

Jockey: A user-space library for record-replay debugging

Yasushi Saito
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2005-46
March 7, 2005*

E-mail: ysaito@hpl.hp.com

Jockey, debugging,
Linux

This paper describes Jockey, an execution record/replay tool for
debugging distributed Linux programs. Jockey is implemented as a
shared object file that is linked to the target program. Jockey rewrites
those system calls and CPU instructions with non-deterministic effects
and records and replays their invocations. It supports diagnosing long-
running programs by taking periodic process checkpoints and enabling
"time travel" to an arbitrary moment of execution. Jockey's performance
overhead is negligible for CPU intensive applications, and 30% in the
worst case of I/O intensive network servers. The implementation of
Jockey is complicated by the fact that Jockey and the target program runs
as a single process, sharing all the resources including the memory and
the file-descriptor table. This paper describes techniques we developed to
ensure deterministic execution record and replay of even buggy
programs.

* Internal Accession Date Only Approved for External Publication
© Copyright 2005 Hewlett-Packard Development Company, L.P.

Jockey: A user-space library for record-replay debugging

Yasushi Saito
Hewlett-Packard Laboratories

ysaito@hpl.hp.com

Abstract

This paper describesJockey, an execution record/replay tool
for debugging Linux programs. Jockey is implemented as
a shared object file that is linked to the target program.
Jockey rewrites system calls and CPU instructions with non-
deterministic effects and records and replays their invoca-
tions. It supports diagnosing long-running programs by tak-
ing periodic process checkpoints and enabling “time travel”
to an arbitrary moment of execution. Jockey’s performance
overhead is negligible for CPU intensive applications, and
30% in the worst case of I/O intensive network servers.
The implementation of Jockey is complicated by the fact
that Jockey and the target program run as a single process,
sharing all the resources including the memory and the file-
descriptor table. This paper describes techniques we devel-
oped to ensure deterministic execution record and replay of
even buggy programs.

1 Introduction

Jockey is a record/replay tool for Linux. It records the ex-
ecution of an ordinary Linux program and later replays it
deterministically. Jockey is designed to help debug interac-
tive or distributed programs, such as FAB [28], that com-
municate with the operating system or other computers in a
complex fashion. Jockey will be publicly available through
http://www.freshmeat.net.

Traditional debuggers, such as gdb, provide compre-
hensive support for debugging single-node, sequential pro-
grams [24], but they are not as useful for distributed or in-
teractive programs [13, 7]. We identify three key problems
and discuss how Jockey alleviates them.

First, the execution of such programs is inherently non-
deterministic. The behavior of each process will diverge,
depending on interactions with the OS, the user, or other
processes. As trivial examples, thetime system call re-

turns values depending on the time of day, and theselect
system call returns values depending on the state of the ker-
nel network buffer at the moment. Jockey helps debug such
non-deterministic programs by recording the execution of
a process, logging every non-deterministic choice made by
the program, and replaying it later as many times as the de-
veloper wishes. Thus, debugging for a non-deterministic
program is reduced to that for a sequential, repeatable pro-
gram.

Second, these programs often run for a long period of
time, either because they need lots of resources (e.g., sci-
entific computation), or they are server programs (e.g., dis-
tributed hash tables), or they need substantial user interac-
tions (e.g., spreadsheet). Simply reproducing the bug in
such a system often tests a developer’s patience. Jockey
solves this problem by allowing checkpointing of the pro-
cess state during execution. The developer can replay exe-
cution from any checkpoint and easily “time-travel” through
executions to diagnose what exactly is wrong with the pro-
gram.

Third, running a distributed system requires starting mul-
tiple processes on multiple computers, which is cumber-
some and increases the turn-around time for program de-
velopment. Jockey alleviates this problem because Jockey
can record and replay an individual process—after running
and recording the whole system, the developer can replay
each process using a traditional debugger. Of course, this
is also a limitation; Jockey could be less useful when one
wants to look at the execution of multiple processes at once.
We discuss this issue further in Section 5.2.

1.1 Jockey: goals and approaches

Jockey is designed with two particular goals in mind. First
is ease of use. Jockey must be easy and safe to install and
deploy; it should work without requiring modifications to
the target source code or the debugger. Second isgenerality.

1

http://www.freshmeat.net

Jockey should be able to handle generic server programs,
not just those written in a particular programming language
or API, such as MPI or CORBA [14].

We achieve the first goal by implementing Jockey as a
user-space library that runs as a part of the target program.
In contrast to kernel-based approaches [31], Jockey’s ap-
proach is safer and easier to use—it can be used by anyone
without administrator privilege, a specially patched kernel,
or debugger. It also allows the target program to control or
extend Jockey easily. We discuss some of these features in
Section 4. The second goal is achieved by recording and re-
playing events at a fairly low level—system calls and CPU
instructions.

User-space implementation poses challenges and limita-
tions. First, it cannot handle events such as thread context
switching or shared-memory communications. Second, be-
cause Jockey and the target program run in the same pro-
tection domain, Jockey fundamentally cannot prevent a ma-
licious program from destroying Jockey. We discuss these
issues in more detail in Section 1.3.

Efficiency is a secondary goal for Jockey. Jockey is in-
tended for use only during testing and debugging. Thus,
as long as the slowdown by Jockey does not qualitatively
change the program’s behavior, developers should be able to
live with some performance degradation.1 We evaluate the
overhead of Jockey in Section 5. It shows that the perfor-
mance overhead is at most 30%, more often close to zero—
well within our limit of tolerance.

1.2 Overview

We have implemented Jockey on Linux in C++. The
meat of Jockey islibjockey.so , an x86 shared-object
file. Figure 1 shows a simple program that reads from
/dev/random , Linux’s random number device. Figure 2
shows the most basic use of Jockey. Running a program
with Jockey requires no change to the source code or the
executable file. Simply loadinglibjockey.so upon
startup causes Jockey to take control of the process. In this
example, Jockey intercepts the call to theread system call
made fromgetc . It logs the value read during the record-
ing phase. When replaying, it reads the value from the log
without actually reading from the random device. Jockey
can also be invoked in several different ways, as shown in

1For example, the Valgrind dynamic binary instrumentation tool [29],
as useful as it is, slows down the target tenfold. To run a program under
Valgrind, one often needs to extend timeout parameters to prevent them
from expiring prematurely.

// test.c
int main() {

FILE *f = fopen("/dev/random", "r");
printf("%x\n", getc(f));

}

Figure 1: A simple program, test.c , with a non-deterministic
behavior.

% cc test.c
% LD_PRELOAD=libjockey.so \

JOCKEYRC="replay=0" ./a.out # recording
38
% LD_PRELOAD=libjockey.so \

JOCKEYRC="replay=1" ./a.out # replaying
38

Figure 2: The most basic use of Jockey. The program
a.out outputs the same number even though it is reading
from /dev/random . Setting LD PRELOADcauses the dy-
namic linker to load libjockey.so before other object files.
The JOCKEYRCenvironment variable passes parameters to
libjockey.so .

Figure 3.

1.3 Limitations

Most of the limitations of Jockey stem from the fact that it
runs as a part of the target process. The most serious prob-
lem is that Jockey could be broken by a seriously buggy
or malicious target program—if it wishes, for example, the
target program can destroy the heap memory used internally
by Jockey. Jockey, however, also tries to avoid such prob-
lems by segregating resources used by Jockey and the target
as much as possible, as discussed in Section 3.2.

Jockey cannot capture events caused by external enti-
ties. For example, memory access races that happen in
multi-threaded programs cannot be replayed, because in-
kernel context switches cannot be caught by Jockey. For this
reason, Jockey does not support multi-threaded programs.2

Similarly, Jockey does not support any program or API that
interacts with other processes or the OS via shared mem-
ory; an example includes uDAPL [2] for memory-mapped
network I/O.

Finally, ioctl commands needs to be handled individually.
Jockey only offers supports for common ioctl commands.
Support for other obscure ioctl commands needs to be added

2Jockey does support user-space threading packages, such as Capric-
cio [34].

2

1 % jockey --replay=0 ./a.out # recording
2 a9
3 % jockey --replay=1 ./a.out # replaying
4 a9

6 % LD_PRELOAD=libjockey.so \
7 ./a.out --jockey=replay=0 # recording
8 82
9 % LD_PRELOAD=libjockey.so \

10 ./a.out --jockey=replay=1 # replaying
11 82

13 % cc test.c -ljockey
14 % ./a.out --jockey=replay=0 # recording
15 c1
16 % ./a.out --jockey=replay=1 # replaying
17 c1

Figure 3: Alternative ways of running a program under Jockey
control. Lines 1 to 4 show how one can start the test program
from the jockey frontend. jockey just sets environment vari-
ables LD PRELOAD, JOCKYRCand execve ’s the target pro-
gram. Lines 6 to 11 shows an alternative method that passes a
command-line parameter --jockey= . This parameter is parsed
by libjockey.so when it loads. For this method to work, the
target program must be designed to ignore a command-line string
that starts with --jockey= . Jockey can also be linked manually
to the target program, instead of via LD PRELOAD. Lines 13 to 17
shows how that can be done.

by extending Jockey. Jockey provides support for doing that
from the target program, as discussed in Section 4.

2 Related work

Execution record/replay has long been advocated as an ef-
fective debugging method [9, 27, 26].

2.1 Record/replay for sequential programs

Bugnet [35] was one of the earliest deterministic
record/replay tools. It replayed parallel programs by record-
ing external events such as I/O, and taking checkpoints of
all processes periodically (by assuming loosely synchro-
nized clocks). Bugnet supported only a special API, how-
ever, unlike Jockey which supports generic UNIX pro-
grams. Flashback [31] is the most recent work along this
line. It offers virtually the same set of functionalities as
Jockey—recording and replaying system calls and fork-
based checkpointing—but Flashback is offered as a kernel
module. As such, Flashback is less easy and safe to use than
Jockey.

In a slightly different approach, some systems record and
replay individual memory accesses [23, 20, 30, 10]. They
have several advantages over event-based approaches like
Jockey or Bugnet. First is that some of them enablere-
verse execution—literally stepping CPU instructions back-
ward [23, 10]. They are also more generic because they
need not know deeply about the semantics of system calls
and other interactions with the environment. However, they
require extensive program modification and have a large
logging overhead. Netzer and others have proposed smart
algorithms for determining the minimum set of load/store
instructions that require tracing [20, 30], but these systems
still require 1.5MB/second of log generation for a CPU-
intensive program [20]. In contrast, Jockey only requires
a few hundred bytes/second, as we show in Section 5.

2.2 Record/replay using virtual machines

Revirt is a virtual machine that records and replays the en-
tire operating system [4]. Based on User-mode Linux [3],
it records and replays low-level interrupts. Revirt has been
proved to be useful for network intrusion detection and di-
agnosing kernel bugs [8]. Several other papers also propose
distributed system emulation using virtual machines [5, 21].
While these systems are powerful, they are also cumber-
some to use—for example, one needs to create a separate
file system tree for each virtual machine. They are overkill
when one is interested only in debugging user-space pro-
grams. Jockey is simpler and easier-to-use than these sys-
tems.

2.3 Record/replay for parallel and dis-
tributed programs

Deterministic record/replay has been most effective in par-
allel and distributed environments [26]. Indeed, two of
the earliest tools, Bugnet [35] and Pan & Linton [23] ex-
pressly targeted such environments. Since then, many the-
oretical improvements have been proposed for both shared-
memory parallel programs [17] and message-passing pro-
grams [18, 19]. Jockey does not yet support the replay
of a distributed program—it can record and replay only
an individual process within the system. As discussed in
Section 5.2, we are not yet convinced that full-distributed-
system record and replay is the worth the cost. That is per-
haps because our main target (FAB) is essentially a “small”
system that contains only a few tens of nodes. When we face

3

a truly large-scale system, e.g., when emulating a wide-area
network, we might change our mind.

3 Implementation of Jockey

Jockey performs the following tasks upon program startup.

(1) For each system call inlibc with timing- or context-
dependent effects, Jockey rewrites its first few in-
structions and intercepts calls to it. Jockey cur-
rently intercepts 78 Linux system calls, including
gettimeofday , recvfrom , andselect . Jockey
logs the values generated by these calls during record-
ing, and replays the log without actually executing the
calls.

(2) Jockey does the same for CPU instructions with non-
deterministic effects. We currently only patchrdtsc ,
the x86 instruction for reading the CPU’s timestamp
counter (cycle counter). It is used, for example, as a
pseudo random-number generator inlibc .

(3) Jockey checkpoints the process state just before return-
ing control to the target program. In the “replay” mode,
Jockey simply loads the checkpoint. Checkpointing is
needed to ensure that the target sees the same set of
environment variables and command line parameters
during both record and replay. We discuss checkpoint-
ing in more detail in Section 3.3.

(4) Jockey transfers control to the target program. The tar-
get runs as if Jockey does not exist. Jockey becomes
active only when the target executes a system call or a
non-deterministic CPU instruction.

The next section describes the first two steps in more de-
tail. Section 3.2 discusses Jockey’s efforts to segregate itself
from the target program to avoid unnecessary interference.
Section 3.3 describes Jockey’s checkpointing function (step
(3)), along with the challenges we had to overcome.

3.1 Instruction patching

Figure 4 shows how thegettimeofday system call is
recorded and replayed. (a) shows the first few instruc-
tions of thegettimeofday function inlibc.so . When
Jockey starts, it writes ajmp instruction in the first 5
bytes of the function, as shown in (b). If the 5th byte is
in the middle of another instruction, as is the case with

gettimeofday , Jockey overwrites up to the next instruc-
tion boundary (and fills the memory withnop , if neces-
sary). In (c), Jockey also copies the original first 5 bytes
(6 bytes forgettimeofday) of the function to a newly
allocated memory region to allow Jockey to run the old
implementation if necessary. (d) shows the entry point
for the new implementation ofgettimeofday . Jockey
dynamically generates this code so that it can execute on
a separate stack and avoid corrupting target memory (see
Section 3.2). Finally, (e) showsnewgettimeofday ,
Jockey’s implementation ofgettimeofday . While
recording,newgettimeofday calls the original gettime-
ofday (c) and logs the returned value. Upon recording, it
simply supplies the value from the log without actually per-
forming the system call.

One might wonder whylibjockey.so does not just
provide a new implementation of a system call with the
same name. —LD PRELOADis frequently used to do ex-
actly that. The reason is that doing so will miss system calls
made insidelibc or ld.so , for example, a call toread
that would be made bygetc . These internal calls are pre-
resolved by the static linker (ld), and cannot be overridden
by redefining inLD PRELOAD.

For task (2), Jockey rewrites all offending CPU instruc-
tions found in the target process. This is done in two ways,
slow mode andcachedmode. In slow mode, Jockey first
reads the special file/proc/ N /maps (N is the target pro-
cess ID) that shows the virtual-memory mappings of the tar-
get process. It then reads the ELF header of each mapped
shared object, discovers the locations of the text sections,
and scans each text section. Jockey finds non-deterministic
CPU instructions in the section (if any), and patches them.
Jockey also intercepts calls tommapand does the same.

Jockey needs to parse CPU instructions during steps (1)
and (2), not a trivial task given x86’s complex instruction
encoding. It uses a pidgin table-based parser for common
instructions and operands and consultslibdisasm[11], an
open-source x86 disassembler library, for uncommon cases.
A few tables that map opcodes/operands to their instruction
length let us quickly parse more than 80% of all instruction
occurrences.

Even using this technique, however, parsing all CPU in-
structions in a typical Linux program takes about 350 mil-
liseconds on a 1.5GHz Pentium-M processor, which may
be too slow for some users. To shorten the startup la-
tency, Jockey also employs cached-mode instruction patch-
ing. Here, after finishing the slow mode, Jockey writes the
locations of non-deterministic instructions for each shared

4

����������	
��

������� ����������

�������� �������������

�������� �������������

�
������� �
���������

�������	��� ����
��

!!!

"�#����������	
���$%�� �����	� ���&

����$���	
�"���&

���$���$� $�'�$�	�(�����)

 �� '�$*+��)

,������&

�������������	
����)

���$���$� $�'�& ��,)

	���"�(����-$�)

,

,

����������	
��

�������� ��	��
��
�

�����

�

�������� �������������

�
������� �
���������

�������	��� ����
��

!!!

�������������	
��

������� ����������

�������� �������������

�����.�� ����������	
/�

�����������	��
�����	

�������	��
�����	���������	�
��	��
������	�������

����������	
�
������������	�����������	
�

�������

���	��������	��
����	��

�������������	�
����
���	�����	�

����������
������
���	�����	����
����������	
�

�$	�����"���

	����������	�������������

��������	 ���������������

��������	�����
�	���"�#����������	

	������	����������

$��

���� ���������
�	���������	����������
����	�������������	

Figure 4: Recording and replaying gettimeofday .

object in file ˜/.jockey-sig . When Jockey starts the
next time, it just reads̃/.jockey-sig without scanning
the process’s virtual memory, unless the timestamp of the
object file has changed.

Jockey’s instruction parsing/rewriting module can also be
used by the target program or a programmer-defined object
file to monitor the execution of the target. We discuss this
feature in more detail in Section 4.

3.2 Segregating resource usage

Jockey and the target application run as part of the same
process. They share resources, including memory and file
descriptors. Jockey must segregate the use of such resources
to prevent Jockey from unnecessarily changing the target’s
behavior, and to minimize the chance of a misbehaving tar-
get program from breaking Jockey. We discuss Jockey’s
handling of three such resources, heap, stack, and file de-
scriptors.

Heap: Jockey cannot use standard libc functions, such as
malloc or sbrk , to manage its own data. Doing so in-
creases the likelihood of a misbehaving target program de-
stroying Jockey’s data. Moreover, it changes the memory
layout of the target process during record and replay. It
would become impossible to correctly replay invalid mem-
ory accesses, e.g., accessingfree ’ed memory, which is

one of the more common programming errors.
Instead, Jockey stores all its internal data in ammaped

region at a virtual address (0x63000000) that is unlikely to
be used accidentally by the target program. Jockey uses its
own internal malloc-like library to carve the memory out
to individual data structures and builds a custom C++ STL
memory allocator on top of it. Thus, the Jockey code has
full access to STL features, including maps and dynamic
vectors. This design has considerably simplified the devel-
opment of Jockey.

One restriction is that Jockey cannot make calls to libc
functions that internally callmalloc or free . Examples
include high-level I/O functions (FILE , std::fstream)
and DNS resolvers (gethostbyname).

Stack: Jockey also segregates the use of stack. This is
necessary to properly replay programs that access data be-
yond the stack pointer (e.g., accessing an on-stack array
with a negative index). Figure 4, step (d) shows how this
is done. In the first few instructions after it intercepts the
call to trampoline , Jockey saves the stack pointer to an
internal static variable, switches the stack pointer register to
its internal memory, copies the parameters to gettimeofday
(a pointer of 4 bytes) from the old to the new stack, and
callsnewgettimeofday . Once the new implementation
returns, it then restores the stack pointer. This allows for
deterministic replay even for a buggy program because the
target’s stack is not used above the original stack pointer.

File descriptors: Jockey must do its own file accesses
every so often, for example, when opening an event log
file, displaying a message, or taking checkpoints. Because
Jockey and the target process share the same file-descriptor
table, Jockey must ensure that its file operations do not alter
the descriptor allocation scheme seen by the target. For this
purpose, each file descriptor opened by Jockey is moved to
a range that is not likely to be used by the application (430
and up). This is done by performingdup2 immediately
afteropen .

Gdb poses another problem. When starting the target pro-
cess, gdb, for some reason, opens a few extra file descrip-
tors in addition to the usual stdin, stdout, and stderr. Thus,
if execution is recorded under a normal shell and then re-
played under gdb, the files opened by the target processes
will be assigned different descriptors, which makes replay-
ing divergent. We solve this problem by letting Jockey open
dummy files for descriptors 0 to 9 on startup before return-
ing control to the target program (it leaves descriptors in-

5

% jockey --checkpointfrequency=30 \
--retaincheckpoints=5 \
-- httpd -X

... later ...
% jockey --restore=log/checkpoint-3 httpd

Figure 5: Taking automatic httpd (Apache) checkpoints every
30 seconds. The -X option runs Apache in foreground. The
--retaincheckpoints=5 option causes only the last five
checkpoints to be retained. The last line replays httpd from the
third checkpoint.

herited from the parent process untouched). Assuming that
gdb opens at most 10 descriptors when it starts the target,
we can ensure that the target has the same set of files open
upon record and replay. This technique is valid for other
situations when the target program is started with more than
the standard number (three) of inherited file descriptors.

3.3 Checkpointing

Jockey allows a user to checkpoint the process state auto-
matically. Figure 5 shows an example of taking a check-
point of httpd (Apache) every 30 seconds.

Following the technique pioneered by libckpt [25] and
flashback [31], Jockey checkpoints by forking the pro-
cess and dumping the state of the child, while letting the
parent continue running. Jockey reads the special file
/proc/ N /maps (N is the process ID) to obtain the virtual
memory mappings of the process and dumps only those sec-
tions that are mapped read-write. To restore a checkpoint,
for each section recorded in the checkpoint file, Jockey un-
maps the memory region if it is already occupied, and either
restores the contents from the checkpoint file or remaps the
file if the section is marked read-only.

We faced two particular problems for checkpointing, both
related to dynamic linking:

Preventing ld.so brain damage One of the challenges
during restoration is that Jockey needs to overwrite the
memory that is potentially used by the restoration code it-
self. Jockey would crash if restoration is done naively. Here,
two types of memory regions need to be taken care of:
Jockey’s internal heap (Section 3.2) and the heap used by
the dynamic linker. For example, Jockey must execute the
read system call to read the checkpoint contents. If that
call to read happens to be the first ever made by the target
application or Jockey, then the dynamic linker is invoked to

resolve the symbol “read ”, which involves modifying the
linker’s internal data structures.

Jockey handles its internal heap by excluding it from
checkpointing, but the dynamic linker poses a particular
challenge—we cannot know a priori where the memory
used by the dynamic linker is (the linker performs an anony-
mous mmap of its heap memory; all anonymous-mmaped
sections look the same to Jockey). We handle this by ea-
gerly linking all libc functions used by Jockey, by making
dummy calls to functions such asopen andread , before
it restores any checkpoint.

Exec shield Exec-shield is a facility found in some Linux
kernels (e.g., Red Hat, Fedora Core) to thwart buffer-
overflow attacks [15]. One feature that it provides is ran-
domization of the loading addresses of shared-object files.
This feature breaks Jockey because Jockey needs to keep
data structures that are specific to the process’s memory lay-
out. We have no solution to this problem yet; we currently
just demand that this feature be disabled by doing follow-
ing:

echo 0 >/proc/sys/kernel/exec-shield

3.4 Handling signals

Signals are handled in a way similar to [32]. Each signal de-
livery is first intercepted by Jockey. Jockey’s signal handler
simply records the parameters to the signal (signal number
and the register context) and finishes. At the end of the
Jockey’s handler for a system call orrdtsc CPU instruc-
tion, Jockey checks if a signal was intercepted in the past.
If so, it logs the signal (so that it can be replayed) and calls
the target-defined signal handler. This way, Jockey converts
asynchronous signals to synchronous upcalls that only hap-
pen immediately after a system call.

This technique may distort program behavior when the
target program runs without issuing a system call (or execut-
ing non-deterministic CPU instructions) for a long period
and receives signals in the meantime. However, Jockey’s
primary targets, I/O-oriented programs, usually do not suf-
fer from this problem.

3.5 Reducing logging overhead

Jockey employs two different types of logging policies, de-
pending on the types of system calls to reduce the space
overhead.

6

• For requests to regular files or directories, Jockey per-
forms “undo” logging. That is, for system calls that
update a file, Jockey logs enough information to re-
store its contentsbeforethe modification. For example,
when awrite system call overwrites the mid-section
of a file, Jockey logs the offset and the old contents of
the section. Or, whenwrite appends to the end of
the file, Jockey just logs the old size of the file. For
read-only system calls (such asread), it just reads di-
rectly from the file. A similar approach was used in the
Discount checking system [12].

• For all other types of events—I/Os to sockets, pipes,
fifos, devices, orselect , gettimeofday , or
rdtsc —Jockey performs “redo” logging. Jockey
logs the value produced by the event during record-
ing. During replay, Jockey just reads the values from
the log without executing the actual system call. Thus,
system calls that update a file become no-op during re-
play.

System calls such asread andwrite can operate on
both types of files. We intercept calls to functions that cre-
ate file descriptors—e.g.,open , socket , andaccept —
remember the type of each descriptor, and dispatch based
on the descriptor type. File descriptors inherited from the
parent process (e.g., stdin, stdout, stderr) are redo-logged.

Various studies have shown that majority of I/Os to reg-
ular files are reads, and that most of the write traffic is ac-
tually appends [22, 1, 33]. For these common cases, our
design allows Jockey to only log the type and the offset of
the requests, not the actual contents. Thus, it drastically re-
duces the logging overhead for file I/O system calls [12].

The downside of the undo-based logging is that the user
cannot modify the files touched by the target program be-
tween record and replay. So far, we have not found this to
be a significant burden.

3.6 Handling memory-mapped I/Os

Jockey currently requires manual efforts to handle I/Os done
through memory-mapped files. To replay such I/Os, the pro-
grammer must instrument the program and notify Jockey
every time an I/O is made. Figure 6 shows an exam-
ple. jockey_prepare_mmaped_write logs the origi-
nal image of the specified region, so that Jockey can restore
the image before replaying.

This approach is admittedly error-prone. As an alter-
native, we could apply “page diffing” by write-protecting

1 int fd = open("blah", O_RDWR);
2 char *base = mmap(NULL, size,
3 PROT_READ|PROT_WRITE, MAP_SHARED,
4 fd, 0);
5 ...
6 char *p = base + offset
7 char *str = "Hello, World";
8 jockey_prepare_mmaped_write(fd, offset,
9 p, strlen(str) + 1);

10 strcpy(p, str);

Figure 6: An example of memory mapped I/O. Before the pro-
gram modifies a memory mapped region, it must notify Jockey
(line 6) the file descriptor (fd), the file offset (offset), the mmap
pointer (p), and the size of modification.

mmaped pages and trapping accesses to them [6]. Imple-
menting such an approach is future work.

4 Controlling Jockey

One of the virtues of Jockey being a part of the target pro-
cess is that it easily allows the user or the target program to
customize Jockey. This section lists some of the knobs that
are available to change the behavior of Jockey.

jockey set fork trace mode: By default, upon
fork , Jockey continues tracing only the parent and disables
tracing the child. This function, when called by the target
program, changes that behavior—whether to trace only the
parent, the child, or both after forking. This function can be
used, for example, for daemon-type programs that fork to
detach themselves from the parent process.

jockey checkpoint(path) : This function can be
called by the target program to take a checkpoint manually.

jockey redirect calls(name, newproc ,
argsize) : This function is used to transfer the control
to newproc whenever functionname is called. Parameter
argsize is the size of the on-stack parameters to function
name. This feature can be used, for example, to pro-
vide record/replay functionality for an obscureioctl
command used only by the target application. Function
jockey interpose calls(name, newproc ,
argsize) is similar, but it transfers the control back to
the original function afternewproc finishes execution.

7

// testprogram.c
void bar(int i) {

... do something complex ...
}
void main() {

int i;
for (i = 0; i < 100000; i++) bar(i);

}

// checker.c
#include <jockey/jockey.h>
void bar_checker(int i) {

if (i == 95999)
jockey_breakpoint();

}
void init() {

jockey_interpose_calls("bar",
bar_checker, 4);

}

Figure 7: The upper listing, testprogram.c is a simple
program that calls function bar many times. The lower list-
ing, checker.c , shows a user-defined checker that calls a
breakpoint after bar is called 95999 times. Function init
is called by Jockey when the checker is loaded into memory.
jockey breakpoint is a function, defined in Jockey, that does
nothing.

% cc -c checker.c
% gdb testprogram
(gdb) set env LD_PRELOAD=libjockey.so
(gdb) b jockey_breakpoint
(gdb) run --jockey=replay=1;\
checker=checker.o

Figure 8: Running the user-defined checker. checker.c
is the name of the user-defined checker program. Function
bar checker is called every time bar executes. It examines
the status of the program without affecting the target execution
and calls the breakpoint at the designated point.

User-defined invariant checker: Jockey allows an arbi-
trary object file to be executed during replay. Figure 7 shows
an example. Here, let’s assume that we ran the upper pro-
gram under Jockey and found that procedurebar behaves
anomalously wheni == 95999 . We could diagnose this
situation by setting a breakpoint onbar in gdb and waiting
until it hits 95999 times, but Jockey offers a quicker alter-
native, as shown in Figure 8.

The implementation of this feature is complicated, be-
cause we cannot rely on the dynamic linker to link the ob-
ject into the target program—doing so would alter the heap
structure of the target (Section 3.3). Jockey uses a static
linker (ld) instead to resolve symbols in the checker ob-

ject. Jockey first picks a virtual address unlikely to be used
by the target application (0x62000000). It then discovers
the addresses of all public symbols in the process (including
those exported by Jockey) by invokingnm for each shared
object. This information is then passed told , which gen-
erates a binary file with all symbols resolved. Jockey then
reads the file contents into memory and executes it.

5 Evaluation

This section reports performance and space overheads of
Jockey and discusses experiences using Jockey to debug
real programs.

5.1 Performance and log-space overheads

We tried Jockey on a variety of programs, listed below. The
evaluation was performed on a Linux computer running Fe-
dora Core 3 (kernel 2.6.9) with a 1.5GHz Pentium-M CPU,
512MB of memory, a 7200 rpm ATA hard disk, and a 1Gb/s
Ethernet interface.

g++ g++ 3.4.2 compiling a small C++ program that uses
an STLmap. The overhead is the sum for the frontend
(g++), the compiler itself (cc1plus), and the linker
(ld).

xclock a digital clock for the X window system with a
screen update every second.

Emacs Emacs 21.3 running a program-development ses-
sion, involving active typing, file reading, and saving.

httpd Apache 2.0.52 (single process, without forking),
serving 100000 HTTP GET requests for a 0.5KB file
from httperf [16].

FAB A four-brick FAB cluster [28] serving 80000 random
1KB I/O requests. FAB is a distributed disk array sys-
tem running on a cluster of PCs.

g++ is an example of a short-running, CPU-intensive pro-
gram, which is not Jockey’s primary targets. This example
still shows that Jockey has a very low log-space overhead
compared to approaches that involve memory-access log-
ging [20], which could consume up to a few megabytes per
second for logging. For gcc, most of the performance over-
head is due to process checkpointing that happens at the
beginning of the execution (Section 3).

8

Name
Run time Log size

Native Record Replay #bytes #records
g++ 1.33 1.51 1.49 73KB 80
xclock N/A 180 0.4 80KB 4639
Emacs N/A 210 5.81 1.4MB 20769
httpd 16.7 17.5 9.5 2.0MB 140180
FAB 33.7 44.1 31.1 34MB 887000

Table 1: The performance and space overhead of Jockey. Run times are in seconds. “Native” is the run-time without Jockey. “Record”
and “Replay” show the runtime during recording and replaying, respectively.

Xclock and emacs are examples of interactive appli-
cations. Jockey shows reasonable log-space overheads.
Jockey is able to replay their execution extremely fast, be-
cause it need not wait for timeouts or user inputs during re-
play. This translates to more efficient debugging activities.

Apache and FAB are examples of network servers. FAB
represents the worst case for Jockey. Not only does FAB
perform large amount of network I/O, it also overwrites ex-
isting files repeatedly, resulting in a large amount of log-
ging traffic (Section 3.5). In comparison, Apache has a far
lower overhead because it only performs read-only accesses
to index.html and appends to log files.

5.2 Experiences

Jockey has been regularly used for FAB development. It has
been surprisingly effective in diagnosing bugs that exhibit
quickly, e.g., during the first I/O request from the client.
Jockey reduces the debugging “turn-around” time, because
it allows the developer to replay a single process instead of
restarting the entire cluster. This makes the developer more
productive.

Jockey has been most useful when debugging non-
deterministic bugs that happen during stress or regression
tests. Before we had Jockey, we had to restart the clus-
ter many times, each time with a slightly different set of
“printf” statements, with the hope that we would eventu-
ally reproduce and catch the error. Jockey allows the de-
veloper to reproduce the bug reliably as often as he wishes.
Diagnosing such bugs, however, is still difficult even with
Jockey. The real “cause” of the bug often happens a few
hundred requests before it exhibits, often in a different pro-
cess. The programmer is forced to replay the execution of
multiple processes repeatedly to locate the cause. People
have argued for deterministic distributed-system replay for
diagnosing such bugs (Section 2), but we currently doubt if
it is worth the effort. Debugging a long-running distributed

system requires a deep understanding of the program any-
way, and single-process independent replay as provided by
Jockey seems to achieve most of the benefits.

There are a few Jockey features that sound useful in the-
ory, but have turned out to be not quite so in practice. The
concept of “time travel” using periodic automatic check-
points is one such idea (Section 3.3). It is a powerful, but
difficult-to-use tool. Without proper debugger support [8],
the developer needs to restart the debugger every time he
or she wants to switch to a different checkpoint. This man-
ual effort quickly exhausts the developer. Another feature
is user-defined invariant checking (Section 4). The problem
is twofold. First is the lack of proper debugger support—
writing and compiling a program every time one wants to
debug is cumbersome. Second is that the kind of things that
the checker can do is rather limited—for example, it cannot
intercept calls in the middle of function execution, nor can
it inspect the local variable values in the call chain.

6 Conclusion

This paper described Jockey, a user-space library for deter-
ministic record/replay debugging. Jockey runs as a part of
the target program and intercepts calls to non-deterministic
system calls and CPU instructions. It logs the effects of
these operations during recording, and replays them from
the log during replay. It has a small performance and log-
space overhead. Jockey has been extensively used to de-
velop FAB, a distributed disk-array system running on a
cluster of PCs.

9

References

[1] Mary Baker, John H. Hartman, Michael D. Kupfer,
Ken Shirriff, and John K. Ousterhout. Measurements
of a distributed file system. In13th Symp. on Op.
Sys. Principles (SOSP), pages 198–212, Pacific Grove,
CA, USA, October 1991.

[2] DAT collaborative. User-level direct
access transport APIs (uDAPL), 2004.
http://www.datcollaborative.org/udapl.html.

[3] Jeff Dike et al. User-mode Linux home page. http:/-
/user-mode-linux% -.sourceforge.net/, 2005.

[4] George W. Dunlap, Samuel T. King, Sukru Cinar,
Murtaza Basrai, and Peter M. Chen. Revirt: En-
abling intrusion analysis through virtual-machine log-
ging and replay. In5th Symp. on Op. Sys. Design and
Impl. (OSDI), Boston, MA, USA, December 2002.

[5] Timothy L. Harris. Dependable software needs per-
vasive debugging. In10th ACM SIGOPS European
Workshop, Saint Emilion, France, September 2002.

[6] Antony L. Hosking, Eric W. Brown, and J. Eliot B.
Moss. Update logging for persistent programming lan-
guages: A comparative performance evaluation. In
19th Int. Conf. on Very Large Data Bases (VLDB),
pages 429–440, Dublin, Ireland, August 1993.

[7] Joel Huselius. Debugging parallel systems: A state
of the art report. Technical Report 63, Dept. of CSE,
Malardalen University, September 2002.

[8] Samuel T. King, George W. Dunlap, and Peter M.
Chen. Debugging operating systems with time-
traveling virtual machines. InUSENIX Annual Tech.
Conf., Anaheim, CA, USA, April 2005.

[9] Lap Chung Lam. A survey of data breakpoint and re-
verse execution. SUNY Stony Brook RPE report, http-
://www.ecsl% -.cs.sunysb.edu/tr/rpe12.ps.gz, Septem-
ber 2001.

[10] Bill Lewis. Debugging backwards in time. In5th
Workshop on Automated and Algorithmic Debugging
(AADEBUG), Ghent, Belgium, September 2003.

[11] libdisasm. Libdisasm: x86 disassembler library, 2004.
http://bastard.sourceforge.net/libdisasm.html.

[12] David E. Lowell and Peter M. Chen. Discount check-
ing: Transparent, low-overhead recovery for general
applications. Technical Report CSE-TR-410-99, Uni-
versity of Michigan, November 1998.

[13] Charles E. McDowell and David P. Helmbold. Debug-
ging concurrent programs.ACM Computing Surveys,
21(4):593–622, December 1989.

[14] Michael S. Meier, Kevan L. Miller, Donald P. Pazel,
Josyula R. Rao, and James R. Russell. Experiences
with building distributed debuggers. InSIGMETRICS
Symposium on Parallel and Distributed Tools (SPDT),
pages 70–79, Philadelphia, PA, USA, May 1996.

[15] Ingo Molner. Exec shield, new Linux security fea-
ture. http% -://people.redhat.com/mingo/exec-shield-
/ANNOUNCE-exec-shield, 2004.

[16] David Mosberger. httperf—a tool for measuring web
server performance. http://www.hpl.hp.com/personal-
/David Mosberger/httperf.html, 2001.

[17] Robert H. B. Netzer. Optimal tracing and replay for
debugging shared-memory parallel programs. InACM
workshop on parallel and distributed debugging, San
Diego, CA, USA, May 1993.

[18] Robert H. B. Netzer and Barton P. Miller. Optimal
tracing and replay for debugging message-passing par-
allel programs. InSupercomputing, Mineapolis, MN,
USA, November 1992.

[19] Robert H. B. Netzer, Sairam Subramanian, and Jian
Xu. Critical-path-based message logging for incre-
mental replay of message-passing programs. In14th
Int. Conf. on Dist. Comp. Sys. (ICDCS), pages 404–
413, Poznan, Poland, June 1994.

[20] Robert H. B. Netzer and Mark H. Weaver. Opti-
mal tracing and incrementar reexecution for debug-
ging long-running programs. InSIGPLAN Conference
on Programming Language Design and Implementa-
tion (PLDI), Orlando, FL, USA, June 1994. Also
available as Brown University Technical Report CS-
94-11.

[21] Oliver Oppitz. A particular bug trap: Execution re-
play using virtual machines. In5th Workshop on
Automated and Algorithmic Debugging (AADEBUG),
Ghent, Belgium, September 2003.

10

http://portal.acm.org/toc.cfm?id=122132&coll=portal
http://portal.acm.org/toc.cfm?id=122132&coll=portal
http://user-mode-linux.sourceforge.net/
http://user-mode-linux.sourceforge.net/
http://www.usenix.org/publications/library/proceedings/osdi02
http://www.usenix.org/publications/library/proceedings/osdi02
http://www.cl.cam.ac.uk/users/tlh20/papers/tim-harris-sigops.ps.gz
http://www.cl.cam.ac.uk/users/tlh20/papers/tim-harris-sigops.ps.gz
http://www.diku.dk/ew2002/
http://www.diku.dk/ew2002/
http://www.mrtc.mdh.se/php/publ_show.php3?id=0434
http://www.mrtc.mdh.se/php/publ_show.php3?id=0434
http://www.usenix.org/publications/library/proceedings/usenix05
http://www.usenix.org/publications/library/proceedings/usenix05
http://www.ecsl.cs.sunysb.edu/tr/rpe12.ps.gz
http://www.ecsl.cs.sunysb.edu/tr/rpe12.ps.gz
http://aadebug2003.elis.rug.ac.be/
http://aadebug2003.elis.rug.ac.be/
http://aadebug2003.elis.rug.ac.be/
http://people.redhat.com/mingo/exec-shield/ANNOUNCE-exec-shield
http://people.redhat.com/mingo/exec-shield/ANNOUNCE-exec-shield
http://www.hpl.hp.com/personal/David_Mosberger/httperf.html
http://www.hpl.hp.com/personal/David_Mosberger/httperf.html
http://portal.acm.org/toc.cfm?id=174266&coll=portal
http://portal.acm.org/toc.cfm?id=174266&coll=portal
http://aadebug2003.elis.rug.ac.be/
http://aadebug2003.elis.rug.ac.be/

[22] John K. Ousterhout, Herv Da Costa, David Harrison,
John A. Kunze, Michael D. Kupfer, and James G.
Thompson. A trace-driven analysis of the UNIX 4.2
BSD file system. In10th Symp. on Op. Sys. Princi-
ples (SOSP), pages 15–24, Orcas Island, WA, USA,
December 1985.

[23] Douglas Z. Pan and Mark A. Linton. Supporting re-
verse execution of parallel programs. InACM work-
shop on parallel and distributed debugging, Madison,
WI, USA, May 1988.

[24] Vern Paxson. A survey of support for im-
plementing debuggers. http://citeseer.ist.psu.edu-
/paxson90survey.html, 1990.

[25] James S. Plank, Micah Beck, Gerry Kingsley, and Kai
Li. Libckpt: Transparent checkpointing under UNIX.
In USENIX Winter Tech. Conf., New Orleans, LA,
USA, January 1995.

[26] Michiel Ronsse, Koen De Bosschere, Mark Christi-
aens, Jacques Chassin de Kergommeaux, and Dieter
Kranzlmuller. Record/replay for non-determinsitic
program executions.Comm. of the ACM (CACM),
46(9), September 2003.

[27] Michiel Ronsse, Koen De Bosschere, and
Jacques Chassin de Kergommeaux. Execution
replay and debugging. In4th Workshop on Automated
and Algorithmic Debugging (AADEBUG), Munich,
Germany, August 2000.

[28] Yasushi Saito, Svend Frølund, Alistair Veitch, Arif
Merchant, and Susan Spence. FAB: Building dis-
tributed enterprise disk arrays from commodity com-
ponents. In11th Int. Conf. on Arch. Support for Prog.
Lang. and Op. Sys. (ASPLOS-XI), Boston, MA, USA,
October 2004.

[29] Julian Seward et al. Valgrind: A GPL’d system for
debugging and profiling x86-linux programs. http:/-
/valgrind.kde.org/, 2004.

[30] Michael W. Shapiro. RDB: A system for incremental
replay debugging. Master’s thesis, Dept of. Computer
Science, Brown University, 1997.

[31] Sudarshan M. Srinivasan, Srikanth Kandula, Christo-
pher R. Andrews, and Yuanyuan Zhou. Flashback: A
lightweight extension for rollback and determinsitic

replay for software debugging. InUSENIX Annual
Tech. Conf., Boston, MA, USA, June 2004.

[32] Daniel Stodolsky, Brian N. Bershad, and J. Bradley
Chen. Fast Interrupt Priority Management in Operat-
ing System Kernels.Usenix Workshop on Microker-
nels, pages 105–110, September 1993.

[33] Werner Vogels. File system usage in Windows NT 4.0.
In 17th Symp. on Op. Sys. Principles (SOSP), pages
93–109, Kiawah Island, SC, USA, December 1999.

[34] Rob von Behren, Jeremy Condit, Feng Zhou,
George C. Necula, and Eric Brewer. Cappriccio: Scal-
able threads for Internet services. In19th Symp. on Op.
Sys. Principles (SOSP), Bolton Landing, NY, USA,
October 2003.

[35] Larry D. Wittie. Debugging distributed C programs
by real time replay. InACM workshop on paral-
lel and distributed debugging, pages 57–67, Madison,
WI, USA, May 1988.

11

http://portal.acm.org/toc.cfm?id=323647&coll=portal
http://portal.acm.org/toc.cfm?id=323647&coll=portal
http://portal.acm.org/citation.cfm?id=69227
http://portal.acm.org/citation.cfm?id=69227
http://portal.acm.org/toc.cfm?id=68210&coll=portal
http://portal.acm.org/toc.cfm?id=68210&coll=portal
http://citeseer.ist.psu.edu/paxson90survey.html
http://citeseer.ist.psu.edu/paxson90survey.html
http://www.cs.utk.edu/~plank/plank/papers/USENIX-95W.html
http://valgrind.kde.org/
http://valgrind.kde.org/
http://www.usenix.org/publications/library/proceedings/usenix04
http://www.usenix.org/publications/library/proceedings/usenix04
http://www.cs.washington.edu/homes/bershad/Papers/OptSynch.ps
http://www.cs.washington.edu/homes/bershad/Papers/OptSynch.ps
http://portal.acm.org/toc.cfm?id=319151&coll=portal
http://capriccio.cs.berkeley.edu/publications.html
http://capriccio.cs.berkeley.edu/publications.html
http://portal.acm.org/toc.cfm?id=945445&coll=portal
http://portal.acm.org/toc.cfm?id=945445&coll=portal
http://portal.acm.org/toc.cfm?id=68210&coll=portal
http://portal.acm.org/toc.cfm?id=68210&coll=portal

	Introduction
	Jockey: goals and approaches
	Overview
	Limitations

	Related work
	Record/replay for sequential programs
	Record/replay using virtual machines
	Record/replay for parallel and distributed programs

	Implementation of Jockey
	Instruction patching
	Segregating resource usage
	Checkpointing
	Handling signals
	Reducing logging overhead
	Handling memory-mapped I/Os

	Controlling Jockey
	Evaluation
	Performance and log-space overheads
	Experiences

	Conclusion

