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ABSTRACT+ 
With more applications being deployed on embedded 

platforms, software protection becomes increasingly important. 
This problem is crucial on embedded systems like financial 
transaction terminals, pay-TV access-control decoders, where 
adversaries may easily gain full physical accesses to the systems 
and critical algorithms must be protected from being cracked.  
However, as this paper points out that protecting software with 
either encryption or obfuscation cannot completely preclude the 
control flow information from being leaked.  Encryption has been 
widely studied and employed as a traditional approach for 
software protection, however, the control flow information is not 
100% hidden with solely encrypting the code.  On the other hand, 
pure software-based obfuscation has been proved inefficient to 
protect software due to its lack of theoretical foundation and 
considerable performance overhead introduced by complicated 
transformations. Moreover, even though obfuscation can prevent 
static reverse engineering, attacker can still successfully bypass the 
obfuscation by monitoring the dynamic program execution.   

To address all of these shortcomings, this paper presents a 
hardware assisted obfuscation technique that is capable of 
obfuscating the control flow information dynamically. Dynamic 
obfuscation changes memory access sequence on-the-fly and 
conceals recurrent instruction access sequences from being 
identified.  Our scheme makes it provably difficult for the attacker 
to extract any useful information. Our results show that a high-
level security protection is possible with only minor performance 
penalty.  Finally, we show that our scheme can be implemented on 
embedded systems with very little hardware overhead. 

Categories and Subject Descriptors 
C.1 [Processor Architectures]: Miscellaneous;  
K6. [Management of Computing and Information Systems]: 
Security and Protection; 

C3. [Special-purpose and application-based Systems]: Real-
time and embedded systems. 

                                                                 
+ Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
CASES’04, September 22–25, 2004, Washington, DC, USA. 
Copyright 2004 ACM 1-58113-890-3/04/0009…$5.00. 

General Terms: Design, Performance. 

Keywords: Obfuscation, Control Flow Graph 
 

1. INTRODUCTION 
With the performance of embedded systems continuing to 

grow, more complex applications are expected to run on embedded 
platforms.  State-of-the-art embedded processors such as Intel’s 
XScale processor family or StarCore LLC’s SC1400 DSP (or 
Motorola’s SC140e) can run at very high frequency with a rich 
instruction set support and execute some large applications 
originally designed for desktop systems.  

Due to the ever-growing deployment of embedded systems 
and their intrinsic vulnerability, software protection on embedded 
systems is emerging as a challenging problem to avoid adversaries 
to easily gain a full physical access to the system hardware, 
internal critical application algorithms, and sensitive data.  
Leaking the software may directly result in the loss of critical 
information and intellectual property (IP) coming from tens or 
hundreds of man-year’s software development effort and 
investment. Given that embedded software development can be 
more time-consuming due to its special properties like meeting 
real-time constraints, specific memory capacity limitation, low-
level interfaces, etc., the protection of the software IP is highly 
desirable.  

It is common to achieve software copy protection via various 
encryption techniques. The security strength of encryption is 
provable, depending on the encryption scheme and the length of 
the key. Traditionally, encryption-based methods have 
performance concerns since the program code and data must be 
decrypted before they can be processed. If the decryption is based 
on software, the performance degradation may be too substantial 
to be tolerable to users.  With the rapid advancement of IC 
fabrication technology, hardware-based encryption support is 
becoming widely available in modern security devices, such as 
smart cards, midsize secure devices [5] etc.  With the help of 
dedicated hardware decryption engines, the decryption operation 
can be accelerated substantially to alleviate the performance 
degradation from using software-based methods.  Due to the recent 
advances in security devices with hardware support for 
encryption/decryption, it is reasonable to predict that encryption 
will play a major role in the future. 

Employing the encryption alone, however, is not a sufficient 
solution to software protection in most cases. Even though the 
plaintext of program code and data are completely 



 

“unrecognizable” from the attacker after encryption, their absolute 
and relative locations are not altered at all.  In other words, if we 
want to get the same data or code block again, the same address 
must be issued on the bus.  As will be introduced in section 3, the 
control flow information will be left unchanged. A classical way to 
conceal the control flow information is through obfuscation. The 
goal of obfuscation is to transform the program from its original 
form to a functionally equivalent one that is more difficult to 
understand and reverse engineer. Conventionally, obfuscation 
involves software techniques like layout obfuscation, control 
obfuscation, data obfuscation etc [2].  

However, obfuscation has several weaknesses. The most 
important one is that it lacks of theoretical foundation. There is no 
solid way to measure and prove the difficulty introduced after the 
transformation, i.e. the level of protection cannot be evaluated and 
guaranteed quantitatively after the obfuscation. On the other hand, 
it has been proved that a perfect obfuscation does not exist after all 
[3].  It is well acknowledged that an experienced programmer can 
foil all kinds of obfuscation schemes if enough time is given.  
Actually, the main task of obfuscation is to prevent an automated 
de-obfuscator. Moreover, obfuscation may incur large overheads 
in the code size due to dead code or irrelevant code [2] , if a 
sophisticated transformation is chosen. Also, the performance may 
be penalized severely due to carrying out extra obfuscating 
computations. Therefore, even traditional obfuscation techniques 
like “inlining and outlining transformation”, “loop transformation”, 
“control flow flattening” [2][3] can obfuscate the control flow to 
some extent, however they are purely software-based and thus 
suffer from the problems as mentioned above. Finally, the history 
has proven obfuscation is inefficient in protecting software.  After 
being first introduced twenty years ago, it has been developed very 
slowly and is rarely used in reality, due to the aforementioned 
reasons. 

 Consequently the state-of-the-art hardware-based encryption 
can achieve low-overhead but cannot obfuscate at the control flow 
level, while the software-based obfuscators can obfuscate the 
control flow but are worse in performance. Besides, quantitatively 
there is no guarantee on how much protection can be provided 
with software obfuscation. 

In this paper, we propose a hardware based approach to 
obfuscate the program control flow at runtime with very small 
overhead. Based on existing hardware encryption techniques, 
hardware assisted control flow obfuscation provides a much higher 
level of obfuscation than its software-based counterpart. Through 
the theoretical analysis, we show that the probability for an 
attacker to successfully identify recurring addresses, an important 
criteria in revealing the control flow information,  is extremely low. 

The rest of the paper is organized as follows: section 2 
discusses the system model; section 3 depicts IP piracy issues due 
to unprotected control flow; section 4 introduces preliminaries; 
section 5 presents hardware assisted obfuscation; section 6 shows 
security analysis of our scheme; section 7 gives additional 
considerations; section 8 shows and analyzes experimental results; 
section 9 and section 10 gives related work and our conclusion. 

 

2. SYSTEM MODEL 
We assume an embedded processor, which supports 

hardware based encryption mechanism. The processor chip is 
physically secure, such that all data and code cannot be cracked 
once they are brought onto the processor chip. On the other hand, 

data and code are always encrypted whenever leaving the 
processor and need to be decrypted after they are fetched into the 
processor. Therefore, only the processor chip is trusted, whereas 
buses and external memory are subject to attack. Such a secure 
processor model was well studied in literature [6][7][8][9] and was 
implemented in commercial products such as Dallas 
Semiconductor’s DS5002FP microcontroller [5] in which the 
processor chip is physically shielded and code and data are 
encrypted outside the chip.  More recently, similar security models 
are proposed and designed at the architecture level, e.g. eXecute 
Only Memory (XOM) from Stanford [10]. With proper hardware 
implementations, techniques proposed in [11][12] show that 
encryption and decryption can be efficiently performed at an 
inexpensive hardware cost.  

 

3. IP PIRACY DUE TO UNPROTECTED 
CONTROL FLOW 

This section explains why encryption alone cannot prevent 
the exposure of program control flow and how this can cause IP 
piracy.  
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Figure 1. Identifying control flow structures. 

First of all, encryption techniques can only encrypt the 
contents of the memory blocks, making the attacker unable to 
interpret them correctly. However, the location of the blocks are 
not changed. In other words, using the current memory model, if 
the block at address 100 is accessed the first time, all the 
subsequent references to the same data will have to fetch it from 
address 100.  Even if the attacker does not know what is exactly 
stored in address 100, he or she can still confidently know that the 
same block is being used again and again when the same address is 
observed during a program’s execution. Now we illustrate two 
examples with regards to how a loop and a change-of-flow (i.e. a 
branch) can be exposed.  We assume all the blocks are encrypted 
but their locations in memory are never changed.  As shown in 
Figure 1.a where three blocks 1  form a loop, then we will see 
addr(B1), addr(B2), addr(B3) repeat many times. On the other 
hand, branches can be identified as well. In Figure 1.b that shows a 
conditional branch resides inside a loop and both branches are 
taken during the execution, we will see that addr(B1), addr(B2), 
addr(B4) and addr(B1), addr(B3), addr(B4) appear on the bus. 
Thus, the attacker can reasonably believe there is a branch at block 
1 and the two branch targets are block 2 and block 3, respectively. 
Although in this example, the detection of the branch relies on the 
behavior of a loop, even if there is no loop encompassing a branch, 
the branch can still be identified by executing the code multiple 
times experimenting with different input data.  As such, the 
attacker can incrementally gather most of the control flow graph 

                                                                 
1 In this paper, we assume control flow graphs are constructed at block 

level, i.e. each node is a block, and edges indicate control flow transitions 
between blocks. 



 

by monitoring the stream of addresses for a sufficient amount of 
time. Up to now, we have only illustrated that how a control flow 
graph could be reconstructed, at least partially, but not the actual 
contents of the code. 

It is undeniable that the control flow information is the 
essential part of the algorithms implemented in software.  Previous 
software obfuscation techniques mostly aim to prevent the control 
flow information from being obtained by the attacker. For example, 
obfuscation techniques such as “converting reducible to non-
reducible flow graph”, “inline and outline”, “loop transformation” 
[2][3], etc., change the control flow directly. Unfortunately, 
encryption alone cannot prevent the leakage of the control flow, 
although this kind of IP piracy may not expose the software in its 
entirety, its damage can be severe under the following scenarios. 

Imagine company A and company B are developing similar 
software. Company A succeeds first and releases the software in 
encrypted format so it can be run on a processor with hardware 
encryption/decryption. However, company B now has a complete 
access to the software and can run it repeated on the processor and 
experiment with it extensively, e.g. feed the program with different 
inputs, run that software together with their own software on the 
same machine or even with a manipulated OS. Moreover, 
company B is already an expert in developing similar software, 
therefore it only wants to understand a few critical parts or 
algorithms of the software.  Therefore, they can definitely benefit 
from the control flow information as extracted in a similar manner 
as shown in the previous examples. Although this scenario is not 
as straightforward and prevalent as software piracy by the end 
users, it has been a major concern of software companies (like the 
recent Linux/SCO-Unix lawsuit). Besides this, one can steal 
critical data (like secret key) through side-channel attacks as 
conducted in many low-end systems including smart-card, ATM 
terminal devices. 

Also as discussed in [15][21], control flow information can 
help to identify reuse code, leading to its complete exposure. This 
is done by matching the control flow graph against control flow 
graphs of the code that are already known to the attacker. As the 
reuse code takes an ever-increasing portion (more than half) in 
modern software given the fast time-to-market pressure and a large 
amount of legacy code that can be reused, leaking reuse code 
could severely endanger software protection. In addition, the 
values of some data might be indirectly exposed by the control 
flow as well. For example, if a branch compares variable x with 1 
and decides which path to take, we will know whether x actually 
equals 1 by observing the direction of the branch. Although most 
likely, only partial information can be obtained through the control 
flow revelation, such information can be valuable in certain 
circumstances regardless.  

However, software-based obfuscation can only avoid such IP 
piracy to a limited extent. Control obfuscation techniques like 
“inline and outline”, “loop transformation” are well-known 
techniques. If the attackers knows the obfuscator has changed the 
code, he can somehow reverse that process to find the original or a 
close-to original form of the code. In [4], obfuscation is provably 
not a cure-all solution, the traditional software-based obfuscation 
approaches cannot even clarify the level of protection provided, i.e. 
they cannot quantitatively guarantee how much protection a 
scheme provides after the obfuscation is applied.  Moreover, 
software-based obfuscations are conducted at compilation time, 
which means once the obfuscation is done, the code will not be 
changed any more at runtime. Therefore, the attacker can 

experiment with the same code repeatedly, making it more likely 
that some useful information will be eventually revealed.  Finally, 
as mentioned earlier, software-based obfuscation typically has ill-
effects like code growth, extra computation etc., which may 
deteriorate the quality of the original code. 

It is noteworthy that caches can naturally provide certain 
amount of obfuscation to the control flow, part of the control flow 
edges are “hidden” inside the cache if blocks are hit in the on-chip 
cache. For the example in Figure 1.a, if all blocks are in the cache, 
then the attacker cannot find this loop from outside. Similarly, in 
Figure 1.b, if both B1 and B2 are in the cache, this control flow 
edge cannot be detected. However, it does not help due to the 
following reasons. Firstly, since cache is a shared resource among 
all processes running on a processor, it is very easy for the attacker 
to manipulate the OS so that the cache gets flushed on a context 
switch; alternatively the attacker can either ascertain that his own 
process fills and occupies most cache space before switching to the 
process being attacked, or even manipulate the system to disable 
the use of caches.  In this way, all memory accesses are exposed 
directly on the address bus due to compulsory misses. Secondly, 
different parts of the control flow can be leaked during different 
runs. It is possible that the attacker can finally get the whole 
picture.  Finally, on-chip caches are typically small for embedded 
systems.  Most of the modern high-performance DSPs or 
embedded processors do not even include any on-chip caches for 
timing predictability for real-time applications. 

 

4. ADDRESS INFORMATION LEAKAGE 
In this section, we describe the address information leakage 

problem, which is the objective of hardware-based obfuscation. 
Our intention is to understand and demonstrate what causes such 
information leakage. We will also discuss ways to measure the 
extent of the information leakage. 

 

4.1 Layout Leakage and Recurrence Leakage 
When the attacker taps on the bus, he can obtain a sequence 

of block addresses that are not obfuscated. In Figure 2.a all 5 
blocks of instructions are stored in encrypted form, however 
authentic addresses are readily available on the bus.  If address 101 
appears after address 100, the attacker can simply infer that these 
two blocks are executed consecutively. Moreover, the attacker can 
speculate block 102 will be the fall-through path after control flow 
jumps to 103. Therefore, the original instruction layout in the 
memory leaks information about which instructions are close to 
each other on the control flow graph. Notice that, even if the fall-
through path to 102 is never executed, the attacker can still 
reasonably assume such a path exists. We define this kind of 
information leakage layout leakage. 

 
Layout Leakage: Information leakage due to the spatial vicinity of 
blocks, which implies their proximity of accesses in the control or 
data flow graph. 

 
Similar to Figure 1.a, the attacker will see 100,101, X, 104 

appears repeatedly in the address sequence, where X is either 102 
or 103. This gives out the loop and the conditional branch. 
Essentially, recurring addresses expose loops and branches. We 
call such leakage recurrence leakage. 
 



 

 
Recurrence Leakage: Address information leakage due to 
recurring addresses which indicates the same block is accessed 
again. 

 

4.2 Address Bus Encryption 
DS5000/DS5002FP [5] implements a technique called 

address-bus encryption. Intuitively, since memory contents are 
encrypted, we can encrypt addresses as well. However, address 
encryption is radically different. Since we assume the memory is 
not trusted, once we encrypt an address, the corresponding 
memory block must be relocated to the new address (i.e. the 
ciphertext). The following example illustrates that if such 
encryption is fixed, we still cannot prevent the recurrence leakage.  

In Figure 2.c, we show an address bus encryption scheme 
and Figure 2.b depicts the new memory layout. Notice that, once 
we encrypt address 100 as 101, the block at address 100 must be 
moved to address 101 accordingly. The DS5000/DS5002FP 
processor loads the program which is initially laid out at addresses 
after encryption. Since the processor knows the encryption scheme, 
to access a block at address addr, it simply issues an access to the 
address E(addr).  As can be seen, the address bus encryption is 
actually just a permutation of blocks in memory [5]. 
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Figure 2. Address-bus encryption. 

Clearly, address bus encryption can avoid layout leakage, 
because even sequentially executed blocks are now scattered 
across non-contiguous memory locations.  Address bus encryption 
involves permutation of blocks in memory, the DS5000/DS5002FP 
processor never relocates blocks during the dynamic execution, 
however.  Therefore it should be called fixed address bus 
encryption or fixed permutation, which means the encryption 
function never changes. Thus, an address is mapped to a fixed new 
address and the mapping remains the same throughout the 
execution. 

The implementation of fixed address bus encryption is very 
simple by providing the mapping inside the processor. On 
DS5000/DS5002FP, a pseudo permutation function is recorded on 
chip. All addresses should be mapped by the pseudo permutation 
function before going out to the bus. 

However, fixed address bus encryption completely fails to 
prevent recurrence leakage since the relative access sequence of 
blocks remains unchanged for the program.  In Figure 2.d, we 
show the address sequence that might appear on the bus. Now, the 
pattern 101,104, Y, 102 appears repeatedly, where Y can be 103 or 
100. 

Obviously, the same recurrence pattern can be observed, 
which means the fixed address bus encryption does not change the 
recurrence pattern at all, except that each address is mapped to a 
new address respectively. The new address sequence still recurs in 
the same manner.  In Figure 2.e, the control flow graph can be 
reconstructed from the address sequence with both loop and the 
conditional branch exposed. 

 

4.3 Address Recurrences 
To further understand the recurrence leakage is the critical 

problem in preventing address information leakage, we consider it 
in a different way. Assume that the address bus encryption 
(mapping) is completely random, which means each address is 
mapped to an independent random address. Also, assume no 
address is accessed again, i.e. no recurrence occurs. Then the 
attacker should get a sequence of random numbers on the bus. 
Therefore, he can extract zero information from the address 
sequence if no recurrence is generated. 

In this paper, we propose approaches to avoid the exposure 
of address recurrences. Hereby, we define the following different 
scenarios for address recurrence. 

 
n-recurrence: A series of n recurrences of the same address. 
same-run recurrence: Address recurrence in the same run of a 
program. 
multi-run recurrence: Address recurrence across different runs of 
the same program. 
faked recurrence: We can generate faked recurrences, which do 
not correspond to actual recurrences in the address sequence.  

 
As explained above, address recurrence is the basis for the 

attacker to extract useful information from the address trace. To 
conceal address recurrence, i.e., n-recurrence, in the original 
address trace is our main goal. For the address sequence in Figure 
2.d, we can observe a 3-recurrence of address 101 and a 2-
recurrence of address 100. In section 6, we will show that, with our 
scheme, the probability of detecting an n-recurrence is 

nM
1 , where 

M is an adjustable system parameter. In other words, it decreases 
exponentially with n. Same-run recurrence can leak control flow 
information of the code that is executed multiple times during a 
single run. If the program initial layout is not changed when it 
starts in each run, multi-run recurrence can occur. The attacker 
can execute the same program many times with different inputs 
and environments, so the same address may recur at different runs. 
Even if such addresses do not recur in the same run, information 
still leaks due to multi-run recurrences. In this work, we tackle 
both multi-run and same-run recurrences. Besides, in order to 
confuse the attacker, the processor can generate faked recurrences 
by issuing addresses that have appeared on the bus previously. 

 

4.4 Dynamic Address Mapping and Block 
Relocation 

At this point, we can perceive the insufficiency of fixed 
address encryption (mapping). Intuitively, we should map an 
address differently each time it appears on the bus, and then 
remember the new mapping for future access. However, such a 



 

strategy has to be implemented carefully, otherwise it helps little 
to prevent leakage. As an example, one naïve implementation 
could choose to relocate a block immediately after accessing it. 
For instance, after accessing block 100, we relocate it to 104 
immediately. Next time when this block is accessed again, we can 
get it from address 104. However, since the attacker may watch 
the bus all the time, he will find 104 is written out immediately 
after access to address 100 and later 104 is accessed again. 
Therefore, the attacker has a strong reason to believe that block 
104 is actually the original block at address 100. In other words, 
after the attacker observes address 104 is written out and accessed 
again, he can speculate an address recurrence. The above example 
indicates that an effective solution should guarantee little 
correlation between the relocation operation and the next access.  
In consequence, the attacker will experience a higher level of 
difficulty in determining which address the original block is 
relocated to. 

4.5 How to Measure the Security Strength 
With a good random permutation (re-mapping) scheme, the 

new locations of the blocks can be thought as totally independent 
of their original locations. In this regard, the layout leakage can be 
completely prevented with an initial permutation, because it relies 
on the relative position of instructions in their original layout. 

For recurrence leakage, a natural criteria is the probability 
an n-recurrence can be detected by the attacker. The lower the 
probability of finding an n-recurrence, the more difficult for the 
attacker to guess a loop that reaches its nth iteration. In other words, 
such probability should be very low, so that the address sequence 
shown up on the bus is closer to a sequence of random accesses as 
suggested at the beginning of section 4.3. 

 

5. HARDWARE SUPPORTED CONTROL 
FLOW OBFUSCATION 

Our scheme aims at reducing the probability that n-
recurrences are exposed on the address bus. Provably, the scheme 
we propose can achieve that the probability of an n-recurrence 
being detected is less than O(1/mn). Here m is a parameter that can 
be controlled by the amount of hardware resource we are able to 
invest. 

The basic idea for hardware-assisted obfuscation is to 
relocate blocks every time they are written out to the memory. By 
doing so, the attacker has to guess from a number of locations in 
order to find out a possible address recurrence. Our scheme 
deploys a shuffle buffer to achieve this. 

Figure 3 shows the main components of our hardware 
obfuscator. The dotted line cuts the figure into two parts. The 
upper part is inside the security boundary, i.e. inside the processor 
chip. The lower part is the bus and memory which are subject to 
external tapping and tampering. A shuffle buffer is added inside the 
processor chip. As will be addressed in section 5.1, the shuffle 
buffer relocates blocks to new memory locations. In the meantime, 
the block address table (section 5.2) records those new locations, 
so that they can be accessed later. Figure 3 also illustrates how the 
memory space is divided. The area for storing block address table 
is only accessible to the block address table caches and the 
controller. The application cannot see it. The controller accepts 
requests from the cache, checks with the block address table to 
find the locations of the blocks and fetches blocks according to 
their new addresses. Each fetch is always followed by a write to 

the same location so that the attacker always observes read/write 
pairs. The controller is also responsible for managing the 
generation of read-write pairs. 

bus, memory (insecure) 

block address table program address space 

 
processor side 

(secure) 
Shuffle 
Buffer 

Cache 

Block Address 
Table Cache 

Controller 

 
Figure 3. Overview of the hardware obfuscation scheme. 

 

5.1 Shuffle Buffer 
The central component for the hardware assisted obfuscation 

is the shuffle buffer. As mentioned before, a block should be 
relocated to a new location every time it leaves the processor. Also, 
it should be written out as a part of many other writes instead of 
being written out immediately. The shuffle buffer is designed to 
reorder all writes to the memory so that the attacker cannot easily 
determine exactly which one is written out at a particular moment. 
Write reordering can significantly mask address recurrences as 
will be formulated and quantified in section 6. 

The structure of the shuffle buffer together with part of the 
functionalities of the controller is shown in Figure 4. There are 3 
data paths centered around the shuffle buffer. Here, we assume the 
on-chip cache is a write-back cache.  

The shuffle buffer is simply an array of blocks. Each code 
block or data block is either found in the memory or in the shuffle 
buffer but not in both of them.  In this sense, the shuffle buffer is 
exclusive to the external memory in contrast to the cache hierarchy, 
which is inclusive. From Figure 4, data path (1) and (2) are similar 
to those in the caches. Cache misses are handled by the controller. 
For cache misses that hit in the shuffle buffer, blocks are 
immediately fetched from the shuffle buffer to the cache. If the 
cache miss is not found in the shuffle buffer, we have to fetch it 
from the memory. Upon finishing the memory access, both the 
shuffle buffer and the cache will get a copy of the block.  

Shuffle buffer 

After each 
read from 
memory, 
randomly 
write back 

a block 

L2 Cache 

Memory 

Fetch miss 
blocks 
from 

memory 

read/write blocks 
in shuffle buffer, 
if the block is not 
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memory 
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Figure 4. The shuffle buffer. 

However, there are several distinct properties for the shuffle 
buffer in addition to the design that a block can only stay in either 



 

the shuffle buffer or the memory.  The shuffle buffer is simply an 
indexed array through the block address table, thus no address tag 
is necessary.  The size of the shuffle buffer can be much smaller 
than the cache, making our scheme inexpensive. To determine if a 
cache miss is a hit in the shuffle buffer or not,  the controller relies 
on the block address table which records the whereabouts of 
blocks. The shuffle buffer allows any block to be stored in any slot. 
Moreover, once a block is fetched into the shuffle buffer, it can 
replace a randomly picked block inside the shuffle buffer. The 
above property can also be achieved by employing a fully 
associative cache, but it is more expensive and less scalable. Since 
we need block address table to record the locations of the blocks in 
the external memory, it is natural to use block address table to 
record the location of blocks in shuffle buffer too. Thus, no fully 
associative organization and tag comparisons are needed for the 
shuffle buffer. 

As aforementioned, an incoming block can replace any 
existing block in the shuffle buffer. As shown with data path (3), 
the controller picks a block randomly from the shuffle buffer to 
write back to memory. Here we assume a pure random number 
generator is available using circuit white noise [20].  Thus, the 
controller can pick a completely random block in the shuffle buffer 
to be replaced by the incoming block and write back the replaced 
block to the same address of the incoming block. 

It is interesting to see that the number of blocks in the shuffle 
buffer is always fixed, since we always write out a block to the 
address of the fetched block, immediately after a block is fetched 
in. In this way, the write-out block is simply put into the memory 
location where the incoming block is from. Dynamically, the 
number of blocks that are in the shuffle buffer does not change. 
Initially, we could load part of the memory blocks to fill the 
shuffle buffer before the program starts execution. After loading, 
these memory blocks are in the shuffle buffer but no longer exist 
in the memory. Once the program stops execution, everything 
inside the shuffle buffer is written back to the space where the 
initially loaded blocks come from. Assume that the program binary 
can be updated, then multi-run recurrences is prevented naturally, 
because during the execution of the program, the blocks are 
relocated frequently and after the execution of the program, we get 
a new permutation of the blocks in memory. 

5 

shuffle buffer memory accesses 

8 

6 

8 

finish 

Start—after fill 
up the buffer 

    1 2 3 4 5 6 7 8 9 

1 2 3    4 5 6 7 8 9 

1 5 3    4 2 6 7 8 9 

8 5 3    4 2 6 7 1 9 

8 6 3    4 2 5 7 1 9 

8 6 3    4 2 5 7 1 9 

   8 6 3 4 2 5 7 1 9  
Figure 5. Example for the shuffle buffer. 

 
To illustrate how the shuffle buffer functions, an example is 

shown in Figure 5. Assume the code contains 9 blocks. In this 
example, we only look at code blocks and we will discuss data 
blocks shortly. At the beginning of this run, the first three code 

blocks are loaded into the shuffle buffer. This leaves three empty 
block slots in the memory, and they will not be used through the 
execution. When block 5 is accessed, the controller checks with 
the block address table and finds out block 5 misses in the shuffle 
buffer, therefore the controller issues a memory access. Upon 
loading block 5, the controller also randomly picks a block in the 
shuffle buffer (say block 2) to be replaced from the shuffle buffer 
and writes it into the original location of block 5. When block 8 is 
accessed, the controller picks block 1 to be replaced. The selection 
of blocks to replace is totally random. After block 6 is loaded, 
block 5 is chosen to be written out and put in the original place of 
block 6. The next access to block 8 hits in the shuffle buffer, 
therefore no memory access takes place. Finally, when the 
program finishes this run, all blocks in the shuffle buffer are 
written into the first three empty blocks in the memory. The blocks 
in memory are in random order compared with their initial 
locations before the execution. 

Again, the controller can always learn from the block address 
table to get the exact location of each block. When the shuffle 
buffer is sufficiently large, a block may leave the shuffle buffer at 
a random moment spanning across a long period. Moreover, since 
all the blocks are re-encrypted upon eviction (the stream cipher 
encryption/decryption [11][12] is very efficient for this purpose), 
the attacker will not be able to correlate read-in blocks and 
written-out blocks from the contents of the blocks.  The above two 
points make it very difficult for the attacker to identify any 
recurrences. We will analyze the security strength of the shuffle 
buffer scheme in section 6. 

The example in Figure 5 illustrates one way to avoid multi-
run recurrences. It relies on the assumption that after one run of 
the program, we can write back the reordered code to the disk. 
Consequently, every run will start with a different layout of the 
code. The same block accessed in the previous run must have been 
written to a different location, when it is accessed again in the 
current run. However, this would require OS support to allow 
write-back of modified code (i.e. self-modifying code), since 
normally program code is read-only. Moreover, the block address 
table has to be stored along with the code after a program 
terminates. Another way to prevent multi-run recurrence is to 
enforce an initial random permutation when the program is loaded 
from the disk. A temporary block address table is constructed in 
memory to store block locations. After the program terminates, the 
temporary block address table is flushed. 

As addressed in [15], data address can disclose control flow 
information as well. For instance, when a branch is taken, variable 
x will be accessed, otherwise there is no reference to x. 
Consequently the attacker can learn whether the branch is taken or 
not by checking the access to x. For data blocks, we can handle 
them in the same way as code blocks.  

 

5.2 Block Address Table (BAT) and Block 
Address Table Cache (BAT cache) 

Block address table (BAT) records the current locations of 
blocks. To find the current location of a block, we can use its 
original block address to index into the BAT and find out its new 
block address. We map the shuffle buffer into the virtual address 
space of the application (the program itself is not allowed to touch 
this part), so the new block address in the virtual address space can 
tell whether the block is in memory or in the shuffle buffer. 
Simply put, for each block we need to store a block address, which 



 

is an address less the block offset bits. To access a code or data 
block, we use its block address to index into the BAT, i.e., we 
access the entry at BAT.base_addr + block_address * 
BAT.entry_size. If we assume all addresses are 32 bit long and the 
block size is 32 bytes, then the block address field is 27 bits, 
resulting in a 10 % (=27/256) overhead in virtual memory space.  
Note that this is the worst case estimation.  If the program actually 
takes less memory space, this overhead can be reduced. For 
example, if we know the actually address space is less than 224 
bytes, i.e. 16MB. With a 32-byte block size, the overhead is 7% 
(=19/256). 

Since each access request from the cache needs to be 
checked with the BAT table, the latency to retrieve entries of the 
BAT can slow down the critical reads. To speed up the accessing 
of the BAT, we add a block address table cache (BAT cache) as 
shown in Figure 3. The BAT cache is typically small due to the 
small size of the BAT, since it only takes a small space overhead 
(e.g. 6%) to accommodate the BAT, which is generally sufficient 
to yield a high hit rate. Also, the hit latency of the BAT cache is 
very low. Under our scheme, the misses from BAT cache are 
satisfied by the data cache.  

A data cache miss caused by a BAT cache look up will not 
look up BAT cache again. Instead, it will get data from memory 
directly. Potentially, there is information leakage due to BAT data 
accesses. However, one block of BAT data can cover at least 32*9 
bytes instructions in our processor model as shown above, thus the 
leakage due to BAT cache accesses is minor. To build a 
hierarchical protection scheme in which a cache miss due to a 
BAT access will look up BAT cache again is another choice, 
which achieves better security but the performance overhead is 
bigger at the same time. In our work, we choose the first scheme. 

  

6. SECURITY ANALYSIS 
We now analyze the security strength of our scheme. For the 

attacker to find out a recurrence, he or she has to determine when 
(thus where) a previous read-in block is written out. Figure 6 
shows read/write access pairs on the bus. As mentioned earlier, 
every time a block is read in, we write out one block immediately 
to the same location. Assume a block is read in during access pair 
A0, since in each of the following access pairs, we write out a 
block randomly from the shuffle buffer. If we select each block in 
the shuffle buffer with the same probability and the size of the 
shuffle buffer is M blocks, then the probability that the read in 
block at A0 will be output at Ak is 

M
1)

M
1(1P 1k

k ×−= − . This 

probability monotonously decreases with k and the maximal value, 
i.e. 

M
1 , is reached when k=1. Therefore the best choice for the 

attacker is to guess the block is written out at A1. In our 
experiments, M is set to 128 by default, which means the attacker 
only has 0.8% chance to guess one recurrence correctly. For n-
recurrences, as each random selection is independent, the chance 
for the attacker to guess all correctly is 

nM
1 .  

Obviously, we can achieve better security with larger M. 
However, a larger M leads to more on-chip space investment and 
bigger overhead during context switches. Notice that, with our 
current configuration, i.e. M=128 and 32B block, only 4KB is 
required for each shuffle buffer. Moreover, a shuffle buffer is 
cheaper than caches because of its lack of a tag array.  Given that 

modern IC fabrication technology provides us with ample on-chip 
space, this overhead is less a concern. 

A0 A1 A2 A3 

Read/write access pairs on the bus 
 

 
Figure 6. Access pairs on the bus. 

 

7. OTHER CONSIDERATIONS 
Dynamically Linked Libraries (DLLs) are inserted into a 

program’s address space at runtime. A DLL can be handled just 
like a program. Since a DLL might be shared by multiple 
applications, the shuffling should be done in a centralized way to 
maintain correctness.  

In-between each context switch, all the on-chip data private 
to the current process including all the shuffle buffers for the 
process must be cast out. The overhead for our schemes does not 
increase the overall cost significantly given the on-chip structures 
are typically small. The performance impact in a multi-task system 
is currently open. 

 
Table 1. Default configuration. 

 
 

 

Processor Cache/Memory 
Clock frequency 200MHz L1 I/D 32 way, 32K, 1 cycle 
Fetch queue 8 entries L1 D ports 1 
Decode width 1 L1 latency hit 1 cycle,miss 32 cycles 
Issue width 2 TLB miss 30 cycles 
Commit width 2 HW obfuscator 
Ruu size 4 BAT cache 1KB 
Lsq size 4 Shuffle buffer 128 entries 
Branch predictor no     

8. Evaluation and Results 
We evaluated 12 benchmark programs from Mibench [19]. 

The Mibench suite, quite close to the industrial standard EEMBC 
benchmark suite, is freely available. The selection of benchmarks 
are completely random. To cover the whole benchmark suite 
properly, we include two benchmarks from each of the six 
categories--qsort, susan (auto/industry), jpeg, lame (consumer), 
dijkstra, patricia (network), ispell, rsynth (office), blowfish, 
rijndael (security), adpcm, gsm (telecom). 

We evaluate our scheme on a processor model with default 
parameters in Table 1, which largely follows an ARM processor 
model in Simplescalar [18]. In our experiments, we implemented 
the one time pad (OTP) encryption, a stream cipher based scheme 
used in [11][12].  The advantage of the OTP scheme is the fast 
encryption/decryption speed with a low overhead. By default, the 
shuffle buffer has 128 entries, BAT cache size is 1K. 

Under our scheme, the shuffle buffer itself does not degrade 
performance. On the other hand, since the shuffle buffer resembles 
the functionality of a victim cache, it actually improves 
performance in some cases.  The degradation under our scheme is 
primarily caused by the additional access to the BAT.  Before the 
fetch of a missed block, the BAT has to be accessed first to get the 
current location of the block, procrastinating the delay on the 
critical path. To alleviate the performance impact, the active part 
of the BAT should be kept on-chip for reducing the access latency. 
That is the purpose of implementing a separate BAT cache. 
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Figure 7. BAT cache sensitivity study--IPC. 

 
Figure 7 shows the sensitivity study with a variety of the 

BAT cache sizes. Using the default configuration, we varied the 
BAT cache size from 256 bytes to 4KB.  We also studied the case 
when no separate BAT cache is present and all accesses to the 
BAT are routed to the cache directly.  The IPC numbers are 
normalized to the baseline (i.e. no hardware obfuscation). On 
average, with shared cache, the degradation due to hardware 
assisted obfuscation is 3.6%; with a 256B separate BAT cache, the 
degradation drops to 2.4%; with a 512B BAT cache, it is reduced 
to 1.5%.  With the size of the BAT cache continuing to increase to 
1KB, 2KB and 4KB, the overall performance degradation is 
further shrunk down to 0.8%, 0.5%, and 0.3%, respectively.  As 
shown from the results, the BAT cache is very effective to close 
the performance degradation, especially for benchmarks susan, 
jpeg and lame.  Without a separate BAT cache, all the BAT 
accesses will otherwise go to the cache, leading to some severe 
pollution for those benchmarks with a relatively large working set.  
With a bigger BAT cache, most BAT accesses hit in the BAT 
cache, reducing the performance degradation, however we observe 
the return is diminishing when the size is over 1KB. 

Figure 8 shows the hit rate of BAT cache with the BAT 
cache size varied.  It is clear that the hit rate increases rapidly with 
a larger BAT cache.  Also, the hit rate of a small BAT cache can 
be very low for some benchmarks. This is because the BAT 
accesses are triggered and indexed by cache misses.  When the 
cache demonstrates poor locality, the accesses to the BAT will be 
lack of locality too.  On average, the hit rates are 61.7% for a 256B 
BAT cache, 75.9% for a 512B BAT cache, 87.5% for a 1KB BAT 
cache, 92.9% for a 2KB BAT cache, and 94.1% for a 4KB BAT 
cache. 
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Figure 8. BAT cache sensitivity study--hit rate. 
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Figure 9. Cache size sensitivity study. 

 
Figure 9 studies the sensitivity with respect to the (unified 

I/D) cache size when all other parameters remains the same as in 
the default model.  The IPC numbers are normalized to that of the 
baseline (i.e. no hardware obfuscation).  A larger cache is more 
tolerable to the pollution caused by the BAT accesses, so the 
performance degradation due to our hardware assisted obfuscation 
should be smaller, which is confirmed in Figure 9.  For a 16KB 
cache, the average degradation is 3.1%. For a 32KB cache, it is 
0.8% while it drops down to 0.6% for a 64KB cache. 
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Figure 10. Shuffle buffer size sensitivity study. 

 
Figure 10 shows the sensitivity study of the shuffle buffer 

size. Only the shuffle buffer size is varied in the default model and 
IPCs are normalized to that of the default model.  It may be 
surprising to see that generally, a larger shuffle buffer leads to a 
little worse performance.  We argued earlier that a shuffle buffer 
can function like a victim cache thus has the effect to reduce the 
penalty of cache misses. Some benchmarks do show the victim 
cache effect, e.g. jpeg, rsynth. Next, we discuss the negative 
effects of a larger shuffle buffer on performance. As explained 
earlier, whenever there is a block fetched into the shuffle buffer, 
the shuffle buffer has to randomly pick a block to replace. For 
each read/write pair, there are two accesses to the block address 
table. The first access is to look up the current location of the 
missed block and to fetch it in. The second access is a write access 
to update the block location for the replaced block, which is 
written into the current location of the fetched block. The write 
access is affected by the shuffle buffer size. With a larger shuffle 
buffer, the write accesses will have less locality, leading to more 
BAT cache misses and more pressure on the cache. To summarize, 
on average shuffle buffer sizes of 64-entry, 128-entry and 256-
entry yield the same performance.  A 512-entry shuffle buffer 



 

causes 0.9% slowdown and 1024-entry shuffle buffer leads to 
1.1% slowdown. Nevertheless, a larger shuffle buffer will provide 
a stronger security guarantee as analyzed in section 6. 

Besides the above performance evaluation, we also 
performed experiments to evaluate the effectiveness of our 
hardware obfuscation. We downloaded the random number 
generator evaluation tool suite released by NIST and applied a 
battery of statistical tests [22] to evaluate the randomness of the 
address trace generated. Before we show the analysis results, we 
must point out that the goal of our hardware obfuscator design is 
not to truly randomize the instruction address stream, rather, the 
obfuscator is designed to obscure the control flow of a program 
and confuse the potential adversaries. If the shuffled address trace 
demonstrates higher randomness than the original address trace, it 
is simply a positive second-order effect of our obfuscator.  In some 
cases, the shuffled address trace cannot be very random since the 
size of the shuffle buffer is limited and during a certain period, the 
addresses accessed by the program are concentrated.  It was also 
observed that the obfuscator did not pass in some tests designed 
for evaluating entropy (test “apen” in the tables below) and 
compressibility (tests “universal” and “Lempel-Ziv” in the tables 
below)“.  The reason is that he goal of our design is not to reduce 
entropy or compressibility, the calculation of which are both based 
on frequency. On the other hand, the obfuscator focuses on 
manipulate sequence rather than frequency. Thus, the results from 
the randomness testing tool suite should be evaluated relatively. 
We compared the randomness testing results of our hardware 
obfuscator against a pure cache design, which also obfuscates 
address sequence to some extent. From the results below, it should 
be clear that address trace from our hardware obfuscator is much 
more random than that from a cache. 

To generate the bit stream needed for randomness testing, we 
run the same 12 embedded programs used in performance 
evaluation from MiBench for 300 million instructions and collect 
address traces during the execution. Each address going through 
memory bus is first shifted right to remove the trailing 0s caused 
by cache line size boundary, then the rightmost 16 bits of the 
address are dumped as the address trace for analysis. Without such 
processing, the leading and trailing 0s will make the sequence not 
random at all.  

There are totally 16 randomness tests in the tool suite. We 
show the results for 12 of them below. We did not perform 
template matching tests since the results are dependent on the 
template. We did not perform excursion tests since the tool suite 
does not generate correct results due to underflow errors. We 
evaluated the address traces for three configurations: 8K I-cache 
and D-cache, 16K I-cache and D-cache, and our shuffle buffer 
scheme without cache at all. The shuffle buffer evaluated has 128 
entries. Cache and shuffle buffer combined schemes do not 
improve randomness according to our experiments thus are not 
presented. With same amount of instructions executed, the size of 
the address trace generated depends on the configuration. The 
configuration with a single shuffle buffer will have the largest 
trace. Among the 12 benchmarks, the address traces generated by 
some of them under 16K cache configuration are too short for 
randomness testing, i.e., less than 1 million bits. Those 
benchmarks are excluded. Finally, we show results for 7 
benchmarks with reasonable large address traces. 

The tool suite takes an address trace as input and splits the 
trace into multiple binary sequences having same length. Each 
binary sequence is tested against each randomness test once. The 

length of the sequence should be large enough to get reasonable 
results. In our experiments, the length is 1 million. Each table 
below shows the randomness testing results for one benchmark. In 
the table, the total number of sequences (the total number of tests) 
in the address trace of the benchmark is shown under the 
configuration. For each test, the number of sequences passing the 
test is shown in the corresponding entry. We also experimented 
with a “no cache no shuffle buffer” configuration, and all the 
randomness tests returned “0” results, i.e. all sequences failed to 
pass any test, showing there is no randomness in the address 
stream for a bare bone system without cache.  Please refer to [22] 
for the details of the tests. 

 
Table 2. Randomness testing – cjpeg. 

8K 16K SB 
tests 4 2 8 

Frequency 0 0 1 
Block-Frequency 0 0 0 
Cusum 1 0 0 0 
Cusum 2 0 0 0 
Runs 0 0 1 
Long-Run 0 0 0 
Rank 0 0 0 
FFT 0 0 6 
Universal 0 0 0 
Apen 0 0 0 
Serial 1 0 0 0 
Serial 2 0 0 1 
Lempel-Ziv 0 0 0 
Linear-Complexity 2 2 8 

 
 

Table 3. Randomness testing – gsm. 
8K 16K SB 

Tests 21 10 27 
Frequency 0 0 16 
Block-Frequency 0 0 8 
Cusum 1 0 0 14 
Cusum 2 0 0 16 
Runs 0 0 6 
Long-Run 0 0 3 
Rank 0 0 19 
FFT 0 0 27 
Universal 0 0 20 
Apen 0 0 0 
Serial 1 0 0 3 
Serial 2 0 0 6 
Lempel-Ziv 0 0 0 
Linear-Complexity 21 10 27 

 
 
The above results demonstrate two points clearly. First, 

cache is unable to obfuscate the address trace effectively. Under a 
pure cache scheme, few binary sequences pass any randomness 
test. Linear-complexity test is a corner case. Moreover, increasing 
the cache size from 8K to 16K does not improve the situation. 
Second, our hardware obfuscate does a much better job than a pure 
cache design. Under our hardware obfuscator scheme, the 
frequency of binary sequences passing randomness tests is much 
higher. It is obvious that the hardware obfuscator can generate 
more random address traces even though it is not our first-priority 
design goal. 

 



 

Table 4. Randomness testing – ispell. 
8K 16K SB 

Tests 19 3 171 
Frequency 0 0 32 
Block-Frequency 0 0 0 
Cusum 1 0 0 1 
Cusum 2 0 0 5 
Runs 0 0 11 
Long-Run 0 0 3 
Rank 0 0 1 
FFT 0 0 15 
Universal 0 0 0 
Apen 0 0 0 
Serial 1 0 0 9 
Serial 2 0 0 28 
Lempel-Ziv 0 0 0 
Linear-Complexity 19 3 157 

 
Table 5. Randomness testing – lame. 

8K 16K SB 
Tests 110 59 227 

Frequency 0 0 54 
Block-Frequency 0 0 0 
Cusum 1 0 0 19 
Cusum 2 0 0 23 
Runs 0 0 17 
Long-Run 0 3 12 
Rank 0 0 1 
FFT 0 0 192 
Universal 0 0 0 
Apen 0 0 1 
Serial 1 0 0 8 
Serial 2 0 0 38 
Lempel-Ziv 0 0 0 
Linear-Complexity 109 59 193 

 
Table 6. Randomness testing – qsort. 

8K 16K SB 
Tests 4 3 437 

Frequency 1 0 39 
Block-Frequency 0 0 19 
Cusum 1 0 0 13 
Cusum 2 0 0 14 
Runs 0 0 8 
Long-Run 0 0 42 
Rank 0 0 355 
FFT 0 0 239 
Universal 0 0 37 
Apen 0 0 0 
Serial 1 0 0 5 
Serial 2 0 0 51 
Lempel-Ziv 0 0 0 
Linear-Complexity 4 3 426 

 
 

9. RELATED WORK 
As mentioned earlier, secure architectures [6][7][8][9][10] 

that solely encrypt memory contents cannot change the addresses 
sequence, resulting in the unobfuscated control flow to be leaked 
entirely. The DS5000/DS5002FP series processor [5] features 
address bus encryption, equivalent to the initial permutation in our 
scheme. However, it does not permute repeatedly at runtime, 
therefore the attacker can still reconstruct the CFG in the same 

way as mentioned in section 4.2. The DS5000 also issues random 
fetches in order to generate faked recurrence to confuse the 
attacker. However, random fetches can be easily discerned from 
true accesses in loops, since true accesses repeat much more 
frequently. Actually, DS5002FP has been completely cracked [14]. 

Goldreich [16][17] proposed 3 approaches to guarantee no 
address information leakage, however all of them can incur 
intolerable slowdown or memory space overhead. For example, 
the “square-root solution” needs to read the entire shelter buffer 
before each access; the “hierarchical solution” takes 
O(t*log(t)*log(t)) memory space after t accesses, causing memory 
explosion.  Therefore these approaches are not affordable even for 
high end systems, let alone for embedded systems. 

Table 7. Randomness testing – rsynth. 
8K 16K SB 

Tests 27 2 80 
Frequency 0 0 1 
Block-Frequency 0 0 0 
Cusum 1 0 0 0 
Cusum 2 0 0 1 
Runs 0 0 0 
Long-Run 0 0 1 
Rank 0 0 0 
FFT 0 0 70 
Universal 0 0 0 
Apen 0 0 0 
Serial 1 0 0 0 
Serial 2 0 0 4 
Lempel-Ziv 0 0 0 
Linear-Complexity 27 2 70 

 
Table 8. Randomness testing – patricia. 

8K 16K SB 
Tests 377 320 588 

Frequency 0 0 124 
Block-Frequency 0 0 257 
Cusum 1 0 0 119 
Cusum 2 0 0 115 
Runs 0 0 40 
Long-Run 0 0 147 
Rank 0 0 424 
FFT 0 0 497 
Universal 0 0 135 
Apen 0 0 2 
Serial 1 0 0 30 
Serial 2 0 0 124 
Lempel-Ziv 0 0 0 
Linear-Complexity 366 313 497 

 

10. CONCLUSION 
This paper presents a hardware assisted obfuscation 

technique to obfuscate the control flow. We show that encryption 
alone cannot avoid the leaking of control flow information. The 
control flow leakage can imperil both code and data encryption. 
Traditionally, some software obfuscation techniques can transform 
the program control flow to reduce such information leakage. 
However, a pure software-based obfuscation has been proved 
inefficient to protect software IP due to its lack of theoretical 
foundation and considerable performance overhead introduced by 
complicated transformations. 

Obfuscation with hardware support as introduced in this 
paper can achieve a high level of security guarantee incurred with 



 

very low overhead, making it feasible for embedded processors.  It 
is shown that the chance for the attacker to identify n-recurrence 
decreases exponentially with n, therefore it is extremely hard to 
extract useful information from the address sequence after 
hardware obfuscation.  

Our experiments on an embedded processor model show that, 
the performance degradation can be below 1%. The hardware cost 
consists of small on-chip shuffle buffers and a BAT cache. For 
low-end embedded systems with limited hardware budget and 
severe control flow leakage (due to small caches), this overhead is 
affordable, making our scheme necessary and feasible. Moreover, 
through standard tests to evaluate randomness, we show our 
hardware obfuscator is much more efficient than a pure cache 
design in terms of making address trace random. 
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