
Bebop: A Symbolic Model Checker for Boolean

Programs

Thomas Ball and Sriram K. Rajamani

Software Productivity Tools
Microsoft Research

http://www.research.microsoft.com/slam/

Abstract. We present the design, implementation and empirical evalu-
ation of Bebop|a symbolic model checker for boolean programs. Bebop
represents control ow explicitly, and sets of states implicitly using BDDs.
By harnessing the inherent modularity in procedural abstraction and ex-
ploiting the locality of variable scoping, Bebop is able to model check
boolean programs with several thousand lines of code, hundreds of pro-
cedures, and several thousand variables in a few minutes.

1 Introduction

Boolean programs are programs with the usual control-ow constructs of
an imperative language such as C but in which all variables have boolean
type. Boolean programs contain procedures with call-by-value parameter
passing and recursion, and a restricted form of control nondeterminism.

Boolean programs are an interesting subject of study for a number
of reasons. First, because the amount of storage a boolean program can
access at any point is �nite, questions of reachability and termination
(which are undecidable in general) are decidable for boolean programs.1

Second, as boolean programs contain the control-ow constructs of C,
they form a natural target for investigating model checking of software.
Boolean programs can be thought of as an abstract representation of C
programs that explicitly captures correlations between data and control,
in which boolean variables can represent arbitrary predicates over the
unbounded state of a C program. As a result, boolean programs are useful
for reasoning about temporal properties of software, which depend on such
correlations.

We have created a model checker for boolean programs called Bebop.
Given a boolean program B and a statement s in B, Bebop determines
if s is reachable in B (informally stated, s is reachable in B if there is
some initial state such that if B starts execution from this state then s

1 Boolean programs are equivalent in power to push-down automaton, which accept
context-free languages.



decl g;

main()

begin

decl h;

[6] h := !g;

[7] A(g,h);

[8] skip;

[9] A(g,h);

[10] skip;

[11] if (g) then

[12] R: skip;

else

[14] skip;

fi

end

A(a1,a2)

begin

[20] if (a1) then

[21] A(a2,a1);

[22] skip;

else

[24] g := a2;

fi

end

bebop v1.0: (c) Microsoft Corporation.

Done creating bdd variables

Done building transition relations

Label R reachable by following path:

Line 12 State g=1 h=0

Line 11 State g=1 h=0

Line 10 State g=1 h=0

Line 22 State g=1 a1=1 a2=0

Line 24 State g=1 a1=0 a2=1

Line 20 State g=1 a1=0 a2=1

Line 21 State g=1 a1=1 a2=0

Line 20 State g=1 a1=1 a2=0

Line 9 State g=1 h=0

Line 8 State g=1 h=0

Line 22 State g=1 a1=1 a2=0

Line 24 State g=1 a1=0 a2=1

Line 20 State g=1 a1=0 a2=1

Line 21 State g=1 a1=1 a2=0

Line 20 State g=1 a1=1 a2=0

Line 7 State g=1 h=0

Line 6 State g=1

Fig. 1. The skip statement labelled R is reachable in this boolean program, as shown
by the output of the Bebop model checker.

eventually executes). If statement s is reachable, then Bebop produces
a shortest trace leading to s (that possibly includes loops and crosses
procedure boundaries).

Example. Figure 1 presents a boolean program with two procedures
(main and a recursive procedure A). In this program, there is one global
variable g. Procedure main has a local variable h which is assigned the
complement of g. Procedure A has two parameters. The question is: is
label R reachable? The answer is yes, as shown by the output of Bebop
on the right. The tool �nds that R is reachable and gives a shortest trace
(in reverse execution order) from R to the �rst line of main (line 6). The
indentation of a line indicates the depth of the call stack at that point in
the trace. Furthermore, for each line in the trace, Bebop outputs the state
of the variables (in scope) just before the line. The trace shows that in
order to reach label R, by this trace of lines, the value of g initially must



be 1.2 Furthermore, the trace shows that the two calls that main makes
to procedure A do not change the value of g. We re-emphasize that this
is a shortest trace witnessing the reachability of label R.

Contributions. We have adapted the interprocedural dataow analysis
algorithm of Reps, Horwitz and Sagiv (RHS) [RHS95,RHS96] to decide
the reachability status of a statement in a boolean program. A core idea of
the RHS algorithm is to eÆciently compute \summaries" that record the
input/output behavior of a procedure. Once a summary hI;Oi has been
computed for a procedure pr, it is not necessary to reanalyze the body of
pr if input context I arises at another call to pr. Instead, the summary
for pr is consulted and the corresponding output context O is used. We
use Binary Decisions Diagrams (BDDs) to symbolically represent these
summaries, which are binary relationships between sets of states.

In the program of Figure 1, our algorithm computes the summary
s = hfg = 1; h = 0g; fg0 = 1; h0 = 0gi when procedure A is �rst called (at
line 7) with the state fg = 1; h = 0g. This summary will be \installed" at
all calls to A (in particular, the call to A at line 9). Thus, when the state
I = fg = 1; h = 0g propagates to the call at line 9, the algorithm �nds
that the summary s matches and will use it to \jump over" the call to A

rather than descending into A to analyze it again.

A key point about Bebop that distinguishes it from other model check-
ers is that it exploits the locality of variable scopes in a program. The
time and space complexity of our algorithm is O(E � 2k) where E is the
number of edges in the interprocedural control-ow graph of the boolean
program3 and k is the maximal number of variables in scope at any pro-
gram point in the program. In the example program of Figure 1 there are
a total of 4 variables (global g, local h, and formals a1 and a2). However,
at any statement, at most three variables are in scope (in main, g and h;
in A, g, a1, and a2).

So, for a program with g global variables, and a maximum of l local
variables in any procedure, the running time is O(E�2g+l). If the number
of variables in scope is held constant then the running time of Bebop
grows as function of the number of statements in the program (and not
the total number of variables). As a result, we have been able to model
check boolean programs with several thousand lines of code, and several

2 Note that g is left unconstrained in the initial state of the program. If a variable's
value is unconstrained in a particular trace then Bebop does not output it. Thus,
it is impossible for g to be initially 0 and to follow the same trace. In fact, for this
example, label R is not reachable if g initially is 0.

3 E is linear in the number of statements in the boolean program.



thousand variables in a few minutes (the largest example we report in
Section 4 has 2401 variables).

A second major idea in Bebop is to use an explicit control-ow graph
representation rather than encode the control ow of a boolean program
using BDDs. This implementation decision is an important one, as it
allows us to optimize the model checking algorithm using well-known
techniques from compiler optimization. We explain two such techniuqes
|live ranges and modication/reference analysis| to reduce the number
of variables in support of the BDDs that represent the reachable states
at a program point.
Overview. Section 2 presents the syntax and semantics of boolean pro-
grams. Section 3 describes our adaption of the RHS algorithm to use
BDDs to solve the reachability problem for boolean programs. Section 4
evaluates the performance of Bebop. Section 5 reviews related work and
Section 6 looks towards future work.

2 Boolean Programs

2.1 Syntax

Figure 2 presents the syntax of boolean programs. We will comment on
noteworthy aspects of it here. Boolean variables are either global (if they
are declared outside the scope of a procedure) or local (if they are declared
inside the scope of a procedure). Since there is only one type in the
boolean programming language, variable declarations need not specify a
type. Variables are statically scoped, as in C. A variable identi�er is either
a C-style identifer or an arbitrary string between the characters \f\ and
\g". The latter form is useful for creating boolean variables with names
denoting predicates in another language (such as f*p==*qg).

There are two constants in the language: 0 (false) and 1 (true). Ex-
pressions are built in the usual way from these constants, variables and
the standard logical connectives.

The statement sub-language (stmt) is very similar to that of C, with a
few exceptions. Statements may be labelled, as in C. A parallel assignment
statement allows the simultaneous assignment of a set of values to a set
of variables. Procedure calls use call-by-value parameter passing.4 There

4 Boolean programs support return values from procedures, but to simplify the techni-
cal presentation we have omitted their description here. A return value of a procedure
can be modelled with a single global variable, where the global variable is assigned
immediately preceding a return and copied immediately after the return into the
local state of the calling procedure.



Syntax Description

prog ::= decl � proc �

A program is a list of global
variable declarations followed by
a list of procedure de�nitions

decl ::= decl id + ; Declaration of variables

id ::= [a-zA-Z ] [a-zA-Z0-9 ] �
An identi�er can be a regular
C-style identi�er

j f string g
or a string of characters
between 'f' and 'g'

proc ::= id ( id � ) begin decl � sseq end Procedure de�nition

sseq ::= lstmt + Sequence of statements

lstmt ::= stmt
j id : stmt Labelled statement

stmt ::= skip ;
j print ( expr + ) ;
j goto id ;
j return ;
j id + := expr + ; Parallel assignment
j if ( decider ) then sseq else sseq � Conditional statement
j while ( decider ) do sseq od Iteration statement
j assert ( decider ) ; Assert statement
j id ( expr � ) ; Procedure call

decider ::= ? Non-deterministic choice
j expr

expr ::= expr binop expr
j ! expr Negation
j ( expr )
j id
j const

binop ::= 'j' j '&' j '^' j '=' j ' !=' j ')' Logical connectives

const ::= 0 j 1 False/True

Fig. 2. The syntax of boolean programs.

are three statements that can a�ect the control ow of a program: if ,
while and assert. Note that the predicate of these three statements is a
decider, which can be used to model non-determinism. A decider is either
a boolean expression which evaluates (deterministically) to 0 or 1, or \?",
which evaluates to 0 or 1 non-deterministically.

2.2 Statements, Variables and Scope

The term statement denotes an instance that can be derived from the
nonterminal stmt (see Figure 2). Let B be a boolean program with n
statements and p procedures. We assign a unique index to each statement



in B in the range 1 : : : n and a unique index to each procedure in B in
the range n+ 1 : : : n+ p. Let si denote the statement with index i.

To simplify presentation of the semantics, we assume that variable
names and statement labels are globally unique in B. Let V (B) be the
set of all variables in B. Let Globals(B) be the set of global variables
of B. Let FormalsB (i) be the set of formal parameters of the procedure
that contains si. Let LocalsB (i) be the set of local variables and for-
mal parameters of the procedure that contains si. For all i, 1 � i � n,
FormalsB (i) � LocalsB (i). Let InScopeB (i) denote the set of all vari-
ables of B whose scope includes si. For all i, 1 � i � n, InScopeB (i) =
LocalsB (i) [Globals(B).

2.3 The Control-ow Graph

This section de�nes the control-ow graph of a boolean program. Since
boolean programs contain arbitrary intra-procedural control ow (via the
goto), it is useful to present the semantics of boolean programs in terms
of their control-ow graph rather than their syntax. To make the pre-
sentation of the control-ow graph simpler, we make the minor syntactic
restriction that every call c to a procedure pr in a boolean program is
immediately followed by a skip statement skipc.

The control-ow graph of a boolean program B is a directed graph
GB = (VB ;SuccB ) with set of vertices VB = f1; 2; : : : ; n + p + 1g and
successor function SuccB : VB ! 2VB . The set VB contains one vertex
for each statement in B (vertices 1 : : : n) and one vertex Exitpr for every
procedure pr in B (vertices n + 1 : : : n + p). In addition, VB contains a
vertex Err = n + p + 1 which is used to model the failure of an assert
statement. For any procedure pr in B, let FirstB (pr) be the index of the
�rst statement in pr. For any vertex v 2 VB � fErrg, let ProcOfB (v) be
the index of the procedure containing v.

The successor function SuccB is de�ned in terms of the function
NextB : f1; 2; : : : ; ng ! f1; 2; : : : ; n + pg which maps statement indices
to their lexical successor if one exists, or to the exit node of the contain-
ing procedure otherwise. NextB(i) has a recursive de�nition based on the
syntax tree of B (see Figure 2). In this tree, each statement has an sseq

node as its parent. The sequence of statements derived from the sseq par-
ent of statement si is called the containing sequence of si. If si is not the
last statement in its containing sequence then NextB (i) is the index of the
statement immediately following si in this sequence. Otherwise, let a be
the closest ancestor of si in the syntax tree such that (1) a is a stmt node,
and (2) a is not the last statement in a's containing sequence. If such a



node a exists, then NextB (i) is the index of the statement immediately
following a in its containing sequence. Otherwise, NextB (si) = Exitpr,
where pr = ProcOfB (i).

If sj is a procedure call, we de�ne ReturnPtB (j) = NextB (j) (which
is guaranteed to be a skip statement because of the syntactic restriction
we previously placed on boolean programs).

We now de�ne SuccB using NextB and ReturnPtB . For 1 � i � n, the
value of SuccB (i) depends on the statement si, as follows:

{ If si is \goto L" then SuccB (i) = fjg, where sj is the statement
labelled L.

{ If si is a parallel assignment, skip or print statement then SuccB (i) =
fNextB (i)g.

{ If si is a return statement then SuccB (i) = fExitprg, where pr =
ProcOfB (i).

{ If si is an if statement then SuccB (v) = fTsuccB (i);FsuccB (i)g, where
TsuccB (i) is the index of the �rst statement in the then branch of
the if and FsuccB (i) is the index of the �rst statement in the else
branch of the if .

{ If si is a while statement then SuccB (i) = fTsuccB (i);FsuccB (i)g,
where TsuccB (i) is the �rst statement in the body of the while loop
and FsuccB (i) = NextB (i).

{ If si is an assert statement then SuccB (i) = fTsuccB (i);FsuccB (i)g,
where TsuccB (i) = NextB (i) and FsuccB (i) = n + p + 1 (the Err

vertex).

{ If si is a procedure call to procedure pr then SuccB (i) = FirstB (pr).

We now de�ne SuccB (i) for n+1 � i � n+p (that is, for the Exit vertices
associated with the p procedures of B). Given exit vertex Exitpr for some
procedure pr, we have

SuccB (Exitpr) = fReturnPtB (j) j statement sj is a call to pr g

Finally, SuccB (Err) = fg. That is, the vertex Err has no successors.

The control-ow graph of a boolean program can be constructed in
time and space linear n+ p, the number of statements and procedures in
the program.

2.4 A Transition System for Boolean Programs

For a set V � V (B), a valuation 
 to V is a function that associates
every boolean variable in V with a boolean value. 
 can be extended to



expressions over V (see expr in Figure 2) in the usual way. For example,
if V = fx; yg, and 
 = f(x; 1); (y; 0)g then 
(xjy) = 1. For any function
f : D ! R, d 2 D, r 2 R, f [d=r] : D ! R is de�ned as f [d=r](d0) = r
if d = d0, and f(d0) otherwise. For example, if V = fx; yg, and 
 =
f(x; 1); (y; 0)g then 
[x=0] = f(x; 0); (y; 0)g:

A state � of B is a pair hi; 
i, where i 2 VB and 
 is a valuation to the
variables in InScopeB (i). States(B) is the set of all states of B. Intuitively,
a state contains the program counter (i) and values to all the variables
visible at that point (
). Note that our de�nition of state is di�erent from
the conventional notion of a program state, which includes a call stack.
The projection operator � maps a state to its vertex: � (hi; 
i) = i. We
can extend � to operate on sequences of states in the usual way.

We de�ne a set �(B) of terminals:

�(B) = f�g [ f hcall; i;�i; hret; i;�i j 9j 2 VB; sj is a procedure call;
i = ReturnPtB (j); and
� is a valuation to LocalsB (j)g

It is clear that �(B) is �nite since all variables in B are boolean vari-
ables. Terminals are either �, which is a place holder, or triples that are
introduced whenever there is a procedure call in B. The �rst component
of the triple is either call or ret, corresponding to the actions of a call
to and return from that procedure, the second is the return point of the
call, and the third component keeps track of values of local variables of
the calling procedure at the time of the call.

We use �1
�
!B�2, to denote that B can make an �-labeled transition

from state �1 to state �2. Formally, �1
�
!B�2 holds if �1 = hi1; 
1i 2

States(B), �2 = hi2; 
2i 2 States(B), and � 2 �(B), where the condi-
tions on �1, �2 and � for each statement construct are shown in Table 1.
We explain the table below:

{ The transitions for skip, print, goto and return are the same. All
these statements have exactly one control-ow successor. For vertices v
such that SuccB (v) = fwg, we de�ne sSuccB (v) = w. Each statement
passes control to its single successor sSuccB (i1) and does not change
the state of the program.

{ The transition for parallel assignment again passes control to the sole
successor of the statement and the state changes in the expected man-
ner.

{ The transitions for if , while and assert statements are identical. If
the value of the decider d associated with the statement is ? then



i1 � i2 
2

skip
print
goto
return

� = � i2 = sSuccB (i1) 
2 = 
1

x1; : : : ; xk :=
e1; : : : ; ek

� = � i2 = sSuccB (i1)

2 = 
1[x1=
1(e1))]
� � � [xk=
1(ek)]

if(d)
while(d)
assert(d)

� = �

if d = ?
i2 2 SuccB (i1)

if 
1(d) = 1
i2 = TsuccB (i1)

if 
1(d) = 0
i2 = FsuccB (i1)


2 = 
1

pr(e1; : : : ; ek)
� = hcall;ReturnPtB (i1); �i,
�(x) = 
1(x); 8 x 2 LocalsB (i1)

i2 = FirstB(pr)


2(xi) = 
1(ei);
8 xi 2 FormalsB (i2)


2(g) = 
1(g);
8 g 2 Globals(B)

Exitpr � = hret; i2; �i i2 2 SuccB (i1)


2(g) = 
1(g);
8 g 2 Globals(B)


2(x) = �(x);
8 x 2 LocalsB (i2)

Table 1. Conditions on the state transitions hi1; 
1i
�
!Bhi2; 
2i, for each vertex type

of i1. See the text for a full explanation.

the successor is chosen non-deterministically from the set SuccB (i1).
Otherwise, d is a boolean expression and is evaluated in the current
state to determine the successor.

{ The transition for a call statement si1 contains the � label

hcall;ReturnPtB (i1);�i

where � records the values of the local variables at i1 from the state

1. The next state, 
2 gives new values to the formal parameters of
the called procedure based on the values of the corresponding actual
arguments in state 
1. Furthermore, 
2 is constrained to be the same
as 
1 on the global variables.

{ Finally, the transition for an exit vertex i1 = Exitpr has � = hret; i2;�i,
where i2 must be a successor of i1. The output state 
2 is constrained
as follows: 
2 must agree with 
1 on all global variables; 
2 must
agree with � on the local variables in scope at i2.

2.5 Trace Semantics

We now are in a position to give a trace semantics to boolean programs
based on a context-free grammar G(B) over the alphabet �(B) that spec-



1. S !MS
2. 8hcall; i; �i 2 �(B) :
S ! hcall; i; �i S

3. S ! �

4. 8hcall; i; �i; hret; i; �i 2 �(B) :
M ! hcall; i; �i M hret; i; �i

5. M !MM
6. M ! �
7. M ! �

Table 2. The production rules Rules(B) for grammar G(B).

i�es the legal sequences of calls and returns that a boolean program B
may make.

A context-free grammar G is a 4-tuple hN;T;R; Si, where N is a set
of nonterminals, T is a set of terminals, R is a set of production rules
and S 2 N is a start symbol. For each program B, we de�ne a grammar
G(B) = hfS;Mg; �(B);Rules(B); Si, where Rules(B) is de�ned by the
productions of Table 2.

If we view the terminals hcall; i;�i and hret; i;�i from �(B) as
matching left and right parentheses, the language L(G(B)) is the set of
all strings over �(B) that are sequences of partially-balanced parenthe-
ses. That is, every right parenthesis hret; i;�i is balanced by a preceding
hcall; i;�i but the converse need not hold. The � component insures that
the values of local variables at the time of a return are the same as they
were at the time of the corresponding call (this must be the case because
boolean programs have a call-by-value semantics). The nonterminal M
generates all sequences of balanced calls and returns, and S generates all
sequences of partially balanced calls and returns. This allows us to rea-
son about non-terminating or abortive executions. Note again that the
number of productions is �nite because B contains only boolean variables.

We assume that B contains a distinguished procedure named main,
which is the initial procedure that executes. A state � = hi; 
i is initial
if i = FirstB (main) (all variables can take on arbitrary initial values). A

�nite sequence � = �0
�1!B�1

�2!B � � � �m�1
�m!B�m is a trajectory of B if (1)

for all 0 � i < m, �i
�i!B�i+1, and (2) �1 : : : �m 2 L(G(B)). A trajectory �

is called an initialized trajectory if �0 is an initial state of B. If � is an ini-
tialized trajectory, then its projection to vertices � (�0); � (�1); : : : ; � (�n)
is called a trace of B. The semantics of a boolean program is its set of
traces. A state � of B is reachable if there exists an initialized trajectory
of B that ends in �. An vertex v 2 VB is reachable if there exists a trace
of B that ends in vertex v.



3 Boolean Programs Reachability via Interprocedural

Dataow Analysis and BDDs

In this section, we present an interprocedural dataow analysis that, given
a boolean program B and its control-ow graph GB = (VB ;SuccB ), de-
termines the reachability status of every vertex in VB. We describe and
present the algorithm, show how it can be extended to report short tra-
jectories (when a vertex is found to be reachable), and describe several
optimizations that we plan to make to the algorithm.

3.1 The RHS Algorithm, Generalized

As discussed in the Introduction, we have generalized the interprocedural
dataow algorithm of Reps-Horwitz-Sagiv (RHS) [RHS95,RHS96]. The
main idea of this algorithm is to compute \path edges" that represent
the reachability status of a vertex in a control-ow graph and to compute
\summary edges" that record the input/output behavior of a procedure.
We (re)de�ne path and summary edges as follows:

Path edges. Let v be a vertex in VB and let e = FirstB (ProcOfB (v)). A
path edge incident into a vertex v, is a pair of valuations h
e; 
vi,

5 such
that(1) there is a initialized trajectory �1 = hFirstB (main); 
i : : : he;
ei,
and (2) there is a trajectory �2 = he;
ei : : : hv;
vi that does not contain
the exit vertex ExitProcOfB (v) (exclusive of v itself). For each vertex v,
PathEdges(v) is the set of all path edges incident into v.

A summary edge is a special kind of path edges that records the
behavior of a procedure.

Summary edges. Let c be a vertex in VB representing a procedure
call with corresponding statement sc = pr(e1; e2; :::ek). A summary edge

associated with c is a pair of valuations h
1; 
2i, such that all the local
variables in LocalsB (c) are equal in 
1 and 
2, and the global variables
change according to some path edge from the entry to the exit of the
callee. Suppose P is the set of path edges at Exitpr. We de�ne Liftc(P;pr)
as the set of summary edges obtained by \lifting" the set of path edges
P to the call c, while respecting the semantics of the call and return

5 The valuations 
e and 
v are de�ned with respect to the set of variables V =
InScopeB (e) = InScopeB (v).



transitions from Table 1. Formally

Liftc(P;pr) = fh
1; 
2i j9h
i; 
oi 2 P; and
8x 2 LocalsB (c) : 
1(x) = 
2(x); and
8x 2 Globals(B) : (
1(x) = 
i(x)) ^ (
2(x) = 
o(x)); and
8 formals yj of pr and actuals ej : 
1(ej) = 
i(yj)g

For each vertex v in CallB , SummaryEdges(v) is the set of summary
edges associated with v. As the algorithm proceeds, SummaryEdges(v)
is incrementally computed for each call site. Summary edges are used
to avoid revisiting portions of the state space that have already been
explored, and enable analysis of programs with procedures and recursion.

Let CallB be the set of vertices in VB that represent call statements.
Let ExitB be the set of exit vertices in VB . Let CondB be the set of vertices
in VB that represent the conditional statements if , while and assert.

Transfer Functions. With each vertex v such that sv 62 CondB [ExitB ,
we associate a transfer function Transfer v. With each vertex v 2 CondB ,
we associate two transfer functions Transfer v;true and Transfer v;false . The
de�nition of these functions is given in Table 3. Given two sets of pairs
of valuations, S and T , Join(S; T ) is the image of set S with respect to
the transfer function T . Formally Join(S; T ) = fh
1; 
2i j 9
j:h
1; 
ji 2
S ^ h
j ; 
2i 2 Tg. During the processing of calls, in addition to applying
the transfer function, the algorithm uses the function SelfLoop which takes
a set of path edges, and makes self-loops with the targets of the edges.
Formally, SelfLoop(S) = fh
2; 
2i j 9h
1; 
2i 2 Sg.

Our generalization of the RHS algorithm is shown in Figure 3. The
algorithm uses a worklist, and computes path edges and summary edges
in a directed, demand-driven manner, starting with the entry vertex of
main (the only vertex initially known to be reachable). In the algorithm,
path edges are used to compute summary edges, and vice versa. In our
implementation, we use BDDs to represent transfer functions, path edges,
and summary edges. As is usual with BDDs, a boolean expression e de-
notes the set of states 
e = f
j
(e) = 1g. A set of pairs of states can
easily be represented with a single BDD using primed versions of the
variables in V (B) to represent the variables in the second state. Since
transfer functions, path edges, and summary edges are sets of pairs of
states, we can represent and manipulate them using BDDs.

Upon termination of the algorithm, the set of path edges for a vertex
v is empty i� v is not reachable. If v is reachable, we can generate a
shortest trajectory to v, as described in the next section.



global
PathEdges ,SummaryEdges ,WorkList

procedure Propagate(v,p)
begin
if p 6� PathEdges(v) then
PathEdges(v) := PathEdges(v) [ p
Insert v into WorkList �

�
end

procedure Reachable(GB)
begin
for all v 2 VB do PathEdges(v) := fg
for all v 2 CallB do SummaryEdges(v) := fg
PathEdges(FirstB (main)) :=
fh
;
i j 
 is any valuation to globals and local variables of maing

WorkList := fFirstB (main)g
while WorkList 6= ; do
remove vertex v from WorkList
switch (v)
case v 2 CallB :
Propagate(sSuccB (v),SelfLoop(Join(PathEdges(v);Transferv)))
Propagate(ReturnPtB (v),Join(PathEdges(v);SummaryEdges(v)))

case v 2 ExitB :
for each w 2 SuccB (v) do
let
c 2 CallB such that w = ReturnPtB (c) and
s = Liftc(PathEdges(v);ProcOfB (v))

in
if s 6� SummaryEdges(c) then
SummaryEdges(c) := SummaryEdges(c) [ s
Propagate(w,Join(PathEdges(c); SummaryEdges(c)));

ni
case v 2 CondB :
Propagate(TsuccB (v);Join(PathEdges(v);Transfer v;true))
Propagate(FsuccB (v); Join(PathEdges(v);Transferv;false))

case v 2 VB �CallB � ExitB � CondB :
let p = Join(PathEdges(v);Transferv) in
for each w 2 SuccB (v) do
Propagate(w,p)

ni
end

Fig. 3. The model checking algorithm.



v Transfer v
skip
print
goto
return

�h
1; 
2i:(
2 = 
1)

x1; : : : ; xk :=
e1; : : : ; ek

�h
1; 
2i:(
2 = 
1[x1=
1(e1))] � � � [xk=
1(ek)])

if(d)
while(d)
assert(d)

Transfer v;true = �h
1; 
2i:((
1(d) = 1) ^ (
2 = 
1))
Transfer v;false = �h
1; 
2i:((
1(d) = 0) ^ (
2 = 
1))

pr(e1; : : : ; ek)
�h
1; 
2i:(
2 = 
1[x1=
1(e1)] : : : [xk=
1(ek)]),
where x1; : : : ; xk are the formal parameters of pr.

Table 3. Transfer functions associated with vertices. These are derived directly from
the transition rules given in Table 1

3.2 Generating a Shortest Trajectory to a Reachable Vertex

We now describe a simple extension to the algorithm of Figure 3 to keep
track of the length of the shortest hierarchical trajectory needed to reach
each state, so that if vertex v is reachable, we can produce a shortest
initialized hierarchical trajectory that ends in v.

A hierarchical trajectory can \jump over" procedure calls using sum-
mary edges. Formally, a �nite sequence � = �0

�1!B�1
�2!B � � � �m�1

�m!B�m
is a hierarchical trajectory of B if for all 0 � i < m, (1) either �i

�i!B�i+1,
or �i = hvi; 
ii, �i+1 = hvi+1; 
i+1i, �i = �, vi 2 CallB and h
i; 
i+1i 2
SummaryEdges(vi), and (2) �1 : : : �m 2 L(G(B)).

Let v be a vertex and let e = FirstB (ProcOfB (v)). For a path edge
h
e; 
vi 2 PathEdges(v) let W (h
e; 
vi) be the set of all hierarchical
trajectories that start from main, enter into the procedure ProcOfB (v)
with valuation 
e and then reach v with valuation 
v without exiting
ProcOfB (v). Note that a hierarchical trajectory in W (h
e; 
vi) is com-
prised of intraprocedural edges, summary edges, and edges that represent
calling a procedure (but not the edges representing a return from a pro-
cedure). Instead of keeping all the path edges incident on v as a single set
PathEdges(v), we partition it into a set of sets

fPathEdgesr1(v);PathEdges r2(v); : : : ;PathEdgesrk(v)g

where a path edge h
e; 
vi is in PathEdgesrj (v) i� the shortest hierar-
chical trajectory in W ((h
e; 
vi) has length rj. The set fr1; r2; : : : ; rkg
is called the set of rings associated with v.

We use rings to generate shortest hierarchical trajectories. If vertex v
is reachable, we �nd the smallest ring r such that PathEdgesr(v) exists.



Then we pick an arbitrary path edge h
e; 
vi from PathEdgesr(v), and
do the following depending on the type of vertex v:

{ If v 6= FirstB (ProcOfB (v)) then we have two subcases:
� If sv is not a skip immediately following a call, then we look for
a predecessor u of v such that there exists path edge h
e; 
ui in
PathEdgesr�1(u), and Join(fh
e; 
uig;Transferu) contains h
e; 
vi.

� If sv is a skip immediately following a call (say at vertex u), then
we look for a path edge h
e; 
ui in PathEdgesr�1(u) such that
Join(fh
e; 
uig;SummaryEdges (u)) contains h
e; 
vi.

{ If v = FirstB (ProcOfB (v)), then it should be the case that e = v,
and 
v = 
e. We �nd a caller u of ProcOfB (v), and suitably \lift"

v to a suitable path edge in PathEdges(u). Formally, we �nd a
vertex u 2 CallB such that su is a call to procedure ProcOfB (v),
and there exists path edge h
0

e; 
ui in PathEdgesr�1(u) satisfying
Transferu(h
u; 
vi).

Repeating this process with the vertex u and the path edge found
in PathEdgesr�1(u), we are guaranteed to reach the entry of main in
r steps. We may traverse over summary edges in the process. However,
we can expand the summary edges on demand, to produce a hierarchical
error trajectory, as shown in the Bebop output in Figure 1.

3.3 Optimizations

The basic algorithm described above has been implemented in the Bebop
model checker. In this section, we describe a few optimizations based
on ideas from compiler optimization [ASU86] that should substantially
reduce the size of the BDDs needed to perform the analysis.
Live Ranges. If for some path starting at a vertex v in the control-ow
graph GB, the variable x is used before being de�ned, then variable x is
said to be live at v. Otherwise, x is said to be dead at v, for its value at
v will not ow to any other variable. If variable x is not live at vertex
v then we need not record the value of x in the BDD for PathEdges(v).
Consider the following boolean program

void main()

begin

decl a,b,c,d,e,f;

L1: a := b|c; // {b,c,e} live at L1

L2: d := a|e; // {a,e} live at L2

L3: e := d|e; // {d,e} live at L3

L4: f := d; // {d} live at L4

end



This program declares and refers to six variables, but at most three vari-
ables are live at any time. For example, at the statement labelled L1 only
the values of the variables b, c, and e can ow to the statements after L1.
As a result, the BDD for the �rst statement need not track the values of
the variables a or d.

MOD/REF sets. A traditional \MOD/REF" (modi�cation/reference)
analysis of a program determines the variables that are modi�ed and/or
referenced by each procedure pr (and the procedures it calls transitively).
Let pr be a procedure in B such that pr nor any of the procedures it calls
(transitively) modi�es or references global variable g. Although g may be
in scope in pr, and may in fact be live within pr, the procedure pr cannot
change the value of g. As a result, all that is needed is to record that g
remains unchanged, for any summary of pr.

4 Evaluation

In this section, we present an evaluation of Bebop on a series of synthetic
programs derived from the template T shown in Figure 4. The template
allows us to generate boolean programs T (N) for N > 0. The boolean
program T (N) has one global variable g and N + 1 procedures |a pro-
cedure main, and N procedures of the form level<i> for 0 < i � N .
For 0 < j < N , the two instances of <stmt> in the body of procedure
level<j> are replaced by a call to procedure level<j+1>. The two in-
stances of <stmt> in the body of procedure level<N> are replaced by
skip.

As a result, a boolean program T (N) has N + 1 procedures, where
main calls level1 twice, level1 calls level2 twice, etc. At the beginning
of each level procedure, a choice is made depending on the value of g. If
g is 1 then a loop is executed that implements a three bit counter over the
local variables a, b, and c. If g is 0 then two calls in succession are made
to the next level procedure. In the last level procedure, if g is 0 then
two skip statements are executed. At the end of each level procedure,
the global variable g is negated. Every program T (N) generated from this
template has four variables visible at any program point, regardless of N .
Note that g is not initialized, so Bebop will explore all possible values for
g.

We ran Bebop to compute the reachable states for boolean programs
T (N) in 0 < N � 800, and measured the running time, and peak memory
used. Figure 4(a) shows how the running time of Bebop (in seconds) varies



decl g;

void main()

begin

level1();

level1();

if(!g) then

reach: skip;

else

skip;

fi

end

void level<i>()

begin

decl a,b,c;

if(g) then

a,b,c := 0,0,0;

while(!a|!b|!c) do

if (!a) then

a := 1;

elsif (!b) then

a,b := 0,1;

elsif (!c) then

a,b,c := 0,0,1;

fi

od

else

<stmt>; <stmt>;

fi

g := !g;

end

Running time for T(N)

0

50

100

150

200

250

300

0 200 400 600 800 1000

N
R

u
n

n
in

g
 t

im
e 

fo
r 

T
(N

) 
(s

ec
o

n
d

s)

CU

CMU

(a)

Peak Live BDD Nodes

0

50000

100000

150000

200000

250000

0 200 400 600 800 1000

N

P
ea

k 
S

p
ac

e 
fo

r 
T

(N
)

(b)

Fig. 4. Boolean program template T for performance test and performance results.

with N . Figure 4(b) shows how the peak memory usage of Bebop varies
with N .

The two curves in Figure 4(a) represent two di�erent BDD packages:
CU is the CUDD package from Colorado University [Som98] and CMU is
the BDD package from Carnegie Mellon University [Lon93]. We note that
the program T (800) has 2401 variables. Model checking of this program
takes a minute and a half with the CMU package and four and a half min-
utes with the CUDD package. Both times are quite reasonable considering
the large number of variables (relative to traditional uses of BDDs). The
space measurements in Figure 4(b) are taken from the CUDD package,
which provides more detailed statistics of BDD space usage.



We expected the peak memory usage to increase linearly with N .
The sublinear behavior observed in Figure 4(b) is due to more frequent
garbage collection at larger N . We expected the running time also to
increase linearly with N . However, Figure 4(a) shows that the running
time increases quadratically with N . The quadratic increase in running
time was unexpected, since the time complexity of model checking pro-
gram T (N) is O(N) (there are 4 variables in the scope of any program
point). By pro�ling the runs and reading the code in the BDD packages,
we found that the quadratic behavior arises due to an ineÆciency in
the implementation of bdd substitute in the BDD package. Bebop calls
bdd substitute in its \inner loop", since variable renaming is an essen-
tial component of its forward image computation. While model checking
T (N), the BDD manager has O(N) variables, but we are interested in
substituting O(n) variables, for a small n, using bdd substitute. Re-
gardless of n, we found that bdd substitute still consumes O(N) time.
Both the CUDD and CMU packages had this ineÆciency. If this ineÆ-
ciency is �xed in bdd substitute, we believe that the running time of
Bebop for T (N) will vary linearly with N .

5 Related Work

Model checking for �nite state machines is a well studied problem, and
several model checkers |SMV [McM93], Mur� [Dil96], SPIN [HP96],
COSPAN [HHK96], VIS [BHSV+96] and MOCHA [AHM+98]| have
been developed. Boolean programs implicitly have an unbounded stack,
which makes them identical in expressive power to pushdown automata.
The model checking problem for pushdown automata has been studied be-
fore [SB92] [BEM97] [FWW97]. Model checkers for push down automata
have also been written before [EHRS00]. However, unlike boolean pro-
grams, these approaches abstract away data, and concentrate only on
control. As a result spurious paths can arise in these models due to infor-
mation loss about data correlations.

The connections between model checking, dataow analysis and ab-
stract interpretation have been explored before [Sch98] [CC00]. The
RHS algorithm [RHS95,RHS96] builds on earlier work in interprocedu-
ral dataow analysis from [KS92] and [SP81]. We have shown how this
algorithm can be generalized to work as a model checking procedure for
boolean programs. Also, our choice of hybrid representation of the state
space in Bebop|an explicit representation of control ow and an implicit
BDD-based representation of path edges and summary edges| is novel.



Exploiting design modularity in model checking has been recognized
as a key to scalability of model checking [AH96] [AG00] [McM97] [HQR98].
The idea of harnessing the inherent modularity in procedural abstrac-
tion, and exploiting locality of variable scoping for eÆciency in model
checking software is new, though known in the area of dataow analy-
sis [RHS96]. Existing model checkers neither support nor exploit proce-
dural abstraction. As a result, existing approaches to extract models from
software are forced to inline procedure de�nitions at their points of invo-
cation [CDH+00], which could lead to explosion in both the size of the
model and the number of variables.

6 Future Work

Bebop is part of a larger e�ort called SLAM6, in progress at Microsoft
Research, to extract abstract models from code and check temporal prop-
erties of software. We are currently implementing a methodology that uses
boolean programs, and an iterative re�nement process using path simu-
lation to model check critical portions of operating system code [BR00].

References

[AG00] A. Alur and R. Grosu. Modular re�nement of hierarchic reactive modules.
In POPL 00: Principles of Programming Languages. ACM Press, 2000.

[AH96] R. Alur and T.A. Henzinger. Reactive modules. In LICS 96: Logic in
Computer Science, pages 207{218. IEEE Computer Society Press, 1996.

[AHM+98] R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K. Rajamani, and
S. Tasiran. Mocha : Modularity in model checking. In CAV 98: Computer
Aided Veri�cation, LNCS 1427, pages 521{525. Springer-Verlag, 1998.

[ASU86] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and
Tools. Addison-Wesley, Reading, MA, 1986.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: Application to model-checking. In CONCUR 97: Concurrency
Theory, LNCS 1243, pages 135{150. Springer-Verlag, 1997.

[BHSV+96] R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi,
A. Aziz, S.-T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo,
S. Qadeer, R.K. Ranjan, S. Sarwary, T.R. Shiple, G. Swamy, and T. Villa.
VIS: A System for Veri�cation and Synthesis. In CAV 96: Computer Aided
Veri�cation, LNCS 1102, pages 428{432. Springer-Verlag, 1996.

[BR00] T. Ball and S. K. Rajamani. Boolean programs: A model and process for
software analysis. Technical Report MSR-TR-2000-14, Microsoft Research,
February 2000.

[Bry86] R.E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677{691, 1986.

6 http://www.research.microsoft.com/slam/



[CC00] P. Cousot and R. Cousot. Temporal abstract interpretation. In POPL 00:
Principles of Programming Languages. ACM Press, 2000.

[CDH+00] James Corbett, Matthew Dwyer, John Hatcli�, Corina Pasareanu, Robby,
Shawn Laubach, and Hongjun Zheng. Bandera : Extracting �nite-state
models from java source code. In ICSE 2000: International Conference on
Software Engineering, 2000.

[Dil96] D. L. Dill. The Mur� Veri�cation System. In CAV 96: Computer Aided
Veri�cation, LNCS 1102, pages 390{393. Springer-Verlag, 1996.

[EHRS00] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. EÆcient algo-
rithms for model checking pushdown systems. Technical Report TUM-
I0002, SFB-Bericht 342/1/00 A, Technische Universitat Munchen, Institut
fur Informatik, February 2000.

[FWW97] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model
checking pushdown systems. In INFINITY' 97: Veri�cation of In�nite-
state Systems, July 1997.

[HHK96] R.H. Hardin, Z. Har'El, and R.P. Kurshan. COSPAN. In CAV 96:
Computer Aided Veri�cation, LNCS 1102, pages 423{427. Springer-Verlag,
1996.

[HP96] G.J. Holzmann and D.A. Peled. The State of SPIN. In CAV 96: Computer
Aided Veri�cation, LNCS 1102, pages 385{389. Springer-Verlag, 1996.

[HQR98] T.A. Henzinger, S. Qadeer, and S.K. Rajamani. You assume, we guarantee:
methodology and case studies. In CAV 98: Computer Aided Veri�cation,
LNCS 1427, pages 440{451. Springer-Verlag, 1998.

[KS92] J. Knoop and B. Ste�en. The interprocedural coincidence theorem. In CC
92: Compiler Construction, LNCS 641, pages 125{140, Springer-Verlag,
1992.

[Lon93] D. Long. Cmu bdd package. http://emc.cmu.edu/pub, Carnegie Melon
University, 1993.

[McM93] K.L. McMillan. Symbolic Model Checking: An Approach to the State-
Explosion Problem. Kluwer Academic Publishers, 1993.

[McM97] K.L. McMillan. A compositional rule for hardware design re�nement. In
CAV 97: Computer-Aided Veri�cation, LNCS 1254, pages 24{35. Springer-
Verlag, 1997.

[RHS95] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataow anal-
ysis via graph reachability. In POPL 95: Principles of Programming Lan-
guages, pages 49{61. ACM Press, 1995.

[RHS96] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataow anal-
ysis with applications to constant propagation. Theoretical Computer Sci-
ence, 167:131{170, 1996.

[SB92] B. Ste�en and O. Burkart. Model checking for context-free processes. In
CONCUR 92: Concurrency Theory, LNCS 630, pages 123{137. Springer-
Verlag, 1992.

[Sch98] D.A. Schmidt. Data ow analysis is model checking of abstract interpre-
tation. In POPL 98: Principles of Programming Languages, pages 38{48.
ACM Press, 1998.

[Som98] F. Somenzi. Colorado university decision diagram package.
ftp://vlsi.colorado.edu/pub, University of Colorado, Boulder, 1998.

[SP81] M. Sharir and A. Pnueli. Two approaches to interprocedural data dalow
analysis. In Program Flow Analysis: Theory and Applications, pages 189{
233. Prentice-Hall, 1981.


