
A Concept Analysis Inspired Greedy Algorithm
for Test Suite Minimization

Sriraman Tallam Neelam Gupta
Dept. of Computer Science Dept. of Computer Science
The University of Arizona The University of Arizona

Tucson, AZ 85721 Tucson, AZ 85721
tmsriram@cs.arizona.edu ngupta@cs.arizona.edu

ABSTRACT
Software testing and retesting occurs continuously duringthe soft-
ware development lifecycle to detect errors as early as possible and
to ensure that changes to existing software do not break the soft-
ware. Test suites once developed are reused and updated frequently
as the software evolves. As a result, some test cases in the test suite
may become redundant as the software is modified over time since
the requirements covered by them are also covered by other test
cases. Due to the resource and time constraints for re-executing
large test suites, it is important to develop techniques to minimize
available test suites by removing redundant test cases. In general,
the test suite minimization problem is NP complete. In this paper,
we present a new greedy heuristic algorithm for selecting a minimal
subset of a test suiteT that covers all the requirements covered by
T . We show how our algorithm was inspired by the concept analy-
sis framework. We conducted experiments to measure the extent of
test suite reduction obtained by our algorithm and prior heuristics
for test suite minimization. In our experiments, our algorithm al-
ways selected same size or smaller size test suite than that selected
by prior heuristics and had comparable time performance.
Keywords - test cases, testing requirements, test suite minimiza-
tion, concept analysis.

1. INTRODUCTION
Software testing accounts for a significant cost of softwaredevel-

opment. As software evolves, the sizes of test suites grow asnew
test cases are developed and added to the test suite. Due to time
and resource constraints, it may not be possible to rerun allthe test
cases in the test suites every time software is tested following some
modifications. Therefore, it is important to develop techniques to
select a subset of test cases from the available test suite that ex-
ercise the given set of requirements. The test suite minimization
problem can be stated as follows:
Problem Statement: Given a setT of test cases{t1, t2, t3,, tn},
a set of testing requirements{r1, r2,· · · ,rm} that must be covered
to provide the desired coverage of the program, and the information
about the testing requirements exercised by each test case in T ,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE ’05 Lisbon, Portugal
Copyright 2005 ACM 1-59593-239-9/05/0009 ...$5.00.

the test suite minimization problem is to find aminimal cardinality
subset ofT that exercises the same set of requirements as those
exercised by the un-minimized test suiteT .

In general, the problem of selecting a minimal cardinality subset
of T that covers all the requirements covered byT is NP complete.
This can be easily shown by a polynomial time reduction from the
minimum set-cover problem [7] to the test suite minimization prob-
lem. Given a finite set of attributesX andm subsetsS1, S2, ..., Sm

of these attributes, the minimum set-cover problem is to findthe
fewest number of these subsets needed to cover all the attributes.
Since the minimum set-cover problem is NP complete in general,
therefore heuristics for solving this problem become important. A
classical approximation algorithm [5, 6] for the minimum set-cover
problem uses a simple greedy heuristic. This heuristic picks the set
that covers the most points, throws out all the points covered by
the selected set, and repeats the process until all the points are cov-
ered. When there is a tie among the sets, one set among those tied
is picked arbitrarily. To illustrate this classical greedyheuristic, let

Table 1: An Example showing the requirements exercised by
test cases in a test suite.

r1 r2 r3 r4 r5 r6

t1 X X X
t2 X X
t3 X X
t4 X X
t5 X

us apply it to minimize the test suite{t1, t2, t3, t4,t5} shown in
Table 1. The coverage information for each test case is shownby
anX in the corresponding column in this Table. The greedy heuris-
tic will first select the test caset1, and throw out the requirements
r1, r2 andr3 from further consideration. Next, either oft2, t3, t4
or t5 could be picked since each of these cover one yet uncovered
requirement. Let us sayt2 is selected. Now the requirementr4 is
thrown out. In the next step,t3, t4 andt5 are tied. Let us sayt3 is
selected in this step. Then the requirementr5 will be thrown out.
Finally the test caset4 will get selected to cover the requirementr6.
Thus, the minimized suite generated by this heuristic consists of 4
test casest1, t2, t3 andt4 . This example points out the drawback
of this greedy heuristic. The redundant test caset1 was selected
because the decision to selectt1 was made too early. The choice of
picking t1 before picking any of the other test cases seemed a good
decision at the time whent1 was selected, however, it turned out to
be not the best choice for computing the overall minimal testsuite.
The optimally minimized test suite for this example has only3 test
casest2, t3 andt4. The above classical greedy heuristic algorithm
[5, 6] primarily exploits theimplications among the test cases to

identify redundant test cases and exclude them from furthercon-
sideration.

Another heuristic (referred to as HGS algorithm from here on-
wards) to minimize test suites was developed by Harrold, Gupta
and Soffa in [8]. Given a test suiteT and a set of testing require-
mentsr1, r2, · · · , rn that must be exercised to provide the desired
testing coverage of the program, the technique considers the subsets
T1, T2, · · · , Tn of T such that any one of the test casestj belong-
ing to Ti can be used to testri. The HGS algorithm first includes
all the test cases that occur inTi’s of cardinality one in the repre-
sentative set and marks allTi’s containing any of these test cases.
ThenTi’s of cardinality two are considered. Repeatedly, the test
case that occurs in the maximum number ofTi’s of cardinality two
is chosen and added to the representative set. All unmarkedTi’s
containing these test cases are marked. This process is repeated for
Ti’s of cardinality 3, 4,· · · , max, wheremax is the maximum car-
dinality of theTi’s. In case there is a tie among the test cases while
consideringTi’s of cardinalitym, the test case that occurs in the
maximum number of unmarkedTi’s of cardinalitym+1 is chosen.
If a decision cannot be made, theTi’s with greater cardinality are
examined and finally a random choice is made. Let us consider the
example in Table 2. Each row in Table 1 shows the requirements
exercised by that test case. In this example,T1 = {t1, t2}, T2 =
{t1, t3}, T3 = {t2, t3, t4}, T4 = {t3, t4, t5}, T5 = {t2, t6, t7}.
Since there is noTi of cardinality one, the HGS heuristic considers

Table 2: Another Example showing the requirements exercised
by test cases in a test suite.

r1 r2 r3 r4 r5

t1 X X
t2 X X X
t3 X X X
t4 X X
t5 X
t6 X
t7 X

T1 andT2 (each with cardinality two) and selects the test caset1.
Next, T3, T4 andT5 (each with cardinality three) are considered.
The tie betweent2, t3 andt4 is broken arbitrarily say in favor of
selecting the test caset2. Now onlyr4 remains to be exercised, i.e.
T4 is still unmarked. Any of test casest3, t4 or t5 can be selected
at this stage. Let us sayt3 is now selected. Thus, the reduced test
suite selected by the HGS heuristic for this example is{ t1, t2, t3
}. However, the requirements exercised byt1 are also exercised by
t2 andt3 and hence the test caset1 is redundant. This redundant
test case was selected because the decision to selectt1 was made
too early.

Agrawal [1, 2] used the notion of dominators, superblocks and
megablocks [1, 2] to derive coverage implications among thebasic
blocks to reduce the coverage requirements for a program. Simi-
larly, Marre and Bertolino [13] use a notion of entities subsumption
to determine a reduced set of coverage entities such that coverage
of the reduced set implies the coverage of the un-reduced set. These
works [1, 2, 13] exploit only theimplications among the coverage
requirements to generate a reduced set of coverage requirements.

We explored the concept analysis framework in an attempt to de-
rive a better heuristic for test suite minimization. Concept analysis
[3] is a technique for classifyingobjects based upon the overlap
among theirattributes. We viewed each test case in a test suite
as an object and the set of requirements covered by the test case
as its attributes. We observed that the concept lattice exposed the
implications among the test cases in a test suiteas well as the im-

plications among the requirements covered by the test suite. Thus,
it presented a unified framework to identify steps of a new greedy
test suite minimization algorithm that iteratively exploits the im-
plications among the test casesand the implications among the re-
quirements to reduce the context table. Although the steps of our
algorithm were inspired by the concept analysis framework,we im-
plemented the steps directly on the original context table (such as
Table 1) that provides the mapping between the test cases andthe
requirements covered by each test case in the un-minimized suite.
As a result, we developed a new polynomial time greedy algorithm
that produces same size or smaller size reduced suites as theclas-
sical greedy heuristic [6, 5]. Our algorithm generates the optimal
size minimized suites for examples in Tables 1 and 2. We call our
algorithm asDelayed-Greedy since it postpones the application of
the greedy heuristic as opposed to the classical greedy algorithm
which applies it at every step. We implemented our algorithmand
conducted experiments with the programs from the Siemens suite
[10, 11] and thespace program [11]. In our experiments, our al-
gorithm always produced same size or smaller size reduced suites
than prior heuristics. The important contributions of the paper are:

• A new greedy heuristic algorithm calledDelayed-Greedy,
that is guaranteed to obtain same or more reduction in the test
suite size as compared to the classical greedy [5, 6] heuristic.

• In our experiments, Delayed-Greedy always produced same
size or smaller size reduced test suites than prior heuristics
for test suite minimization.

• The time performance of Delayed-Greedy was found to be
comparable in our experiments and it always produced same
or more number of optimally reduced test suites than other
heuristics.

The organization of this paper is as follows. In section 2, we
show how concept analysis framework guided us to develop a new
algorithm for test suite minimization. In section 3, we describe our
Delayed-Greedy algorithm for test suite minimization. We present
our experimental results in section 4 and discuss the related work
in section 5. Finally, we summarize the results in section 6.

2. CONCEPT ANALYSIS AND TEST SUITE
MINIMIZATION

Concept Analysis is a hierarchical clustering technique [3] for
objects with discrete attributes. The input to concept analysis is a
set ofobjects O and a set ofattributes A, and a binary relationR ⊆
O ×A called thecontext which relates object to their attributes.To
analyze the test suite minimization problem using concept analysis,
the test cases can be considered as the objects and the requirements
as their attributes. The coverage information for each test case is
the relation between the objects and the attributes. We now have a
context that can be analyzed using a concept analysis framework.
Let us consider the test suite minimization for the context table
(same as in Table 1) in the example shown in Figure 1.

Concept Analysis identifies maximal groupings of objects and
attributes calledconcepts. A concept is an ordered pair(X, Y)
whereX ⊆ O is a set of objects andY ⊆ A is a set of attributes
satisfying the property thatX is the maximal set of objects that are
related to all the attributes inY andY is the maximal set of at-
tributes that are related to all the objects inX. For example, the set
{t1, t3} is the maximal set of test cases that covers the requirement
r2. This is shown by conceptc7 in the table on the right in Fig-
ure 1. Similarly,{t1} is the maximal set of test cases that covers
all of the requirementsr1, r2, r3. This is shown by the concept
c2 in the table on the right in Figure 1. The concepts form a par-
tial order defined as follows. For concepts(X1, Y1) and(X2, Y2),

r1 r2 r3 r4 r5 r6

t1 X X X
t2 X X
t3 X X
t4 X X
t5 X �

�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

��

��

�
�

�
�

�
� �

�
�
�

�
�

�
� �

�

�
�

�
�

�
�

Concept (Objects,Attributes)
TOP ({t1, t2, t3, t4, t5},{})
c1 ({t2},{r1, r4})
c2 ({t1},{r1, r2, r3})
c3 ({t4},{r3, r6})
c4 ({t3},{r2, r5})
c5 ({t1, t2},{r1})
c6 ({t1, t4},{r3})
c7 ({t1, t3},{r2})
c8 ({t3, t5},{r5})

BOT ({},{r1, r2, r3, r4, r5, r6})

Figure 1: Context table, concept lattice and the table of concepts.

(X1, Y1) ≤R (X2, Y2) iff X1 ⊆ X2. For example, in Figure 1,
c2 ≤R c7 since{t1} ⊆ { t1, t3}. This partial order induces a com-
plete lattice on the concepts, called theconcept lattice. The top
(bottom) element of the lattice is the concept with all the objects
(attributes) and none of the attributes (objects). If(X1, Y1) and
(X2, Y2) are two concepts such that(X1, Y1) ≤R (X2, Y2), then
X1 ⊆ X2 andY1 ⊇ Y2. The concepts (maximal groupings) with
their respective objects and attributes and the concept lattice for the
example being considered are shown in the Figure 1.

For every objecto ∈ O, there is a unique smallest (with respect
to ≤R) concept in which it appears. This conceptc, the smallest
concept foro, is labeled with o. For example, in Figure 1, the con-
ceptc2 is labeled witht1 andt1 also appears inc7 sincec2 ≤R c7.
Analogously, for every attributea ∈ A, there is a unique largest
concept in which it appears. This conceptc′ , the largest concept
for a, is labeled witha. For example, in Figure 1, the concept
c5 is labeled with the attributer1 andr1 also appears inc1 since
c1 ≤R c5. Given such a labeling of the lattice, we define the fol-
lowing two implications.

Object Implication: Given two objectso1, o2 ∈ O, o1 ⇒ o2 iff
∀a ∈ A, (o2 R a) ⇒ (o1 R a). Such an implication can be
detected from the lattice as follows. The implicationo1 ⇒ o2 is
true if the conceptlabeled with o1 occurslower in the lattice than
the concept labeled witho2 and the two concepts are ordered. In
this case, all the attributes covered byo2 are also covered byo1.
In other words, for two objectso1 ando2, if o1 ⇒ o2 then the
row corresponding to the objecto2 can be safely removed from the
context table without affecting the size of the minimal subset of test
suite that covers all the requirements. We refer to this as the object
reduction rule.

In Figure 1, the conceptc4 is labeled with the test caset3 and
the conceptc8 is labeled with test caset5. Sincec4 occurs lower in
the lattice thanc8, therefore there is an object implicationt3 ⇒ t5.
This means selectingt3 makest5 redundant with respect to cover-
age. Indeed this is the case as can be seen from the context table
since the set of requirements covered byt5 is a subset of the re-
quirements covered byt3. Therefore, the row corresponding tot5
can be safely removed from the context table. The context table in
Figure 2 shows the row fort5 removed from the table by applying
the object reduction rule.

Attribute Implication: Given two attributesa1, a2 ∈ A, a1 ⇒
a2 iff ∀ o ∈ O, (o R a1) ⇒ (o R a2). An attribute impli-
cation can be detected from the lattice as follows. The implication
a1 ⇒ a2 is true if the conceptlabeled with a1 occurslower in the

lattice than the concept labeled witha2 and the two concepts are
ordered. In this case, the column corresponding to the attributea2

can be removed from the context table since coverage ofa1 would
also imply coverage ofa2. In other words, the requirementa2 can
be safely removed from the context table without affecting the op-
timality of the solution. We refer to this asattribute reduction rule.
In the lattice in Figure 1, the conceptc1 is labeled with the attribute
r4, and the conceptc5 is labeled with the attributer1. Sincec1

occurs lower in the lattice thanc5, there is an attribute implication
r4 ⇒ r1. This means if the requirementr4 is covered by some test
case and this test case is selected, then the coverage requirement for
attributer1 becomes redundant since it is also covered by this test
case. From the context table we can see that it is indeed true that to
coverr4 we need to select the test caset2, and thatt2 also covers
r1. Therefore, the column forr1 can be safely removed from the
context table. Similarly, the column forr3 can be removed from
the context table since coverage ofr6 implies the coverage ofr3.

The context table in Figure 2 shows the reduced table after re-
moving the columns corresponding tor1 andr3 by applying the
attribute reductions and after removing the row fort5 by apply-
ing the object reduction. The corresponding concept lattice and the
table of concepts for the reduced context table are also shown in
Figure 2. Note that as a result of the above attribute reductions, a
new object implicationt3 ⇒ t1 is exposed in the reduced context
table in the Figure 2. Applying this reduction removes the row
for t1 from the context table shown in Figure 2 and the resulting
context table is shown in Figure 3.

In the example in section 1, the classical greedy [5, 6] heuris-
tic removedt5 from the un-minimized suite but it was not able to
identify that coverage ofr4 andr6 implied the coverage ofr1 and
r3 respectively. In contrast, the techniques in [1, 2, 13] willbe able
to exploit the above attribute implications, however they do not ex-
ploit the implications among the test cases.Thus, we noted that
the classical greedy heuristic exploits only the object implications
during minimization and it misses the additional opportunities for
minimization enabled by the attribute implications. Similarly, the
techniques in [1, 2, 13] exploit only the attribute implications and
miss the opportunities for reduction enabled by the object implica-
tions. Note that we were able to make the above critical observation
only because the concept analysis framework exposed these dif-
ferent types of implications simultaneously in a single framework
namely the concept lattice.

Owner Reductions: We define thestrongest concepts of the lat-
tice as the ones that are immediately above the bottom concept of
the lattice. In the lattice shown in Figure 1,c1, c2, c3 andc4 are

r2 r4 r5 r6

t1 X
t2 X
t3 X X
t4 X �

�

�
�

�
�

�
�

���

��	

�
�

�
�

�
�

�
�

�
�

�
�

�
� �

�

Concept (Objects,Attributes)
TOP ({t1, t2, t3, t4},{})
c1 ({t3},{r2, r5})
c2 ({t2},{r4})
c3 ({t4},{r6})
c4 ({t1, t3},{r2})

BOT ({},{r2, r4, r5, r6})

Figure 2: Reduced context table, concept lattice and table of concepts after applying object reduction t3 ⇒ t5 and attribute reduc-
tions r6 ⇒ r3 and r4 ⇒ r1 to context table in Figure 1.

r2 r4 r5 r6

t2 X
t3 X X
t4 X

�
� �

�
�
�

���

���

�
�

�
�

�
�

�
�

�
� �

�

Concept (Objects,Attributes)
TOP ({t2, t3, t4},{})
c1 ({t3},{r2, r5})
c2 ({t2},{r4})
c3 ({t4},{r6})

BOT ({},{r2, r4, r5, r6})

Figure 3: Reduced context table, concept lattice and table of concepts after applying object reduction t3 ⇒ t1 to context Table in
Figure 2.

the strongest concepts. If any strongest concepts of the lattice is
labeled with an attributea then it implies that a test case in the con-
cepts must be chosen in order to cover that attribute. Sinces is a
strongest concept and islabeled with attributea, only the test cases
contained in the object set ofs covera. So, a test case ins has to
be selected to cover attributea. We refer to this as theowner re-
duction rule. For instance, by applying the owner reductions to the
table in Figure 3, we get an empty table and we are done. Thus, for
this example our algorithm generates the optimal size minimized
test suite{t2, t3, t4}.

In [15], Sampath et. al presented a concept analysis based algo-
rithm that constructs the concept lattice for the given context table
and conservatively selects one test case fromeach of the strongest
(they call them next-to-bottom) concepts to generate reduced test
suites. In other words, their algorithm does not consider whether
the strongest concept islabeled with an attribute or not. This can
result in selecting test cases that are redundant with respect to cov-
erage of additional requirements beyond those already covered by
the previously selected test cases. For example, for the context
table and the corresponding concept lattice in Figure 1, their algo-
rithm will select one test case each fromc1, c2, c3 andc4 and this
will result in the reduced test suite{t2, t1, t4, t3}. The test case
t1 is redundant since the attributes covered by test cases inc2 are
covered by the test cases in the other strongest concepts.

It should be noted at this point, thatthe attribute, object and
owner reductions always preserve the optimality of the solution for
the context table. However, this may not be the case in general
since the next step that uses greedy heuristic would be applied if
the table is not empty and none of the above reductions are present
in the lattice, namely an interfering lattice.

Interference is said to be present in a concept lattice if for any con-

ceptc, there are at least two conceptsci andcj such thatc ≤R ci

andc ≤R cj andci andcj are the neighbors ofc in the lattice.
In a lattice with interference, there are no object or attribute impli-
cations and also, no strongest concepts are labeled with attributes.
Now we apply the greedy heuristic to select the test case thatcov-
ers maximum requirements in the table and add it to the minimized
suite. We remove the row corresponding to this test case fromthe
context table and remove the requirements covered by this test case
from the table. As a result of these modifications to the context
table, some new object reductions may be enabled.

Since we delay applying the greedy heuristic to the point when
no object, attribute or owner reductions can be applied, we refer
to our algorithm derived from the above discussion asDelayed-
Greedy. In contrast, the classical greedy algorithm [5, 6] applies
the greedy heuristic at every step. Note that our algorithm is guar-
anteed to achieveat least as much reduction of the test suite size
as possible using the classical greedy algorithm [5, 6]. Next we
present the steps of Delayed-Greedy algorithm in detail.

3. OUR DELAYED GREEDY ALGORITHM
The concept lattice helped us develop the steps of our algorithm

in terms of different reduction rules. Now that we know the types
of implications we need to look for in the lattice or the context ta-
ble, we can realize this algorithm by looking for these implications
directly in the context table rather than constructing the concept
lattice. Thus, we derive a new test suite minimization algorithm
with worst case polynomial time complexity in terms of the size of
the context table. The outline of our Delayed-Greedy algorithm is
given in Figure 4.

Step 1: Reducing the size of context table by applying object re-
ductions. An object implication exists in the context table if there
are two test cases (rows)ti andtj such that the set of requirements

covered byti is superset of the set of requirements covered bytj .
This can be found directly from the context table by comparing the
sets of requirements covered by every pair of the rows in the ta-
ble. In this case row corresponding totj is removed from the table.
This is the application of object reduction rule to the context table.
Reducing the context table by exploiting object implications can
result in exposing new owner and attribute reductions.

Step 2: Reducing the size of context table by applying attribute
reductions. An attribute implication exists in the table if there are
two requirementsri andrj such that set of objects that coverri is
a subset of the set of objects that coverrj . In this case any test case
that coversri will also coverrj . Therefore, the requirementrj is
removed from the context table. This is the application of attribute
reduction rule to the context table. The attribute implications are
also found directly from the table by comparing the object-sets of
each of pairs of requirements (columns). Notice that after acontext
table is reduced by applying attribute reductions, additional object
implications that enable further reduction of the context table may
be exposed.

Input: Contexttable for given test suite T.
Output: Set of test cases in minimized suiteTmin.
procedure Delayed-Greedy(Contexttable)

Tmin=empty;
while (Contexttable 6= empty)do

fInter=false; detectInter=0;
while not(fInter)and (Contexttable 6= empty)do

fInter=true;
Step 1: For eachobject implication oi ⇒ oj do

Remove row for test caseoj from Contexttable;
fInter=false;

endfor
Step 2: For eachattribute implication ri ⇒ rj do

Remove column for requirementrj from Contexttable;
fInter=false;

endfor
Step 3: For each attributerk resulting in anowner reduction do

Remove row for test caset that covers requirementrk;
Remove columns for attributes covered by test caset;
Tmin = Tmin ∪ {t};
fInter=false;

endfor
endwhile

Step 4:
if (Contexttable 6= empty)then

Let t be test case picked using greedy coverage heuristic.
Remove row for test caset from the Contexttable;
Remove columns for attributes covered by test caset;
Tmin = Tmin ∪ {t}; detectInter=1;

endif
endwhile
if (detectInter=0)then

report minimized test suiteTmin is of optimal size.
else

report interference encountered.
endif
return(Tmin)

endprocedure

Figure 4: Delayed-Greedy algorithm

Note that we need to compare entries in every pair of rows(columns)
to find object(attribute) implications only for the first time in the be-
ginning of the algorithm. Every time an object(attribute) reduction

is applied, the context table is updated by removing the correspond-
ing row(column) from the table. Note that after the table is updated
by removing a column(row), only the rows(columns) effectedby
the removed column(row) need to be checked for object(attribute)
implication. Thus, after each reduction, we do not have to com-
pare all the rows(columns) with each other to find a possible ob-
ject(attribute) implication. This contributes significantly to the ef-
ficiency of our algorithm.

Step 3: Reducing the size of context table and selecting a test
case using owner reduction. If there exists an attributeai that is
possessed only by one objectoj , we addoj to the solution set and
removeoj and all attributes covered byoj from the table. Owner
reductions may expose new object reductions which can further re-
duce the size of the context table and thus delay the need to ap-
ply the greedy heuristic. Note thatthe attribute and object reduc-
tions merely reduce the size of the context table by removing re-
dundant attributes and objects from further consideration, whereas
the owner reduction also chooses a test case to be in the minimized
suite.

In each iteration of the algorithm, the owner reductions select
those test cases that would eventually have to be included inthe
selected suite since they cover attributes not covered by other test
cases in the context table. Therefore, the requirements covered by
these test cases are removed from further consideration. However,
in the classical greedy algorithm, selection of some test cases cor-
responding to owner reductions may be postponed to a later stage
if they cover a small number of requirements. This may resultin
selection of some test cases early on by the classical greedyalgo-
rithm that may become redundant due to test cases selected later.

Step 4: Removing the interference by selecting a test case using
the greedy heuristic. We choose the object that possesses the most
number of attributes and add it to the selected set. We break the
ties by as follows. For each attribute covered by each object, we
compute the number of other objects that cover this attribute. We
select the object covering an attribute that is least covered by all
other objects. The reason for this strategy to remove interference
is that if a test case covering maximum attributes is selected, the
solution would be at least as good as that obtained by the classical
greedy [5, 6] heuristic. The row corresponding to the selected test
case and the columns corresponding to all the attributes covered
by it are removed from the context table. This could give riseto
further possible reductions of the context table by exposing new
object implications. The variabledetectInter is set to indicate the
greedy heuristic was used in the reduction. It is due to this heuristic
the final solution may not be optimal. Note that lattices without
interference give optimal solutions to the test suite minimization
problem. The algorithm terminates when the context table isempty.

4. EXPERIMENTS
We implemented our Delayed-Greedy heuristic (DelGreedy),the

classical Greedy heuristic, the HGS [8] algorithm and the SMSP
[15] algorithm asC language programs. SMSP algorithm com-
putes the reduced suite by selecting one test case each from the
strongest concepts. For implementation of the SMSP algorithm,
we computed the strongest concepts directly from the context ta-
ble. We conducted experiments with the programs in the Siemens
test suite [10, 11] and thespace program [11] to measure the extent
of test suite size reduction obtained by the above four heuristics.

We obtained these programs and their associated test pools from
the the Subject Infrastructure Repository website [11]. Wegener-
ated the instrumented versions of these programs using the LLVM
infrastructure [17] to record the branch/def-use coverageinforma-

Table 3: Experiment Subjects

Prog. loc. Avg. size of Total No. of
un-minimized suite requirements

Branch Cov. Def-use Cov. Branches Def-use pairs

space 6218 533 539 1356 5179
tcas 138 20 21 41 51
print 402 64 66 127 275

tokens
print 483 77 79 154 235

tokens2
schedule 299 46 46 84 148
replace 516 83 108 155 759
totinfo 346 53 53 83 287

tion for each test case. The instrumented version generatedby the
LLVM infrastructure for theschedule2.c program resulted in seg-
mentation faults when executed with test cases (whereas theun-
instrumented version executed fine for the same test cases).There-
fore, we conducted experiments with thespace program and the
remaining six programs in the Siemens suite. From the test pool
for each program, we created 100 branch (def-use pair) coverage
adequate test suites as follows. For each program, for each test
suite, 10%-20% (5%-10% for the Space program since it is large)
of the line of code test cases were randomly selected from thetest
pool, together with additional test cases as necessary to achieve
100% coverage of branches (def-use pairs). The number of lines of
code, test pool size, average size of the un-minimized test suites for
branch/def-use coverage and the total number of branches/def-use
pairs in each program are shown in Table 3. We minimized each of
these test suites using each of the above test suite minimization al-
gorithms and recorded the size of the minimized test suite and time
taken by each algorithm to minimize the test suite.

4.1 Results and Discussion
The average sizes of reduced suites produced by DelGreedy for

each of the programs are shown in Table 5. In our experiments,
for each test suite for each program, the size of minimized suite
generated by DelGreedy was of the same size or of smaller size
than that generated by the other algorithms. Therefore the numbers
in Table 4 show for each program, forhow many test suites (out
of total 100), the difference between the size of reduced suite pro-
duced by other algorithm (Greedy, HGS or SMSP) and the size of
reduced suite produced by DelGreedy was equal to 0, 1, 2, 3, etc. In
other words, it shows thefrequency with which the reduced suites
for other algorithms were same size, larger by 1 test case, larger
by 2 test cases, , , , larger by 9 test cases, etc. when compared
with the size of reduced suites produced by DelGreedy. For ex-
ample, for the minimization of branch coverage suites for the tcas
program, the number 41 in the column labeled1 and in the row cor-
responding to the Greedy algorithm shows that there were 41 test
suites (out of total 100) for which the minimized suite by Greedy
algorithm contained 1 more test case than the correspondingmin-
imized suite generated by the DelGreedy algorithm. The Table 4
shows that DelGreedy, Greedy and HGS achieved more suite size
reduction than SMSP and that DelGreedy can go even further than
Greedy and HGS algorithms in producing smaller size suites.

Table 5: Average size of minimized suite by DelGreedy
Program Branch Coverage Def-Use Coverage

space 123 143
tcas 4 4

print-tokens 6 7
print-tokens2 4 8

schedule 2 2
replace 9 26
totinfo 2 5

Also note from the Table 5 that the average sizes of reduced test
suites produced by DelGreedy are quite small and therefore the dif-
ferences of sizes 1, 2, 3, , , 9 etc. in the reduced test suites pro-
duced by the other algorithms and DelGreedy are quite significant.
In our experiments, on an average, for branch coverage adequate
suites, DelGreedy produced smaller size suites than Greedy, HGS
and SMSP in 35%, 64% and 86% of the cases respectively. On an
average, for def-use coverage adequate suites, DelGreedy produced
smaller size suites than Greedy, HGS and SMSP in 39%, 46% and
91% of the cases respectively.

Table 6: Number of Optimal size (#Opt) and Non-Optimal size
(#Non-Opt) test suites produced by each algorithm and time
performance

Prog. Algo. Branch Coverage Suites Def-Use Coverage Suites
#Non- #Opt. #Un- Time #Non- #Opt. #Un- Time
Opt. Dec. (sec) Opt. Dec. (sec)

space DelGreedy - 92 8 .737 - 99 1 1.912
Greedy 100 0 0 .444 100 0 0 1.932
HGS 96 4 0 .307 93 7 0 .666

SMSP 100 0 0 - 100 0 0 -
tcas DelGreedy - 68 32 .006 - 96 4 .006

Greedy 43 37 20 .004 32 65 3 .004
HGS 42 39 19 .002 2 94 4 .001

SMSP 100 0 0 - 100 0 0 -
print DelGreedy - 71 29 .006 - 92 8 .011

tokens Greedy 18 62 20 .005 22 70 8 .009
HGS 57 35 8 .006 30 66 4 .008

SMSP 100 0 0 - 100 0 0 -
print DelGreedy - 84 16 .010 - 80 20 .011

tokens2 Greedy 14 70 16 .007 38 50 12 .010
HGS 51 29 20 .007 52 40 8 .008

SMSP 100 0 0 - 100 0 0 -
schedule DelGreedy - 99 1 .003 - 91 9 .006

Greedy 0 99 1 .003 0 91 9 .004
HGS 63 36 1 .006 38 56 6 .008

SMSP 1 99 0 - 34 66 0 -
replace DelGreedy - 53 47 .011 - 94 6 .027

Greedy 51 25 24 .006 78 11 11 .021
HGS 67 17 16 .006 71 28 1 .020

SMSP 100 0 0 - 100 0 0 -
totinfo DelGreedy - 46 54 .004 - 88 12 .010

Greedy 16 32 52 .004 2 87 11 .009
HGS 73 11 16 .004 34 58 8 .008

SMSP 99 1 0 - 100 0 0 -

Recall that unlike HGS, Greedy and SMSP algorithms, our Del-
Greedy algorithm can identify that a reduced suite is of optimal size
if it was produced by using only the object, attribute and owner re-
ductions. For each row labeled with DelGreedy in the Table 6,the
column labeled #Opt shows the number (out of total 100) of re-
duced suites identified as of optimal size by DelGreedy. The rows
corresponding to other algorithms for this column show, forhow
many of those suites identified as of optimal size by DelGreedy, did
the algorithm compute same size suite as DelGreedy. The column
labeled with #Non-Opt shows for how many test suites the other
algorithms produced larger size test suites than those produced by
DelGreedy. In these instances, it was clear that other algorithms
generated non-optimal size suites. The data for this columncan be
computed by subtracting from 100, the number in the correspond-
ing row under the column labeled with 0 in Table 4. The column
labeled with 0 in Table 4 shows the number of test suites for which
the respective algorithm computed the same size suites as those
produced by the DelGreedy. Therefore, subtracting this number
from 100 gives the number of test suites for which the algorithm
definitely computed non-optimal size suite. The column labeled
with #Un-Dec. in Table 6 shows, for each respective row, the num-
ber of test suites for which it could not be determined if the reduced
suite was of optimal size or not. This can be computed for eachrow
by subtracting from 100, the number test of suites that were defi-
nitely reduced to optimal size (#Opt.) and the number of testsuites
that were definitely reduced to non-optimal size (#Non-Opt.).

Note that for each row corresponding to algorithms Greedy, HGS
and SMSP in Table 6, the sum of the entries under the columns la-
beled #Opt. and #Un-Dec. is equal to the corresponding entry
under the column labeled 0 in Table 4. For example, for reduc-

Table 4: Frequency of (size of Tmin by Algo. - size of Tmin by DelGreedy) for Branch coverage and Def-Use coverage test-suites
frequency of (size of Tmin by Algo. - size of Tmin by DelGreedy) frequency of (size of Tmin by Algo. - size of Tmin by DelGreedy)

Prog. Algo. Branch Coverage Suites Def-Use Coverage Suites
0 1 2 3 4 5 6 7 8 9 > 9 0 1 2 3 4 5 6 7 8 9 >9

space Greedy 0 4 10 20 22 22 12 8 2 - - 0 1 3 5 19 17 24 16 8 6 1
HGS 4 19 22 18 18 10 5 3 1 - - 7 20 24 16 14 9 4 2 4 - -
SMSP 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 100

tcas Greedy 57 41 2 - - - - - - - - 68 30 2 - - - - - - - -
HGS 58 36 6 - - - - - - - - 98 2 0 - - - - - - - -
SMSP 0 0 0 0 5 6 11 10 13 18 37 0 1 8 26 28 15 14 7 1 - -

print Greedy 82 17 1 - - - - - - - - 78 19 3 - - - - - - - -
tokens HGS 43 36 15 4 2 - - - - - - 70 22 6 2 - - - - - - -

SMSP 0 0 0 0 0 0 2 3 2 2 91 0 0 0 0 0 0 1 2 5 7 85
print Greedy 86 14 - - - - - - - - - 62 34 3 1 - - - - - - -

tokens2 HGS 49 44 17 0 - - - - - - - 48 34 15 3 - - - - - - -
SMSP 0 0 0 2 1 0 0 1 1 1 94 0 0 0 0 0 1 1 2 0 0 96

schedule Greedy 100 0 - - - - - - - - - 100 - - - - - - - - - -
HGS 37 48 14 1 - - - - - - - 62 32 6 - - - - - - - -
SMSP 99 0 1 - - - - - - - - 66 19 12 2 1 - - - - - -

replace Greedy 49 45 4 2 - - - - - - - 22 36 38 10 3 1 - - - - -
HGS 33 37 27 3 - - - - - - - 29 41 24 5 1 - - - - - -
SMSP 0 0 0 0 0 0 0 0 0 1 99 0 0 0 0 0 0 0 0 0 0 100

totinfo Greedy 84 16 - - - - - - - - - 98 2 - - - - - - - - -
HGS 27 47 20 5 1 - - - - - - 66 29 4 1 - - - - - - -
SMSP 1 2 8 12 20 12 17 12 9 4 3 0 0 0 0 1 2 2 7 11 12 65

ing the branch coverage suites for thereplace program, in the row
corresponding to the Greedy algorithm, the sum of entries under
the columns labeled #Opt. and #Un-Dec. is 25+24=49 which is
same as value in the corresponding row under the column labeled
with 0 in the Table 4. Therefore, for 24 test suites in which the
DelGreedy and Greedy computed same size suites, we could not
determine if the size of the reduced suite is optimal since inthese
cases DelGreedy needed to use the greedy heuristic. However, if in
each of these cases, if the Greedy algorithm had actually computed
an optimal size suite, then DelGreedy would have also computed
optimal size suite since both computed the same size reducedsuits
for these 24 test suites. Therefore, if it was the case that all the test
suites counted in the undecided column (#Un-Dec.) for the row cor-
responding to Greedy algorithm forreplace program indeed were
reduced to the optimal size by Greedy algorithm, then still the dif-
ference in the number of optimal suites computed by DelGreedy
and Greedy would be unchanged (53+24) - (25+24) = 53-25=28.

Therefore, the difference between the value of #Opt shown in
the Table 4 for an algorithm (Greedy, HGS or SMSP) and the cor-
responding value of #Opt shown for DelGreedy gives theminimum
difference between the total number of optimal size suites gener-
ated by DelGreedy and the respective other algorithm. The Table 6
clearly shows that DelGreedy can find significantly more number
of optimal size reduced suites than the other algorithms. Note that
we were able to do the above analysis without having to compute
the optimal size suites for each of the test suites by using techniques
like enumeration of suites which can run in exponential time. This
analysis was made possible because of the property of DelGreedy
to identify optimal size reduced suites in the cases when there-
duced test suite could be generated without the need to applythe
greedy heuristic.

Finally the column labeled with Time in 6 shows the average
time taken by each algorithm inseconds to reduce test suites for
each program. The time of SMSP is not shown as the implementa-
tion in [15] used a concept analysis tool to build the conceptlattice
to find the strongest concepts. However, we found the strongest
concepts directly from the table without building the lattice. Since
we used a different implementation to compute the same size re-
duced test suite as computed by SMSP, we have not given the time
performance for SMSP. The Table 6 shows that the running timeof
DelGreedy is comparable to other algorithms.

5. RELATED WORK
Finding the minimal cardinality subset of a given test suitethat

covers the same set of requirements as covered by the original test
suite is NP complete. This can be shown by a polynomial time re-
duction from theminimum set-cover [7] problem. Therefore, sev-
eral heuristics have been developed to compute a solution that is of
the size as close as possible to the optimal size solution. A clas-
sical approximation algorithm for the minimum set-cover problem
by Chvatal [5, 6] uses a simple greedy heuristic. This heuristic
picks the set that covers the most points, throws out all the points
covered by the selected set, and repeats the process until all the
points are covered. When there is a tie among the sets, one set
among those tied is picked arbitrarily. This algorithm has been the
most commonly cited solution to the minimum set-cover problem
and an upper bound on how far it can be from the optimal size so-
lution in the worst case has been analyzed in [6]. This heuristic
exploits only theimplications among test cases to determine which
test cases become redundant while reducing a test suite. Another
greedy heuristic, based on the number of test cases coveringa re-
quirement, was developed by Harrold et al.[8] to select a minimal
subset of test cases that covers the same set of requirementsas the
un-minimized suite.

Agrawal used the notion of dominators, superblocks and mega-
blocks [1, 2], to derive coverage implications among the basic blocks
to reduce test suites such that the coverage of statements and branches
in the reduced suite implies the coverage of the rest. Similarly,
Marre and Bertolino [13] use a notion of entities subsumption to
determine a reduce set of coverage entities such that coverage of the
reduced set implies the coverage of un-reduced set. These works [1,
2, 13] exploit only theimplications among coverage requirements
to generate a reduced set of coverage requirements.

In contrast to the above work, our approach iteratively exploits
the implications among the coverage requirements (attribute reduc-
tions)and the implications among the test cases (object reductions),
in addition to the owner reductions, to derive a reduced suite and
applies the greedy heuristic only when needed. This is in contrast
to the classical greedy algorithm which applies the greedy heuristic
at every step. Thus, our Delayed-Greedy algorithm is guaranteed
to generate reduced suites that are of the same size or smaller size
than those generated by the classical greedy algorithm. In essence,
while exploring a solution to the test suite minimization problem,

we have discovered a new algorithm for the minimum set-cover
problem. Although, it does seem surprising that this algorithm has
not been discovered before in various contexts in which the min-
imum set-cover problem may arise, it is easy to see that we were
able to exploit different types of implications present in the con-
text table because we started to analyze this problem with the help
of concept analysis which exposed these different types of impli-
cations simultaneously in a single framework namely the concept
lattice. Since the concept lattice is derived from the context table,
all the desired implications can be derived directly from the con-
text table, and this led to the development of our Delayed-Greedy
algorithm.

Sampath et. al [15] have presented a concept analysis based algo-
rithm (SMSP) for reducing a test suite for web applications.They
consider the URLs used in a web session as the attributes and each
web session as a test case. In this work, one test case from each of
the strongest concept in the concept lattice is selected to generate a
reduced test suite to cover all the URLs covered by the unreduced
suite. As shown in our experiments and in their recent report[16],
the reduced suites produced by their approach are in generallarger
than those produced by applying the classical greedy algorithm and
the HGS algorithm to reduce a set of web user sessions. In our
experiments, Delayed-Greedy algorithm always produced equal or
smaller test suites than classical greedy algorithm [6, 5],the HGS
algorithm [8] and the SMSP [15] algorithm.

The works in [14, 18] study the effects of test suite minimiza-
tion on the fault detection capabilities of the reduced testsuites. In
[14], the HGS [8] algorithm is used for minimization of test suites
selected from the Siemens suite [10] test pools. The test pools for
the Siemens suite were generated to cover a wide range of require-
ments derived from black box testing techniques, white box tech-
niques, and skills and experience of the researcher generating the
test cases. Thus, the quality of the test suites selected from these
test pools is high as they contain test cases to cover a wide range
of requirements. Therefore, in the experimental studies reported in
[14], a significant loss in the fault detection capability ofthe min-
imized suites was observed. In contrast, the experimental studies
in [18] used ATAC [9] system to compute optimally minimized test
suites from the randomly generated test suites. They conclude that
minimization techniques can reduce the test suite size to a great ex-
tent without significantly reducing the fault detection capabilities of
test suites. Although, these two studies seem to be contradictory,
we believe that the fundamental reason for the different conclusions
obtained in these two studies is the quality of the initial test suites
used in detecting the faults experimented with.

Jones and Harrold have recently presented [12] some heuristics
to minimize test suites specifically tailored for the MC/DC cover-
age criterion. However, our work presented in this paper is for re-
ducing a test suite with respect to set of requirements whichcould
be derived from any coverage criterion or a combination of differ-
ent criteria. The only input to our algorithm is the context table
which contains the information about the set of requirements cov-
ered by each test case in the test suite.

6. CONCLUSIONS
In this paper we presented a new greedy algorithm (Delayed-Greedy)
to select a minimal cardinality subset of a test suite that covers all
the requirements covered by the test suite. Our technique improves
upon the prior heuristics by iteratively exploiting the implications
and among the test casesand the implications among the cover-
age requirements, leveraged only independently from each other in
the previous work. In our experiments, our technique consistently
produced same size or smaller size test suites than prior heuristics.

7. REFERENCES
[1] H. Agrawal, “Dominators, super blocks, and program

coverage,”21st ACM SIGPLAN-SIGACT symposium on
Principles of Programming Languages, Portland, Oregon,
1994.

[2] H. Agrawal, “Efficient Coverage Testing Using Global
Dominator Graphs,”1999 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and
Engineering, Toulouse, France, 1999.

[3] G. Birkhoff Lattice Theory, volume 5, American
Mathematical Soc. Colloquium Publications, 1940.

[4] J. Black, E. Melachrinoudis and D. Kaeli, “Bi-Criteria Models
for All-Uses Test Suite Reduction,”26th International
Conference on Software Engineering, Edinburgh, Scotland,
UK, 2004

[5] V. Chvatal. “A Greedy Heuristic for the Set-Covering
Problem.”Mathematics of Operations Research. 4(3), August
1979.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein
“Introduction to Algorithms”,MIT Press, Second Edition,
September 2001.

[7] M.R. Garey and D.S. Johnson, “Computers and
Intractability-A Guide to the Theory of NP-Completeness,”V
Klee, Ed. Freeman, New York, 1979.

[8] M.J. Harrold, R. Gupta and M.L. Soffa, “A Methodology for
Controlling the Size of a Test Suite,”ACM Transactions on
Software Engineering and Methodology, 2(3):270-285, July
1993.

[9] J.R. Horgan and S.A. London, “ATAC: A data flow coverage
testing tool for C,” inProceedings of Symposium on Assessment
of Quality Software Development Tools, pages 2-10, May 1992.

[10] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand,
“Experiments on the Effectiveness of Dataflow- and
Controlflow-based Test Adequacy Criteria,”16th International
Conference on Software Engineering, May 1994.

[11] http://www.cse.unl.edu/∼galileo/sir
[12] J. A. Jones and M. J. Harrold, “Test-Suite Reduction and

Prioritization for Modified Condition/Decision Coverage,”
IEEE Transactions on Software Engineering , 29(3):195-209,
March 2003.

[13] M. Marre and A. Bertolino, “Using Spanning Sets for
Coverage Testing,”IEEE Transactions on Software
Engineering , 29(11):974-984, Nov. 2003.

[14] G. Rothermel, M.J Harrold, J. Ostrin, and C. Hong, “An
Empirical Study of the Effects of Minimization on the Fault
Detection Capabilities of Test Suites,”International
Conference on Software Maintenance, November 1998.

[15] S. Sampath, V. Mihaylov, A. Souter and L. Pollock ”A
Scalable Approach to User-Session based Testing of Web
Applications through Concept Analysis,” in proceedings of
Automated Software Engineering, 19th International
Conference on (ASE’04) Linz, Austria, September 2004,

[16] S. Sprenkle, S. Sampath, E. Gibson, A. Souter, L. Pollock,
”An Empirical Comparison of Test Suite Reduction Techniques
for User-session-based Testing of Web Applications,”Technical
Report 2005-009, Computer and Information Sciences,
University of Delaware, November 2004

[17] ”The LLVM Compiler Infrastructure Project,”
http://llvm.cs.uiuc.edu/

[18] W. E. Wong, J.R. Horgan, S. London, and A. P. Mathur.
“Effect of Test Set Minimization on Fault Detection
Effectiveness.”Software Practice and Experience.
28(4):347-369, April 1998.

