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Abstract

Deteding code dones has many software engineeing
apgications. Existing appoaches either do nd scale to
large code basesor are nat robust against minor code modi-
fications. In this paper, we present an efficient algorithm for
identifying similar subtrees and apypy it to treerepresenta-
tions of source mde. Our algorithm is based on a nwe
characterization o subtrees with numerical vedors in the
Euclidean space R™ and anefficient algorithm to cluster
these vetors wir.t. the Euclidean dstance metric. Sulirees
with vedors in ore duster are cnsidered similar. We have
implemented our treesimilarity algorithm as a clone detec
tion tod called DECKARD and evaluated it on large code
bases written in C and Java including the Linux kenel and
JDK. Our experiments show that DECKARD is both scal-
able and accurate. It is also languag independent, appli-
cable to any languag with a formally spedfied gramnmar.

1. Introduction

Many software engineeing tasks, such as refadoring,
uncerstanding code quality, or deteding bugs, require the
extradion o syntadicadly or semanticdly similar codefrag-
ments (usually referred to as “clones’). Various gud
ies show that much dugicaed code exists in large wde
bases[10,11,17]. Many such dudications can be &tributed
to poa programming pradice since programmers often
copy-paste codeto quickly dugicatefunctiondlity. Thisten-
dency not only produces code that is difficult to maintain,
but may also introduce subtle erors|[6,17].

Different approaches for clone detedion have been pro-
posed intheliterature. Most of them focus on deteding syn-
tadic simil arity of code becaise chedking semantic simil ar-
ity is very difficult (andin general undeddable). RougHy,
these techniques can be dassfied into four caegories:
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String-based: A programisfirst divided into strings, usu-
aly lines. Each code fragment consists of a contiguows &
guence of strings. Two code fragments are similar if their
constituent strings match. The representative work here is
Baker's “parameterized” matching algorithm [1, 2], where
identifiers and literals are replaced with a global constant.

Token-based: A program is lexed to produce atoken
sequence, which is <anned for dugdicaed token subse-
guences that indicate potential code dones. Compared to
string-based approades, a token-based approach is usually
more robust against code changes such as formatting and
spadng. CCFinder [10] and CP-Miner [17] are perhaps the
most well-known among token-based techniques.

Tree-based: A program is parsed to produce aparse tree
or abstrad syntax tree (AST) representation o the source
program. Exad or close matches of subtrees can then be
identified by comparing subtrees within the generated parse
treeor AST [4,5,21]. Alternatively, diff erent metrics can be
used to fingerprint the subtrees, and subtrees with similar
fingerprints are reported as possble dupicaes[15,19].

Semantics-based: Semantics-aware gproaches have
also been proposed. Komondoa and Horwitz [14] suggest
the use of program dependence graphs (PDGs) [8] and
program slicing [22] to find isomorphic PDG subgaphs
in order to identify code dones. They also propose an
approad to groupidentified clones together whil e preserv-
ing the semantics of the original code [13] for automatic
procedure extradion to suppat software refactoring. Such
tedhniques have not scaed to large ade bases.

Of existing techniques, CCFinder [10], CP-Miner [17],
and CloneDR [4, 5] represent the state-of-the-art. However,
they either have limited scdability or are not robust against
code modifications. Our goal isto developapradicd detec
tion algorithm that is both scdable and robust against code
modifications.

In this paper, we introduwce a nowvel agorithm for
deteding similar trees and a pradicd implementation,
DECKARD, for deteding code dones. The main idea of
the dgorithm isto compute ceatain characteristic vedors to
approximate structural information within ASTs and then
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Figure 1. System architecture.

adapt Locality Sensitive Hashing (LSH) [7] to efficiently
cluster similar vedors (and thus code dones).

Figure 1 showsthe highlevel architedure of DECKARD:
(1) A parser is automaticdly generated from a formal syn-
tax grammar; (2) The parser translates ources files into
parse trees; (3) The parse trees are processed to produce
a set of vedors of fixed-dimension, cgpturing the syntac
tic information of parse trees; (4) The vedors are dustered
w.r.t. their Euclidean dstances; and (5) Additional post-
processng heuristics are used to generate done reports.

We have dore etensive empiricd evauation o
DECKARD onlarge software (including JDK and the Linux
kernel) and compared it against CloneDR and CP-Miner.
Results indicate that DECKARD is both scdable and aca-
rate: it deteds more dones in large code bases than bath
CloneDR and CP-Miner; it is more scdable than CloneDR,
which is aso treebased, and is as cdable & the token-
based CP-Miner.

The rest of the paper is gructured as follows. We first
give adetailed overview of our agorithm and ill ustrate it
with an example (Sedion 2) before presenting details of
our detedion algorithm (Sedion 3). Next, we discussour
implementation and evaluation o DECKARD (Sedion 4).
Finally, we survey related work (Sedion 5 and conclude
with adiscusson o future work (Sedion 6).

2. Overview

This sdion ill ustrates the main steps of our algorithm
with a small example. Consider the foll owing two C pro-
gram fragments for array initi ali zation:

for (int i= 0; i < n; i++)
x[i]= 0;

for (int i= 0; i < n; i++)
ylil= ";

The parse trees for these two code segments are identicd,
because the code differs only in identifier names and literal
values. The parse treeis shown in Figure 2. A pairwise
tree @mparison could be used to deted such clones, but
thisis expensive for large programs because of the possbly
large number of subtrees. In the foll owing, we demonstrate
anowel, efficient technique for treesimil arity detedion.

Characteristic Vedors We introduce characteristic vee
tors to cgpture structural information o trees (and forests).
Thisisakey stepin our algorithm. The charaderistic vedor
of asubtreeisapaint {(cy,...,c,) in the Euclidean space
where eat ¢; represents the count of occurrences of a spe-
cific tree pattern in the subtree For this example, we let

the tree patterns be the noce kinds in a parse tree We will
introduce more general treepatternsin Sedion 32.1.

Not all nodes in parse trees are esentia for capturing
treestructural information; many are reduncant w.r.t. their
parents, or were introduced to simplify the grammar spec
ification. We thus also distinguish between relevant and
irrelevant nodes. Example irrelevant nodes include C to-
kens ‘[ and ‘]’ and parentheses (‘" and‘)’). In Figure 2,
nodes with solid outlines are relevant while nodes with da-
ted oulines are irrelevant. Irrelevant nodes do nd have an
associated pattern or dimensionin ou vedors. For the ex-
ample, the ordered dimensions of charaderistic vedors are
occurrence @urts of the relevant nodes: id, lit, assign_e,
incr_e, array_e, cond_e, expr_s, decl, and for_s. Thus,
the charaderistic vedor for the subtree rooted at decl is
(1,1,0,0,0,0,0,1,0) becausethereisanid nodg, alit node,
and adecl noce.

Charaderistic vedors are generated with a post-order
traversal of the parse tree by summing up the vedors for
children with the vedor for the parent’s node. As an
example, the vedor for the subtree rooted at assign_e
(2,1,1,0,1,0,0,0,0) is the sum of the vedors for ar-
ray_e ((2,0,0,0,1,0,0,0,0)), = ((0,0,0,0,0,0,0,0,0)),
primary_e ({0,1,0,0,0,0,0,0,0)), andthe additional node
assign_e ({0,0,1,0,0,0,0,0,0)). Users may also spedfy
a minimum token court to suppressvedors for small sub-
trees; this helps to avoid reporting small clones which are
often urninteresting. For example, in Figure 2, with this
threshad set to threg no vedor is generated for the subtree
rooted at incr_e. By varying thisthreshold, we can system-
aticdly find oy large dones.

Vedor Merging The dorementioned technique consid-
ers only those aode fragments with a correspondng sub-
tree in the parse tree However, developers often insert
code fragments within some larger context. Differencesin
the surroundng nodes may prevent the parents from being
deteded as clones (see Sedion 4.3.2 for a concrete exam-
ple from JDK 1.4.2). To identify these doned fragments,
we use asemnd plese of charaderistic vedor generation,
cdled vedor merging, to sum upthe vedors of certain noce
sequences. |In this phase, a dliding windov moves along a
serialized form of the parse tree The windows are chosen
so that a merged vedor contains a large enoughcode frag-
ment. In Figure 2, for example, we merged the vedors for
decl andcond_e to get thevedor (3,1,0,0,0,1,0,1,0) for
the combined code fragment.

The choice of which nocdesin the treeto mergeisimpor-
tant; these nodes must make good boundriesamongcloned
code, while not frequently containing large subtrees. Roots
of expresgontrees, likely the aomic unitsfor copy-pasting,
are usually goodchaices for merging vedors. We cdl such
chosen nodes mergeable nodes. In Figure 2, the mergeable
nodes are the four children of the for statement. It is not
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Figure 2. A sample parsetreewnh generated charaderistic vedors.

necessary for mergeable nodes to be on a same level. If
we had chosen any statement to be mergeable, the entire
for loop would have been considered as one unit withou
subsequences. In Figure 2, we dso required eath merged
fragment to contain at least five tokens. If we had required
six tokens instead, there would have been only two merged
vedors instead of three (1) for decl and cond_e, and (2)
for cond_e, incr_e, and expr_s.

Vedor Clustering and Post-Processng After we have
seleded the charaderistic vedors, our agorithm clus-
ters dmilar charaderistic vedors w.r.t. their Euclidean
distances to deted cloned code. The two sample C
code fragments both have the same daraderistic vec
tor (6,2,1,1,1,1,1,1,1), and DECKARD reports them as
clones. Because the number of generated vedors can be
large, an efficient clustering algorithm is needed. We will
present such an algorithm in Sedion 3

The subtree rooted at expr_s aso ill ustrates the need
for post-processng. When a particular subtree has a low
branching fador, the vedors for a dhild and its parent are
usually very similar andthuslikely to be deteded as clones.
We amploy a post-processng phese foll owing clustering to
filter such spurious clones.

3. Algorithm Description

In this dion, we give adetailed technicd description
of our tree similarity algorithm: we first formally define
a clone par (Sedion 31), then introduwce dtaraderistic
vedors for trees and describe how to generate them (Sec
tion 32), andfinally explain our vedor clusteringalgorithm
for clone detedion (Sedion 33).

3.1. Formal Definitions

In this paper, we view clones as g/ntadicdly similar
code fragments. Thus, it is natural to define the nation o
similar treesfirst. Wefoll ow the standard definitionand use
tree aliting dstance & the measure for treesimil arity.

Definition 3.1 (Editing Distance) The editing dstance of
two trees 7} and T3, denated by 6(77, %), is the minimal
sequence of edit operations (either relabel a nodg, insert a
node, or delete anodk) that transforms 77 to 1s.

Definition 3.2 (Tree Similarity) Two trees 7} and T, are
o-similar for agiven threshdld o, if §(71,75) < o.

We ae now ready to define the notion o aclone pair.

Definition 3.3 (Clone Pair) Two code fragments C; and
C5 are cdled a clone pair if their correspondng treerep-
resentations 7 and Ty are o-similar for a spedfied o.

Such a definition based ontree @liting dstancefaithfully
cgptures how similar two code fragments are. However, it
does not lead naturaly to an efficient algorithm because:
(1) the complexity of computing the eliting dstance be-
tween two treesis expensive,! and (2) it requires many pair-
wise comparisons to locate similar code in large software
(quadratic in the worst case). Instead, we goproximate tree
structures using numericd vedors and reducethe treesimi-
larity problem to deteding similar vedors. Before describ-
ing the detail s, we define the two common dstance mea
sures for numericd vedors that we use in this paper.

Definition 3.4 (Distance Measureson Vedors) Let vy =

(X1,...,2,) andvy = (y1,...,y,) betwo n-dimensiona

vedors. The Hamning dstance of v; and v, H(v1, v2),

is their I; norm, i.e, H(vi,v2) = |lvg — val|1 =

>, |z — y;|. The Euclidean dstance of v; and v,

D(v1,v2), istheir s norm, i.e, D(vy,v2) = ||[vg — val|a =
> i (i — yi)?.

Such distance measures are much easier to compute and
efficient algorithms for nea-neighba queries exist for nu-
merica vedors. Based onthese observations, we show how
to abstrad trees into vedors and how to efficiently cluster
similar vedorsto deted code dones.

IMore predsely, for two trees T; and T the complexity is O(|T1| x
|T2| x di x d2), where |T;| isthesizeof T; and d; isthe minimum of the
depth of T; and the number of leaves of T; [24].



3.2. Characteristic Vectors for Trees

Recdl that in Sedion 2we ill ustrated the use of occur-
rence @urts of relevant nodesto abstrad a subtree(or sub-
trees). That example shows a spedal case of the general
construction that we will i ntroduce in this sdion. In par-
ticular, we describe ageneral technique to map a tree (or
forests) to anumericd vedor which charaderizes the struc-
ture of the given tree Without lossof generality, we assume
treesare binary [12].

3.2.1 Atomic Tree Patterns and Vedors

Given a binary tree we define afamily of atomic tree pat-
terns to cgpture structural information o atree They are
parametrized by a parameter ¢, the height of the patterns.

Definition 3.5 (¢g-L evel Atomic Tree Patterns) A ¢-levé
atomic pattern is a complete binary treeof height ¢. Given
alabel set £, including the empty label ¢, there ae & most
|£|?*~1 digtinct ¢-level atomic patterns.

Definition 3.6 (¢-L evel Characteristic Vedors) Given a
treeT, its ¢g-levé characteristic vedor (denoted by v, (1))
is (b1,ba, ..., bp2a-1), where b; is the number of occur-
rences of the i-th ¢-level atomic patternin 7.

For example, in Figure 2, we used the relevant nodes as
the 1-level atomic patterns and charaderized treeswith their
1-level charaderistic vedors.

Abstrading trees as g-level vedors yields an aternative

to the standard tree similarity definition based on editing
distance Our planisto use Euclidean distance between ¢-
level vedorsto approximate the editing dstance of the cor-
respondng trees. We adapt aresult of Yang et al. on com-
puting tree similarity [23] to show that this approximation
isacarate.
Theorem 3.7 (Yang et al., Thm. 3.3[23]) For any trees
T, and Ty with editing dstance §(71,7») = k, thel; norm
of the ¢-level vedorsfor Ty and Ta, H(vy(11), v4(T2)), is
no morethan (4q — 3)k.

For any two integer vedors v; and ve, \/H(v1,vs) <

D(vy,v2) < H(v1,v2). Thus we have the following corol-
lary that relates the tree aliting dstance of two trees with
the Euclidean distance of their ¢-level vedors.
Corollary 3.8 For anytreesT; and 75 with editing dstance
d(T1,T) = k, thely norm of the ¢-level vedorsfor 77 and
Ty, D(vy(T1),v4(T32)), is no more than (4¢ — 3)k and no
lessthan the square roct of thel; norm, i.e,,

VH(Th), 04(T2) < D(vg(Th), 0(T2)) < (4g — 3)k.

Corollary 3.8 suggests that either W or

w can be used as alower bound @ the tree

editing dstance §(71,7>). When such a lower boundis
larger than a spedfic threshadd o, T and Ty canna be o-
similar and thus not a done pair for the spedfied 0. On

Algorithm 1 g-Level Vedor Generation
1: function QVG(T : tree, C' : configuration): vectors
2: V—10
Traverse T' in post-order
for all node N traversed do

3

4

5. VN — Zn € children(N) Vi
6: if IsRelevant(NV, C) then
7

8

9

id <« Index0f(N,C)
Vi lid) — Vi[id] + 1

: end if
10: if IsSignificant(N,C) A
1L ContainsEnoughTokens(Vy, C) then
12 V—VU{Wn}
13 end if
14 end for
15 return

16. end function

the other hand, when the lower boundis smaller than o,
§(T1,T>) islikely to be lessthan o too. Hence, we reduce
the problem of tree similarity to the problem of deteding
similar ¢-level vedors.

Notice that Definition 36, Theorem 3.7, and Corol-
lary 3.8 can be relaxed to work on treeforests (a clledion
of trees) aswell becaise treeforests can beviewed asatree
by adding an additional roct. This is important for ded-
ing with code fragments that do nd correspondto asingle
subtreein the parse tree(cf. Sedion 2).

3.2.2 Vedor Generation

There ae two phases of vedor generation: one for subtrees
and ore for subtreeforests (for generating merged vedors).
Algorithm 1 shows how vedors are generated for subtrees.
Given a parse tree T', we esentially perform a post-order
traversal of T' to generate vedors for its aubtrees. Vedors
for a subtree ae summed up from its constituent subtrees
(line 5). Certain tree patterns may not be important for a
particular application, so we distinguish between relevant
and irrelevant tree patterns (a concept that is smilar to and
generali zes relevant and irrelevant nodes from Sedion 2).
If a pattern rooted at a particular node N is relevant (line
6), we look upitsindex in the vedor spaceusing Index0f
(line 7) and updite the vedor correspondngly (line 8).

We dso allow vedors to be generated orly for certain
subtrees, for example those that are more likely to be units
of clones, such as aubtrees rooted at dedarations, expres-
sions and statements. Users can seled those significant
noce kinds to generate ¢-level vedors (line 10). For ex-
ample, if array_e in Figure 2 had been spedfied asinsignif-
icant, no vedor would have been generated for it. In addi-
tion, we may want to ignare small subtrees that contain too
few tokens (cf. incr_e in Figure 2). Users can define amin-
imal token requirement on the subtrees, which is enforced
with ContainsEnoughTokens (line 11).

Algorithm 2 shows how vedors are generated for adja-



Algorithm 2 Vedor Merging for Adjacent TreeForests

1. function wvG(T : tree, C' : configuration): vectors
2: ST «— Serialize(T, C); V «— 10

3 step < 0;  front «— ST.head

4 back < NextNode(ST.head, C)
5 repeat

6: Vinerged = D[ front,back] Vn
7 while back # ST.tail \

8 —ContainsEnoughTokens(Vieged, C) dO
9: back «— NextNode(back, C)
10 Vmerged — ZnELf'ro'n,t,ba,ck] Vn

1L end while

12 if RightStep(step, C) then
13 V — YV U{Vinerged }

14 end if

15 front—NextNode(front, C)
16: step «— step + 1

17 until front = ST.tail

18 return

19: end function

cent subtreeforests. It serializes the parse treeT' in post-
order, then moves adlidingwindow alongthe seriali zed tree
to merge ¢-level vedors from nodes within the sliding win-
dow. Becaise it is not useful to include every noce in the
serialized treg we seled certain nock kinds (cdled merge-
able nodes) asthe small est treeunitsto beincluded (to make
larger code fragmentsin the context of clone detedion). For
example, the significant nodes, decl, cond_e, incr_e, and
expr_s in Figure 2 are spedfied as mergeeble. Users can
spedfy any suitable node kinds as mergeeble for a particu-
lar applicaion. If bath a parent and a child are mergeable,
we excludethe child in the slidingwindow for the benefit of
seleding larger clones. Thisisimplemented by NextNode
in Algorithm 2 (line 9).

Users can aso choose the width of the sliding windov
and hawv far it moves in eat step, i.e, its stride. Larger
widths allow larger code fragments to be encoded together,
and may help deted larger clones, while larger strides re-
ducethe anourt of overlapping anongtreefragments, and
may reduce the number of spurious clones. With dliding
windaws of different widths, our algorithm can generate
vedors for code fragments of different sizes and provide
asystematic technique to find similar code of any size

3.3. Vector Clustering

Given alarge set of vedors V, quadratic pairwise com-
parisons are computationally infeasible for similarity de-
tedion. Insteal, we can hash vedors with resped to the
Euclidean distances amongthem, and then look for simil ar
vedors by only comparing vedors with equal hash values.

Locality SensitiveHashing (LSH) [7,9] is predsely what
wenedd. It constructsaspedal family of hash functionsthat
can hash two similar vedors to the same hash value with
arbitrarily high probability and hash two distant vedors to

the same hash value with arbitrarily low probability. It also
helps efficiently find rea-neighbas of a query vedor. In
the foll owing, we provide some basic badground onL SH,
then discusshow it i s applied for clone detedion.

3.3.1 Locality Sensitive Hashing

Definition 3.9 ((p1, p2, r, ¢)-Sensitive Hashing) A family
F of hash functions h : V — U iscdled (p1,p2,r,c)-
sensitive (¢ > 1), if Yv;,v; € V,
if D(v;,v;) <r  then Problh(v;) = h(v;)] > p1
{ if D(v;,v;) > cr then Prob[h(v;) = h(v;)] < p2

For example, Datar et al. have shown that the foll owing
family of hash functions, which map vedors to integers, is
locdity sensitive [7]:

{hap: R — N|hgy(v) =| |, weR,bE[0,w]}

Definition 3.10 ((r, ¢)-Approximate Neighbor) Given

a vedor v, a vedor set V, a distance r, and ¢ > 1,
U={ueV|D,u) <cr}iscdled an rcAN set of v,
andany u € U isa(r, c)-approximate neighba of v.

Given avedor set V of sizen andaquery vedor v, LSH
may establish hash tables for V and find v’s rcAN set in
O(dn” logn) time and O(n*! + dn) space where d isthe
dimension o the vedors and p = log,, p1 < L forc €
[1,400). Aslongaswefeed r (the largest distance dl owed
between v and its neighbas) and p; (the minimal proba
bility that two similar vedors have the same hash value)
to LSH, it automaticdly computes other parameters that
would give optimal runningtime of aquery.

3.3.2 LSH-based Clone Detedion

LSH’s querying functionality can help find every vedor’'s
rcAN sets, which are neeaded for clone detedion. Algo-
rithm 3 describes the utili zation o LSH: (1) All vedorsare
stored into LSH’s hash tables (line 2), where r serves as
the threshald o defined in Definition 33; (2) A vedor v is
used as a query point to get an rcAN set (lines 3 and 4);
(3) If thercAN set only contains v itsdlf, it means v has no
neighbas within distance o and shoud be deleted diredly
(line 8); (4) Otherwise, the rcAN set is treaed as a done
class (lines 6 and 8. Such a processmay query LSH n
times in the worst case. Thus, our L SH-based clone detec
tiontakes O(dn” ™! log n) time, where d isthe dimension o
the vedors, i.e., |£]>*~! in terms of ¢-level vedors, where
|£] isthe number of nodekindsin aparsetree

All the rcAN sets may contain pdentially spurious
clones (cf. Sedion 2 and are post-processed to generate
clone reports. A filter is creaed to examine the line range
of every clone in an rcAN set and remove any that is con-
tained by a overlaps with others. A secondfilter isapplied
after thefirst one to remove rcAN setsthat contain only one
vedor. Both filtersrunin linea timein the number of rcAN
sets and quedratic timein the size of the sets.

a-v+b
w



Algorithm 3 LSH-based Clone Detedion

Algorithm 4 Vedor Grougng

1: function LSHCD(V : vectors, r : distance, p; : prob): rcANs
2: N «—0; LSH(V,r, p1)

3 repeat pickav €V

4 rcAN <« queryLSH(v)

5 if |[rcAN|>1 then

6: N = N U{rcAN\ U, en 1}
7 end if

8: YV —V\rcAN

9 until v=20

10: return PostProcessing(\)

11: end function

3.4. Size-Sensitive Clone Detection

Definition 33 of a done pair does nat take into acourt
the varying sizes of code fragments. It is however natu-
ral to alow more alits for larger code fragments to be till
considered clone pairs. In this dion, we introduce asize-
sensitive definition o code dones and an algorithm for de-
teding such clones. Such a higher tolerance to edits for
larger code fragments fadlit ates the detedion of morelarge
clones.

Definition 3.11 (Code Size) Thesize of a codefragment C'
in aprogram P, denoted by S(C), is the size of its corre-
spondngtreefragmentsin the parse treeof P.

Definition 3.12 (Size-Sensitive Clone Pair) Two  code
fragments C; and C> form a size-sensitive done pair if
their correspondng tree representations 7, and 71, are
f(o,5(Cy),S(Cy))-similar, where f is a monadonic,
nondeaeasing function with resped to o and S(C;).

Clone detedion based on Definition 312 requires larger
distancethresholds for larger code. We now present a tech-
nique to med such arequirement. The basic ideais vedor
groupng: vedors for a program are separated into differ-
ent groups based on the sizes of their correspondng code
fragments; then LSH is applied onead group with an ap-
propriate threshald; and finally, al reported clone dasses
from diff erent groups are combined.

Any groupng strategy is appropriate as longas it meds
the following requirements: (1) It shodd na miss any
clones detedable with a fixed threshald, thus ead group
shoud owerlap with the neighbaing goups; (2) It shoud
not producemany dugi cae dones, thus overlapping shoud
be aroided as much as posshle; (3) It shoud produce many
small groupsto help reduce dustering cost.

Algorithm 4 shows a generic vedor grouping algorithm,
where s is a user-spedfied code size for the first group.
Each vedor v is dispatched into groups whaose size ranges
contain the size of its correspondng code fragment, i.e.,
S(Cy). SIZERANGES shows our formulae for groupng.
The exad constraints used to deducethe groupngformulae
can vary as longas they med the dorementioned require-
ments.

1: function vG(V : vectors, r : distance, s : size)
2 R < sizeRanges(V, 1, s)
dispatch V into groups acarding to therangesin R
: end function

The code size range for the 1st group<— [0, s + 7]
The range for the 2nd group «
: r=07?[s+1,s+1]:[s,s+3r+1]
10: repeat compute [liy1, uit1] as
11 li+1<—r:O?(ui+1):(ui—%r)
12 Ui+1 <—r:0'7(u1—|—1) : (%Qduz—Tz—jlz—i-l)
13 until u; > maz,ev{S(Cy)}
14: end function

We can estimate S(C') with the size of C’s vedor v =
(T1,...,2,), 1.8, S(C) = S(v) = >, ;. Althoughir-
relevant nodes may cause S(v) < S(C), this shoud have
littl e impad on clone detedion becaise eat S(C) is ad-
justed acordingly.

It is aso worth mentioning that vedor groupng hes the
added benefit to improve scdability of our detedion al-
gorithm. Becaise the vedors are separated into smaller
groups, the number of vedors will usually not be abat-
tlenedk for LSH, thus enabling the gplication o LSH on
larger programs. In addition, becaise vedor generation
works on a file-by-file basis and the separated vedors are
processed ore group at atime, our algorithm can be eaily
parall eli zed.

3
4
5:
6: function SIZERANGES(V : vectors, 7 : distance, s : size)
7
8
9

4. Implementation and Empirical Evaluation

This dion dscusss our implementation of DECKARD
and presents adetail ed empiricd evaluation d it against two
state-of-the-art toadls: CloneDR [4,5] and CP-Miner [17].

4.1. Implementation

We have implemented ou algorithm as a done detec
tiontod cdled DECKARD. In our implementation, we use
1-level vedorsto cepture treestructures. DECKARD is lan-
guage independent and works on programs in any program-
ming language that has a oontext-free grammar. It auto-
maticdly generates a parse treebuil der to buld parse trees
required by ou algorithm. DECKARD takesa YACC gram-
mar and generates a parse tree buil der by repladng YACC
adionsin the grammar’s production rules with treebuil ding
medhanisms. The generated parse tree builders also have
hightolerancefor syntadic errors. Thus, DECKARD ismore
applicable than other tree-based clone detedion todls, even
for languages with incomplete or inacarrate grammars. As
an example, only 2 files out of 8,453 in JDK 1.4.2 canna
be parsed by DECKARD, whereas 81 canna be parsed by
CloneDR.

Sedion 4.3 will show that DECKARD works effedively
for bath C and Java. In addition, YACC grammars are



avail able for many languages, often with the requisite -
ror recovery to locdize syntax problems. Thus, it shoud be
straightforward to pat DECKARD to other languages.

4.2. Experimental Setup

We performed extensive experiments on DECKARD, and
the most detailed ores were on JDK 1.4.2 (8,534 java
files, 2,418767L0C) andLinux kernel 2.6.16 (7,988 files,
5,287,090 LoC).2 We dso compared DECKARD to bah
CloneDR [4, 5], a well-known AST-based clone detedion
toad for Java, and CP-Miner [17], atoken-based tod for C.

To compare with CloneDR, we ran experiments on a
workstation with a Xeon 2GHz processor and 1GB of
RAM, with bah Windavs XP (for CloneDR) and Linux
kernel 2.4.27 (for DECKARD). CloneDR has svera pa-
rameters that may affed its clone detedion rates, and we
chose the most lenient values for all those parameters: (1)
The minimal depth of a subtreeto be considered a doneis
set to two; (2) The minimal number of treenodes a done
shoud contain is st to three (3) The maximal number of
parameters alowed when using parameterized maaos to
refador clones is <t to 65535; and (4) Similarity is %t
to avalue between 0.9 and 1.0, where CloneDR [5] defines

Similarity asthefollowing:
2H

Similarity(T1, To) = T LIR (Eq. 1)
where H isthe number of shared nodesintreesT; andTs, L
isthe number of different nodesin 77, and R isthe number
of different nodesin T5. This definitiontakes treesizesinto
acour, similar to our definition in Sedion 34. To make
our comparisons fair despite the different configuration op
tions in ead, we compute DECKARD'’s threshold o from
Similarity as follows. Suppcse v; and v, are the 1-level
vedors for 77 and T, respedively. Becaise the [; norm of
v and vy can be gproximated as L + R and ly > /1, for
integer vedors, we can transform a given Similarity s to
an approximate [, distance

Ds(v1,v2) >
(Eg. 1)

\/H(’Ul,’uz) ~ \/L+R

V(1= s) x (IT1] + |T2])

> V2(1 = 5) x min(S(v1), S(v2))
Given a vedor group V, 1/2(1 — s) x min,ecypS(v) can
serve & the threshold o used by DECKARD for the group.
This is gmilar to Sedion 34, where we use vedor sizes
to approximate tree sizes. In Figures 3 and 4, we show
Similarity only, withou showing the derived .

To compare with CP-Miner (avail able for Linux), weran
experiments on a workstation running Linux kernel 2.6.16
with an Intel Xeon 3GHz processor and 2GB of RAM. CP-
Miner uses a different distance metric, cdled gap, which is

2We have dso dore experiments on the following programs and ob-
tained consistent results: GCC 3.3.6 (C), PostgreSQL 8.1.0 (C), Derby
10.0.2.1 (Java), and Apadche 2.2.0 (C). Due to spacelimitations, we do nd
report the detail ed data here.

the number of statement insertions, deletions, or modifica
tions to transform one statement sequenceto ancther. Such
aparameter isinvariant w.r.t. diff erent code sizes.

4.3. Experimental Results

We have evaluated DECKARD in terms of the following:
clone quantity (i.e., number of deteded clones), clone qual-
ity (i.e, number of false dones), and its scdability. Our
results indicae that DECKARD performs dgnificantly bet-
ter than bah CloneDR and CP-Miner.

4.3.1 Clone Quantity

We measure done quantity by the number of lines of code
that are within detected clone pairs.

In the first experiment, we compared DECKARD with
CloneDR on JDK. CloneDR failed to work on the entire
JDK at once It also failed on files with minor syntadic
problems. Thus, we excluded those syntadicdly incor-
red files reported by CloneDR and separated the remain-
ingfilesinto nine overlapping goups, with eat group con-
taining around 1000files. Figure 3(a) shows the total de-
tected cloned lines over many runs on JDK. For DECKARD,
we used a variety of configuration ogtions: minT (mini-
mal number of tokens required for clones) was <t to 30 or
50, stride (size of the sliding window) ranged from 2 to
inf (equivalent to no merging o vedors), and Similarity
ranged between 0.9 and 1.0. The setting with an infinite
stride means that vedor merging was disabled. The total
number of cloned linesfor DECKARD ranges from 204,263
to 1,943777, while for CloneDR the number ranges from
246,708to 727,701

In our secondexperiment, we compared DECKARD with
CP-Miner onthe Linux kernel. Figure 4(a) shows the total
number of deteded clone lines by DECKARD under differ-
ent configuration ogions with minT set to 30 or 50, stride
ranging from 2 to inf, and Similarity ranging from 0.9 to
1.0. The total number of deteaed cloned lines ranges from
338519to 3936242 For CP-Miner, we used four config-
uration ogions with minT set to 30 or 50 and gap set to 0
or 1. Its total number of deteded clone lines ranges from
498113t0 1,108062as shown in Table 1. It failed to oper-
ate with gap > 1.

In addition, Figure 4(c) plots the dedine in clone de-
tedion rates as minT increases for both CP-Miner and
DECKARD. Even with Similarity set to 1.0, DECKARD
deteds more dones than CP-Miner.

4.3.2 Clone Quality

The number of reported spurious clones is also important
in assessng clone detedion tods. We performed randam,
manual inspedion onrcAN sets (i.e., clustered similar vec
tors) using two criteria: (1) Does an rcAN set contain at
least one done pair that corresponds to copy-pasted frag-
ments? (2) Are dl clones in an rcAN set copies of one
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Figure 3. Results for DECKARD (with grouging and full parameter tuning) and CloneDR on JDK 1.4.2.
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Figure 4. Resultsfor DECKARD (with grouping and selective parameter tuning) and CP-Miner (Table 1) on Linux kernel 2.6.16.

ancther? If a set fails to satisfy either of the aiteria, we
classfy it asafase donereport.

It may be difficult to dedde for certain whether two code
fragments are dones or not. For example, consider the fol-
lowing code fragments from JDK 1.4.2:

1 else if (option.equalsIgnoreCase("basic")) {
2 bBasicTraceOn = true;
3 } else if (option.equalsIgnoreCase("net")) {
4 bNetTraceOn = true;
5 } else if (option.equalsIgnoreCase("security")) {
6
7
8
9

bSecurityTraceOn = true;
} else ...

else if (opt.equals("-nohelp")) {
10 nohelp = true;
11} else if (opt.equals("-splitindex")) {
12 splitindex = true;
13} else if (opt.equals("-noindex")) {
14 createindex = false;
15 ) else ...

The mde between lines 1-7 and that between lines 9—15
have identicd structure but diff erent variable names, func-
tions, and constants. CloneDR and CP-Miner may deted
them asclonesif thetwo if-else sequences are standalone
statements, but missthem if they arein the midde of differ-
ent, larger if-else statements. DECKARD aways deteds
them with reasonably small settings for minT and stride.

We inspeded 100 randamly seleded rcAN sets reported
by DECKARD for JDK 1.4.2 with minT set to 50, stride set

to 4, and Similarity set to 1.0. Of those, 93 rcAN sets are
clealy red clones. Amongthe remaining seven rcAN sets,
threeinvolve if-else and switch-case that are similar
to the &bowe if-else example, threeinvave sequences of
simple import statements, and ore involves squences of
simple dedarations. Althoughit is unclea whether these
are dones, the reported clone pairs are dl structurally the
same. Also because both CloneDR and CP-Miner may de-
ted such code & clones, we dso clasdfied these & red
clones. This experiment indicaes that DECKARD is highly
acarate. Because the version o CloneDR that we have
does naot output the acual clones, we canna direaly com-
pare its acaracy with DECKARD. For future work, we
plan to develop abetter user interfacefor DECKARD, which
would alow usto conduct further user studies and to more
rigorously assessthe quality of reported clones.

433 Scalability

Table 2 shows the worst-case time and space omplexities
of CloneDR, CP-Miner, DECKARD, and LSH. Although
the number of treenodes n is usually severa times larger
than the number of statementsm inaprogram, DECKARD’S
performanceis dill comparable to CP-Miner for large pro-
grams because p is usually much smaller than ore. With
vedor groupng, LSH’s memory consumption can be sig-



[ [[ CloneDR [ CP-Miner | LSH [ L SH w/ Grouping [ DECKARD W/ Post-Processng |
. n2
Time || O({gucrers) O(m?) O(dn” logn) O(d i |9l loglgl) O(n+dX e lglPT log |g| + clrcAN|?)
Mem O(n) O(m) OmPTT +dn) | O(mazgec{lgl”T" +dlg[}) | maz{O(crcAN]), Ogec(lgl”™" +dlg])}

Table 2. Worst-case complexities of CloneDR, CP-Miner, and DECKARD (m is the number of lines of code, n is the size of a
parsetree |Buckets| is the number of hash tables used in CloneDR, d is the number of node kinds, |g| is the size of avedor group,
0 < p < 1, cisthe number of clone dasssreported, and |rcAN| is the average size of the done dasss).

[ [ Sm [ G@# ][ ClonedLoC(# [ T (min) |

Full Tuning 1.0 1984 624265 2248
Selective Tuning 624265 149
Full Tuning 0.99 235 792326 586
Selective Tuning 792298 16.3

Table 3. Effedsof selective parameter tuningin LSH. The
datais for JDK 1.4.2, with minT 50, stride 2.

nificantly reduced to make DECKARD scde to very large
programs.

Figure 3(b) plots running times for both DECKARD
and CloneDR on JDK. When Similarity < 0.9999,
DECKARD is sveral times faster than CloneDR. We show
next how DECKARD can be configured to run significantly
faster. By defauilt, LSH takes O(kd > . |g/” log |g]) time
to tune its own parameters and buld ogimal (w.r.t. query
time) hash tables, where k is the number of iterations it
uses to find the optimal parameters. Such cost acaumulates
when the vedors are split i nto groups, and thus LSH may
spend much time on parameter tuning. Reusing the parame-
terscomputed for certain groups (e.g., the largest group) can
dramaticdly reduceL SH’srunningtime with littl e éfedt on
clone quantity and quelity. Table 3 shows the df ediveness
of such a strategy in reducing the overall running time of
DECKARD, espedally when the vedors are split i nto many
groups.

Figure 4(b) shows DECKARD’S runnng time on the
Linux kernel with seledive parameter tuning. When
Similarity > 0.95, DECKARD runs in tens of min-
utes and is comparable to CP-Miner (cf. Table 1); it can
be even faster when Similarity is close to 1.0. When
Similarity < 0.95, DECKARD may take more time than
CP-Miner. This extra st is reasonable mnsidering that
DECKARD istreebased and deteds more dones, while CP-
Miner istoken-based and canna operate with gap > 1, and
that Similarity < 0.95 is often too small for clone detec
tiontasks.

5. Related Work

In this sdion, we discussclosely related work and split
them into three caegories: (1) treesimilarity detedion; (2)
studies on code dones; and (3) clone detedion algorithms.

Tree Similarity Detedion Following the incressed pop
ularity of tree-structured data such as XML databases, sim-
ilarity detedion on trees is gaining increasing attention.
However, efficient treesimil arity detedion still remains an
open problem, whil e simil arity detedion on high dmension

numericd vedors has arealy been extensively studied and
efficient algorithms exist. Yang et al. [23] propcse an ap-
proximation algorithm for computing tree aliting dstances.
We adapt their charaderization to capture structural infor-
mation in parse trees, and apply LSH [7] to seach for sim-
ilar trees. To the best of our knowledge, DECKARD is the
most effective and scdabletoadl for treesimil arity detedion.

Studies on Code Clones A few independent studies ad-
dressthe questions of clone mverage and evolutionin large
open-source projeds. The goal for clone mverageisto de-
termine what fradion o a program is dugicated code. It is
difficult to diredly compare these studies becaise such re-
sults are usually sensitive to: (1) the diff erent definiti ons of
code simil arity used; (2) the particular detedion algorithms
used; (3) the various choices of parameters for these dgo-
rithms; and (4) the diff erent code bases used for evaluation
(e.g., CCFinder [10] reports 29% cloned code in JDK, and
CP-Miner [17] reports 22.7% cloned code in Linux kernel
2.6.6). However, these studies do confirm that there is a
significant amourt of dugicated codein large code bases.

The goal of clone evolutionisto understand how clones
are introduced or removed aaoss different versions of a
software. Lagué etal. [16] examined six versions of a
telecommunication software system and found that a sig-
nificant number of clones were removed due to refadoring,
but the overall number of clones increased due to the faster
rate of clone introduction. Kim et al. [11] describe astudy
of clone genedogiesandfindthat: (1) many code donesare
short-lived, so performing aggressve refadoring may not
be worthwhile; and (2) longlived clones pose gred chal-
lengesto refadoring because they evolve independently and
can deviate significantly from the original copy.

Clone Detedion Many agorithms and tods exist for
clone detedion. First, there ae tods gedficadly designed
for estimating simil arity in programs for the purpose of de-
teding pdagiarism. Example tods include Moss[20] and
JPlag (http://www.jplag.de). These tods are usualy
very coarse-grained and are not suitable for clone detedion.
Seoond, there ae token-based todls, such as CP-Miner [17]
and CCFinder [10]. These are usualy efficient, scdeto mil-
lions of lines of code, and find good qality clones, but they
are sensitive to code restructuring and minor edits, so may
missclones. Third, there ae treebased techniques, which
are less ensitive to code edits than token-based toodls. Bax-
ter et al. [4,5] apply AST hashing for deteding exad and



near-miss clones. Wahler et al. [21] apply frequent item-
set datamining techniques on ASTs represented in XML to
deted clones with minor changes. DECKARD is aso tree
based, but because of our novel use of charaderistic vedors
and efficient vedor clustering techniques, it deteds dgnif-
icantly more dones and is much more scdable. Finaly,
there ae semantic-based techniques [14], which are most
robust against code modifications, such as re-ordered state-
ments, norrcontiguots clones, and rested clones. However,
these have nat been shown to scdeto large programs.

Thereisrecent work applying clone detedionalgorithms
to find “structural clones’ for the purpose of deteding
design-level similarities. For example, two different clone
sets that often occur together in program files are an ex-
ample of structural clones. Basit and Jarzabek [3] first ap-
ply CCFinder to deted simple code dones and then use a
frequent itemset data mining algorithm to correlate ssmple
clonesto find design-level similarities. PR-Miner [18] aso
uses frequent itemset mining to deted implicit, high-level
programming petternsfor spedficaion dscovery or bug ce-
tedion. Our algorithm can also be used for such purpasesas
longas we ajust vedor generation to appropriately model
these problems. We leave for future work the gplicaion o
our algorithm on such pattern discovery tasks.

6. Conclusions and Future Work

In this paper, we have presented a pradicd algorithm
for identifying similar subtrees and applied it to deted code
clones. It is based ona nowel charaderization o trees as
vedors in R” that effedively cgptures gructural informa-
tion o trees and an efficient hashing and rea-neighba
querying algorithm for numericd vedors. We have imple-
mented our algorithm in the tod DECKARD. It islanguage
independent and highly configurable. We have evaluated
DECKARD onlarge aode bases, including the Linux kernel
and JDK. It easily scdes to milli ons of lines of code and
has identified more dones than existing todls. Our algo-
rithm is general and can be extended to work on aher data
structures auch as graphs. It also has many other potential
applicdions, such as bug cetedion, code refadoring, and
programming pettern discovery. For future work, we plan
to apply our algorithm to such problem domains.
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