
PR-Miner: Automatically Extracting Implicit Programming
Rules and Detecting Violations in Large Software Code

Zhenmin Li and Yuanyuan Zhou
Department of Computer Science

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

{zli4, yyzhou}@cs.uiuc.edu

ABSTRACT
Programs usually follow many implicit programming rules, most of
which are too tedious to be documented by programmers. When
these rules are violated by programmers who are unaware of or for-
get about them, defects can be easily introduced. Therefore, it is
highly desirable to have tools to automatically extract such rules
and also to automatically detect violations. Previous work in this
direction focuses on simple function-pair based programming rules
and additionally requires programmers to provide rule templates.

This paper proposes a general method called PR-Miner that uses
a data mining technique called frequent itemset mining to efficiently
extract implicit programming rules from large software code writ-
ten in an industrial programming language such as C, requiring lit-
tle effort from programmers and no prior knowledge of the software.
Benefiting from frequent itemset mining, PR-Miner can extract pro-
gramming rules in general forms (without being constrained by any
fixed rule templates) that can contain multiple program elements of
various types such as functions, variables and data types. In addi-
tion, we also propose an efficient algorithm to automatically detect
violations to the extracted programming rules, which are strong in-
dications of bugs.

Our evaluation with large software code, including Linux, Post-
greSQL Server and the Apache HTTP Server, with 84K–3M lines
of code each, shows that PR-Miner can efficiently extract thousands
of general programming rules and detect violations within 2 min-
utes. Moreover, PR-Miner has detected many violations to the ex-
tracted rules. Among the top 60 violations reported by PR-Miner,
16 have been confirmed as bugs in the latest version of Linux, 6 in
PostgreSQL and 1 in Apache. Most of them violate complex pro-
gramming rules that contain more than 2 elements and are thereby
difficult for previous tools to detect. We reported these bugs and
they are currently being fixed by developers.

Categories and Subject Descriptors: D.2.4 [SOFTWARE ENGI-
NEERING]: Software/Program Verification — Statistical methods;
D.2.5 [SOFTWARE ENGINEERING]: Testing and Debugging —
Debugging aids; D.2.7 [SOFTWARE ENGINEERING]: Distribu-
tion, Maintenance, and Enhancement — Documentation

General Terms: Algorithms, Management, Documentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC-FSE’05, September 5–9, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-014-0/05/0009 ...$5.00.

Keywords: automated specification generation, automated viola-
tion detection, data mining for software engineering, programming
rules, pattern recognition, static analysis

1. INTRODUCTION
1.1 Motivation

Programs usually follow many implicit programming rules. A
simple example of a programming rule is the function call pair of
lock and unlock: a call to lock should be followed by a call
to unlock later. Besides such a well-known programming rule,
there are many other implicit rules in large software. For exam-
ple, as shown in Figure 1, PostgreSQL, a well-known open-source
database server, contains an implicit programming rule that a call to
SearchSysCache must be followed by ReleaseSysCache.
The reason is that the function SearchSysCache returns a cache
copy of a specified tuple; so after the caller finishes using the tuple,
it must call ReleaseSysCache to release it so that this copy can
be replaced by other data in the cache. This rule appears 209 times
in PostgreSQL code. If some code violates this rule, it causes a
memory leak in PostgreSQL’s buffer cache.

Many programming rules are much more complex. Some rule
may contain more than two program elements, with each element
being of a different type including function, variable or data type.
For example, the programming rule shown in Figure 2, also ex-
tracted from PostgreSQL, contains four function calls and one vari-
able. This rule specifies the correct procedure to replace a tuple.
Specifically, it requires that, before replacing a tuple using sim-
ple heap update, the relation must be first opened by calling
heap openr, and then call CatalogUpdateIndexes to keep
the index consistent. Furthermore, after simple heap update,
the relation needs to be closed by calling heap close. This rule
appears 68 times in PostgreSQL.

Some complex rules may indicate variable correlations, i.e. these
variables should be accessed together or modified in a consistent
manner. For example, Figure 3 shows that, in the Linux code, the
two variables ic.command and ic.driver should be accessed
together. This rule appears 98 times in Linux.

postgresql-8.0.1/src/backend/catalog/dependency.c:

1733 getRelationDescription (StringInfo buffer, Oid relid)

1734 {

1735 HeapTuple relTup;

1740 relTup =
 SearchSysCache
 (...);

1796
ReleaseSysCache
 (relTup);

1797 }

Figure 1: A function-pair rule in PostgreSQL (extracted by PR-
Miner). This rule appears 209 times in PostgreSQL code.

postgresql-8.0.1/src/backend/commands/tablecmds.c:

5686 AlterTableCreateToastTable(Oid relOid, bool silent)

5687 {

5692 Relation class_rel;

5853 class_rel =
heap_openr
 (...);

5863
simple_heap_update
 (class_rel, ...);

5866
CatalogUpdateIndexes
 (class_rel, ...);

5870
heap_close
 (class_rel, ...);

5891 }

Figure 2: A complex programming rule containing four func-
tions and one variable in PostgreSQL (extracted by PR-Miner).
This rule appears 68 times in PostgreSQL code.

linux-2.6.11/drivers/isdn/hisax/config.c:

771 void ll_stop(struct IsdnCardState *cs)

772 {

773 isdn_ctrl ic;

775
ic.command
 = ISDN_STAT_STOP;

776
ic.driver
 = cs->myid;

777 cs->iif.statcallb(&ic);

779 }

Figure 3: A programming rule of variable correlation in Linux.
It appears 98 times in Linux code.

Implicit programming rules such as those shown above are in-
trinsic features of programs and violations to these rules can result
in software defects. Figure 4 shows such an implicit programming
rule and a violation detected by PR-Miner from the latest version of
Linux. The rule shown in Figure 4(a) is for probing and initializing
a SCSI device: the system should call scsi host alloc to allo-
cate a data structure for the device driver, then call scsi add host
to register the device with the SCSI stack, and finally scan the host
by scsi scan host. This is the correct procedure for probing
SCSI devices in Linux. This rule appears 27 times in Linux. How-
ever, there are two program locations missing scsi scan host
in the latest version of Linux as shown in Figure 4(b), which are
undetected defects in Linux (we reported these two bugs as well as
others to the Linux developers and they are being fixed now).

Such implicit programming rules are useful information for soft-
ware development. Unfortunately, they usually exist only in pro-
grammers’ minds as they are too tedious to be documented manu-
ally. In addition, rule maintenance is a hard task since some rules
can change in new versions. Moreover, when the software scales
up, the number of rules also increases significantly. As a result,
most of them are undocumented, especially in open-source projects.
Consequently, violations to these rules are easy for programmers
to introduce, especially for new programmers who are unaware of
these rules. Therefore, it is highly desirable if programming rules
can be automatically extracted from existing source code. The ex-
tracted rules can thereafter be used as a specification to be refer-
enced by programmers. In addition, it is also useful to automati-
cally detect violations to these rules to make software more robust.

Previous work [8] by Engler, Chen and Chou has conducted a
preliminary investigation in this direction. They proposed a method
to extract programming rules using programmer-specified rule tem-
plates such as “function a must be paired with function b”. The two
arguments, a and b, will be fit by passing all plausible a-b pairs that
are selected based on statistical analysis and weighted by naming
conventions such as the substrings “lock” and “unlock”.

linux-2.6.11/drivers/scsi/3w-9xxx.c:

1964 int __devinit twa_probe(struct pci_dev *pdev, ...)

1965 {

1966 struct Scsi_Host *host = NULL;

1985 host =
 scsi_host_alloc
 (...);

2036
scsi_add_host
(host, &pdev->dev);

2069
scsi_scan_host
(host);

2088 }

(a) Programming rule in twa probe

linux-2.6.11/drivers/ieee1394/sbp2.c:

688 struct scsi_id_instance_data *sbp2_alloc_device

(struct unit_directory *ud)

689 {

692 struct scsi_id_instance_data *scsi_id = NULL;

745 scsi_host =
 scsi_host_alloc
(...);

753 if (!
scsi_add_host
(scsi_host, &ud->device)) {

//
scsi_scan_host
(scsi_host) is missing!

764 }

(b) Violation in sbp2 alloc device

Figure 4: An example of a programming rule involving multi-
ple functions in Linux 2.6.11. The rule {scsi host alloc,
scsi add host}⇒{scsi scan host} appears 27 times in
different functions, one of which is shown in (a). PR-Miner de-
tects two violations that miss the function scsi scan host,
which are potential bugs. One of the violations is shown in (b).

While the work above is inspiring and proposes a promising di-
rection, it extracts only pair-wise programming rules. Our exper-
imental results indicate that programming rules with 2 elements
only account for a small portion (14%) of all rules extracted by PR-
Miner. In addition, their work requires programmers to give some
particular rule templates such as “function a must be paired with
function b”, which not only restricts the types of rules extracted but
also needs some specific knowledge about the target software. Fur-
thermore, programmers also need to give different weights to the
functions and variables when fitting elements into templates.

To significantly advance the state-of-the-art, it would be benefi-
cial if implicit programming rules, including complex ones, could
be automatically extracted in a general form without requiring prior
knowledge or rule templates from programmers. To do this, a naive
method is to check every possible combination of program ele-
ments to see if they are frequently used together in the target soft-
ware’s code. Obviously, for large software such as Linux that con-
tains hundreds of thousands of functions and variables, such a naive
method would result in exponential complexity. Therefore, an effi-
cient method needs to be developed to achieve the goal.

1.2 Our Contributions
In this paper, we propose a novel method called PR-Miner (Pro-

gramming Rule Miner), that uses a data mining technique to au-
tomatically extract general programming rules from software code
written in an industrial programming language such as C 1 and de-

1Similar to other automatic specification generation tools, we as-
sume that the software has been reasonably well tested and runs
correctly most of the time.

tect violations with little effort from programmers. More specifi-
cally, our paper makes the following two major contributions:

(1) We propose a general method to automatically extract implicit
programming rules from large software code. Benefiting from data
mining techniques, PR-Miner can extract thousands of program-
ming rules from software such as Linux with 3500 files and a total
of 3 million lines of code within 1 minute. Compared with the
previous work [8] that extracts only function-pair based rules, PR-
Miner extracts substantially more rules. This is because PR-Miner
has substantially generalized Engler et al’s work in the following
two aspects:
— General method: Our technique for extracting programming
rules is more general. PR-Miner can automatically extract program-
ming rules from software code without any prior knowledge about
the software or requiring any annotation, templates or weight as-
signments from programmers. Additionally, by replacing the front-
end parser, PR-Miner can be easily modified to work with programs
written in other programming languages such as Java.
— General rules: The programming rules extracted by PR-Miner
are more general. Since it does not limit the programming rules
using any fixed templates, PR-Miner can extract rules in general
forms and with multiple program elements of different types in-
cluding functions, variables, data types, etc. As a result, it not only
extracts simple pair-wise rules, but also extracts more complex rules
like the examples shown above.

(2) We also propose an efficient algorithm to detect violations
to the extracted programming rules. PR-Miner has detected many
violations to the extracted rules in the latest versions of Linux and
PostgreSQL within 1 minute. Among the top 60 violations reported
by PR-Miner, many of them have been confirmed as bugs, includ-
ing 16 bugs in Linux, 6 bugs in PostgreSQL and 1 bug in Apache.
These bugs are currently being fixed by corresponding developers
after we reported. Most of these bugs are semantic bugs that violate
complex programming rules that contain more than 2 elements and
are thereby difficult for previous tools to detect.

The rest of this paper is organized as follows. Section 2 briefly
describes the background of the data mining technique used in PR-
Miner. Section 3 presents how PR-Miner automatically extracts im-
plicit programming rules and detects violations. Section 4 presents
the evaluation results, followed by discussion of PR-Miner’s limi-
tations in Section 5. Section 6 presents related work and Section 7
concludes the paper.

2. BACKGROUND OF DATA MINING
PR-Miner is based on a data mining technique called frequent

itemset mining [1, 14], which has broad applications, including
mining motifs in DNA sequences, analysis of customer shopping
behavior, etc. The goal of frequent itemset mining is to efficiently
find frequent itemsets in a large database, where an itemset is a set
of items. In a database composed of a large number of itemsets,
if a sub-itemset (subset of an itemset) is contained in more than a
specified threshold (called min support) of itemsets, it is considered
frequent. The number of occurrences of a sub-itemset A is denoted
as its support. The itemset that contains A is called its supporting
itemset. For example, in an itemset database D:
D = {{a, b, c, d, e}, {a, b, d, e, f}, {a, b, d, g}, {a, c, h, i}}

The support of sub-itemset {a, b, d} is 3, and its supporting itemsets
are {a, b, c, d, e}, {a, b, d, e, f} and {a, b, d, g}, If min support is
specified as 3, the frequent sub-itemsets for D are {a}:4, {b}:3,
{d}:3, {a, b}:3, {a, d}:3, {b, d}:3 and {a, b, d}:3, where the num-
bers are the supports of the corresponding sub-itemsets.

To solve the frequent itemset mining problem, quite a few algo-
rithms have been proposed. PR-Miner uses a FP-tree-based mining
algorithm called FPclose [14], which is one of the most efficient
frequent itemset mining algorithms. Instead of generating the com-
plete set of frequent sub-itemsets, FPclose mines only the closed
sub-itemsets. A closed sub-itemset is the sub-itemset whose sup-
port is different from that of its super-itemsets. In the example
above, the frequent sub-itemsets {b}, {d}, {a, b}, {a, d} and {b, d}
are not closed since their supports are the same as their super-
itemset {a, b, d}. FPclose only generates the closed sub-itemsets
{a}:4 and {a, b, d}:3 as result. This can significantly improve time
and space performance since it can avoid generating exponential
number of frequent sub-itemsets.

After all closed frequent sub-itemsets are mined from an itemset
database, association rules can be generated. An association rule
can be denoted as X ⇒ Y with confidence c and support s, where
X and Y are itemsets. The meaning of the rule is that if an itemset
contains X , it also contains Y with probability of c [1, 15]. Associ-
ation rules allow violation detection. If the confidence is very high,
say 99%, the itemset that contains only X but not Y violates the
rule, indicating a potential outlier. Due to space limitation, we do
not describe the details of the FPclose algorithm since they can be
found in [14].

3. PR-Miner
PR-Miner has two major functionalities: automatically extract-

ing implicit programming rules, and automatically detecting vio-
lations to the extracted programming rules. The flowchart of PR-
Miner is shown in Figure 5. This section first gives an overview
of PR-Miner, and then presents how PR-Miner automatically ex-
tracts programming rules from source code, and how it detects rule
violations and prunes false positives.

3.1 Overview
The high-level idea of PR-Miner in automatic rule extraction is

to find associations among elements (e.g., function, variable, data
type) by looking for elements that are frequently used together in
source code. For example, calls to spin lock irqsave and
spin unlock irqrestore in Linux appear together within the
same function for more than 3600 times, which indicates that spin
unlock irqrestore following spin lock irqsave is very
likely to be an implicit programming rule. By identifying which
elements are used together frequently in the source code, such cor-
related elements can be considered a programming rule with rela-
tively high confidence. Of course, as described in the introduction,
a naive implementation of this high-level idea is infeasible since it
needs to examine all possible element combinations.

In order to efficiently find program element correlations, PR-
Miner converts the problem into a frequent itemset mining problem
by first parsing the software source code as shown in Figure 5. Each
program element is hashed into a number, then a function definition
is mapped into an itemset (a set of numbers), which is written as a
row into the itemset database. As a result, the whole program is
converted into a database that contains many itemsets. By min-
ing this database using a frequent itemset mining algorithm such
as FPclose, we can find the frequent sub-itemsets that appear for
many times. These frequent sub-itemsets can then be used to infer
programming rules.

For a frequent sub-itemset discovered by the mining algorithm,
we call the set of the corresponding program elements a program-
ming pattern, which indicates that the program elements are corre-
lated and frequently used together. For example, FPclose can find
that {spin lock irqsave, spin unlock irqrestore} is

a programming pattern since it appears in the Linux source code
more than 3600 times.

Note that programming patterns are different from programming
rules. For example, the above pattern may lead to one or two of the
following programming rules:

{spin lock irqsave}⇒{spin unlock irqrestore}
{spin unlock irqrestore}⇒{spin lock irqsave}

The first rule says that whenever the program calls spin lock
irqsave, it should also call spin unlock irqrestore, while
the second says that whenever the program calls spin unlock
irqrestore, it should also call spin lock irqsave. These
two are different rules, and not all of them definitely hold, even if
the pattern has appeared for many times.

Therefore, after programming patterns are extracted using the
frequent itemset mining technique, PR-Miner needs to generate pro-
gramming rules from the extracted patterns. The main idea of the
rule generation process is to find the number of cases that con-
tain the items on the left but not those on the right. For exam-
ple, in the above example, we need to find out how many cases that
spin lock irqsave appears but spin unlock irqrestore
does not and vice versa. After generating the programming rules,
PR-Miner stores them in specification files so that programmers can
examine them and also use them later as references. Section 3.3 de-
scribes the rule generation process in detail.

After programming rules are generated, PR-Miner automatically
detects violations in source code. It also automatically prunes false
positives and ranks violations in the report so that programmers
only need to examine top ranked violations. The violation detection
process is based on the idea that a programming rule is usually fol-
lowed in most cases and violations occur only in a small percentage
of cases. Section 3.4 describes the detection process in more detail.

Using closed frequent itemset mining algorithms such as FPclose
provides PR-Miner several benefits: (1) Generality. Close frequent
itemset mining algorithms do not limit the number of items in fre-
quent sub-itemsets and also does not require any rule templates.
Furthermore, the items in a frequent sub-itemset are not necessarily
adjacent in the supporting itemset, i.e. they can be far apart from
each other. (2) Time efficiency. Data mining algorithms such as
FPclose are usually very efficient since they strive to avoid scan-
ning data too many times by eliminating redundant computation
as much as possible. Additionally, since FPclose generates only
closed frequent itemsets, it can avoid generating an exponential
number of sub-itemsets. (3) Space efficiency. From closed frequent
sub-itemsets, we can find closed rules, rules that subsume many
other rules with the same support. Take the itemset database D =
{{a, b, c, d, e}, {a, b, d, e, f}, {a, b, d, g}, {a, c, h, i}} described in
Section 2 as an example. FPclose finds a closed frequent sub-
itemset: {a, b, d}:3. From the closed frequent sub-itemset we can
have the following 6 closed rules with support 3:
{a} ⇒ {b, d} with confidence 3/4=75%
{b} ⇒ {a, d} with confidence 100%
{d} ⇒ {a, b} with confidence 100%
{a, b} ⇒ {d} with confidence 100%
{a, d} ⇒ {b} with confidence 100%
{b, d} ⇒ {a} with confidence 100%
Other rules are subsumed by the above closed rules. For example,

the sub-rule {a} ⇒ {b} with confidence 75% is subsumed by the
first closed rule. Using closed rules not only saves space, but also
significantly reduces the number of rules that need to be examined
or referenced by programmers. In addition, it also speeds up the
violation detection process (See Section 3.4).

Parsing & hashing

Mining

Pruning false violations

Detecting violations

Ranking

Itemsets

Potential bugs
Programming patterns

Source files

Generating programming rules

Storing rules into specification files

Examined & referenced by programmers

Figure 5: Flowchart of PR-Miner

3.2 Extracting Programming Patterns

3.2.1 Parsing Source Code
The main purpose of parsing source code is to build an item-

set database in order to convert the programming pattern extraction
problem into a frequent itemset mining problem. PR-Miner does
this by using a modified GCC compiler [25] as the parser to convert
each function definition into a set of numbers. The current proto-
type of PR-Miner only works for C, but it can be easily extended to
other programming languages by replacing the GCC front ends.

In order to convert the source code into an itemset database, we
need to address the following issues: (1) How to parse the source
code? (2) What elements in the source code should be converted?
(3) How to represent elements using numbers?

To parse the source code, PR-Miner first uses the GCC front end
to obtain the intermediate representation. The intermediate repre-
sentation is stored in a tree data structure, with each node repre-
senting various types of elements in source code including identifier
name, data type name, keyword, operator, control structure, and so
on. In order to convert a function to an itemset, PR-Miner traverses
the representation tree of this function, and hashes each selected el-
ements to a number. By combining the hash values of all selected
elements in a function, this function is mapped to an itemset. Then
the itemsets of all functions construct the itemset database to input
to the mining algorithm FPclose. The reason to convert a function
instead of a basic block to an itemset is that most programming rules
usually occur within the scope of a function. Of course, some rules
can span across multiple functions. But mining these rules is much
harder as it requires deeper inter-procedural analysis, so extracting
such rules remains as our immediate future work.

Not every program element in the intermediate representation is
converted into a number because some elements can cause noise.
For example, keywords and simple data types such as int appear
in almost every function. They are less likely lead to interesting pro-
gramming rules. In addition, including them in the itemset would
significantly increase the computation of frequent itemset mining.
Therefore, PR-Miner does not hash such elements into numbers.

Furthermore, the same programming rule involving local vari-
ables may use different variable names at different code segments.
For instance, in the example shown in Figure 4, the return value of
calls to the same function scsi host alloc can be assigned to
different local variables such as host and scsi host. If we hash
them into different numbers, the rule might be missed. In order to
catch such kinds of rules, we need to use the common character-
istics of these local variables such as their data types to represent
them so that they are still hashed to the same number in the itemset

database. For example, the local variable class ref in the code
segment in Figure 2 is represented by the hash value of its data type
Relation instead of its name class ref.

Another problem when hashing identifiers to numbers is name
collisions. Different types of identifiers with the same name would
be hashed to the same number, causing false positives in the gen-
erated frequent sub-itemsets. In order to eliminate such name col-
lisions, PR-Miner hashes different types of identifiers into different
values. To do that, PR-Miner first prefixes every identifier name
based on its type, and then hashes the prefixed name to a number.
For example, a function call to lock would be prefixed with “F-”
and then be hashed to a number corresponding to “F-lock”, while a
global variable with the same name lock would be prefixed with
“G-” and be hashed to a number corresponding to “G-lock”.

Similarly, different record structures may use the same name for
their fields, which is quite common in large software. For exam-
ple, the names, “next” and “prev” are commonly used as field
names in many different structures. Such name collisions would
result in false positives of frequent sub-itemsets. In order to differ-
entiate fields of the same name but in different record structures,
PR-Miner attaches the associated record type to every field name.
For example, the fields next in the record types tree and list
are considered as “D-tree.R-next” and “D-list.R-next”, respectively,
and so they can be hashed into different numbers to avoid collision.

The hash function PR-Miner uses is “hashpjw” [2], chosen for
its low collision rate. Our experiments show that its collision rate
is low enough for frequent sub-itemset mining. Additionally, if
conflict-free mapping is needed, we can first parse the whole source
code so that we can create a symbol table for all possible identifiers,
and then convert elements into numbers based on their indexes to
the symbol table. Since it takes one more pass of the source code
and our hashing method already has a low collision rate, we do not
use this method.

Table 1 shows how PR-Miner converts a function into an itemset.
After parsing the source code, prefixing and hashing selected ele-
ments into numbers, PR-Miner converts the definition of function
twa probe into the itemset {92, 39, 41, 68, 56, 36, ...}.

linux-2.6.11/drivers/scsi/3w-9xxx.c: L1964 - 2088

int __devinit twa_probe(struct pci_dev *pdev,...)

{

 struct Scsi_Host *
host
 = NULL;

host
 =
scsi_host_alloc
 (&
driver_template
, ...);

retval
 =
 scsi_add_host
(
host
, &
pdev->dev
);

scsi_scan_host
(
host
);

}

T-Scsi_Host

......

T-Scsi_Host

F-scsi_host_alloc

T-scsi_host_template

......

F-scsi_add_host

T-Scsi_Host

T-pci_dev.R-dev

......

F-scsi_scan_host

T-Scsi_Host

......

92

......

92

39

41

......

68

92

56

......

36

92

......

Source code

Preprocessed

identifiers

Hash

values

Table 1: Example of parsing a function. The italic identifiers in source
code are selected to analyze. They are prefixed with the types as shown
in the second column. Each preprocessed identifiers is then hashed to a
number. Only the last two digits of hash values are shown for simplicity.

3.2.2 Mining for Programming Patterns
After PR-Miner parses the source code and generates an itemset

database, it applies the closed frequent itemset mining algorithm,
FPclose, on the database to find closed frequent sub-itemsets. As
we describe in Section 2, if a set of numbers appear together in any
itemsets for more than a specified threshold number (min support)
of times, this sub-itemset is considered frequent. Let us consider the

example shown in Table 1. For simplicity, let us denote these three
functions as add, alloc and scan. The sub-itemset {39, 68, 36,
92} appears in totally 27 itemsets in the itemset database converted
from Linux code. Suppose that min support is set as 15. FPclose
will find a frequent sub-itemset {39, 68, 36, 92} with a support
of 27, which means that the corresponding functions alloc, add
and scan, and the data type Scsi Host are used together for 27
times. Therefore, these four elements are correlated with each other
and are thereby outputted as a programming pattern, which is then
used to generate programming rules in the next step.

Since FPclose generates only closed frequent itemsets whose
support is larger than the support of its super-itemset, it does not
generate redundant sub-patterns with the same support. In the above
example, {39, 68, 36} is also a frequent sub-itemset. However,
since it is not closed, i.e., it is included in its super-itemset {39, 68,
36, 92} with the same support 27, we do not need to output it.

It is not enough to know only the closed programming patterns
and their support values (i.e., how many times the pattern occurs).
It would be more helpful for programmers if we also record the
functions in which each extracted pattern occurs. Such information
is also needed later in violation detection in order to know which
function violates an extracted rule. Unfortunately, the original al-
gorithm FPclose and any other frequent itemset mining algorithms
were not designed exactly for our purpose. They only output the
support values for each discovered pattern but not their supporting
itemsets. Therefore, we enhance FPclose to address this problem
by also maintaining the supporting itemsets during the mining pro-
cess. In the above example, PR-Miner outputs the closed frequent
sub-itemset {39, 68, 36, 92} with the supporting itemset that corre-
sponds to the 27 functions that contain this programming pattern.

3.3 Generating Programming Rules
As we explained briefly in Section 3.1, extracting only program-

ming patterns is not enough because a pattern may lead to many
different rules. Therefore, we also need to generate rules from pat-
terns based on conditional probabilities.

3.3.1 A Naive Method
A naive method to generate programming rules from extracted

patterns is to divide the items in each closed frequent sub-itemset
into two parts and then calculate the confidence. In other words,
from a closed frequent sub-itemset I , we can compute the confi-
dence for every possible association rules X ⇒ Y , where X and
Y are subsets of I [1, 15]. The support of such a rule is equal to the
support of I , while the confidence of a rule is the conditional prob-
ability, i.e. support(I)/support(X), where support(X) is the
number of occurrences of sub-itemset X in the itemset database,
which also equals to the maximum support of any closed frequent
itemset that contains X . Basically, the confidence indicates the con-
ditional probability that if X occurs, the likelihood for Y to occur.
Rules with confidence smaller than a specified threshold (e.g. 90%)
are pruned. And the remaining rules are outputted to the specifica-
tion files to be examined and referenced by programmers.

Let us consider the above example again. After PR-Miner finds a
programming pattern {alloc, add, scan, Scsi Host}. From
this pattern, the naive method can generate 14 different possible
rules by partitioning these three functions and the data type into
2 subsets in all possible ways such as {add}⇒{alloc, scan,
Scsi Host}, and {add, alloc}⇒{scan, Scsi Host}, and
so forth. All these rules have the support of 27. From the pro-
gramming patterns discovered by FPclose, we know that the sup-
port for {add} is 37, and the support for {add, alloc} is 29.
Therefore, the confidences for these 2 rules are 27/37 = 72.9%

and 27/29 = 93.1%, respectively. The confidences for the other
12 rules can also be computed similarly. So if we set the confi-
dence threshold to be 90%, the first rule {add}⇒{alloc, scan,
Scsi Host} is pruned, while the second rule is outputted.

The biggest problem with the naive method is that it needs to
examine all possible rules from each mined patterns. A program-
ming pattern with k elements can generate up to (2k − 2) rules,
which is impractical for long patterns. For example, our evaluation
with large software code shows that some programming patterns are
composed of more than 20 elements. Therefore, it is time and space
inefficient to use this naive method to generate rules from patterns.

3.3.2 Generating Closed Rules
Instead of examining all possible programming rules from a mined

pattern like in the naive method, PR-Miner examines only closed
rules. As we explained in Section 3.1, it is enough to generate only
closed rules since other rules are subsumed by closed rules.

To further reduce the number of outputted rules and speed up the
generation as well as the violation detection processes, PR-Miner
stores closed rules in condensed format. Formally, the condensed
format for a closed frequent sub-itemset I is:

I : s|{C1 : s1|s1 > s} . . . {Cm : sm|sm > s}

where C1 . . . Cm are all subsets of I whose supports (s1 . . . sm) are
different from I’s. Obviously, s1 . . . sm are all larger than s. Such
condensed format can represent all the closed rules derived from
I and their confidences can be computed easily. For a closed rule
X ⇒ Y derived from I , if X equals to Ci (i.e. a subset of I with a
support larger than I), the confidence of the rule is s/si; otherwise,
the confidence of the rule is 100%.

For example, suppose FPclose extracts two closed frequent sub-
itemsets: {a} : 4 and {a, b, d} : 3. The condensed format that
represents all the closed rules derived from {a, b, d} is

{a, b, d} : 3|{a : 4}

It explicitly expresses that the rule {a} ⇒ {b, d} has confidence
3/4=75%, and also infers that any of the other 5 closed rules, such
as {a, b} ⇒ {d} has confidence 100%.

Now the rule generation problem becomes how to find out all of
the subset Ci that has a support si larger than s. Since the sup-
port of Ci is larger than s, it indicates that Ci should be contained
in another closed frequent sub-itemset (based on the definition of
closed frequent sub-itemset). Since Ci may include in multiple
other closed frequent sub-itemset, PR-Miner needs to find the one
with the maximum support.

To achieve this goal, PR-Miner uses a clever idea that converts
this problem back to a frequent sub-itemset mining again. In other
words, PR-Miner uses FPclose one more time to find common sub-
itemsets from frequent sub-itemsets generated by the first pass of
FPclose. Doing such will find all common subsets among the closed
frequent sub-itemsets generated in the first pass. Let CommonSub

denote all the common subsets generated by the second pass of FP-
close. If a subset Ci of I is included in CommonSub , we can
immediately find out which super-itemset of Ci has the maximum
support. The support of this super-itemset must be equal to the sup-
port of Ci based on the definition of closed frequent sub-itemsets.
We can easily prove this by contradiction (The proof is omitted due
to space limitation). Note that the basic operation we need is to
compute the common subsets for each pair of the closed frequent
sub-itemsets. Therefore, we can apply the frequent itemset mining
algorithm again on the closed frequent sub-itemsets with minimum
support of 2. Our algorithm CLOSEDRULES for generating closed
rules in condensed format is shown in Figure 6.

Algorithm: CLOSEDRULES(I)
Input: I = {Ik|1 ≤ k ≤ n},

Ik has 3 fields 〈Fk, sk, Ek〉;
Output: The closed rulesR in condensed format.
1: Sort I by supports in descending order such that

s1 ≥ s2 ≥ ... ≥ sn

2: Mine common closed frequent sub-itemsets from I:
C ← FPCLOSE({Fi|i = 1, 2, ..., n}, 2),
where C = {Ci|1 ≤ i ≤ m} and
Ci has 3 fields 〈F ′

i , s
′

i, E
′

i〉
3: for i = 1, 2, ..., m
4: Denote E′

i = {ij |1 ≤ j ≤ s′

i}
5: for j = 2, 3, ..., s′

i

6: if si1 > sij

7: Insert F ′

i : si1 to sub-itemset Iij
inR

Figure 6: Generating closed rules R in condensed format from
closed frequent itemsets I mined from the first step explained in Sec-
tion 3.2. The close frequent mining algorithm FPCLOSE takes an item-
set database and the minimum support threshold as input, and out-
puts the closed frequent sub-itemsets, each of which has three fields
〈Fi, si, Ei〉, where Fi is the frequent itemset itself, si is its support,
Ei is the indexes of its supporting itemsets, and Ei is sorted in an as-
cending order. Similarly, 〈F ′

i , s′

i, E
′

i〉 have the same meanings but are
generated by the second pass of FPCLOSE (line 2) to a database that
consists of all closed frequent sub-itemsets, i.e. {Fi|i = 1, 2, ..., n}.

In the CLOSEDRULES algorithm, it first sorts the frequent item-
sets I mined from FPclose (line 1) so that it can quickly locate the
frequent itemset with the maximal support for any common sub-
itemset. In line 2, it calls FPclose with minimum support of 2 to
find out all common sub-itemsets C from I. For each common sub-
itemset Ci (line 3), CLOSEDRULES inserts it with its support to the
corresponding rule of condensed format as follows. E′

i includes the
indexes of all Ci’s supporting itemsets in I. The first supporting
itemset Ii1 has the maximum support for Ci, because all indexes in
E′

i are sorted based on their corresponding itemset’s support. For
the other supporting itemset Iij

(line 5), if its support sij
is smaller

than si1 (line 6), Ci is inserted into the subset of the rule for the
closed frequent itemset Iij

. This way, with only one pass it can in-
sert Ci into all rules that are super-itemsets of Ci but have smaller
support than Ci.

CLOSEDRULES performs much better than the naive algorithm
in terms of space and time, because it does not need to examine all
possible rules generated from extracted programming patterns.

By calling CLOSEDRULES on the closed frequent sub-itemsets
that correspond to the extracted programming patterns, PR-Miner
obtains the closed rules in the condensed format expressed in num-
bers, and then it maps the closed rules back to programming rules
and stores them into a specification file. The programmers can then
validate the programming rules so that later they can use them as
specifications, and also new programmers can read them when they
start coding to avoid mistakes.

Since PR-Miner extracts programming rules based on occurrences,
some false positives may be introduced if some elements only coin-
cidentally appear together for many times in the source code. How-
ever, a rule with larger supports can be more believable. Therefore,
PR-Miner ranks the rules based on supports: programmers can ex-
amine those rules that are ranked in the top 100 or 500. Further-
more, as we explained early, rules with confidence lower than the
specified threshold (e.g. 90%) are pruned. Additionally, some other
ranking method such as giving weights for different elements as in
Engler et al’s work [8] can also be applied.

3.4 Detecting Violations to Extracted Rules
Based on the programming rules generated from the previous

step, PR-Miner can find potential bugs by detecting violations to
these rules. The main idea is that the programming rules usually
hold for most cases and violations happen only occasionally. Take
the potential bug detected by PR-Miner in Figure 4 as an example.
The function call to scan should follow alloc and add as the
programming rule indicates. This rule appears 27 times in Linux,
but there are 2 cases violating this rule because scan is missing.

As shown in Figure 5, PR-Miner first detects violations to the
extracted programming rules, then prunes the false violations us-
ing inter-procedural analysis, and finally ranks the violations in the
error report.

3.4.1 Detecting Violations
In order to detect violations to the programming rules, a naive

method is to generate all possible programming rules and then check
them upon the source code one by one. As we discussed in Sec-
tion 3.3, there would be an exponential number of rules that need to
be checked.

Fortunately, it is unnecessary to check all programming rules.
First, if the rule has a low confidence, it is already pruned in the
rule-generation step. In other words, if the confidence threshold is
t, any rules with confidence smaller than t are discarded. Second,
if the rule has 100% confidence, it indicates that there is no viola-
tion for the rule. Therefore, we only need to check the rules with
confidence in the range [t, 100%).

The main idea of the violation detection process is straightfor-
ward. For example, if a rule {a, b} ⇒ {d} has a support of 100 and
{a, b} has a support of 101, there is only one out of 101 cases that
has {a, b} but not {d}, which indicates that this case violates the
rule {a, b} ⇒ {d}. In other words, this case is likely to be a bug.
But if {a, b} has a support of 200, the rule {a, b} ⇒ {d} will be
pruned as its confidence is only 50%.

Since PR-Miner stores generated programming rules in the con-
densed format that explicitly indicates which rules have confidence
less than 100% but greater than the specified threshold t, we can
easily figure out which rules have violations. Even more efficiently,
PR-Miner detects violations during the same process when it gen-
erates the programming rules by calling CLOSEDRULES as shown
in Figure 6. To do that, PR-Miner computes the confidence for the
rule F ′

i ⇒ (Fij
− F ′

i) in the loop of line 5 as c = sij
/si1 . If

t ≤ c < 1, it indicates that there are violations to this rule. The
violations can be easily figured out by comparing the supporting
itemsets for the closed frequent sub-itemsets Ii1 and Iij

as follows.
Fi1 contains the common sub-itemset F ′

i , but it does not contain
(Fij

− F ′

i). It means that some supporting itemsets in Ei1 violate
the rule F ′

i ⇒ (Fij
−F ′

i). On the other hand, this rule is supported
by the supporting itemsets Eij

for Fij
. Therefore, the itemsets in

Ei1 but not in Eij
violate this rule, and so the corresponding func-

tions of the itemsets violate the programming rule.

3.4.2 Pruning False Violations
The violation detection above can result in false positives if the

elements in a programming rule span across multiple functions.
The reason is that PR-Miner detects violations using only intra-
procedural analysis because, as described in Section 3.2, each item-
set in the database corresponds to a function definition. Suppose
in an example with a function-pair (lock and unlock) rule, un-
lock is called inside a function F but lock is not. Instead, F
calls another function try lock that calls lock. Without inter-
procedural analysis, PR-Miner would report that F contains a vio-
lation of missing lock, even though F contains lock in its callee.

...

...

...
 ...
...

F

F
1
 F
n

F
11
 F
nm

(a) Checking in callees

...

...

...
 ...

F
-1

F
-11
 F
-1
n

F

...

...

...
 ...

F
-
p

F
-
p
1
 F
-
p
m

...

(b) Checking in all callers

Figure 7: Checking the call paths for pruning false violations

In order to prune the above false violations, PR-Miner performs
an inter-procedural checking. It first checks the callees’ paths for
each function that contains violations. For each violation of rule
X ⇒ Y in function F , PR-Miner checks whether every item y ∈ Y
is in the functions F1, ..., Fn called by F . As shown in Figure 7(a),
we can follow the calling path more deeply by checking the func-
tions called by callees F1, ..., Fn in F . If the missing items are
in any of the calling paths, it is a false violation. For time effi-
ciency, PR-Miner limits the checking depth. Since PR-Miner out-
puts all function calls in each function definition as described in
Section 3.2.1, it is easy to follow the calling path during checking.

Besides callees, PR-Miner also checks the callers to prune false
positives. In the example above, there is also a violation in the
function try lock because lock is in try lock but unlock
is not in it. In order to prune such false violations, PR-Miner also
checks whether the missing items are in the caller functions’ paths
as shown in Figure 7(b). In order to check the call path backwards,
PR-Miner maintains a caller list for each function F that consists
of the indexes of the functions that call F. If the missing items for
function F are in the paths of all of its callers, it is a false violation.

3.4.3 Ranking and Reporting Bugs
After PR-Miner detects rule violations and prunes false positives,

it ranks all remaining violations and reports them to programmers.
PR-Miner ranks the violations based on the confidence of the

violated rules. Since a function may contain several violations, PR-
Miner groups all violations of the same function together, and the
violation with the highest confidence is assigned as the confidence
of the violated function. The confidence of a violated function can
be considered the possibility that the function has bugs. In the cur-
rent version of PR-Miner, it simply ranks the bugs by the confi-
dence. Because several functions may have the same violation, the
potential bugs in these functions are strongly correlated. Therefore,
some other advanced ranking schemes such as correlation rank-
ing [17] can be used here to further improve the accuracy of our
ranking function, which remains as our future work.

4. EVALUATION
4.1 Experiment Setup

We have evaluated PR-Miner with the latest versions of Linux,
PostgreSQL, and the Apache HTTP Server. The numbers of files,
lines of code (LOC) and functions are shown in Table 2.

PR-Miner takes three parameters: min support, the confidence
threshold, and maximal checking path depth. By default, we set
the min support as 15, the confidence threshold as 90%, and the
maximal depth of call path as 3 for pruning false violations.

The parser for PR-Miner is GCC 3.3.4 [25] with a small modifi-
cations. In our experiments, we run PR-Miner on an Intel Xeon 1.5
GHz machine with 4GB memory and Linux 2.4.20 system.

Software version #C files LOC #functions
Linux 2.6.11 3,538 3,037,403 73,607
PostgreSQL 8.0.1 409 381,192 6,964
Apache 2.0.53 160 84,724 1,912

Table 2: Software evaluated in our experiments.

4.2 Extracting Implicit Programming Rules
Table 3 shows the number of closed rules discovered by PR-

Miner in the evaluated software. Rules that have confidence lower
than the threshold (90%) are pruned automatically by PR-Miner
and are thereby not included in the results reported in this section.
From the closed rules, programmers can easily infer other rules
subsumed by these closed rules. These closed rules can be clas-
sified into three categories: function-function (F-F) rules, variable-
variable (V-V) rules, and function-variable (F-V) rules. F-F rules
involve only functions, V-V rules involve only variables (including
fields in structure) or their data types, while F-V rules involve both
functions and variables.

Software Total F-F V-V F-V
Linux 32,283 1,075 8,883 22,325
PostgreSQL 6,128 379 687 5,062
Apache 283 33 92 158

Table 3: The number of closed rules extracted by PR-Miner.
Notice that all F-V rules that contain more than 2 elements also
include F-F and/or V-V rules as their sub-rules.

Our results show that a large number of implicit, undocumented
programming rules can be effectively extracted from source code by
PR-Miner without any priori knowledge or annotations/specifications
from programmers. For example, PR-Miner extracts a total of 32,283
implicit, undocumented closed programming rules from Linux. It
would be very difficult for programmers to manually specify these
many programming rules. PR-Miner effectively relieves such bur-
den from programmers by efficiently and automatically extracts
such rules from source code.

The results also show that around 88.3–96.7% rules involve vari-
ables. For example, there are around 9000 V-V rules in Linux, along
with a large number of variable correlations contained in F-V rules.
Comparing with the previous studies such as Engler et al’s work [8]
that do not consider rules about variable correlations, PR-Miner can
extract substantially more programming rules.

4.2.1 Supports of Programming Rules
Figure 8 shows the support distribution of closed rules extracted

by PR-Miner in Linux. As expected, the number of closed rules
decreases when the corresponding support increases. The decreas-
ing rate is approximately exponential from 15 to 80 (notice that
Y-axis is in logarithmic scale). Since the rules with larger support
are more “believable”, programmers can increase min support to
improve the quality of rules, or choose only those top ranked closed
programming rules (Extracted rules are ranked by their supports).

The figure also shows that some rules have large supports, strongly
validating our observation that programmers follow many implicit
programming rules in writing software. For example, there are 1442
rules with supports larger than 100 in Linux, and the rule with the
largest support is the function pair of spin lock irqsave and
spin unlock irqrestore, which has a support of 3656.

4.2.2 Rule Size
Each programming rule contains several elements such as func-

tions, variables and data types. The number of elements in a rule is
called the rule size. Figure 9 shows the distribution of rule size in
Linux. Around 4200 closed rules contain only 2 elements, which
accounts for 14% of all closed rules. On the other hand, 9% of the
closed rules have even more than 10 elements. For example, PR-
Miner found a rule that contains 12 program elements and appears
38 times in Linux, which is followed when the system registers for
a PCMCIA device.

Figure 8: Distribution of rule support in the Linux code. (Y-axis
is in logarithmic scale)

5000

4000

3000

2000

1000

0

 Size of Rules

 #
R

ul
es

Linux

2 3 4 5 6 7 8 9 10
11

−
15

16
−

20
>

20

Figure 9: Distribution of rule size in the Linux code.

The above results, along with the results shown on Table 3, indi-
cate the generality of PR-Miner over the previous work [8] because
PR-Miner does not constrain the rule format or limit the number of
elements in the rules to only 2.

4.3 Detecting Violations
PR-Miner has reported many violations of programming rules in

the evaluated software. We have manually examined the top 60 vi-
olations to differentiate bugs from false positives. Confirmed bugs
have been reported to the corresponding developer community and
are currently being fixed by developers. The numbers of the veri-
fied bugs are shown in Table 4. Currently, we are still inspecting
the violation report and more bugs will be confirmed. More specif-
ically, we have validated 16 bugs in Linux, 6 bugs in PostgreSQL,
and 1 in the Apache HTTP Server. Almost all of these bugs are
semantic bugs instead of those simple bugs such as buffer overflow,
data races, etc. and are thereby difficult to be detected by existing
bug detection tools. In addition, most of these bugs violate com-
plex rules that involve more than 2 elements, so it is difficult for the
previous work [8] to detect them.

Notice that we directly apply the programming rules mined by
PR-Miner in violation detection without having programmers vali-
date the extracted rules. Therefore, false programming rules might
result in false positives in violation report. If programmers can val-
idate those topped ranked rules and prune false rules, the number of
false positives generated by PR-Miner in violation detection should
be smaller than those presented in Table 4.

Even though our inter-procedural pruning method can prune a lot
of false positives in violation report, many false positives still exist.
Even for the strong function-pair rules with high confidence such
as lock-unlock, there are still a few violations that are false pos-
itives. For example, the function spin lock bh (in Linux ker-
nel/spinlock.c) includes a call to spin lock irqsave but not
spin unlock irqrestore because spin lock bh is to pro-
vide locking functionality and thereby does not need unlocking in
it. Such false positives can be pruned if we can also conduct deeper
inter-procedural analysis. In addition, combining with some dy-
namic checking methods would be helpful to further prune these
false positives, which remains as our future work.

However, even these false positives are still useful for automatic
specification and annotation of function interfaces. In the example
above, we can know the unlock function should be called some-
where after calling spin lock bh. Therefore, we can automati-
cally annotate the function spin lock bh with such assumption.
There are many cases that are more complex than this example. For
example, PR-Miner reports a violation to a rule that says: if fields
counter and len in a structure sk buff are modified, the func-
tion kfree skb should be called. This rule appears 480 times
in Linux. It indicates that if these two fields are accessed, some
memory is allocated for the data structure of sk buff and there-
after it should be freed. However, there is one violation of this rule
in the function skb clone in the file net/core/skbuff.c with confi-
dence 480/481 = 99.8%. Although it is a false violation, it still
indicates that after the function skb clone is called, kfree skb
also should be called later in order to free the memory; otherwise, it
would cause memory leak. Therefore, this violation can be used to
automatically annotate the interface of the function skb clone.

Software Inspected (top 60) Uninspected
Bugs Specification False Positives

Linux 16 20 24 1387
PostgreSQL 6 9 45 87
Apache 1 0 6 0

Table 4: Violations detected by PR-Miner. We have inspected the top
60 violations in the violation report. The inspected violations are classi-
fied into 3 categories: real bugs that have been confirmed, potential us-
age for function interface annotation, and false positives. Uninspected
means that we are unable to inspect them yet due to time limitation.

4.4 Time and Space Overheads
PR-Miner can extract programming rules and detect violations

in large software very efficiently. The execution time and space
overhead is shown in Table 5.

It takes less than 1 minute for PR-Miner to extract more than
32,000 closed rules in Linux with more than 3500 files, and only
several seconds for PostgreSQL and Apache. The results also show
that PR-Miner can efficiently detect violations. For example, it
takes less than 1 minute to detect violations.

PR-Miner is also space-efficient for rule extraction and violation
detection. For example, it takes less than 500MB for Linux, 25MB
for PostgreSQL and only 7MB for Apache. Therefore, PR-Miner
is a practical method to extract programming rules from large soft-
ware in just an ordinary PC machine.

Software Extracting rules Detecting violations
Time(s) Space(MB) Time(s) Space(MB)

Linux 42 441 46 303
PostgreSQL 5 25 4 14
Apache 1 7.3 1 6.2

Table 5: Execution time and memory space of PR-Miner

5. DISCUSSION: CURRENT LIMITATIONS
While PR-Miner is very effectively in automatically extracting

implicit programming rules and detecting violations, our current
version of PR-Miner has the following limitations, which we plan
to address in our future work.

False Negatives in Detecting Violations Due to Copy-Pasting.
A violation to a programming rule may be propagated to multiple
modules due to copy-pasting [7, 18], which would result in a lot of
violations to the rule. As a result, PR-Miner would probably miss
to report this error. In order to eliminate the propagation effect, we

can combine with our previous work on copy-paste detection called
CP-Miner [18], which also works with large software. Using CP-
Miner, we can first identify copy-pasted code, and then each group
of copy-pasted code accounts as only 1 support in PR-Miner when
extracting programming rules and detecting violations.

Noisy Effects of Macros. Macro definitions in C can result in false
programming rules as well as false negatives in detecting violations.
Since GCC first preprocesses the source code by expanding macros
before creating the intermediate representation, the information in
a single macro can be duplicated for many times like copy-pasting.
Therefore, PR-Miner may report the elements in such a macro as
a rule, and may also fail reporting some violations in these macros
since they are duplicated for many times. In order to eliminate such
noisy effects of macros, we can consider each macro as one element
using the technique in some other studies on refactoring [13].

Function Name Collisions. Since occasionally some functions use
the same name and PR-Miner only uses the compiling information
from GCC front-end, PR-Miner cannot differentiate them, which
can result in false rules. Fortunately, in most software, there are
few identical function names especially in a single module, so it
does not cause too much trouble to PR-Miner. To eliminate this
effect, we can use the linking information when PR-Miner converts
the source code to an itemset database so that it can differentiate
functions with identical names.

Rules Spanning across Multiple Function Definitions. Since PR-
Miner converts an entire functional definition to an itemset, it can-
not detect programming rules spanning across multiple function
definitions. To address this problem, PR-Miner needs to combine
with inter-procedural analysis in a way similar to the false positive
pruning described in Section 3.4.

False Negatives in Violation Detection in Some Control Paths.
Since PR-Miner uses function as the basic granularity for violation
detection, it can miss violations in some control paths. For exam-
ple, if a rule appears in one of function F ’s control path, PR-Miner
would consider that the entire function F does not violate this rule,
even though some of its other control paths may violate this rule.
To address this problem, we will need to borrow techniques from
model checking to check different control paths.

6. RELATED WORK
Due to space limitation, this section briefly describes those closely

related work that are not discussed in previous sections.

Specification Generation. Automatically generating specifications
has been studied for decades [6, 16, 27]. Recently, Bensalem et
al describe techniques for automatically generating auxiliary pred-
icates, including the general reaffirmed invariants, invariant propa-
gation, refined strengthening, and invariant combination [4]. Bjørner
et al present the method to generate the auxiliary assertions by ex-
tending the traditional methods [5]. Xie and Notkin propose the ap-
proach of using inferred program semantic properties for test gener-
ation and selection [28]. Ammons et al propose a machine learning
approach to discovering specifications of the protocols that code
must obey when interacting with an API or abstract data type [3].
These studies have different goals from PR-Miner.

In order to reduce programmers’ effort in manually writing spec-
ifications for the extended static type checker (ESC) [12], a tool
called Houdini has been developed [11]. Houdini first derives the
candidate annotations from the code using annotation templates,
and then removes the false annotations by combining ESC. Sim-
ilar to Engler et al’s work, the annotations derived by Houdini are
limited by the templates and also require efforts from programmers.

Dynamic invariant detection can extract specifications from pro-
grams’ dynamic executions [9, 23]. Nimmer and Ernst investi-
gated the relationship between dynamic and static information, and
showed that dynamical specification generation can capture some
non-trivial and useful semantic information [19, 20]. They also jus-
tified that even the unsound techniques can generate useful specifi-
cations, which validates our technique for generating specifications
by extracting implicit programming rules from source code.

Specification-based Checking. LCLint [10] is a light-weight static
checker. Provided with the source code and the specification written
in the LCL language by programmers, LCLint reports inconsisten-
cies between the code and specification. Taghdiri proposed a static
analysis method to refine specification for error detection [26]. The
user first provides a partial specification of a procedure, and the
specification is then iteratively refined via counterexample analy-
sis. Compared with these work, our PR-Miner extracts program-
ming rules automatically.

Applying Data Mining in Software Engineering. With the re-
markably increasing scale of software, data mining techniques have
demonstrated useful on dealing with a huge amount data in software
analysis. Besides PR-Miner and our previous work, CP-Miner [18],
mining techniques can be used in various aspects of software engi-
neering, including development management [21], software evolu-
tion [29, 31], system understanding[24], fault-prone file identifica-
tion [22] and software reuse [30], just to name a few.

7. CONCLUSIONS
This paper presents a general technique called PR-Miner that

uses frequent itemset mining to efficiently and automatically ex-
tract implicit, undocumented programming rules and detect viola-
tions in large software code written in C with little efforts from pro-
grammers. The rules extracted by PR-Miner are in general forms,
including both simple pair-wise rules and complex ones with mul-
tiple elements of different types.

We have evaluated PR-Miner with the latest versions of large
software code including Linux, Apache HTTP Server and Post-
greSQL with up to 3 million lines of code. PR-Miner takes only 1–
42 seconds to extract more than 32,000 closed programming rules
code and also only 1–46 seconds to detect violations. In addi-
tion, PR-Miner has detected many violations to the extracted rules.
Among the top 60 violations reported by PR-Miner, 16 bugs are
confirmed in the latest version of Linux, 6 in PostgreSQL and 1 in
Apache. Many of these bugs are currently being fixed by devel-
opers after we reported them. Most of these bugs violate complex
rules that contain more than 2 elements and are thereby difficult to
be detected by previous tools.

Our results indicate that PR-Miner is an efficient and practical
tool to extract implicit, undocumented programming rules and to
detect violations in large software code. Furthermore, by replacing
the GCC front-end parser, PR-Miner can be easily applied to pro-
grams in other programming languages such as Java. In addition,
as we discussed in Section 5, we envisage extending PR-Miner in
several directions to address the limitations in the current prototype.

8. ACKNOWLEDGEMENTS
The authors would like to thank the anonymous reviewers for

their invaluable feedback. This research is supported by IBM Fac-
ulty Award, NSF CNS-0347854 (career award), NSF CCR-0305854
grant and NSF CCR-0325603 grant. Our experiments were con-
ducted on equipment provided through the IBM SUR grant.

9. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In

Proc. 20th Int. Conf. Very Large Data Bases, 1994.
[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques, and

tools. 1986.
[3] G. Ammons, R. Bodı́k, and J. R. Larus. Mining specifications. In Proc. of the

29th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages,
pages 4–16, 2002.

[4] S. Bensalem, Y. Lakhnech, and H. Saidi. Powerful techniques for the automatic
generation of invariants. In Proc. of the 8th Int. Conf. on Computer Aided
Verification, 1996.

[5] N. Bjørner, A. Browne, and Z. Manna. Automatic generation of invariants and
intermediate assertions. Theoretical Computer Science, 173(1), 1997.

[6] M. Caplain. Finding invariant assertions for proving programs. In Proc. of the
Int. Conf. on Reliable software, 1975.

[7] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler. An empirical study of
operating system errors. In Proc. of the 18th ACM Symp. on Operating Systems
Principles, 2001.

[8] D. Engler, D. Y. Chen, and A. Chou. Bugs as inconsistent behavior: A general
approach to inferring errors in systems code. In Proc. of the 18th ACM Symp. on
Operating Systems Principles, 2001.

[9] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution. IEEE
Trans. Software Engineering, 27(2), 2001.

[10] D. Evans, J. Guttag, J. Horning, and Y. M. Tan. LCLint: A tool for using
specifications to check code. In Proc. of the ACM SIGSOFT ’94 Symp. on the
Foundations of Software Engineering, 1994.

[11] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for ESC/Java.
In Proc. of the Int. Symp. of Formal Methods Europe on Formal Methods for
Increasing Software Productivity, 2001.

[12] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In Proc. of the ACM SIGPLAN 2002 Conf. on
Programming Language Design and Implementation, 2002.

[13] A. Garrido and R. Johnson. Refactoring C with conditional compilation. In 18th
IEEE Int. Conf. on Automated Software Engineering, 2003.

[14] G. Grahne and J. Zhu. Efficiently using prefix-trees in mining frequent itemsets.
In Proc. of the 1st IEEE ICDM Workshop on Frequent Itemset Mining
Implementations, 2003.

[15] J. Hipp, U. Güntzer, and G. Nakhaeizadeh. Algorithms for association rule
mining – a general survey and comparison. SIGKDD Explor. Newsl., 2(1), 2000.

[16] J. James H. Morris and B. Wegbreit. Subgoal induction. Communications of the
ACM, 20(4), 1977.

[17] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler. Correlation exploitation in
error ranking. In Proc. of the 12th ACM SIGSOFT Symp. on the Foundations of
Software Engineering, 2004.

[18] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A tool for finding copy-paste
and related bugs in operating system code. In Sixth Symp. on Operating Systems
Design and Implementation, 2004.

[19] J. W. Nimmer and M. D. Ernst. Automatic generation of program specifications.
In Proc. of the 2002 Int. Symp. on Software Testing and Analysis, 2002.

[20] J. W. Nimmer and M. D. Ernst. Invariant inference for static checking: An
empirical evaluation. In Proc. of the ACM SIGSOFT 10th Int. Symp. on the
Foundations of Software Engineering, 2002.

[21] M. Ohira, R. Yokomoriz, M. Sakai, K. ichi Matsumotoy, K. Inouez, and
K. Torii. Empirical project monitor: A tool for mining multiple project data. In
Proc. of Int. Workshop on Mining Software Repositories, 2004.

[22] T. J. Ostrand and E. J. Weyuker. A tool for mining defect-tracking systems to
predict fault-prone files. In Proc. of Int. Workshop on Mining Software
Repositories, 2004.

[23] J. H. Perkins and M. D. Ernst. Efficient incremental algorithms for dynamic
detection of likely invariants. In Proc. of the 12th ACM SIGSOFT Int. Symp. on
Foundations of software engineering, 2004.

[24] F. V. Rysselberghe and S. Demeyer. Mining version control systems for FACs
(frequently applied changes). In Proc. of Int. Workshop on Mining Software
Repositories, 2004.

[25] R. M. Stallman and the GCC Developer Community. GNU compiler collection
internals (GCC). available at http://gcc.gnu.org/onlinedocs/gccint.ps.gz, 2005.

[26] M. Taghdiri. Inferring specifications to detect errors in code. In 19th IEEE Int.
Conf. on Automated Software Engineering, 2004.

[27] B. Wegbreit. The synthesis of loop predicates. Communications of the ACM,
17(2), 1974.

[28] T. Xie and D. Notkin. Tool-assisted unit test selection based on operational
violations. In 18th IEEE Int. Conf. on Automated Software Engineering, 2003.

[29] A. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll. Predicting source
code changes by mining revision history. In Proc. of Int. Workshop on Mining
Software Repositories, 2004.

[30] Y. Yusof and O. F. Rana. Template mining in source-code digital libraries. In
Proc. of Int. Workshop on Mining Software Repositories, 2004.

[31] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller. Mining version histories
to guide software changes. In Proc. of the 26th Int. Conf. on Software
Engineering, 2004.

