A Concept Analysis Insp

ired Greedy Algorithm

for Test Suite Minimization

Sriraman Tallam

Neelam Gupta

Dept. of Computer Science Dept. of Computer Science

The University of Arizona
Tucson, AZ 85721
tmsriram@cs.arizona.edu

ABSTRACT

Software testing and retesting occurs continuously dutiegsoft-
ware development lifecycle to detect errors as early asigesand

to ensure that changes to existing software do not breakafire s
ware. Test suites once developed are reused and updatedrithg

as the software evolves. As a result, some test cases irsttautte
may become redundant as the software is modified over tinge sin
the requirements covered by them are also covered by otker te
cases. Due to the resource and time constraints for re-gngcu
large test suites, it is important to develop techniques itormize
available test suites by removing redundant test caseserergl,
the test suite minimization problem is NP complete. In ttapqr,

we present a new greedy heuristic algorithm for selectingnénal
subset of a test suitg that covers all the requirements covered by
T. We show how our algorithm was inspired by the concept analy-
sis framework. We conducted experiments to measure thatefte
test suite reduction obtained by our algorithm and priorriséias

for test suite minimization. In our experiments, our algon al-
ways selected same size or smaller size test suite tharelbated

by prior heuristics and had comparable time performance.
Keywords - test cases, testing requirements, test suite minimiza-
tion, concept analysis.

1. INTRODUCTION

Software testing accounts for a significant cost of softvdane|-
opment. As software evolves, the sizes of test suites groneas
test cases are developed and added to the test suite. Dumeto ti
and resource constraints, it may not be possible to rerihatiest
cases in the test suites every time software is tested fimlgpaome
modifications. Therefore, it is important to develop tecfueis to
select a subset of test cases from the available test saiteexh
ercise the given set of requirements. The test suite miitioiz
problem can be stated as follows:

Problem Statement: Given a sefl” of test case$t1, t2, t3, ..., tn },
a set of testing requiremen{s1, r2,- - -, } that must be covered
to provide the desired coverage of the program, and therrdtion
about the testing requirements exercised by each test ndBe i

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

PASTE '05 Lisbon, Portugal

Copyright 2005 ACM 1-59593-239-9/05/000955.00.

The University of Arizona
Tucson, AZ 85721
ngupta@cs.arizona.edu

the test suite minimization problem is to finarnimal cardinality
subset ofT" that exercises the same set of requirements as those
exercised by the un-minimized test suite

In general, the problem of selecting a minimal cardinalitpset
of T that covers all the requirements coveredIbis NP complete.
This can be easily shown by a polynomial time reduction from t
minimum set-cover problem [7] to the test suite minimization prob-
lem. Given a finite set of attribute§ andm subsetss:, Ss, ..., Sm
of these attributes, the minimum set-cover problem is to fired
fewest number of these subsets needed to cover all theutitisib
Since the minimum set-cover problem is NP complete in génera
therefore heuristics for solving this problem become ingoar A
classical approximation algorithm [5, 6] for the minimunt-sever
problem uses a simple greedy heuristic. This heuristicyilk set
that covers the most points, throws out all the points cal/dne
the selected set, and repeats the process until all thespai@icov-
ered. When there is a tie among the sets, one set among tedse ti
is picked arbitrarily. To illustrate this classical greduguristic, let

Table 1. An Example showing the requirements exercised by
test casesin atest suite.

[[rilra[rs][rafrs[r7e]

X X

X

us apply it to minimize the test suitg., t2, ts, t4,t5} shown in
Table 1. The coverage information for each test case is slgwn
anX inthe corresponding column in this Table. The greedy heuris
tic will first select the test casg, and throw out the requirements
r1, ro andrs from further consideration. Next, either &f, 3, t4

or t5 could be picked since each of these cover one yet uncovered
requirement. Let us say is selected. Now the requirement is
thrown out. In the next steps, t4+ andts are tied. Let us sas is
selected in this step. Then the requiremenwill be thrown out.
Finally the test casg, will get selected to cover the requiremesgt
Thus, the minimized suite generated by this heuristic ctesif 4

test cases,, t2, t3 andts . This example points out the drawback
of this greedy heuristic. The redundant test caswas selected
because the decision to selecivas made too early. The choice of
picking ¢t; before picking any of the other test cases seemed a good
decision at the time when was selected, however, it turned out to
be not the best choice for computing the overall minimal sede.

The optimally minimized test suite for this example has dhtest
casego, t3 andts. The above classical greedy heuristic algorithm
[5, 6] primarily exploits theimplications among the test cases to

identify redundant test cases and exclude them from fuxtber
sideration.

Another heuristic (referred to as HGS algorithm from here on
wards) to minimize test suites was developed by Harrold,t&up
and Soffa in [8]. Given a test suifE and a set of testing require-
mentsri, 2, - - -, T that must be exercised to provide the desired
testing coverage of the program, the technique considersuibsets
Ty, Ts, - - -, Ty, of T' such that any one of the test cagedelong-
ing to T; can be used to test. The HGS algorithm first includes
all the test cases that occurTiy's of cardinality one in the repre-
sentative set and marks 4dl}'s containing any of these test cases.
ThenT;’s of cardinality two are considered. Repeatedly, the test
case that occurs in the maximum numbef P of cardinality two
is chosen and added to the representative set. All unmafked
containing these test cases are marked. This process &tedder
T;'s of cardinality 3, 4, - -, max, wheremazx is the maximum car-
dinality of theT;’s. In case there is a tie among the test cases while
consideringT;’s of cardinalitym, the test case that occurs in the
maximum number of unmarkef’s of cardinalitym + 1 is chosen.

If a decision cannot be made, tfig's with greater cardinality are
examined and finally a random choice is made. Let us condider t
example in Table 2. Each row in Table 1 shows the requirements
exercised by that test case. In this examfile= {t1,t2}, T> =
{t1,t3}, Ts = {t2,ts,ta}, Tu = {ts,ta, 5}, T5 = {t2,t6, 17}
Since there is n@’; of cardinality one, the HGS heuristic considers

Table 2: Another Example showing the requirements exer cised
by test casesin atest suite.

[[rlra[rs]ra[rms]

X X
X

X

X
X

XXX

X
X

T1 andT; (each with cardinality two) and selects the test dase
Next, T5, T» andT5 (each with cardinality three) are considered.
The tie betweern., t; andt, is broken arbitrarily say in favor of
selecting the test cage. Now onlyr, remains to be exercised, i.e.
Ty is still unmarked. Any of test cases, t4 or t5 can be selected
at this stage. Let us say is now selected. Thus, the reduced test
suite selected by the HGS heuristic for this examplé és, 2, t3

}. However, the requirements exercisedibyre also exercised by
to andts and hence the test caseis redundant. This redundant
test case was selected because the decision to ¢eleels made
too early.

Agrawal [1, 2] used the notion of dominators, superblockd an
megablocks [1, 2] to derive coverage implications amondtsc
blocks to reduce the coverage requirements for a programi- Si
larly, Marre and Bertolino [13] use a notion of entities sufption
to determine a reduced set of coverage entities such thatams
of the reduced set implies the coverage of the un-reducedlsese
works [1, 2, 13] exploit only thémplications among the coverage
requirements to generate a reduced set of coverage requirements.

We explored the concept analysis framework in an attempgto d
rive a better heuristic for test suite minimization. Cortcapalysis
[3] is a technique for classifyingbjects based upon the overlap
among theirattributes. We viewed each test case in a test suite
as an object and the set of requirements covered by the st ca
as its attributes. We observed that the concept latticesapthe
implications among the test cases in a test sagtevell asthe im-

plications among the requirements covered by the test. sTiites,
it presented a unified framework to identify steps of a nevedye
test suite minimization algorithm that iteratively exptothe im-
plications among the test casaxl the implications among the re-
quirements to reduce the context table. Although the stépsiro
algorithm were inspired by the concept analysis framewwoekim-
plemented the steps directly on the original context tatlelf as
Table 1) that provides the mapping between the test casethand
requirements covered by each test case in the un-minimiziésl s
As a result, we developed a new polynomial time greedy alyori
that produces same size or smaller size reduced suites almfhe
sical greedy heuristic [6, 5]. Our algorithm generates thinaal
size minimized suites for examples in Tables 1 and 2. We call o
algorithm asDelayed-Greedy since it postpones the application of
the greedy heuristic as opposed to the classical greedyithigo
which applies it at every step. We implemented our algorigmd
conducted experiments with the programs from the Siemeites su
[10, 11] and thespace program [11]. In our experiments, our al-
gorithm always produced same size or smaller size redudtsssu
than prior heuristics. The important contributions of tlaper are:

e A new greedy heuristic algorithm callddelayed-Greedy,

that is guaranteed to obtain same or more reduction in the tes
suite size as compared to the classical greedy [5, 6] h&urist

In our experiments, Delayed-Greedy always produced same
size or smaller size reduced test suites than prior heesisti
for test suite minimization.

The time performance of Delayed-Greedy was found to be
comparable in our experiments and it always produced same
or more number of optimally reduced test suites than other
heuristics.

The organization of this paper is as follows. In section 2, we
show how concept analysis framework guided us to developva ne
algorithm for test suite minimization. In section 3, we dése our
Delayed-Greedy algorithm for test suite minimization. \Wesgnt
our experimental results in section 4 and discuss the celabek
in section 5. Finally, we summarize the results in section 6.

2. CONCEPT ANALYSISANDTEST SUITE
MINIMIZATION

Concept Analysis is a hierarchical clustering technigquef¢8
objects with discrete attributes. The input to conceptyamiglis a
set ofobjects O and a set oéttributes A, and a binary relatiof® C
O x A called thecontext which relates object to their attributéko
analyze the test suite minimization problem using concept analysis,
thetest cases can be considered asthe objects and the requirements
as their attributes. The coverage information for each test case is
the relation between the objects and the attributes. We now have a
context that can be analyzed using a concept analysis frarkew
Let us consider the test suite minimization for the contekid¢
(same as in Table 1) in the example shown in Figure 1.

Concept Analysis identifies maximal groupings of objectd an
attributes callectoncepts. A concept is an ordered paftX,Y’)
whereX C O is a set of objects antl C A is a set of attributes
satisfying the property that is the maximal set of objects that are
related to all the attributes it andY is the maximal set of at-
tributes that are related to all the objectsXin For example, the set
{t1, ts3} is the maximal set of test cases that covers the requirement
r2. This is shown by concept; in the table on the right in Fig-
ure 1. Similarly,{¢.1} is the maximal set of test cases that covers
all of the requirements, r2, r3. This is shown by the concept
¢z in the table on the right in Figure 1. The concepts form a par-
tial order defined as follows. For concefs:, Y1) and (X, Y2),

[[rlrafrs]rafrs]7e]

1 [X XTX

to | X X

ts X X

ta X X
ts

[Concept] (Objects,Attributes) |

TOP ({t1,t2,t3, ta, t51.,{})
c1 ({t2}{r1,ma})

c2 {t1}{r1,r2,73})

cs ({ta}{rs,me})

ca ({ts}dr2,75})

cs ({t1,t2}{r1})

cs ({t1,ta}irs})

cr ({t1,ta}ir2})

cs ({ts, ts}{rs})
BOT ({}1{7'177'277"377"477'577"6})

Figure 1. Context table, concept lattice and the table of concepts.

(X1,Y1) <r (X2,Y2) iff X1 C X,. For example, in Figure 1,
c2 <g c7 since{t1} C { t1, t3}. This partial order induces a com-
plete lattice on the concepts, called tt@cept lattice. The top
(bottom) element of the lattice is the concept with all th¢eots
(attributes) and none of the attributes (objects).(Xf;, Y1) and
(X2,Y>) are two concepts such th@ki, Y1) <gr (X2,Y2), then
X7 C X2 andY; D Ys. The concepts (maximal groupings) with
their respective objects and attributes and the concdjuddor the
example being considered are shown in the Figure 1.

For every objecb € O, there is a unique smallest (with respect
to <g) concept in which it appears. This concepthe smallest
concept foro, is labeled with o. For example, in Figure 1, the con-
ceptes is labeled witht; and¢; also appears in; sinceca <gr c7.
Analogously, for every attribute € A, there is a unique largest
concept in which it appears. This conceft, the largest concept
for a, is labeled witha. For example, in Figure 1, the concept
cs is labeled with the attribute; andr; also appears in; since
c1 <gr cs. Given such a labeling of the lattice, we define the fol-
lowing two implications.

Object Implication: Given two object®,02 € O, 01 = o2 iff
Va € A, (o2 R a) = (o1 R a). Such an implication can be
detected from the lattice as follows. The implication = o2 is
true if the conceptabeled with 01 occurslower in the lattice than
the concept labeled with, and the two concepts are ordered. In
this case, all the attributes covered dyare also covered by; .

In other words, for two objects; andos, if o1 = o2 then the
row corresponding to the objeet can be safely removed from the
context table without affecting the size of the minimal sattf test
suite that covers all the requirements. We refer to this estifect
reduction rule.

In Figure 1, the concept, is labeled with the test cage and
the concepts is labeled with test casg. Sincecy occurs lower in
the lattice tharnes, therefore there is an object implication=- 5.
This means selecting makests redundant with respect to cover-
age. Indeed this is the case as can be seen from the contkxt tab
since the set of requirements coveredibyis a subset of the re-
quirements covered by. Therefore, the row corresponding o
can be safely removed from the context table. The contele tab
Figure 2 shows the row fds removed from the table by applying
the object reduction rule.

Attribute Implication: Given two attributesii, a2 € A, a1 =
az iff Yoe€ O, (0 Rai) = (o R az). An attribute impli-
cation can be detected from the lattice as follows. The icaibn
a1 = asz is true if the conceplabeled with a; occurslower in the

lattice than the concept labeled with and the two concepts are
ordered. In this case, the column corresponding to théateii,
can be removed from the context table since coverage @fould
also imply coverage af,. In other words, the requiremedt can
be safely removed from the context table without affectimg ap-
timality of the solution. We refer to this adtribute reduction rule.

In the lattice in Figure 1, the conceptis labeled with the attribute
r4, and the concepts is labeled with the attribute;. Sincec;
occurs lower in the lattice thas, there is an attribute implication
r4 = r1. This means if the requirement is covered by some test
case and this test case is selected, then the coveragesraguirfor
attributer; becomes redundant since it is also covered by this test
case. From the context table we can see that it is indeedhatiéot
coverry we need to select the test caseand thatt, also covers
r1. Therefore, the column for; can be safely removed from the
context table. Similarly, the column forz can be removed from
the context table since coveragergfimplies the coverage ofs.

The context table in Figure 2 shows the reduced table after re
moving the columns corresponding t@ andrs by applying the
attribute reductions and after removing the row ferby apply-
ing the object reduction. The corresponding concept tied the
table of concepts for the reduced context table are also rslow
Figure 2. Note that as a result of the above attribute reduostia
new object implicationts = ¢; is exposed in the reduced context
table in the Figure 2. Applying this reduction removes the ro
for ¢; from the context table shown in Figure 2 and the resulting
context table is shown in Figure 3.

In the example in section 1, the classical greedy [5, 6] lseuri
tic removedts from the un-minimized suite but it was not able to
identify that coverage of, andrs implied the coverage af; and
r3 respectively. In contrast, the techniques in [1, 2, 13] béllable
to exploit the above attribute implications, however theyndt ex-
ploit the implications among the test caselhus, we noted that
the classical greedy heuristic exploits only the object implications
during minimization and it misses the additional opportunities for
minimization enabled by the attribute implications. Smilarly, the
techniquesin[1, 2, 13] exploit only the attribute implications and
mi ss the opportunities for reduction enabled by the object implica-
tions. Note that we were able to make the above critical observation
only because the concept analysis framework exposed thise d
ferent types of implications simultaneously in a singlerfeavork
namely the concept lattice.

Owner Reductions: We define thestrongest concepts of the lat-
tice as the ones that are immediately above the bottom cboéep
the lattice. In the lattice shown in Figure ds, c2, c3 andcy are

[_[r2a]rafrs s]
7] X
ta X
ts | X X
ta X

[Concept| (Objects,Attributes)|

TOP ({t17t27t37t4}'{})
c1 ts}{ra,r5})
c2 ({t2}.{ra})
cs ({ta}{re})
ca ({t1,t3},{r=2})
BOT ({}1{7'277'477'577"6})

Figure 2: Reduced context table, concept lattice and table of concepts after applying object reduction ¢t3 = t¢5 and attribute reduc-

tionsrs = r3 and r4 = r; to context tablein Figure 1.

[Ir2a]rafrs 7]

ts | X X
ta X

[Concept] (Objects, Attributes))

TOP ({t27 t37 t4}1{})
c1 {ts}{ra,75})
ca ({t2}{ra})
cs ({ta}{re})

BOT ({},{7’2,1”4,1”5,7‘6})

Figure 3: Reduced context table, concept lattice and table of concepts after applying object reduction ¢35 = ¢; to context Tablein

Figure 2.

the strongest concepts. If any strongest coneegitthe lattice is
labeled with an attributes then it implies that a test case in the con-
cepts must be chosen in order to cover that attribute. Sinds a
strongest concept andliabeled with attributea, only the test cases
contained in the object set efcovera. So, a test case inhas to

be selected to cover attribute We refer to this as thewner re-
duction rule. For instance, by applying the owner reductions to the
table in Figure 3, we get an empty table and we are done. Tows, f
this example our algorithm generates the optimal size mi@ch
test suite{tz, t3, ta}.

In [15], Sampath et. al presented a concept analysis baged al
rithm that constructs the concept lattice for the given erntable
and conservatively selects one test case feaoh of the strongest
(they call them next-to-bottom) concepts to generate redtest
suites. In other words, their algorithm does not consideetiver
the strongest concept iabeled with an attribute or not. This can
result in selecting test cases that are redundant with cespeov-
erage of additional requirements beyond those alreadyreduzy
the previously selected test cases. For example, for thexon
table and the corresponding concept lattice in Figure 1r, #igo-
rithm will select one test case each frem cz2, c¢s andcs and this
will result in the reduced test suitgs, t1, t4, t3}. The test case
t1 is redundant since the attributes covered by test casesane
covered by the test cases in the other strongest concepts.

It should be noted at this point, thtte attribute, object and
owner reductions always preserve the optimality of the solution for

the context table. However, this may not be the case in genera

since the next step that uses greedy heuristic would beeapifli
the table is not empty and none of the above reductions asemtre
in the lattice, namely an interfering lattice.

Interferenceis said to be present in a concept lattice if for any con-

cepte, there are at least two conceptsandc; such that <g ¢;
andc <r ¢; andc; andc; are the neighbors af in the lattice.
In a lattice with interference, there are no object or atitetimpli-
cations and also, no strongest concepts are labeled withuats.
Now we apply the greedy heuristic to select the test casecthat
ers maximum requirements in the table and add it to the magchi
suite. We remove the row corresponding to this test case fhem
context table and remove the requirements covered by gtisase
from the table. As a result of these modifications to the odnte
table, some new object reductions may be enabled.

Since we delay applying the greedy heuristic to the pointrwhe
no object, attribute or owner reductions can be applied, eferr
to our algorithm derived from the above discussionDessayed-
Greedy. In contrast, the classical greedy algorithm [5, 6] applies
the greedy heuristic at every step. Note that our algorithguiar-
anteed to achievaet least as much reduction of the test suite size
as possible using the classical greedy algorithm [5, 6]. tNex
present the steps of Delayed-Greedy algorithm in detail.

3. OURDELAYED GREEDY ALGORITHM

The concept lattice helped us develop the steps of our #hgori
in terms of different reduction rules. Now that we know thpey
of implications we need to look for in the lattice or the cott-
ble, we can realize this algorithm by looking for these irogtions
directly in the context table rather than constructing tbacept
lattice. Thus, we derive a new test suite minimization atpor
with worst case polynomial time complexity in terms of theesof
the context table. The outline of our Delayed-Greedy atboriis
given in Figure 4.

Step 1: Reducingthesize of context tableby applying object re-
ductions. An object implication exists in the context table if there
are two test cases (rows)andt; such that the set of requirements

covered byt; is superset of the set of requirements covered y
This can be found directly from the context table by compathre
sets of requirements covered by every pair of the rows indhe t
ble. In this case row correspondingttois removed from the table.
This is the application of object reduction rule to the cantable.
Reducing the context table by exploiting object implicatiacan
result in exposing new owner and attribute reductions.

Step 2: Reducingthe size of context table by applying attribute
reductions. An attribute implication exists in the table if there are
two requirements; andr; such that set of objects that coweris
asubset of the set of objects that covej. In this case any test case
that coversr; will also coverr;. Therefore, the requiremen is
removed from the context table. This is the application tflatte
reduction rule to the context table. The attribute implmas are
also found directly from the table by comparing the objexts of
each of pairs of requirements (columns). Notice that afteraext
table is reduced by applying attribute reductions, additimbject
implications that enable further reduction of the contexté may
be exposed.

Input: Contexttable for given test suite T.
Output: Set of test cases in minimized suifg, i, .
procedure Delayed-Greedy(Contexable)
Tmin=empty;
while (Contexttable£ empty)do
finter=false; detectinter=0;
while not(finter)and (Contexttable# empty)do
finter=true;
For eachobject implication o; = o; do
Remove row for test casg from Contexttable;
finter=false;
endfor
For eachattribute implication r; = r; do
Remove column for requirement from Contexttable;
finter=false;
endfor
For each attribute,, resulting in arowner reduction do
Remove row for test cagethat covers requirement.;
Remove columns for attributes covered by test ¢ase
finter=false;
endfor
endwhile
Step 4:
if (Contexttable# empty)then

Step 1.

Step 2:

Step 3:

Lett be test case picked using greedy coverage heuristic.

Remove row for test cagerom the Contexitable;
Remove columns for attributes covered by test ¢ase
Tmin = Tmin U {t}; detectinter=1,;
endif
endwhile
if (detectinter=0}hen
report minimized test suité),.,, is of optimal size.
else
report interference encountered.
endif
return(Cmin)
endprocedure

Figure 4: Delayed-Greedy algorithm
Note that we need to compare entries in every pair of rows(onk)

to find object(attribute) implications only for the first #nmn the be-
ginning of the algorithm. Every time an object(attributedluction

is applied, the context table is updated by removing thesspond-
ing row(column) from the table. Note that after the tablepdated
by removing a column(row), only the rows(columns) effecbsd
the removed column(row) need to be checked for objectfate)
implication. Thus, after each reduction, we do not have tm-co
pare all the rows(columns) with each other to find a possible o
ject(attribute) implication. This contributes signifityrto the ef-
ficiency of our algorithm.

Step 3: Reducing the size of context table and selecting a test
case using owner reduction. If there exists an attribute; that is
possessed only by one objegt we addo; to the solution set and
removeo; and all attributes covered hy; from the table. Owner
reductions may expose new object reductions which candurt
duce the size of the context table and thus delay the need-to ap
ply the greedy heuristic. Note th#te attribute and object reduc-
tions merely reduce the size of the context table by removing re-
dundant attributes and objects from further consideration, whereas
the owner reduction also chooses a test case to be in the minimized
suite.

In each iteration of the algorithm, the owner reductionecel
those test cases that would eventually have to be includéhakein
selected suite since they cover attributes not covered togr dést
cases in the context table. Therefore, the requiremenered\by
these test cases are removed from further considerationevto,
in the classical greedy algorithm, selection of some testsa@or-
responding to owner reductions may be postponed to a latge st
if they cover a small number of requirements. This may result
selection of some test cases early on by the classical grdgdy
rithm that may become redundant due to test cases seletted la

Step 4: Removing theinterference by selecting atest case using
the greedy heuristic. We choose the object that possesses the most
number of attributes and add it to the selected set. We bleak t
ties by as follows. For each attribute covered by each obyeet
compute the number of other objects that cover this at&ibue
select the object covering an attribute that is least caveseall
other objects. The reason for this strategy to remove imtentce

is that if a test case covering maximum attributes is sefedtee
solution would be at least as good as that obtained by thsictds
greedy [5, 6] heuristic. The row corresponding to the sekktest
case and the columns corresponding to all the attributesredv
by it are removed from the context table. This could give tse
further possible reductions of the context table by exmpsiaw
object implications. The variabkéetect Inter is set to indicate the
greedy heuristic was used in the reduction. It is due to thigiktic
the final solution may not be optimal. Note that lattices with
interference give optimal solutions to the test suite min&tion
problem. The algorithm terminates when the context tatdenigty.

4. EXPERIMENTS

We implemented our Delayed-Greedy heuristic (DelGreaty),
classical Greedy heuristic, the HGS [8] algorithm and theSHPM
[15] algorithm asC' language programs. SMSP algorithm com-
putes the reduced suite by selecting one test case each limm t
strongest concepts. For implementation of the SMSP algurit
we computed the strongest concepts directly from the comdex
ble. We conducted experiments with the programs in the Sieme
test suite [10, 11] and thepace program [11] to measure the extent
of test suite size reduction obtained by the above four bgcsi

We obtained these programs and their associated test powois f
the the Subject Infrastructure Repository website [11]. g&feer-
ated the instrumented versions of these programs usingLiiielL
infrastructure [17] to record the branch/def-use coveiafggrma-

Table 3: Experiment Subjects

Prog. loc. Avg. size of Total No. of
un-minimized suite requirements
Branch Cov. [Def-use Cov. || Branches] Def-use pairs
space | 6218 533 539 1356 5179
tcas 138 20 21 41 51
print 402 64 66 127 275
tokens
print 483 77 79 154 235
tokens?2
schedule| 299 46 46 84 148
replace 516 83 108 155 759
totinfo 346 53 53 83 287

tion for each test case. The instrumented version genebstéue
LLVM infrastructure for theschedule2.c program resulted in seg-
mentation faults when executed with test cases (whereasrthe
instrumented version executed fine for the same test caBesje-
fore, we conducted experiments with teace program and the
remaining six programs in the Siemens suite. From the test po
for each program, we created 100 branch (def-use pair) ageer
adequate test suites as follows. For each program, for emth t
suite, 10%-20% (5%-10% for the Space program since it i®)arg
of the line of code test cases were randomly selected frortetite
pool, together with additional test cases as necessaryhiewac
100% coverage of branches (def-use pairs). The numberesf tifi
code, test pool size, average size of the un-minimized téstssfor
branch/def-use coverage and the total number of branafesée
pairs in each program are shown in Table 3. We minimized efch o
these test suites using each of the above test suite mirtionizal-
gorithms and recorded the size of the minimized test suitetiame
taken by each algorithm to minimize the test suite.

4.1 Resultsand Discussion

The average sizes of reduced suites produced by DelGreedy fo
each of the programs are shown in Table 5. In our experiments,
for each test suite for each program, the size of minimizetd su

Also note from the Table 5 that the average sizes of redustd te
suites produced by DelGreedy are quite small and therdferdif-
ferences of sizes 1, 2, 3, , , 9 etc. in the reduced test suites p
duced by the other algorithms and DelGreedy are quite stgmifi
In our experiments, on an average, for branch coverage ateequ
suites, DelGreedy produced smaller size suites than Gré#ag
and SMSP in 35%, 64% and 86% of the cases respectively. On an
average, for def-use coverage adequate suites, DelGreediyged
smaller size suites than Greedy, HGS and SMSP in 39%, 46% and
91% of the cases respectively.

Table 6: Number of Optimal size (#Opt) and Non-Optimal size
(#Non-Opt) test suites produced by each algorithm and time
performance

Prog. Algo. Branch Coverage Suites Def-Use Coverage Suites

#Non- #Opt. #Un- Time #Non- #Opt. #Un- Time
Opt. | Dec. (sec) Opt. | | Dec. (sec)
space DelGreedy - 92 8 737 - 99 1 1.912
Greedy 100 0 0 444 100 0 0 1.932
HGS 96 4 0 .307 93 7 0 .666

SMSP 100 0 0 - 100 0 0 -
tcas DelGreedy - 68 32 .006 - 96 4 .006
Greedy 43 37 20 .004 32 65 3 .004
HGS 42 39 19 .002 2 94 4 .001

SMSP 100 0 0 - 100 0 0 -
print DelGreedy - 71 29 .006 - 92 8 .011
tokens Greedy 18 62 20 .005 22 70 8 .009
HGS 57 35 8 .006 30 66 4 .008

SMSP 100 0 0 - 100 0 0 -
print DelGreedy - 84 16 .010 - 80 20 .011
tokens2 Greedy 14 70 16 .007 38 50 12 .010
HGS 51 29 20 .007 52 40 8 .008

SMSP 100 0 0 - 100 0 0 -
schedule | DelGreedy - 99 1 .003 - 91 9 .006
Greedy 0 99 1 .003 0 91 9 .004
HGS 63 36 1 .006 38 56 6 .008

SMSP 1 99 0 - 34 66 0 -
replace DelGreedy - 53 47 .011 - 94 6 .027
Greedy 51 25 24 .006 78 11 11 .021
HGS 67 17 16 .006 71 28 1 .020

SMSP 100 0 0 - 100 0 0 -
totinfo DelGreedy - 46 54 .004 - 88 12 .010
Greedy 16 32 52 .004 2 87 11 .009
HGS 73 11 16 .004 34 58 8 .008

SMSP 99 1 0 - 100 0 0 -

Recall that unlike HGS, Greedy and SMSP algorithms, our Del-
Greedy algorithm can identify that a reduced suite is ofroptisize

generated by DelGreedy was of the same size or of smaller sizeif it was produced by using only the object, attribute and enne-

than that generated by the other algorithms. Thereforeuhsprs

in Table 4 show for each program, fbow many test suites (out

of total 100), the difference between the size of reduceid qub-
duced by other algorithm (Greedy, HGS or SMSP) and the size of
reduced suite produced by DelGreedy was equal to 0, 1, &;.3ret
other words, it shows thigequency with which the reduced suites
for other algorithms were same size, larger by 1 test casgerla

ductions. For each row labeled with DelGreedy in the Tabkh®,
column labeled #Opt shows the number (out of total 100) of re-
duced suites identified as of optimal size by DelGreedy. Dhesr
corresponding to other algorithms for this column show, How
many of those suites identified as of optimal size by DelGyedid

the algorithm compute same size suite as DelGreedy. Thencolu
labeled with #Non-Opt shows for how many test suites therothe

by 2 test cases, , , , larger by 9 test cases, etc. when comparedhlgorithms produced larger size test suites than thoseupeatiby

with the size of reduced suites produced by DelGreedy. Feor ex
ample, for the minimization of branch coverage suites fertths
program, the number 41 in the column labeleahd in the row cor-
responding to the Greedy algorithm shows that there weres<tl t
suites (out of total 100) for which the minimized suite by €ag
algorithm contained 1 more test case than the correspomding
imized suite generated by the DelGreedy algorithm. TheéTabl
shows that DelGreedy, Greedy and HGS achieved more suée siz
reduction than SMSP and that DelGreedy can go even further th
Greedy and HGS algorithms in producing smaller size suites.

Table5: Average size of minimized suite by DelGreedy

Program Branch Coverage] Def-Use Coverage|
space 123 143
tcas 4 4
print-tokens 6 7
print-tokens2 4 8
schedule 2 2
replace 9 26
totinfo 2 5

DelGreedy. In these instances, it was clear that other itihgos
generated non-optimal size suites. The data for this colcanrbe
computed by subtracting from 100, the number in the cormedpo
ing row under the column labeled with 0 in Table 4. The column
labeled with O in Table 4 shows the number of test suites fackwh
the respective algorithm computed the same size suitesoas th
produced by the DelGreedy. Therefore, subtracting thisbarm
from 100 gives the number of test suites for which the algamit
definitely computed non-optimal size suite. The column ledbe
with #Un-Dec. in Table 6 shows, for each respective row, than
ber of test suites for which it could not be determined if tduced
suite was of optimal size or not. This can be computed for eawh
by subtracting from 100, the number test of suites that wefe d
nitely reduced to optimal size (#0pt.) and the number ofdesées
that were definitely reduced to non-optimal size (#Non-Dpt.

Note that for each row corresponding to algorithms Gree@®@SH
and SMSP in Table 6, the sum of the entries under the columns la
beled #Opt. and #Un-Dec. is equal to the corresponding entry
under the column labeled 0 in Table 4. For example, for reduc-

Table 4: Frequency of (sizeof Tmin by Algo. - sizeof Tmin by DelGreedy) for Branch cover age and Def-Use cover age test-suites

frequency of ('size of Tmin by Algo. - size of Tmin by DelGreedy) frequency of ('size of Tmin by Algo. - size of Tmin by DelGreedy)
Prog. Algo. Branch Coverage Suites Def-Use Coverage Suites
0 JT1J2[3J4]5]6]7]8[]9T[>9 0 T1[2[3J4]5]6]7[8[]9T]>9

space Greedy| O 4 10| 20| 22| 22 | 12 8 2 - - 0 1 5 19| 17| 24| 16| 8 6 1
HGS 4 19| 22|18 18| 10| 5 3 1 - - 7 20 16| 14| 9 4 2 4 - -
SMSP 0 0 0 0 0 0 0 0 0| 0| 100 0 0 0 0 0 0 0 0 0 | 100
tcas Greedy | 57 | 41| 2 - - - - - - - - 68 | 30 - - - - - - - -
HGS 58 | 36| 6 - - - - - - - -
SMSP 0 0 0 0 5 6 11| 10 | 13 | 18 37 0 1

1 - - - - -

1

28 15| 14| 7 1

print Greedy | 82 | 17

oR woowoonolR w
)
o

tokens HGS 43 | 36 5| 4 2 - - 70 | 22 2 -
SMSP 0 0 0 0 0 0 2 3 2 2 91 0 0 0 0 0 1 2 5 7 85
print Greedy | 86 | 14 | - - - - - - - - - 62 | 34 1 - -
tokens2 HGS 49 44 | 17 0 - - - - - - - 48 | 34 3 -
SMSP 0 0 0 2 1 0 0 1 1 1 94 0 0 0 0 1 1 2 0 0 96
schedule| Greedy | 100 | O - - - - - - - - - 100 | - - -
HGS 37 | 48| 14| 1 - - - - - - - 62 | 32| 6 -
SMSP | 99 0 1 - - - - - - - - 66 | 19| 12| 2 1
replace | Greedy | 49 | 45 | 4 2 - - - - - - - 22 [36[38] 10 3 1
HGS 33 | 37 | 27 3 - - - - - - - 29 |41 24| 5 1 - - - - - -
SMSP 0 0 0 0 0 0 0 0 0 1 99 0 0 0 0 0 0 0 0 0 0 100
totinfo Greedy | 84 | 16 | - - - - - - - - - 98 2 - - - - - - -

HGs | 27 | 47| 20| 5 | 2 | - | - | - -|-1] - ||[e6|20| a2 |-1|-|-|-1]-1-]/-
sSMSP | 1 | 2|8 |12|20|12]|17|12| 9| 4| 3 o |ojojo|1|2]2]7|11]12] 6865

ing the branch coverage suites for tleplace program, intherow 5. RELATED WORK

corresponding to the Greedy algorithm, the sum of entri@eun Finding the minimal cardinality subset of a given test sthitat
the columns labeled #Opt. and #Un-Dec. is 25+24=49 which is covers the same set of requirements as covered by the drigata
same as value in the corresponding row under the columnedbel g ite is NP complete. This can be shown by a polynomial time re
with O in the Table 4. Therefore, for 24 test suites in which th qyction from theminimum set-cover [7] problem. Therefore, sev-
DelGreedy and Greedy computed same size suites, we could notgrg| heuristics have been developed to compute a solutigristf

determine if the size of the reduced suite is optimal sindd@se the size as close as possible to the optimal size solutionlag c
cases DelGreedy needed to use the greedy heuristic. Houféwer sjcal approximation algorithm for the minimum set-covestgem
each of these cases, if the Greedy algorithm had actuallypuoted by Chvatal [5, 6] uses a simple greedy heuristic. This héaris

an optimal size suite, then DelGreedy would have also coesput pjcks the set that covers the most points, throws out all tiet
optimal size suite since both computed the same size reduttd covered by the selected set, and repeats the process Untieal

for these 24 test suites. Therefore, if it was the case thatetest points are covered. When there is a tie among the sets, one set
suites counted in the undecided column (#Un-Dec.) for thecar- among those tied is picked arbitrarily. This algorithm hastbthe
responding to Greedy algorithm foeplace program indeed were most commonly cited solution to the minimum set-cover peabl
reduced to the optimal size by Greedy algorithm, then $téldif- and an upper bound on how far it can be from the optimal size so-

ference in the number of optimal suites computed by DelGreed |ytion in the worst case has been analyzed in [6]. This htaris

and Greedy would be unchanged (53+24) - (25+24) = 53-25=28. exploits only thamplications among test cases to determine which
Therefore, the difference between the value of #Opt shown in test cases become redundant while reducing a test suitethémo

the Table 4 for an algorithm (Greedy, HGS or SMSP) and the cor- greedy heuristic, based on the number of test cases coveriag

responding value of #Opt shown for DelGreedy givesrtivemum quirement, was developed by Harrold et al.[8] to select ainmah
difference between the total number of optimal size suites gener- subset of test cases that covers the same set of requireasethts
ated by Del Greedy and the respective other algorithm. The Table 6 un-minimized suite.

clearly shows that DelGreedy can find significantly more nemb Agrawal used the notion of dominators, superblocks and mega
of optimal size reduced suites than the other algorithmge Mt blocks [1, 2], to derive coverage implications among théddaiscks
we were able to do the above analysis without having to coenput o reduce test suites such that the coverage of statemehisamches
the optimal size sulites for each of the test suites by ustigiques in the reduced suite implies the coverage of the rest. Silyila
like enumeration of suites which can run in exponential tiffleis Marre and Bertolino [13] use a notion of entities subsunptio

analysis was made possible because of the property of Deti§re getermine a reduce set of coverage entities such that geefahe
to identify optimal size reduced suites in the cases wherrghe (educed setimplies the coverage of un-reduced set. Theks o
duced test s:uiFe could be generated without the need to dpply 2 13] exploit only themplications among coverage requirements
greedy heuristic. to generate a reduced set of coverage requirements.

_ Finally the column labeled with Time in 6 shows the average | contrast to the above work, our approach iteratively @itpl
time taken by each algorithm iseconds to reduce test suites for the implications among the coverage requirements (ateiteguc-
each program. The time of SMSP is not shown as the implementa- tjons)and the implications among the test cases (object reductions),
tion in [15] used a concept analysis tool to build the conéafice in addition to the owner reductions, to derive a reducedesasitd
to find the strongest concepts. However, we found the steinge applies the greedy heuristic only when needed. This is irash
concepts directly from the table without building the legti Since to the classical greedy algorithm which applies the greedyiktic
we used a different implementation to compute the same size r 4t every step. Thus, our Delayed-Greedy algorithm is gteeah
duced test suite as computed by SMSP, we have not given tee tim {5 generate reduced suites that are of the same size or ssiatle
performance for SMSP. The Table 6 shows that the runningdime than those generated by the classical greedy algorithnssenee,
DelGreedy is comparable to other algorithms. while exploring a solution to the test suite minimization problem,

we have discovered a new algorithm for the minimum set-cover

7. REFERENCES

problem. Although, it does seem surprising that this algorithm has [1] H. Agrawal, “Dominators, super blocks, and program

not been discovered before in various contexts in which the m

imum set-cover problem may arise, it is easy to see that we wer

able to exploit different types of implications present lire tcon-
text table because we started to analyze this problem watheip
of concept analysis which exposed these different typempfii

cations simultaneously in a single framework namely theceph
lattice. Since the concept lattice is derived from the cxiriizble,
all the desired implications can be derived directly frora ton-
text table, and this led to the development of our DelayeeleGy
algorithm.

Sampath et. al [15] have presented a concept analysis bgsed a
rithm (SMSP) for reducing a test suite for web applicatiohkey
consider the URLs used in a web session as the attributesaahd e
web session as a test case. In this work, one test case frénmogac
the strongest concept in the concept lattice is selectedrtergte a
reduced test suite to cover all the URLs covered by the ucestiu
suite. As shown in our experiments and in their recent refi6it
the reduced suites produced by their approach are in gdaegalt
than those produced by applying the classical greedy dhgornd

coverage,21st ACM S GPLAN-S GACT symposium on
Principles of Programming Languages, Portland, Oregon,
1994.

[2] H. Agrawal, “Efficient Coverage Testing Using Global
Dominator Graphs,”1999 ACM SSGPLAN-SGSOFT
\Workshop on Program Analysis for Software Tools and
Engineering, Toulouse, France, 1999.

[3] G. Birkhoff Lattice Theory, volume 5, American
Mathematical Soc. Colloquium Publications, 1940.

[4] J. Black, E. Melachrinoudis and D. Kaeli, “Bi-Criteriaddels
for All-Uses Test Suite Reduction26th | nternational
Conference on Software Engineering, Edinburgh, Scotland,
UK, 2004

[5] V. Chvatal. “A Greedy Heuristic for the Set-Covering
Problem.”"Mathematics of Operations Research. 4(3), August
1979.

[6] T.H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein
“Introduction to Algorithms”,MIT Press, Second Edition,
September 2001.

the HGS algorithm to reduce a set of web user sessions. In our[7] M.R. Garey and D.S. Johnson, “Computers and

experiments, Delayed-Greedy algorithm always producedleny
smaller test suites than classical greedy algorithm [6tH&] HGS
algorithm [8] and the SMSP [15] algorithm.

The works in [14, 18] study the effects of test suite minimiza
tion on the fault detection capabilities of the reduced seges. In
[14], the HGS [8] algorithm is used for minimization of tesiites
selected from the Siemens suite [10] test pools. The teds fjoo
the Siemens suite were generated to cover a wide range afeequ
ments derived from black box testing techniques, white leght
niques, and skills and experience of the researcher gangthe
test cases. Thus, the quality of the test suites selected thiese
test pools is high as they contain test cases to cover a widgera
of requirements. Therefore, in the experimental studiperted in
[14], a significant loss in the fault detection capabilitytib& min-
imized suites was observed. In contrast, the experimentdies
in [18] used ATAC [9] system to compute optimally minimizexbt
suites from the randomly generated test suites. They cdachat
minimization techniques can reduce the test suite size teat gx-
tent without significantly reducing the fault detection abjities of
test suites. Although, these two studies seem to be cootoagi
we believe that the fundamental reason for the differentkemions
obtained in these two studies is the quality of the initiat ®uites
used in detecting the faults experimented with.

Jones and Harrold have recently presented [12] some Hesrist
to minimize test suites specifically tailored for the MC/D@ver-
age criterion. However, our work presented in this papeoiigéd-
ducing a test suite with respect to set of requirements wtaictd
be derived from any coverage criterion or a combination fiédi
ent criteria. The only input to our algorithm is the contexble
which contains the information about the set of requireiment/-
ered by each test case in the test suite.

6. CONCLUSIONS

In this paper we presented a new greedy algorithm (Delayegdy)
to select a minimal cardinality subset of a test suite thaemall
the requirements covered by the test suite. Our technigpeoiras
upon the prior heuristics by iteratively exploiting the ilieptions
and among the test casasd the implications among the cover-
age requirements, leveraged only independently from et ;
the previous work. In our experiments, our technique comstly
produced same size or smaller size test suites than prioisties.

Intractability-A Guide to the Theory of NP-Completeness,”
Klee, Ed. Freeman, New York, 1979.

[8] M.J. Harrold, R. Gupta and M.L. Soffa, “A Methodology for
Controlling the Size of a Test Suite¥CM Transactions on
Software Engineering and Methodology, 2(3):270-285, July
1993.

[9] J.R. Horgan and S.A. London, “ATAC: A data flow coverage
testing tool for C,” inProceedings of Symposium on Assessment
of Quality Software Development Tools, pages 2-10, May 1992.

[10] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand,
“Experiments on the Effectiveness of Dataflow- and
Controlflow-based Test Adequacy Criteria@th International
Conference on Software Engineering, May 1994.

[11] http://www.cse.unl.edu/galileo/sir

[12] J. A. Jones and M. J. Harrold, “Test-Suite Reduction and
Prioritization for Modified Condition/Decision Coverage,
|EEE Transactions on Software Engineering , 29(3):195-209,
March 2003.

[13] M. Marre and A. Bertolino, “Using Spanning Sets for
Coverage TestingJEEE Transactions on Software
Engineering , 29(11):974-984, Nov. 2003.

[14] G. Rothermel, M.J Harrold, J. Ostrin, and C. Hong, “An
Empirical Study of the Effects of Minimization on the Fault
Detection Capabilities of Test Suitestiternational
Conference on Software Maintenance, November 1998.

[15] S. Sampath, V. Mihaylov, A. Souter and L. Pollock "A
Scalable Approach to User-Session based Testing of Web
Applications through Concept Analysis,” in proceedings of
Automated Software Engineering, 19th International
Conference on (ASE’' 04) Linz, Austria, September 2004,

[16] S. Sprenkle, S. Sampath, E. Gibson, A. Souter, L. Pkjloc
"An Empirical Comparison of Test Suite Reduction Technigjue
for User-session-based Testing of Web Applicatiofiechnical
Report 2005-009, Computer and Information Sciences,
University of Delaware, November 2004

[17] "The LLVM Compiler Infrastructure Project,”
http://llvm.cs.uiuc.edu/

[18] W. E. Wong, J.R. Horgan, S. London, and A. P. Mathur.
“Effect of Test Set Minimization on Fault Detection
Effectiveness.Software Practice and Experience.
28(4):347-369, April 1998.

