) ≤ D(vq(T1), vq(T2)) ≤ (4q − 3)k.

Corollary 3.8 suggests that either D(vq(T1),vq(T2))
4q−3 or√

H(vq(T1),vq(T2))

4q−3 can be used as a lower bound of the tree
editing distance δ(T1, T2). When such a lower bound is
larger than a specific threshold σ, T1 and T2 cannot be σ-
similar and thus not a clone pair for the specified σ. On

Algor ithm 1 q-Level Vector Generation
1: function QVG(T : tree, C : configuration): vectors

2: V ← ∅
3: TraverseT in post-order
4: for all nodeN traversed do
5: VN ←

P

n ∈ children(N) Vn

6: if IsRelevant(N , C) then
7: id← IndexOf(N, C)
8: VN [id]← VN [id] + 1
9: end if

10: if IsSignificant(N , C)
V

11: ContainsEnoughTokens(VN , C) then
12: V ← V

S

{VN}
13: end if
14: end for
15: return V
16: end function

the other hand, when the lower boundis smaller than σ,
δ(T1, T2) is likely to be lessthan σ too. Hence, we reduce
the problem of treesimilarity to the problem of detecting
similar q-level vectors.

Notice that Definition 3.6, Theorem 3.7, and Corol-
lary 3.8 can be relaxed to work on treeforests (a collection
of trees) aswell becausetreeforestscan beviewed asatree
by adding an additional root. This is important for deal-
ing with code fragments that do not correspondto a single
subtreein theparse tree(cf. Section 2).

3.2.2 Vector Generation

There are two phasesof vector generation: one for subtrees
and one for subtreeforests (for generatingmerged vectors).
Algorithm 1 shows how vectors are generated for subtrees.
Given a parse treeT , we essentially perform a post-order
traversal of T to generate vectors for its subtrees. Vectors
for a subtree are summed up from its constituent subtrees
(line 5). Certain treepatterns may not be important for a
particular application, so we distinguish between relevant
and irrelevant treepatterns (a concept that is similar to and
generalizes relevant and irrelevant nodes from Section 2).
If a pattern rooted at a particular node N is relevant (line
6), we look upits index in the vector spaceusing IndexOf
(line7) and update thevector correspondingly (line8).

We also allow vectors to be generated only for certain
subtrees, for example those that are more likely to be units
of clones, such as subtrees rooted at declarations, expres-
sions and statements. Users can select those significant
node kinds to generate q-level vectors (line 10). For ex-
ample, if array e in Figure2 had been specified as insignif-
icant, no vector would have been generated for it. In addi-
tion, we may want to ignore small subtrees that contain too
few tokens (cf. incr e in Figure 2). Users can define amin-
imal token requirement on the subtrees, which is enforced
with ContainsEnoughTokens (line11).

Algorithm 2 shows how vectors are generated for adja-
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Algor ithm 2 Vector Merging for Adjacent TreeForests
1: function WVG(T : tree, C : configuration): vectors

2: ST ← Serialize(T, C); V ← ∅
3: step← 0; front← ST.head

4: back ← NextNode(ST.head, C)
5: repeat
6: Vmerged ←

P

n∈[front,back] Vn

7: while back 6= ST.tail
V

8: ¬ContainsEnoughTokens(Vmerged, C) do
9: back ← NextNode(back, C)

10: Vmerged ←
P

n∈[front,back] Vn

11: end while
12: if RightStep(step, C) then
13: V ← V

S

{Vmerged}
14: end if
15: front←NextNode(front, C)
16: step← step + 1
17: until front = ST.tail

18: return V
19: end function

cent subtreeforests. It serializes the parse treeT in post-
order, then movesaslidingwindow alongtheserialized tree
to merge q-level vectors from nodes within theslidingwin-
dow. Because it is not useful to include every node in the
serialized tree, we select certain node kinds (called merge-
ablenodes) asthesmallest treeunitsto beincluded (tomake
larger codefragmentsin the context of clonedetection). For
example, the significant nodes, decl, cond e, incr e, and
expr s in Figure 2 are specified as mergeable. Users can
specify any suitable node kinds as mergeable for a particu-
lar application. If both a parent and a child are mergeable,
we excludethe child in theslidingwindow for thebenefit of
selecting larger clones. This is implemented by NextNode
in Algorithm 2 (line9).

Users can also choose the width of the sliding window
and how far it moves in each step, i.e., its stride. Larger
widths allow larger code fragments to be encoded together,
and may help detect larger clones, while larger strides re-
ducethe amount of overlapping amongtreefragments, and
may reduce the number of spurious clones. With sliding
windows of different widths, our algorithm can generate
vectors for code fragments of different sizes and provide
asystematic technique to findsimilar codeof any size.

3.3. Vector Clustering

Given a large set of vectors V, quadratic pairwise com-
parisons are computationally infeasible for similarity de-
tection. Instead, we can hash vectors with respect to the
Euclidean distances amongthem, and then look for similar
vectorsby only comparing vectors with equal hash values.

Locality SensitiveHashing (LSH) [7,9] isprecisely what
weneed. It constructsaspecial family of hash functionsthat
can hash two similar vectors to the same hash value with
arbitrarily high probabilit y and hash two distant vectors to

the same hash value with arbitrarily low probabilit y. It also
helps efficiently find near-neighbors of a query vector. In
the following, we provide some basic background onLSH,
then discusshow it isapplied for clonedetection.

3.3.1 Locali ty SensitiveHashing

Definition 3.9 ((p1, p2, r, c)-SensitiveHashing) A family
F of hash functions h : V → U is called (p1, p2, r, c)-
sensitive(c ≥ 1), if ∀vi, vj ∈ V,
{

if D(vi, vj) < r then Prob[h(vi) = h(vj)] > p1

if D(vi, vj) > cr then Prob[h(vi) = h(vj)] < p2

For example, Datar et al. have shown that the following
family of hash functions, which map vectors to integers, is
locality sensitive [7]:

{hα,b : R
d → N | hα,b(v) = ⌊α · v + b

w
⌋, w ∈ R, b ∈ [0, w]}

Definition 3.10 ((r, c)-ApproximateNeighbor) Given
a vector v, a vector set V, a distance r, and c ≥ 1,
U = {u ∈ V | D(v, u) ≤ cr} is called an rcAN set of v,
andany u ∈ U is a (r, c)-approximateneighbor of v.

Given avector set V of sizen andaquery vector v, LSH
may establish hash tables for V and find v’s rcAN set in
O(dnρ log n) time andO(nρ+1 + dn) space, whered is the
dimension of the vectors and ρ = logp2

p1 < 1
c

for c ∈
[1,+∞). As longaswefeed r (the largest distance allowed
between v and its neighbors) and p1 (the minimal proba-
bilit y that two similar vectors have the same hash value)
to LSH, it automatically computes other parameters that
would giveoptimal running timeof aquery.

3.3.2 LSH-based CloneDetection

LSH’s querying functionality can help find every vector’s
rcAN sets, which are needed for clone detection. Algo-
rithm 3 describes theutili zation of LSH: (1) All vectors are
stored into LSH’s hash tables (line 2), where r serves as
the threshold σ defined in Definition 3.3; (2) A vector v is
used as a query point to get an rcAN set (lines 3 and 4);
(3) If the rcAN set only contains v itself, it means v has no
neighbors within distanceσ and should be deleted directly
(line 8); (4) Otherwise, the rcAN set is treated as a clone
class (lines 6 and 8). Such a process may query LSH n

times in the worst case. Thus, our LSH-based clone detec-
tiontakesO(dnρ+1 log n) time, whered isthedimension of
the vectors, i.e., |L|2q−1 in terms of q-level vectors, where
|L| is thenumber of nodekinds in aparse tree.

All the rcAN sets may contain potentially spurious
clones (cf. Section 2) and are post-processed to generate
clone reports. A filter is created to examine the line range
of every clone in an rcAN set and remove any that is con-
tained by or overlaps with others. A secondfilter is applied
after thefirst oneto removercAN sets that contain only one
vector. Both filtersrun in linear timein thenumber of rcAN
setsand quadratic time in thesizeof thesets.
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Algor ithm 3 LSH-based CloneDetection
1: function LSHCD(V : vectors, r : distance, p1 : prob): rcANs

2: N ← ∅; LSH(V, r, p1)
3: repeat pick av ∈ V
4: rcAN ← queryLSH(v)
5: if |rcAN | > 1 then
6: N ← N

S

{rcAN \
S

n∈N n}
7: end if
8: V ← V \ rcAN

9: until V = ∅
10: return PostProcessing(N )
11: end function

3.4. Size-Sensitive Clone Detection

Definition 3.3 of a clone pair does not take into account
the varying sizes of code fragments. It is however natu-
ral to allow more edits for larger code fragments to be still
considered clone pairs. In this section, we introduce asize-
sensitive definition of code clones and an algorithm for de-
tecting such clones. Such a higher tolerance to edits for
larger codefragments facilit ates thedetection of more large
clones.

Definition 3.11 (CodeSize) Thesizeof a codefragment C

in a program P , denoted by S(C), is the size of its corre-
sponding treefragments in theparse treeof P .

Definition 3.12 (Size-SensitiveClonePair ) Two code
fragments C1 and C2 form a size-sensitive clone pair if
their corresponding tree representations T1 and T2 are
f(σ, S(C1), S(C2))-similar, where f is a monotonic,
non-decreasing functionwith respect to σ andS(Ci).

Clone detection based onDefinition 3.12 requires larger
distancethresholds for larger code. We now present a tech-
nique to meet such a requirement. The basic ideais vector
grouping: vectors for a program are separated into differ-
ent groups based on the sizes of their corresponding code
fragments; then LSH is applied oneach groupwith an ap-
propriate threshold; and finally, all reported clone classes
from different groups are combined.

Any grouping strategy is appropriate as longas it meets
the following requirements: (1) It should not miss any
clones detectable with a fixed threshold, thus each group
should overlap with the neighboring groups; (2) It should
not producemany duplicate clones, thusoverlappingshould
be avoided asmuch aspossible; (3) It should producemany
small groups to help reduce clusteringcost.

Algorithm 4 shows ageneric vector groupingalgorithm,
where s is a user-specified code size for the first group.
Each vector v is dispatched into groups whose size ranges
contain the size of its corresponding code fragment, i.e.,
S(Cv). SIZERANGES shows our formulae for grouping.
The exact constraintsused to deducethegroupingformulae
can vary as long as they meet the aforementioned require-
ments.

Algor ithm 4 Vector Grouping
1: function VG(V : vectors, r : distance, s : size)
2: R← sizeRanges(V, r, s)
3: dispatch V into groups according to the ranges in R

4: end function
5:
6: function SIZERANGES(V : vectors, r : distance, s : size)
7: The codesize range for the1st group← [0, s + r]
8: The range for the2nd group←
9: r = 0 ? [s+1, s+1] : [s, s+3r+1]

10: repeat compute [li+1, ui+1] as
11: li+1 ← r = 0 ? (ui + 1) : (ui −

li
s
r)

12: ui+1 ← r = 0 ? (ui + 1) : ( s+2d
s

ui − 2 d2

s2 li + 1)
13: until ui ≥ maxv∈V{S(Cv)}
14: end function

We can estimate S(C) with the size of C ’s vector v =
〈x1, . . . , xn〉, i.e., S(C) ≈ S(v) =

∑n

i=1 xi. Althoughir-
relevant nodes may cause S(v) < S(C), this should have
littl e impact on clone detection because each S(C) is ad-
justed accordingly.

It is also worth mentioning that vector grouping has the
added benefit to improve scalabilit y of our detection al-
gorithm. Because the vectors are separated into smaller
groups, the number of vectors will usually not be a bot-
tleneck for LSH, thus enabling the application of LSH on
larger programs. In addition, because vector generation
works on a file-by-file basis and the separated vectors are
processed one groupat a time, our algorithm can be easily
parallelized.

4. Implementation and Empir ical Evaluation
This section discussesour implementation of DECKA RD

and presentsadetailed empirical evaluation of it against two
state-of-the-art tools: CloneDR [4,5] andCP-Miner [17].

4.1. Implementation

We have implemented our algorithm as a clone detec-
tion tool called DECKA RD. In our implementation, we use
1-level vectors to capture treestructures. DECKA RD is lan-
guage independent andworkson programs in any program-
ming language that has a context-free grammar. It auto-
matically generates a parse treebuilder to build parse trees
required by our algorithm. DECKA RD takesaYACC gram-
mar and generates a parse treebuilder by replacing YACC
actionsin thegrammar’sproductionruleswith treebuilding
mechanisms. The generated parse treebuilders also have
hightolerancefor syntactic errors. Thus, DECKA RD ismore
applicable than other tree-based clone detection tools, even
for languages with incomplete or inaccurate grammars. As
an example, only 2 files out of 8, 453 in JDK 1.4.2 cannot
be parsed by DECKA RD, whereas 81 cannot be parsed by
CloneDR.

Section 4.3 will show that DECKA RD works effectively
for both C and Java. In addition, YACC grammars are
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available for many languages, often with the requisite er-
ror recovery to localizesyntax problems. Thus, it should be
straightforward to port DECKA RD to other languages.

4.2. Experimental Setup

Weperformed extensive experimentson DECKA RD, and
the most detailed ones were on JDK 1.4.2 (8,534 java

files, 2,418,767LoC) andLinux kernel 2.6.16(7,988C files,
5,287,090 LoC).2 We also compared DECKA RD to both
CloneDR [4, 5], a well -known AST-based clone detection
tool for Java, andCP-Miner [17], a token-based tool for C.

To compare with CloneDR, we ran experiments on a
workstation with a Xeon 2GHz processor and 1GB of
RAM, with both Windows XP (for CloneDR) and Linux
kernel 2.4.27 (for DECKA RD). CloneDR has several pa-
rameters that may affect its clone detection rates, and we
chose the most lenient values for all those parameters: (1)
The minimal depth of a subtreeto be considered a clone is
set to two; (2) The minimal number of treenodes a clone
should contain is set to three; (3) The maximal number of
parameters allowed when using parameterized macros to
refactor clones is set to 65535; and (4) Similarity is set
to a value between 0.9 and1.0, where CloneDR [5] defines
Similarity as the following:

Similarity(T1, T2) =
2H

2H + L + R
(Eq. 1)

whereH isthenumber of shared nodesin treesT1 andT2, L
is thenumber of different nodes in T1, andR is thenumber
of different nodes in T2. Thisdefinition takes treesizes into
account, similar to our definition in Section 3.4. To make
our comparisons fair despite the different configuration op-
tions in each, we compute DECKA RD’s threshold σ from
Similarity as follows. Suppose v1 and v2 are the 1-level
vectors for T1 and T2 respectively. Because the l1 norm of
v1 and v2 can be approximated as L + R and l2 ≥

√
l1 for

integer vectors, we can transform a given Similarity s to
an approximate l2 distance:

Ds(v1, v2) ≥
p

H(v1, v2) ≈
√

L + R

{Eq. 1}
=

p

(1 − s) × (|T1| + |T2|)
≥

p

2(1 − s) × min(S(v1), S(v2))

Given a vector group V,
√

2(1 − s) × minv∈VS(v) can
serve as the threshold σ used by DECKA RD for the group.
This is similar to Section 3.4, where we use vector sizes
to approximate tree sizes. In Figures 3 and 4, we show
Similarity only, without showing thederived σ.

To comparewith CP-Miner (availablefor Linux), weran
experiments on a workstation running Linux kernel 2.6.16
with an Intel Xeon 3GHz processor and 2GB of RAM. CP-
Miner uses a different distancemetric, called gap, which is

2We have also done experiments on the following programs and ob-
tained consistent results: GCC 3.3.6 (C), PostgreSQL 8.1.0 (C), Derby
10.0.2.1 (Java), and Apache 2.2.0 (C). Due to spacelimitations, we do not
report thedetailed datahere.

the number of statement insertions, deletions, or modifica-
tions to transform one statement sequenceto another. Such
aparameter is invariant w.r.t. different codesizes.

4.3. Experimental Results

We have evaluated DECKA RD in terms of the following:
clonequantity (i.e., number of detected clones), clonequal-
ity (i.e., number of false clones), and its scalabilit y. Our
results indicate that DECKA RD performs significantly bet-
ter than both CloneDR andCP-Miner.

4.3.1 CloneQuantity

We measure clone quantity by the number of lines of code
that arewithin detected clonepairs.

In the first experiment, we compared DECKA RD with
CloneDR on JDK. CloneDR failed to work on the entire
JDK at once. It also failed on files with minor syntactic
problems. Thus, we excluded those syntactically incor-
rect files reported by CloneDR and separated the remain-
ingfiles into nineoverlapping groups, with each groupcon-
taining around 1,000 files. Figure 3(a) shows the total de-
tected cloned linesover many runsonJDK. For DECKA RD,
we used a variety of configuration options: minT (mini-
mal number of tokens required for clones) was set to 30 or
50, stride (size of the sliding window) ranged from 2 to
inf (equivalent to no merging of vectors), and Similarity

ranged between 0.9 and 1.0. The setting with an infinite
stride means that vector merging was disabled. The total
number of cloned lines for DECKA RD ranges from 204,263
to 1,943,777, while for CloneDR the number ranges from
246,708to 727,701.

In our secondexperiment, we compared DECKA RD with
CP-Miner on the Linux kernel. Figure 4(a) shows the total
number of detected clone lines by DECKA RD under differ-
ent configuration options with minT set to 30 or 50, stride
ranging from 2 to inf, and Similarity ranging from 0.9 to
1.0. The total number of detected cloned lines ranges from
338,519to 3,936,242. For CP-Miner, we used four config-
uration options with minT set to 30 or 50 and gap set to 0
or 1. Its total number of detected clone lines ranges from
498,113to 1,108,062as shown in Table1. It failed to oper-
atewith gap > 1.

In addition, Figure 4(c) plots the decline in clone de-
tection rates as minT increases for both CP-Miner and
DECKA RD. Even with Similarity set to 1.0, DECKA RD

detects more clones than CP-Miner.

4.3.2 CloneQuali ty

The number of reported spurious clones is also important
in assessing clone detection tools. We performed random,
manual inspection onrcAN sets (i.e., clustered similar vec-
tors) using two criteria: (1) Does an rcAN set contain at
least one clone pair that corresponds to copy-pasted frag-
ments? (2) Are all clones in an rcAN set copies of one
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Figure 3. Results for DECKA RD (with grouping and full parameter tuning) andCloneDR onJDK 1.4.2.
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minT Gap ClonedLoC (#) Time (min)

30 0 684,119 18.7
1 1,108,062 19.7

50 0 498,113 11.9
1 783,925 18.7

Table 1. Results for CP-Miner.
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Figure 4. Results for DECKA RD (with grouping andselectiveparameter tuning) andCP-Miner (Table 1) onLinux kernel 2.6.16.

another? If a set fails to satisfy either of the criteria, we
classify it asa false clone report.

It may bedifficult to decidefor certain whether two code
fragments are clones or not. For example, consider the fol-
lowingcode fragments from JDK 1.4.2:

1 else if (option.equalsIgnoreCase("basic")) {
2 bBasicTraceOn = true;
3 } else if (option.equalsIgnoreCase("net")) {
4 bNetTraceOn = true;
5 } else if (option.equalsIgnoreCase("security")) {
6 bSecurityTraceOn = true;
7 } else ...
8 ...
9 else if (opt.equals("-nohelp")) {

10 nohelp = true;
11 } else if (opt.equals("-splitindex")) {
12 splitindex = true;
13 } else if (opt.equals("-noindex")) {
14 createindex = false;
15 } else ...

The codebetween lines1–7and that between lines9–15
have identical structure but different variable names, func-
tions, and constants. CloneDR and CP-Miner may detect
them asclonesif thetwoif-else sequencesarestandalone
statements, but missthem if they are in themiddleof differ-
ent, larger if-else statements. DECKA RD always detects
them with reasonably small settings for minT andstride.

We inspected 100 randomly selected rcAN sets reported
by DECKA RD for JDK 1.4.2 with minT set to 50, stride set

to 4, andSimilarity set to 1.0. Of those, 93 rcAN sets are
clearly real clones. Amongthe remaining seven rcAN sets,
three involve if-else and switch-case that are similar
to the above if-else example, threeinvolve sequences of
simple import statements, and one involves sequences of
simple declarations. Althoughit is unclear whether these
are clones, the reported clone pairs are all structurally the
same. Also because both CloneDR and CP-Miner may de-
tect such code as clones, we also classified these as real
clones. This experiment indicates that DECKA RD is highly
accurate. Because the version of CloneDR that we have
does not output the actual clones, we cannot directly com-
pare its accuracy with DECKA RD. For future work, we
plan to developabetter user interfacefor DECKA RD, which
would allow us to conduct further user studies and to more
rigorously assessthequality of reported clones.

4.3.3 Scalabili ty

Table 2 shows the worst-case time and space complexities
of CloneDR, CP-Miner, DECKA RD, and LSH. Although
the number of treenodes n is usually several times larger
than thenumber of statementsm in aprogram, DECKA RD’s
performanceis still comparable to CP-Miner for large pro-
grams because ρ is usually much smaller than one. With
vector grouping, LSH’s memory consumption can be sig-
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CloneDR CP-Mi ner LSH LSH w/ Grouping DECK ARD w/ Post-Processing

Time O( n2

|Buckets|
) O(m2) O(dnρ log n) O(d

P

g∈G |g|ρ log |g|) O(n + d
P

g∈G |g|ρ+1 log |g| + c|rcAN |2)

Mem O(n) O(m) O(nρ+1 + dn) O(maxg∈G{|g|ρ+1 + d|g|}) max{O(c|rcAN |), Og∈G(|g|ρ+1 + d|g|)}

Table 2. Worst-case complexities of CloneDR, CP-Miner, and DECKA RD (m is the number of lines of code, n is the size of a
parse tree, |Buckets| is thenumber of hash tablesused in CloneDR, d is thenumber of nodekinds, |g| is thesizeof avector group,
0 < ρ < 1, c is thenumber of clone classes reported, and |rcAN | is the averagesizeof the clone classes).

Sim G (#) ClonedLoC (#) T (min)

Full Tuning 1.0 1984 624265 224.8
SelectiveTuning 624265 14.9

Full Tuning 0.99 235 792326 58.6
SelectiveTuning 792298 16.3

Table 3. Effectsof selectiveparameter tuning in LSH. The
data is for JDK 1.4.2, with minT 50, stride 2.

nificantly reduced to make DECKA RD scale to very large
programs.

Figure 3(b) plots running times for both DECKA RD

and CloneDR on JDK. When Similarity < 0.9999,
DECKA RD is several times faster than CloneDR. We show
next how DECKA RD can be configured to run significantly
faster. By default, LSH takesO(kd

∑

g∈G |g|ρ log |g|) time
to tune its own parameters and build optimal (w.r.t. query
time) hash tables, where k is the number of iterations it
uses to find the optimal parameters. Such cost accumulates
when the vectors are split i nto groups, and thus LSH may
spendmuch timeon parameter tuning. Reusingtheparame-
terscomputed for certain groups(e.g., thelargest group) can
dramatically reduceLSH’srunningtimewith littl e effect on
clone quantity and quality. Table 3 shows the effectiveness
of such a strategy in reducing the overall running time of
DECKA RD, especially when the vectors are split i nto many
groups.

Figure 4(b) shows DECKA RD’s running time on the
Linux kernel with selective parameter tuning. When
Similarity > 0.95, DECKA RD runs in tens of min-
utes and is comparable to CP-Miner (cf. Table 1); it can
be even faster when Similarity is close to 1.0. When
Similarity ≤ 0.95, DECKA RD may take more time than
CP-Miner. This extra cost is reasonable considering that
DECKA RD is tree-based and detectsmore clones, whileCP-
Miner is token-based andcannot operatewith gap > 1, and
that Similarity ≤ 0.95 is often too small for clone detec-
tion tasks.

5. Related Work
In this section, we discussclosely related work and split

them into three categories: (1) treesimilarity detection; (2)
studies oncode clones; and (3) clonedetectionalgorithms.

Tree Similar ity Detection Following the increased pop-
ularity of tree-structured data such as XML databases, sim-
ilarity detection on trees is gaining increasing attention.
However, efficient treesimilarity detection still remains an
open problem, whilesimilarity detection on high dimension

numerical vectors has already been extensively studied and
efficient algorithms exist. Yang et al. [23] propose an ap-
proximationalgorithm for computingtree editing distances.
We adapt their characterization to capture structural infor-
mation in parse trees, and apply LSH [7] to search for sim-
ilar trees. To the best of our knowledge, DECKA RD is the
most effective andscalabletool for treesimilarity detection.

Studies on Code Clones A few independent studies ad-
dressthequestionsof clone coverage andevolution in large
open-sourceprojects. The goal for clone coverage is to de-
termine what fraction of a program is duplicated code. It is
difficult to directly compare these studies because such re-
sults are usually sensitive to: (1) the different definitions of
codesimilarity used; (2) theparticular detectionalgorithms
used; (3) the various choices of parameters for these algo-
rithms; and (4) the different code bases used for evaluation
(e.g., CCFinder [10] reports 29% cloned code in JDK, and
CP-Miner [17] reports 22.7% cloned code in Linux kernel
2.6.6). However, these studies do confirm that there is a
significant amount of duplicated code in large codebases.

The goal of clone evolution is to understand how clones
are introduced or removed across different versions of a
software. Laguë et al. [16] examined six versions of a
telecommunication software system and found that a sig-
nificant number of clones were removed due to refactoring,
but the overall number of clones increased due to the faster
rate of clone introduction. Kim et al. [11] describe astudy
of clonegenealogiesandfindthat: (1) many code clonesare
short-lived, so performing aggressive refactoring may not
be worthwhile; and (2) long-lived clones pose great chal-
lengesto refactoring becausethey evolveindependently and
can deviatesignificantly from theoriginal copy.

Clone Detection Many algorithms and tools exist for
clone detection. First, there are tools specifically designed
for estimating similarity in programs for the purpose of de-
tecting plagiarism. Example tools include Moss [20] and
JPlag (http://www.jplag.de). These tools are usually
very coarse-grained andarenot suitablefor clonedetection.
Second, there are token-based tools, such asCP-Miner [17]
andCCFinder [10]. These areusually efficient, scaleto mil -
lionsof linesof code, andfind good quality clones, but they
are sensitive to code restructuring and minor edits, so may
missclones. Third, there are tree-based techniques, which
are less sensitive to code edits than token-based tools. Bax-
ter et al. [4, 5] apply AST hashing for detecting exact and
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near-miss clones. Wahler et al. [21] apply frequent item-
set datamining techniquesonASTsrepresented in XML to
detect clones with minor changes. DECKA RD is also tree-
based, but becauseof our novel useof characteristic vectors
and efficient vector clustering techniques, it detects signif-
icantly more clones and is much more scalable. Finally,
there are semantic-based techniques [14], which are most
robust against code modifications, such as re-ordered state-
ments, non-contiguousclones, and nested clones. However,
thesehavenot been shown to scale to largeprograms.

Thereisrecent work applyingclonedetectionalgorithms
to find “structural clones” for the purpose of detecting
design-level similarities. For example, two different clone
sets that often occur together in program files are an ex-
ample of structural clones. Basit and Jarzabek [3] first ap-
ply CCFinder to detect simple code clones and then use a
frequent itemset data mining algorithm to correlate simple
clones to find design-level similarities. PR-Miner [18] also
uses frequent itemset mining to detect implicit, high-level
programming patternsfor specification discovery or bug de-
tection. Our algorithm can also beused for such purposesas
longas we adjust vector generation to appropriately model
theseproblems. Weleave for futurework the application of
our algorithm onsuch pattern discovery tasks.

6. Conclusions and Future Work
In this paper, we have presented a practical algorithm

for identifyingsimilar subtreesandapplied it to detect code
clones. It is based on a novel characterization of trees as
vectors in R

n that effectively captures structural informa-
tion of trees and an efficient hashing and near-neighbor
querying algorithm for numerical vectors. We have imple-
mented our algorithm in the tool DECKA RD. It is language
independent and highly configurable. We have evaluated
DECKA RD on large code bases, including the Linux kernel
and JDK. It easily scales to milli ons of lines of code and
has identified more clones than existing tools. Our algo-
rithm is general and can be extended to work on other data
structures such as graphs. It also has many other potential
applications, such as bug detection, code refactoring, and
programming pattern discovery. For future work, we plan
to apply our algorithm to such problem domains.
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