

Hardware Assisted Control Flow Obfuscation
for Embedded Processors

Xiaotong Zhuang Tao Zhang Hsien-Hsin S. Lee Santosh Pande

College of Computing
 School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA, 30332-0280

{xt2000, zhangtao, leehs, santosh}@cc.gatech.edu

ABSTRACT+
With more applications being deployed on embedded

platforms, software protection becomes increasingly important.
This problem is crucial on embedded systems like financial
transaction terminals, pay-TV access-control decoders, where
adversaries may easily gain full physical accesses to the systems
and critical algorithms must be protected from being cracked.
However, as this paper points out that protecting software with
either encryption or obfuscation cannot completely preclude the
control flow information from being leaked. Encryption has been
widely studied and employed as a traditional approach for
software protection, however, the control flow information is not
100% hidden with solely encrypting the code. On the other hand,
pure software-based obfuscation has been proved inefficient to
protect software due to its lack of theoretical foundation and
considerable performance overhead introduced by complicated
transformations. Moreover, even though obfuscation can prevent
static reverse engineering, attacker can still successfully bypass the
obfuscation by monitoring the dynamic program execution.

To address all of these shortcomings, this paper presents a
hardware assisted obfuscation technique that is capable of
obfuscating the control flow information dynamically. Dynamic
obfuscation changes memory access sequence on-the-fly and
conceals recurrent instruction access sequences from being
identified. Our scheme makes it provably difficult for the attacker
to extract any useful information. Our results show that a high-
level security protection is possible with only minor performance
penalty. Finally, we show that our scheme can be implemented on
embedded systems with very little hardware overhead.

Categories and Subject Descriptors
C.1 [Processor Architectures]: Miscellaneous;
K6. [Management of Computing and Information Systems]:
Security and Protection;

C3. [Special-purpose and application-based Systems]: Real-
time and embedded systems.

+ Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’04, September 22–25, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-890-3/04/0009…$5.00.

General Terms: Design, Performance.

Keywords: Obfuscation, Control Flow Graph

1. INTRODUCTION
With the performance of embedded systems continuing to

grow, more complex applications are expected to run on embedded
platforms. State-of-the-art embedded processors such as Intel’s
XScale processor family or StarCore LLC’s SC1400 DSP (or
Motorola’s SC140e) can run at very high frequency with a rich
instruction set support and execute some large applications
originally designed for desktop systems.

Due to the ever-growing deployment of embedded systems
and their intrinsic vulnerability, software protection on embedded
systems is emerging as a challenging problem to avoid adversaries
to easily gain a full physical access to the system hardware,
internal critical application algorithms, and sensitive data.
Leaking the software may directly result in the loss of critical
information and intellectual property (IP) coming from tens or
hundreds of man-year’s software development effort and
investment. Given that embedded software development can be
more time-consuming due to its special properties like meeting
real-time constraints, specific memory capacity limitation, low-
level interfaces, etc., the protection of the software IP is highly
desirable.

It is common to achieve software copy protection via various
encryption techniques. The security strength of encryption is
provable, depending on the encryption scheme and the length of
the key. Traditionally, encryption-based methods have
performance concerns since the program code and data must be
decrypted before they can be processed. If the decryption is based
on software, the performance degradation may be too substantial
to be tolerable to users. With the rapid advancement of IC
fabrication technology, hardware-based encryption support is
becoming widely available in modern security devices, such as
smart cards, midsize secure devices [5] etc. With the help of
dedicated hardware decryption engines, the decryption operation
can be accelerated substantially to alleviate the performance
degradation from using software-based methods. Due to the recent
advances in security devices with hardware support for
encryption/decryption, it is reasonable to predict that encryption
will play a major role in the future.

Employing the encryption alone, however, is not a sufficient
solution to software protection in most cases. Even though the
plaintext of program code and data are completely

“unrecognizable” from the attacker after encryption, their absolute
and relative locations are not altered at all. In other words, if we
want to get the same data or code block again, the same address
must be issued on the bus. As will be introduced in section 3, the
control flow information will be left unchanged. A classical way to
conceal the control flow information is through obfuscation. The
goal of obfuscation is to transform the program from its original
form to a functionally equivalent one that is more difficult to
understand and reverse engineer. Conventionally, obfuscation
involves software techniques like layout obfuscation, control
obfuscation, data obfuscation etc [2].

However, obfuscation has several weaknesses. The most
important one is that it lacks of theoretical foundation. There is no
solid way to measure and prove the difficulty introduced after the
transformation, i.e. the level of protection cannot be evaluated and
guaranteed quantitatively after the obfuscation. On the other hand,
it has been proved that a perfect obfuscation does not exist after all
[3]. It is well acknowledged that an experienced programmer can
foil all kinds of obfuscation schemes if enough time is given.
Actually, the main task of obfuscation is to prevent an automated
de-obfuscator. Moreover, obfuscation may incur large overheads
in the code size due to dead code or irrelevant code [2] , if a
sophisticated transformation is chosen. Also, the performance may
be penalized severely due to carrying out extra obfuscating
computations. Therefore, even traditional obfuscation techniques
like “inlining and outlining transformation”, “loop transformation”,
“control flow flattening” [2][3] can obfuscate the control flow to
some extent, however they are purely software-based and thus
suffer from the problems as mentioned above. Finally, the history
has proven obfuscation is inefficient in protecting software. After
being first introduced twenty years ago, it has been developed very
slowly and is rarely used in reality, due to the aforementioned
reasons.

 Consequently the state-of-the-art hardware-based encryption
can achieve low-overhead but cannot obfuscate at the control flow
level, while the software-based obfuscators can obfuscate the
control flow but are worse in performance. Besides, quantitatively
there is no guarantee on how much protection can be provided
with software obfuscation.

In this paper, we propose a hardware based approach to
obfuscate the program control flow at runtime with very small
overhead. Based on existing hardware encryption techniques,
hardware assisted control flow obfuscation provides a much higher
level of obfuscation than its software-based counterpart. Through
the theoretical analysis, we show that the probability for an
attacker to successfully identify recurring addresses, an important
criteria in revealing the control flow information, is extremely low.

The rest of the paper is organized as follows: section 2
discusses the system model; section 3 depicts IP piracy issues due
to unprotected control flow; section 4 introduces preliminaries;
section 5 presents hardware assisted obfuscation; section 6 shows
security analysis of our scheme; section 7 gives additional
considerations; section 8 shows and analyzes experimental results;
section 9 and section 10 gives related work and our conclusion.

2. SYSTEM MODEL
We assume an embedded processor, which supports

hardware based encryption mechanism. The processor chip is
physically secure, such that all data and code cannot be cracked
once they are brought onto the processor chip. On the other hand,

data and code are always encrypted whenever leaving the
processor and need to be decrypted after they are fetched into the
processor. Therefore, only the processor chip is trusted, whereas
buses and external memory are subject to attack. Such a secure
processor model was well studied in literature [6][7][8][9] and was
implemented in commercial products such as Dallas
Semiconductor’s DS5002FP microcontroller [5] in which the
processor chip is physically shielded and code and data are
encrypted outside the chip. More recently, similar security models
are proposed and designed at the architecture level, e.g. eXecute
Only Memory (XOM) from Stanford [10]. With proper hardware
implementations, techniques proposed in [11][12] show that
encryption and decryption can be efficiently performed at an
inexpensive hardware cost.

3. IP PIRACY DUE TO UNPROTECTED
CONTROL FLOW

This section explains why encryption alone cannot prevent
the exposure of program control flow and how this can cause IP
piracy.

(a) (b)

B1

B2

B3

B1

B2

B4

B3

Figure 1. Identifying control flow structures.

First of all, encryption techniques can only encrypt the
contents of the memory blocks, making the attacker unable to
interpret them correctly. However, the location of the blocks are
not changed. In other words, using the current memory model, if
the block at address 100 is accessed the first time, all the
subsequent references to the same data will have to fetch it from
address 100. Even if the attacker does not know what is exactly
stored in address 100, he or she can still confidently know that the
same block is being used again and again when the same address is
observed during a program’s execution. Now we illustrate two
examples with regards to how a loop and a change-of-flow (i.e. a
branch) can be exposed. We assume all the blocks are encrypted
but their locations in memory are never changed. As shown in
Figure 1.a where three blocks 1 form a loop, then we will see
addr(B1), addr(B2), addr(B3) repeat many times. On the other
hand, branches can be identified as well. In Figure 1.b that shows a
conditional branch resides inside a loop and both branches are
taken during the execution, we will see that addr(B1), addr(B2),
addr(B4) and addr(B1), addr(B3), addr(B4) appear on the bus.
Thus, the attacker can reasonably believe there is a branch at block
1 and the two branch targets are block 2 and block 3, respectively.
Although in this example, the detection of the branch relies on the
behavior of a loop, even if there is no loop encompassing a branch,
the branch can still be identified by executing the code multiple
times experimenting with different input data. As such, the
attacker can incrementally gather most of the control flow graph

1 In this paper, we assume control flow graphs are constructed at block

level, i.e. each node is a block, and edges indicate control flow transitions
between blocks.

by monitoring the stream of addresses for a sufficient amount of
time. Up to now, we have only illustrated that how a control flow
graph could be reconstructed, at least partially, but not the actual
contents of the code.

It is undeniable that the control flow information is the
essential part of the algorithms implemented in software. Previous
software obfuscation techniques mostly aim to prevent the control
flow information from being obtained by the attacker. For example,
obfuscation techniques such as “converting reducible to non-
reducible flow graph”, “inline and outline”, “loop transformation”
[2][3], etc., change the control flow directly. Unfortunately,
encryption alone cannot prevent the leakage of the control flow,
although this kind of IP piracy may not expose the software in its
entirety, its damage can be severe under the following scenarios.

Imagine company A and company B are developing similar
software. Company A succeeds first and releases the software in
encrypted format so it can be run on a processor with hardware
encryption/decryption. However, company B now has a complete
access to the software and can run it repeated on the processor and
experiment with it extensively, e.g. feed the program with different
inputs, run that software together with their own software on the
same machine or even with a manipulated OS. Moreover,
company B is already an expert in developing similar software,
therefore it only wants to understand a few critical parts or
algorithms of the software. Therefore, they can definitely benefit
from the control flow information as extracted in a similar manner
as shown in the previous examples. Although this scenario is not
as straightforward and prevalent as software piracy by the end
users, it has been a major concern of software companies (like the
recent Linux/SCO-Unix lawsuit). Besides this, one can steal
critical data (like secret key) through side-channel attacks as
conducted in many low-end systems including smart-card, ATM
terminal devices.

Also as discussed in [15][21], control flow information can
help to identify reuse code, leading to its complete exposure. This
is done by matching the control flow graph against control flow
graphs of the code that are already known to the attacker. As the
reuse code takes an ever-increasing portion (more than half) in
modern software given the fast time-to-market pressure and a large
amount of legacy code that can be reused, leaking reuse code
could severely endanger software protection. In addition, the
values of some data might be indirectly exposed by the control
flow as well. For example, if a branch compares variable x with 1
and decides which path to take, we will know whether x actually
equals 1 by observing the direction of the branch. Although most
likely, only partial information can be obtained through the control
flow revelation, such information can be valuable in certain
circumstances regardless.

However, software-based obfuscation can only avoid such IP
piracy to a limited extent. Control obfuscation techniques like
“inline and outline”, “loop transformation” are well-known
techniques. If the attackers knows the obfuscator has changed the
code, he can somehow reverse that process to find the original or a
close-to original form of the code. In [4], obfuscation is provably
not a cure-all solution, the traditional software-based obfuscation
approaches cannot even clarify the level of protection provided, i.e.
they cannot quantitatively guarantee how much protection a
scheme provides after the obfuscation is applied. Moreover,
software-based obfuscations are conducted at compilation time,
which means once the obfuscation is done, the code will not be
changed any more at runtime. Therefore, the attacker can

experiment with the same code repeatedly, making it more likely
that some useful information will be eventually revealed. Finally,
as mentioned earlier, software-based obfuscation typically has ill-
effects like code growth, extra computation etc., which may
deteriorate the quality of the original code.

It is noteworthy that caches can naturally provide certain
amount of obfuscation to the control flow, part of the control flow
edges are “hidden” inside the cache if blocks are hit in the on-chip
cache. For the example in Figure 1.a, if all blocks are in the cache,
then the attacker cannot find this loop from outside. Similarly, in
Figure 1.b, if both B1 and B2 are in the cache, this control flow
edge cannot be detected. However, it does not help due to the
following reasons. Firstly, since cache is a shared resource among
all processes running on a processor, it is very easy for the attacker
to manipulate the OS so that the cache gets flushed on a context
switch; alternatively the attacker can either ascertain that his own
process fills and occupies most cache space before switching to the
process being attacked, or even manipulate the system to disable
the use of caches. In this way, all memory accesses are exposed
directly on the address bus due to compulsory misses. Secondly,
different parts of the control flow can be leaked during different
runs. It is possible that the attacker can finally get the whole
picture. Finally, on-chip caches are typically small for embedded
systems. Most of the modern high-performance DSPs or
embedded processors do not even include any on-chip caches for
timing predictability for real-time applications.

4. ADDRESS INFORMATION LEAKAGE
In this section, we describe the address information leakage

problem, which is the objective of hardware-based obfuscation.
Our intention is to understand and demonstrate what causes such
information leakage. We will also discuss ways to measure the
extent of the information leakage.

4.1 Layout Leakage and Recurrence Leakage
When the attacker taps on the bus, he can obtain a sequence

of block addresses that are not obfuscated. In Figure 2.a all 5
blocks of instructions are stored in encrypted form, however
authentic addresses are readily available on the bus. If address 101
appears after address 100, the attacker can simply infer that these
two blocks are executed consecutively. Moreover, the attacker can
speculate block 102 will be the fall-through path after control flow
jumps to 103. Therefore, the original instruction layout in the
memory leaks information about which instructions are close to
each other on the control flow graph. Notice that, even if the fall-
through path to 102 is never executed, the attacker can still
reasonably assume such a path exists. We define this kind of
information leakage layout leakage.

Layout Leakage: Information leakage due to the spatial vicinity of
blocks, which implies their proximity of accesses in the control or
data flow graph.

Similar to Figure 1.a, the attacker will see 100,101, X, 104

appears repeatedly in the address sequence, where X is either 102
or 103. This gives out the loop and the conditional branch.
Essentially, recurring addresses expose loops and branches. We
call such leakage recurrence leakage.

Recurrence Leakage: Address information leakage due to
recurring addresses which indicates the same block is accessed
again.

4.2 Address Bus Encryption
DS5000/DS5002FP [5] implements a technique called

address-bus encryption. Intuitively, since memory contents are
encrypted, we can encrypt addresses as well. However, address
encryption is radically different. Since we assume the memory is
not trusted, once we encrypt an address, the corresponding
memory block must be relocated to the new address (i.e. the
ciphertext). The following example illustrates that if such
encryption is fixed, we still cannot prevent the recurrence leakage.

In Figure 2.c, we show an address bus encryption scheme
and Figure 2.b depicts the new memory layout. Notice that, once
we encrypt address 100 as 101, the block at address 100 must be
moved to address 101 accordingly. The DS5000/DS5002FP
processor loads the program which is initially laid out at addresses
after encryption. Since the processor knows the encryption scheme,
to access a block at address addr, it simply issues an access to the
address E(addr). As can be seen, the address bus encryption is
actually just a permutation of blocks in memory [5].

101,104,103,100,102,101,104,100,102,101…

Ekey(Inst. A)

101

100

(a)

(e)

Ekey(cbr 103)
Ekey(br 104)

Memory Layout before
Address bus Encryption

101
102

Ekey(Inst. B)
Ekey(br 100)

103
104

104

103

102

100

(d)

Ekey(..)…
Ekey(..)…
Ekey(..)…
Ekey(..)…
Ekey(..)…

Ekey(Inst. B) 100
Ekey(Inst. A)
Ekey(br 100)

101
102

Ekey(br 104)
Ekey(cbr 103)

103
104

Ekey(..)…
Ekey(..)…
Ekey(..)…
Ekey(..)…
Ekey(..)…

(c)

E(100) = 101
E(101) = 104
E(102) = 103
E(103) = 100
E(104) = 102

Address Bus Encryption Scheme

(b)

Memory Layout after
Address bus Encryption

Figure 2. Address-bus encryption.

Clearly, address bus encryption can avoid layout leakage,
because even sequentially executed blocks are now scattered
across non-contiguous memory locations. Address bus encryption
involves permutation of blocks in memory, the DS5000/DS5002FP
processor never relocates blocks during the dynamic execution,
however. Therefore it should be called fixed address bus
encryption or fixed permutation, which means the encryption
function never changes. Thus, an address is mapped to a fixed new
address and the mapping remains the same throughout the
execution.

The implementation of fixed address bus encryption is very
simple by providing the mapping inside the processor. On
DS5000/DS5002FP, a pseudo permutation function is recorded on
chip. All addresses should be mapped by the pseudo permutation
function before going out to the bus.

However, fixed address bus encryption completely fails to
prevent recurrence leakage since the relative access sequence of
blocks remains unchanged for the program. In Figure 2.d, we
show the address sequence that might appear on the bus. Now, the
pattern 101,104, Y, 102 appears repeatedly, where Y can be 103 or
100.

Obviously, the same recurrence pattern can be observed,
which means the fixed address bus encryption does not change the
recurrence pattern at all, except that each address is mapped to a
new address respectively. The new address sequence still recurs in
the same manner. In Figure 2.e, the control flow graph can be
reconstructed from the address sequence with both loop and the
conditional branch exposed.

4.3 Address Recurrences
To further understand the recurrence leakage is the critical

problem in preventing address information leakage, we consider it
in a different way. Assume that the address bus encryption
(mapping) is completely random, which means each address is
mapped to an independent random address. Also, assume no
address is accessed again, i.e. no recurrence occurs. Then the
attacker should get a sequence of random numbers on the bus.
Therefore, he can extract zero information from the address
sequence if no recurrence is generated.

In this paper, we propose approaches to avoid the exposure
of address recurrences. Hereby, we define the following different
scenarios for address recurrence.

n-recurrence: A series of n recurrences of the same address.
same-run recurrence: Address recurrence in the same run of a
program.
multi-run recurrence: Address recurrence across different runs of
the same program.
faked recurrence: We can generate faked recurrences, which do
not correspond to actual recurrences in the address sequence.

As explained above, address recurrence is the basis for the

attacker to extract useful information from the address trace. To
conceal address recurrence, i.e., n-recurrence, in the original
address trace is our main goal. For the address sequence in Figure
2.d, we can observe a 3-recurrence of address 101 and a 2-
recurrence of address 100. In section 6, we will show that, with our
scheme, the probability of detecting an n-recurrence is

nM
1 , where

M is an adjustable system parameter. In other words, it decreases
exponentially with n. Same-run recurrence can leak control flow
information of the code that is executed multiple times during a
single run. If the program initial layout is not changed when it
starts in each run, multi-run recurrence can occur. The attacker
can execute the same program many times with different inputs
and environments, so the same address may recur at different runs.
Even if such addresses do not recur in the same run, information
still leaks due to multi-run recurrences. In this work, we tackle
both multi-run and same-run recurrences. Besides, in order to
confuse the attacker, the processor can generate faked recurrences
by issuing addresses that have appeared on the bus previously.

4.4 Dynamic Address Mapping and Block
Relocation

At this point, we can perceive the insufficiency of fixed
address encryption (mapping). Intuitively, we should map an
address differently each time it appears on the bus, and then
remember the new mapping for future access. However, such a

strategy has to be implemented carefully, otherwise it helps little
to prevent leakage. As an example, one naïve implementation
could choose to relocate a block immediately after accessing it.
For instance, after accessing block 100, we relocate it to 104
immediately. Next time when this block is accessed again, we can
get it from address 104. However, since the attacker may watch
the bus all the time, he will find 104 is written out immediately
after access to address 100 and later 104 is accessed again.
Therefore, the attacker has a strong reason to believe that block
104 is actually the original block at address 100. In other words,
after the attacker observes address 104 is written out and accessed
again, he can speculate an address recurrence. The above example
indicates that an effective solution should guarantee little
correlation between the relocation operation and the next access.
In consequence, the attacker will experience a higher level of
difficulty in determining which address the original block is
relocated to.

4.5 How to Measure the Security Strength
With a good random permutation (re-mapping) scheme, the

new locations of the blocks can be thought as totally independent
of their original locations. In this regard, the layout leakage can be
completely prevented with an initial permutation, because it relies
on the relative position of instructions in their original layout.

For recurrence leakage, a natural criteria is the probability
an n-recurrence can be detected by the attacker. The lower the
probability of finding an n-recurrence, the more difficult for the
attacker to guess a loop that reaches its nth iteration. In other words,
such probability should be very low, so that the address sequence
shown up on the bus is closer to a sequence of random accesses as
suggested at the beginning of section 4.3.

5. HARDWARE SUPPORTED CONTROL
FLOW OBFUSCATION

Our scheme aims at reducing the probability that n-
recurrences are exposed on the address bus. Provably, the scheme
we propose can achieve that the probability of an n-recurrence
being detected is less than O(1/mn). Here m is a parameter that can
be controlled by the amount of hardware resource we are able to
invest.

The basic idea for hardware-assisted obfuscation is to
relocate blocks every time they are written out to the memory. By
doing so, the attacker has to guess from a number of locations in
order to find out a possible address recurrence. Our scheme
deploys a shuffle buffer to achieve this.

Figure 3 shows the main components of our hardware
obfuscator. The dotted line cuts the figure into two parts. The
upper part is inside the security boundary, i.e. inside the processor
chip. The lower part is the bus and memory which are subject to
external tapping and tampering. A shuffle buffer is added inside the
processor chip. As will be addressed in section 5.1, the shuffle
buffer relocates blocks to new memory locations. In the meantime,
the block address table (section 5.2) records those new locations,
so that they can be accessed later. Figure 3 also illustrates how the
memory space is divided. The area for storing block address table
is only accessible to the block address table caches and the
controller. The application cannot see it. The controller accepts
requests from the cache, checks with the block address table to
find the locations of the blocks and fetches blocks according to
their new addresses. Each fetch is always followed by a write to

the same location so that the attacker always observes read/write
pairs. The controller is also responsible for managing the
generation of read-write pairs.

bus, memory (insecure)

block address table program address space

processor side

(secure)
Shuffle
Buffer

Cache

Block Address
Table Cache

Controller

Figure 3. Overview of the hardware obfuscation scheme.

5.1 Shuffle Buffer
The central component for the hardware assisted obfuscation

is the shuffle buffer. As mentioned before, a block should be
relocated to a new location every time it leaves the processor. Also,
it should be written out as a part of many other writes instead of
being written out immediately. The shuffle buffer is designed to
reorder all writes to the memory so that the attacker cannot easily
determine exactly which one is written out at a particular moment.
Write reordering can significantly mask address recurrences as
will be formulated and quantified in section 6.

The structure of the shuffle buffer together with part of the
functionalities of the controller is shown in Figure 4. There are 3
data paths centered around the shuffle buffer. Here, we assume the
on-chip cache is a write-back cache.

The shuffle buffer is simply an array of blocks. Each code
block or data block is either found in the memory or in the shuffle
buffer but not in both of them. In this sense, the shuffle buffer is
exclusive to the external memory in contrast to the cache hierarchy,
which is inclusive. From Figure 4, data path (1) and (2) are similar
to those in the caches. Cache misses are handled by the controller.
For cache misses that hit in the shuffle buffer, blocks are
immediately fetched from the shuffle buffer to the cache. If the
cache miss is not found in the shuffle buffer, we have to fetch it
from the memory. Upon finishing the memory access, both the
shuffle buffer and the cache will get a copy of the block.

Shuffle buffer

After each
read from
memory,
randomly
write back

a block

L2 Cache

Memory

Fetch miss
blocks
from

memory

read/write blocks
in shuffle buffer,
if the block is not
in shuffle buffer,
access after it is

fetched from
memory

1

2

3

Figure 4. The shuffle buffer.

However, there are several distinct properties for the shuffle
buffer in addition to the design that a block can only stay in either

the shuffle buffer or the memory. The shuffle buffer is simply an
indexed array through the block address table, thus no address tag
is necessary. The size of the shuffle buffer can be much smaller
than the cache, making our scheme inexpensive. To determine if a
cache miss is a hit in the shuffle buffer or not, the controller relies
on the block address table which records the whereabouts of
blocks. The shuffle buffer allows any block to be stored in any slot.
Moreover, once a block is fetched into the shuffle buffer, it can
replace a randomly picked block inside the shuffle buffer. The
above property can also be achieved by employing a fully
associative cache, but it is more expensive and less scalable. Since
we need block address table to record the locations of the blocks in
the external memory, it is natural to use block address table to
record the location of blocks in shuffle buffer too. Thus, no fully
associative organization and tag comparisons are needed for the
shuffle buffer.

As aforementioned, an incoming block can replace any
existing block in the shuffle buffer. As shown with data path (3),
the controller picks a block randomly from the shuffle buffer to
write back to memory. Here we assume a pure random number
generator is available using circuit white noise [20]. Thus, the
controller can pick a completely random block in the shuffle buffer
to be replaced by the incoming block and write back the replaced
block to the same address of the incoming block.

It is interesting to see that the number of blocks in the shuffle
buffer is always fixed, since we always write out a block to the
address of the fetched block, immediately after a block is fetched
in. In this way, the write-out block is simply put into the memory
location where the incoming block is from. Dynamically, the
number of blocks that are in the shuffle buffer does not change.
Initially, we could load part of the memory blocks to fill the
shuffle buffer before the program starts execution. After loading,
these memory blocks are in the shuffle buffer but no longer exist
in the memory. Once the program stops execution, everything
inside the shuffle buffer is written back to the space where the
initially loaded blocks come from. Assume that the program binary
can be updated, then multi-run recurrences is prevented naturally,
because during the execution of the program, the blocks are
relocated frequently and after the execution of the program, we get
a new permutation of the blocks in memory.

5

shuffle buffer memory accesses

8

6

8

finish

Start—after fill
up the buffer

 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 5 3 4 2 6 7 8 9

8 5 3 4 2 6 7 1 9

8 6 3 4 2 5 7 1 9

8 6 3 4 2 5 7 1 9

 8 6 3 4 2 5 7 1 9
Figure 5. Example for the shuffle buffer.

To illustrate how the shuffle buffer functions, an example is

shown in Figure 5. Assume the code contains 9 blocks. In this
example, we only look at code blocks and we will discuss data
blocks shortly. At the beginning of this run, the first three code

blocks are loaded into the shuffle buffer. This leaves three empty
block slots in the memory, and they will not be used through the
execution. When block 5 is accessed, the controller checks with
the block address table and finds out block 5 misses in the shuffle
buffer, therefore the controller issues a memory access. Upon
loading block 5, the controller also randomly picks a block in the
shuffle buffer (say block 2) to be replaced from the shuffle buffer
and writes it into the original location of block 5. When block 8 is
accessed, the controller picks block 1 to be replaced. The selection
of blocks to replace is totally random. After block 6 is loaded,
block 5 is chosen to be written out and put in the original place of
block 6. The next access to block 8 hits in the shuffle buffer,
therefore no memory access takes place. Finally, when the
program finishes this run, all blocks in the shuffle buffer are
written into the first three empty blocks in the memory. The blocks
in memory are in random order compared with their initial
locations before the execution.

Again, the controller can always learn from the block address
table to get the exact location of each block. When the shuffle
buffer is sufficiently large, a block may leave the shuffle buffer at
a random moment spanning across a long period. Moreover, since
all the blocks are re-encrypted upon eviction (the stream cipher
encryption/decryption [11][12] is very efficient for this purpose),
the attacker will not be able to correlate read-in blocks and
written-out blocks from the contents of the blocks. The above two
points make it very difficult for the attacker to identify any
recurrences. We will analyze the security strength of the shuffle
buffer scheme in section 6.

The example in Figure 5 illustrates one way to avoid multi-
run recurrences. It relies on the assumption that after one run of
the program, we can write back the reordered code to the disk.
Consequently, every run will start with a different layout of the
code. The same block accessed in the previous run must have been
written to a different location, when it is accessed again in the
current run. However, this would require OS support to allow
write-back of modified code (i.e. self-modifying code), since
normally program code is read-only. Moreover, the block address
table has to be stored along with the code after a program
terminates. Another way to prevent multi-run recurrence is to
enforce an initial random permutation when the program is loaded
from the disk. A temporary block address table is constructed in
memory to store block locations. After the program terminates, the
temporary block address table is flushed.

As addressed in [15], data address can disclose control flow
information as well. For instance, when a branch is taken, variable
x will be accessed, otherwise there is no reference to x.
Consequently the attacker can learn whether the branch is taken or
not by checking the access to x. For data blocks, we can handle
them in the same way as code blocks.

5.2 Block Address Table (BAT) and Block
Address Table Cache (BAT cache)

Block address table (BAT) records the current locations of
blocks. To find the current location of a block, we can use its
original block address to index into the BAT and find out its new
block address. We map the shuffle buffer into the virtual address
space of the application (the program itself is not allowed to touch
this part), so the new block address in the virtual address space can
tell whether the block is in memory or in the shuffle buffer.
Simply put, for each block we need to store a block address, which

is an address less the block offset bits. To access a code or data
block, we use its block address to index into the BAT, i.e., we
access the entry at BAT.base_addr + block_address *
BAT.entry_size. If we assume all addresses are 32 bit long and the
block size is 32 bytes, then the block address field is 27 bits,
resulting in a 10 % (=27/256) overhead in virtual memory space.
Note that this is the worst case estimation. If the program actually
takes less memory space, this overhead can be reduced. For
example, if we know the actually address space is less than 224
bytes, i.e. 16MB. With a 32-byte block size, the overhead is 7%
(=19/256).

Since each access request from the cache needs to be
checked with the BAT table, the latency to retrieve entries of the
BAT can slow down the critical reads. To speed up the accessing
of the BAT, we add a block address table cache (BAT cache) as
shown in Figure 3. The BAT cache is typically small due to the
small size of the BAT, since it only takes a small space overhead
(e.g. 6%) to accommodate the BAT, which is generally sufficient
to yield a high hit rate. Also, the hit latency of the BAT cache is
very low. Under our scheme, the misses from BAT cache are
satisfied by the data cache.

A data cache miss caused by a BAT cache look up will not
look up BAT cache again. Instead, it will get data from memory
directly. Potentially, there is information leakage due to BAT data
accesses. However, one block of BAT data can cover at least 32*9
bytes instructions in our processor model as shown above, thus the
leakage due to BAT cache accesses is minor. To build a
hierarchical protection scheme in which a cache miss due to a
BAT access will look up BAT cache again is another choice,
which achieves better security but the performance overhead is
bigger at the same time. In our work, we choose the first scheme.

6. SECURITY ANALYSIS
We now analyze the security strength of our scheme. For the

attacker to find out a recurrence, he or she has to determine when
(thus where) a previous read-in block is written out. Figure 6
shows read/write access pairs on the bus. As mentioned earlier,
every time a block is read in, we write out one block immediately
to the same location. Assume a block is read in during access pair
A0, since in each of the following access pairs, we write out a
block randomly from the shuffle buffer. If we select each block in
the shuffle buffer with the same probability and the size of the
shuffle buffer is M blocks, then the probability that the read in
block at A0 will be output at Ak is

M
1)

M
1(1P 1k

k ×−= − . This

probability monotonously decreases with k and the maximal value,
i.e.

M
1 , is reached when k=1. Therefore the best choice for the

attacker is to guess the block is written out at A1. In our
experiments, M is set to 128 by default, which means the attacker
only has 0.8% chance to guess one recurrence correctly. For n-
recurrences, as each random selection is independent, the chance
for the attacker to guess all correctly is

nM
1 .

Obviously, we can achieve better security with larger M.
However, a larger M leads to more on-chip space investment and
bigger overhead during context switches. Notice that, with our
current configuration, i.e. M=128 and 32B block, only 4KB is
required for each shuffle buffer. Moreover, a shuffle buffer is
cheaper than caches because of its lack of a tag array. Given that

modern IC fabrication technology provides us with ample on-chip
space, this overhead is less a concern.

A0 A1 A2 A3

Read/write access pairs on the bus

Figure 6. Access pairs on the bus.

7. OTHER CONSIDERATIONS
Dynamically Linked Libraries (DLLs) are inserted into a

program’s address space at runtime. A DLL can be handled just
like a program. Since a DLL might be shared by multiple
applications, the shuffling should be done in a centralized way to
maintain correctness.

In-between each context switch, all the on-chip data private
to the current process including all the shuffle buffers for the
process must be cast out. The overhead for our schemes does not
increase the overall cost significantly given the on-chip structures
are typically small. The performance impact in a multi-task system
is currently open.

Table 1. Default configuration.

Processor Cache/Memory
Clock frequency 200MHz L1 I/D 32 way, 32K, 1 cycle
Fetch queue 8 entries L1 D ports 1
Decode width 1 L1 latency hit 1 cycle,miss 32 cycles
Issue width 2 TLB miss 30 cycles
Commit width 2 HW obfuscator
Ruu size 4 BAT cache 1KB
Lsq size 4 Shuffle buffer 128 entries
Branch predictor no

8. Evaluation and Results
We evaluated 12 benchmark programs from Mibench [19].

The Mibench suite, quite close to the industrial standard EEMBC
benchmark suite, is freely available. The selection of benchmarks
are completely random. To cover the whole benchmark suite
properly, we include two benchmarks from each of the six
categories--qsort, susan (auto/industry), jpeg, lame (consumer),
dijkstra, patricia (network), ispell, rsynth (office), blowfish,
rijndael (security), adpcm, gsm (telecom).

We evaluate our scheme on a processor model with default
parameters in Table 1, which largely follows an ARM processor
model in Simplescalar [18]. In our experiments, we implemented
the one time pad (OTP) encryption, a stream cipher based scheme
used in [11][12]. The advantage of the OTP scheme is the fast
encryption/decryption speed with a low overhead. By default, the
shuffle buffer has 128 entries, BAT cache size is 1K.

Under our scheme, the shuffle buffer itself does not degrade
performance. On the other hand, since the shuffle buffer resembles
the functionality of a victim cache, it actually improves
performance in some cases. The degradation under our scheme is
primarily caused by the additional access to the BAT. Before the
fetch of a missed block, the BAT has to be accessed first to get the
current location of the block, procrastinating the delay on the
critical path. To alleviate the performance impact, the active part
of the BAT should be kept on-chip for reducing the access latency.
That is the purpose of implementing a separate BAT cache.

qso
rt

sus
an jpe

g
lame

dijk
stra

patric

ia
ispell

rsy
nth

blo
wfish

rijn

dae
l
adpcm

gsm

No
rm

al
ize

d
IP

C

.75

.80

.85

.90

.95

1.00

1.05
shared 256B 512B 1K 2K 4K

Figure 7. BAT cache sensitivity study--IPC.

Figure 7 shows the sensitivity study with a variety of the

BAT cache sizes. Using the default configuration, we varied the
BAT cache size from 256 bytes to 4KB. We also studied the case
when no separate BAT cache is present and all accesses to the
BAT are routed to the cache directly. The IPC numbers are
normalized to the baseline (i.e. no hardware obfuscation). On
average, with shared cache, the degradation due to hardware
assisted obfuscation is 3.6%; with a 256B separate BAT cache, the
degradation drops to 2.4%; with a 512B BAT cache, it is reduced
to 1.5%. With the size of the BAT cache continuing to increase to
1KB, 2KB and 4KB, the overall performance degradation is
further shrunk down to 0.8%, 0.5%, and 0.3%, respectively. As
shown from the results, the BAT cache is very effective to close
the performance degradation, especially for benchmarks susan,
jpeg and lame. Without a separate BAT cache, all the BAT
accesses will otherwise go to the cache, leading to some severe
pollution for those benchmarks with a relatively large working set.
With a bigger BAT cache, most BAT accesses hit in the BAT
cache, reducing the performance degradation, however we observe
the return is diminishing when the size is over 1KB.

Figure 8 shows the hit rate of BAT cache with the BAT
cache size varied. It is clear that the hit rate increases rapidly with
a larger BAT cache. Also, the hit rate of a small BAT cache can
be very low for some benchmarks. This is because the BAT
accesses are triggered and indexed by cache misses. When the
cache demonstrates poor locality, the accesses to the BAT will be
lack of locality too. On average, the hit rates are 61.7% for a 256B
BAT cache, 75.9% for a 512B BAT cache, 87.5% for a 1KB BAT
cache, 92.9% for a 2KB BAT cache, and 94.1% for a 4KB BAT
cache.

qsort
susan

jpeg
lame

dijks
tra

patric
ia

ispell
rsy

nth

blowfish

rijn
dael

adpcm

gsm

B
A

T
ca

ch
e

hi
t r

at
e

0.0

.2

.4

.6

.8

1.0
256B 512B 1K 2K 4K

Figure 8. BAT cache sensitivity study--hit rate.

qsort
susan

jpeg
lame

dijks
tra

patric
ia

isp
ell

rsy
nth

blowfish

rijn
dael

adpcm

gsm

N
or

m
al

iz
ed

 IP
C

.7

.8

.9

1.0

1.1
16K 32K 64K

Figure 9. Cache size sensitivity study.

Figure 9 studies the sensitivity with respect to the (unified

I/D) cache size when all other parameters remains the same as in
the default model. The IPC numbers are normalized to that of the
baseline (i.e. no hardware obfuscation). A larger cache is more
tolerable to the pollution caused by the BAT accesses, so the
performance degradation due to our hardware assisted obfuscation
should be smaller, which is confirmed in Figure 9. For a 16KB
cache, the average degradation is 3.1%. For a 32KB cache, it is
0.8% while it drops down to 0.6% for a 64KB cache.

qsort
susan

jpeg
lame

dijks
tra

patric
ia

isp
ell

rsy
nth

blowfish

rijn
dael

adpcm

gsm

N
or

m
al

iz
ed

 IP
C

.88

.90

.92

.94

.96

.98

1.00

1.02
64 128 256 512 1024

Figure 10. Shuffle buffer size sensitivity study.

Figure 10 shows the sensitivity study of the shuffle buffer

size. Only the shuffle buffer size is varied in the default model and
IPCs are normalized to that of the default model. It may be
surprising to see that generally, a larger shuffle buffer leads to a
little worse performance. We argued earlier that a shuffle buffer
can function like a victim cache thus has the effect to reduce the
penalty of cache misses. Some benchmarks do show the victim
cache effect, e.g. jpeg, rsynth. Next, we discuss the negative
effects of a larger shuffle buffer on performance. As explained
earlier, whenever there is a block fetched into the shuffle buffer,
the shuffle buffer has to randomly pick a block to replace. For
each read/write pair, there are two accesses to the block address
table. The first access is to look up the current location of the
missed block and to fetch it in. The second access is a write access
to update the block location for the replaced block, which is
written into the current location of the fetched block. The write
access is affected by the shuffle buffer size. With a larger shuffle
buffer, the write accesses will have less locality, leading to more
BAT cache misses and more pressure on the cache. To summarize,
on average shuffle buffer sizes of 64-entry, 128-entry and 256-
entry yield the same performance. A 512-entry shuffle buffer

causes 0.9% slowdown and 1024-entry shuffle buffer leads to
1.1% slowdown. Nevertheless, a larger shuffle buffer will provide
a stronger security guarantee as analyzed in section 6.

Besides the above performance evaluation, we also
performed experiments to evaluate the effectiveness of our
hardware obfuscation. We downloaded the random number
generator evaluation tool suite released by NIST and applied a
battery of statistical tests [22] to evaluate the randomness of the
address trace generated. Before we show the analysis results, we
must point out that the goal of our hardware obfuscator design is
not to truly randomize the instruction address stream, rather, the
obfuscator is designed to obscure the control flow of a program
and confuse the potential adversaries. If the shuffled address trace
demonstrates higher randomness than the original address trace, it
is simply a positive second-order effect of our obfuscator. In some
cases, the shuffled address trace cannot be very random since the
size of the shuffle buffer is limited and during a certain period, the
addresses accessed by the program are concentrated. It was also
observed that the obfuscator did not pass in some tests designed
for evaluating entropy (test “apen” in the tables below) and
compressibility (tests “universal” and “Lempel-Ziv” in the tables
below)“. The reason is that he goal of our design is not to reduce
entropy or compressibility, the calculation of which are both based
on frequency. On the other hand, the obfuscator focuses on
manipulate sequence rather than frequency. Thus, the results from
the randomness testing tool suite should be evaluated relatively.
We compared the randomness testing results of our hardware
obfuscator against a pure cache design, which also obfuscates
address sequence to some extent. From the results below, it should
be clear that address trace from our hardware obfuscator is much
more random than that from a cache.

To generate the bit stream needed for randomness testing, we
run the same 12 embedded programs used in performance
evaluation from MiBench for 300 million instructions and collect
address traces during the execution. Each address going through
memory bus is first shifted right to remove the trailing 0s caused
by cache line size boundary, then the rightmost 16 bits of the
address are dumped as the address trace for analysis. Without such
processing, the leading and trailing 0s will make the sequence not
random at all.

There are totally 16 randomness tests in the tool suite. We
show the results for 12 of them below. We did not perform
template matching tests since the results are dependent on the
template. We did not perform excursion tests since the tool suite
does not generate correct results due to underflow errors. We
evaluated the address traces for three configurations: 8K I-cache
and D-cache, 16K I-cache and D-cache, and our shuffle buffer
scheme without cache at all. The shuffle buffer evaluated has 128
entries. Cache and shuffle buffer combined schemes do not
improve randomness according to our experiments thus are not
presented. With same amount of instructions executed, the size of
the address trace generated depends on the configuration. The
configuration with a single shuffle buffer will have the largest
trace. Among the 12 benchmarks, the address traces generated by
some of them under 16K cache configuration are too short for
randomness testing, i.e., less than 1 million bits. Those
benchmarks are excluded. Finally, we show results for 7
benchmarks with reasonable large address traces.

The tool suite takes an address trace as input and splits the
trace into multiple binary sequences having same length. Each
binary sequence is tested against each randomness test once. The

length of the sequence should be large enough to get reasonable
results. In our experiments, the length is 1 million. Each table
below shows the randomness testing results for one benchmark. In
the table, the total number of sequences (the total number of tests)
in the address trace of the benchmark is shown under the
configuration. For each test, the number of sequences passing the
test is shown in the corresponding entry. We also experimented
with a “no cache no shuffle buffer” configuration, and all the
randomness tests returned “0” results, i.e. all sequences failed to
pass any test, showing there is no randomness in the address
stream for a bare bone system without cache. Please refer to [22]
for the details of the tests.

Table 2. Randomness testing – cjpeg.

8K 16K SB
tests 4 2 8

Frequency 0 0 1
Block-Frequency 0 0 0
Cusum 1 0 0 0
Cusum 2 0 0 0
Runs 0 0 1
Long-Run 0 0 0
Rank 0 0 0
FFT 0 0 6
Universal 0 0 0
Apen 0 0 0
Serial 1 0 0 0
Serial 2 0 0 1
Lempel-Ziv 0 0 0
Linear-Complexity 2 2 8

Table 3. Randomness testing – gsm.
8K 16K SB

Tests 21 10 27
Frequency 0 0 16
Block-Frequency 0 0 8
Cusum 1 0 0 14
Cusum 2 0 0 16
Runs 0 0 6
Long-Run 0 0 3
Rank 0 0 19
FFT 0 0 27
Universal 0 0 20
Apen 0 0 0
Serial 1 0 0 3
Serial 2 0 0 6
Lempel-Ziv 0 0 0
Linear-Complexity 21 10 27

The above results demonstrate two points clearly. First,

cache is unable to obfuscate the address trace effectively. Under a
pure cache scheme, few binary sequences pass any randomness
test. Linear-complexity test is a corner case. Moreover, increasing
the cache size from 8K to 16K does not improve the situation.
Second, our hardware obfuscate does a much better job than a pure
cache design. Under our hardware obfuscator scheme, the
frequency of binary sequences passing randomness tests is much
higher. It is obvious that the hardware obfuscator can generate
more random address traces even though it is not our first-priority
design goal.

Table 4. Randomness testing – ispell.
8K 16K SB

Tests 19 3 171
Frequency 0 0 32
Block-Frequency 0 0 0
Cusum 1 0 0 1
Cusum 2 0 0 5
Runs 0 0 11
Long-Run 0 0 3
Rank 0 0 1
FFT 0 0 15
Universal 0 0 0
Apen 0 0 0
Serial 1 0 0 9
Serial 2 0 0 28
Lempel-Ziv 0 0 0
Linear-Complexity 19 3 157

Table 5. Randomness testing – lame.

8K 16K SB
Tests 110 59 227

Frequency 0 0 54
Block-Frequency 0 0 0
Cusum 1 0 0 19
Cusum 2 0 0 23
Runs 0 0 17
Long-Run 0 3 12
Rank 0 0 1
FFT 0 0 192
Universal 0 0 0
Apen 0 0 1
Serial 1 0 0 8
Serial 2 0 0 38
Lempel-Ziv 0 0 0
Linear-Complexity 109 59 193

Table 6. Randomness testing – qsort.

8K 16K SB
Tests 4 3 437

Frequency 1 0 39
Block-Frequency 0 0 19
Cusum 1 0 0 13
Cusum 2 0 0 14
Runs 0 0 8
Long-Run 0 0 42
Rank 0 0 355
FFT 0 0 239
Universal 0 0 37
Apen 0 0 0
Serial 1 0 0 5
Serial 2 0 0 51
Lempel-Ziv 0 0 0
Linear-Complexity 4 3 426

9. RELATED WORK
As mentioned earlier, secure architectures [6][7][8][9][10]

that solely encrypt memory contents cannot change the addresses
sequence, resulting in the unobfuscated control flow to be leaked
entirely. The DS5000/DS5002FP series processor [5] features
address bus encryption, equivalent to the initial permutation in our
scheme. However, it does not permute repeatedly at runtime,
therefore the attacker can still reconstruct the CFG in the same

way as mentioned in section 4.2. The DS5000 also issues random
fetches in order to generate faked recurrence to confuse the
attacker. However, random fetches can be easily discerned from
true accesses in loops, since true accesses repeat much more
frequently. Actually, DS5002FP has been completely cracked [14].

Goldreich [16][17] proposed 3 approaches to guarantee no
address information leakage, however all of them can incur
intolerable slowdown or memory space overhead. For example,
the “square-root solution” needs to read the entire shelter buffer
before each access; the “hierarchical solution” takes
O(t*log(t)*log(t)) memory space after t accesses, causing memory
explosion. Therefore these approaches are not affordable even for
high end systems, let alone for embedded systems.

Table 7. Randomness testing – rsynth.
8K 16K SB

Tests 27 2 80
Frequency 0 0 1
Block-Frequency 0 0 0
Cusum 1 0 0 0
Cusum 2 0 0 1
Runs 0 0 0
Long-Run 0 0 1
Rank 0 0 0
FFT 0 0 70
Universal 0 0 0
Apen 0 0 0
Serial 1 0 0 0
Serial 2 0 0 4
Lempel-Ziv 0 0 0
Linear-Complexity 27 2 70

Table 8. Randomness testing – patricia.

8K 16K SB
Tests 377 320 588

Frequency 0 0 124
Block-Frequency 0 0 257
Cusum 1 0 0 119
Cusum 2 0 0 115
Runs 0 0 40
Long-Run 0 0 147
Rank 0 0 424
FFT 0 0 497
Universal 0 0 135
Apen 0 0 2
Serial 1 0 0 30
Serial 2 0 0 124
Lempel-Ziv 0 0 0
Linear-Complexity 366 313 497

10. CONCLUSION
This paper presents a hardware assisted obfuscation

technique to obfuscate the control flow. We show that encryption
alone cannot avoid the leaking of control flow information. The
control flow leakage can imperil both code and data encryption.
Traditionally, some software obfuscation techniques can transform
the program control flow to reduce such information leakage.
However, a pure software-based obfuscation has been proved
inefficient to protect software IP due to its lack of theoretical
foundation and considerable performance overhead introduced by
complicated transformations.

Obfuscation with hardware support as introduced in this
paper can achieve a high level of security guarantee incurred with

very low overhead, making it feasible for embedded processors. It
is shown that the chance for the attacker to identify n-recurrence
decreases exponentially with n, therefore it is extremely hard to
extract useful information from the address sequence after
hardware obfuscation.

Our experiments on an embedded processor model show that,
the performance degradation can be below 1%. The hardware cost
consists of small on-chip shuffle buffers and a BAT cache. For
low-end embedded systems with limited hardware budget and
severe control flow leakage (due to small caches), this overhead is
affordable, making our scheme necessary and feasible. Moreover,
through standard tests to evaluate randomness, we show our
hardware obfuscator is much more efficient than a pure cache
design in terms of making address trace random.

REFERENCES
[1] International Planning and Research Corporation, “Eighth

Annual BSA Global Software Piracy Study,”
http://global.bsa.org/globalstudy/2003_GSPS.pdf.

[2] C. Collberg, C. Thomborson, and D. Low. A taxonomy of
obfuscating transformations. Technical Report 148,
University of Auckland, 1997.

[3] Chenxi Wang, “A scecurity architecture for survivability
mechanism,” PhD Dissertation. Univ. of Virginia,
Department of computer science, Oct. 2000.

[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,
S. Vadhan, and K. Yang. On the (Im)possibility of
Obfuscating Programs. In J. Kilian, editor, Advances in
Cryptology -- CRYPTO '01, pages 1--18.J.

[5] “DS5002FP secure microprocessor chip data sheet,” Dallas
Semiconductor.

[6] Markus, Kuhn, “The TrustNo 1 Cryptoprocessor Concept,”
CS555 Report, Purdue Univ. 1997.

[7] Robert M. Best. Preventing software piracy with crypto-
microprocessors. In Proceedings of IEEE Spring COMPCON
80, page 466, February 1980.

[8] Kent, S.T, “Protecting Externally Supplied Software in Small
Computers,” Ph.D Thesis, MIT/LCS/TR-255 1980.

[9] White, Steve R.; Comerford, Liam: ABYSS: A Trusted
Architecture for Software Protection,” Proc. 1987 IEEE
Symposium on Security and Privacy, Apr. 1987.

[10] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J.
Mitchell, M. Horowitz, “Architectural Support for Copy and
Tamper Resistant Software,” ASPLOSIX’00.

[11] Yang, Y.Zhang, L.Gao, “Fast Secure Processor for Inhibiting
Software Piracy and Tampering,” MICRO’03.

[12] E.Suh, D.Clarke, B.Gassend, M.v.Dijk, S.Devadas, "Efficient
Memory Integrity Verification and Encryption for Secure
Processors", MICRO’03.

[13] B.Gassend, G.E.Suh, D.Clarke, M.v.Dijk, S.Devadas,
“Caches and Hash Trees for Efficient Memory Integrity
Verification”, HPCA9.

[14] M.G.Kuhn, “Cipher Instruction Search Attack on the Bus-
Encryption Security Microcontroller DS5002FP,” IEEE
Trans. on Computers, Vol.47,No.10, pp.1153-1157, 1998.

[15] X. Zhuang, T. Zhang, S. Pande, H.S. Lee, “HIDE: Hardware-
support for Leakage-Immune Dynamic Execution,” GIT-
CERCS-03-21.

[16] O.Goldreich, “Towards a Theory of Software Protection and
Simulation by Oblivious RAMs,” Proceeding of the 19th
Annual ACM Symposium on Theory of Computing (STOC),
1987.

[17] O.Goldreich, R. Ostrovsky, “Software Protection and
Simulation on Oblivious RAMs,” J. of the ACM,
Vol.43,No.3, 1996.

[18] Doug Burger and Todd M. Austin. “The SimpleScalar Tool
Set Version 2.0,” TR. 1342, Univ. of Wisconsin--Madison,
May 1997.

[19] M.R.Guthaus, J.S.Ringenberg, D.Ernst, T.M.Austin,
T.Mudge, R.B. Brown, “MiBench: A free, commercially
representative embedded benchmark suite,” IEEE 4th Annual
Workshop on Workload Characterization, Austin, TX,
December 2001.

[20] Intel Corporation, “Intel Random Number Generator,”
http://developer.intel.com/design/chipsets/rng/techbrief.pdf,
1999.

[21] X. Zhuang, T. Zhang, S. Pande “HIDE: An Infrastructure for
Efficiently Protecting Information Leakage on the Address
Bus”, ACM International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-04), Oct. 2004.

[22] National institute of standards and technology, "A Statistical
Test Suite for the Validation of Random Number Generators
and Pseudo Random Number Generators for Cryptographic
Applications," available at http://csrc.nist.gov/rng/SP800-
22b.pdf.

