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1.Introduction
Debugging is fundamentally about tracing effects back to causes. However, traditional debuggers 
for software merely monitor a program's forward execution and are not well suited to the debugging 
task. There is increasing interest in direct support for “reverse-time debugging” using a combination 
of techniques such as logging, checkpointing, and replay [BCJ06, Lew03, Boo00, GHS06, KDC05] 
to give the programmer access to past program states.

Unfortunately there is no technology available today that provides a debugger with the following 
desirable properties:

● Complete recording. The debugger should capture enough information from one run of the 
program that every detail of the program state during the run can be reconstructed without 
having to run the program again. This hoists “run the program” out of the loop of the 
programmer's debugging activity. It also aids debugging of nondeterministic programs; once 
a bug has manifested once in the debugger, it can be diagnosed.

● Efficient state reconstruction. The debugger should be able to reconstruct program state at 
any time point with a cost proportional to the amount of state reconstructed but independent 
on the time point chosen. This can be a problem for replay-based techniques, which tend to 
have a cost proportional to the differences in time points of interest.

● Efficient reverse dataflow. A fundamental debugging step is “the value of X at time T is 
wrong; when and where was it set?” It should be possible to answer such questions 
efficiently, with a cost independent of the difference in time between T and when X was set.

● Additional queries. The debugger should be able to efficiently answer “when was the last 
execution of program point P (before time T)”, and other similar queries.

● Practical implementation. An ideal debugger would be usable by as many programmers as 
possible. Therefore it should run on PC-class hardware, supporting standard operating 
systems, languages, and runtime systems. It should handle large complex programs, since 
that is where the hardest debugging problems occur.

● Reasonable overhead. A debugger with “complete recording” separates debugging into two 
phases: recording and diagnosis. When automated testing is available (as most development 
methodologies recommend) the recording phase can run unattended, and performance 
during diagnosis is much more important. Nevertheless the space and time requirements for 
recording must not exhaust the programmer's hardware or patience.

I have created a tool (provisionally called Amber) which meets these requirements. Amber uses 
Valgrind [NS03] to instrument a Linux process at the binary level and log every memory and 
register write and all control flow. The log is indexed to provide efficient support for the desired 
queries, and compressed to reduce storage requirements and especially to avoid the bottleneck of 
limited disk write bandwidth. During the diagnosis phase, a debugger passes queries to a query 
engine which answers them from the log data. Figure 1 illustrates the architecture.



Amber exceeds almost all previous systems in the intensity of its logging for the sake of efficient 
program state reconstruction and query processing. The only comparable system is Omniscient 
Debugging, but that system is limited to smallish Java programs, whereas Amber was designed 
from the outset to support debugging of Firefox, which is written in a mixture of C, C++, Javascript 
and assembly and which executes more than three billion instructions to start up and display a 
simple Web page (in a debug build). This requires new techniques for gathering, indexing and 
compressing a torrent of machine-code level log data, taking advantage of multiple CPUs now that 
multiprocessor systems are mainstream. These techniques are Amber's primary contribution to the 
state of the art. A secondary contribution is a set of experimental results showing that such an 
aggressive tracing approach is practical on stock hardware, even with programs as large as Firefox, 
and therefore the time is ripe to adopt this approach to debugging. The rest of this paper describes 
the Amber design and implementation in detail, along with the experimental results.

Fully exploiting the power of Amber in a debugger user interface is challenging and beyond the 
scope of this paper. However, we present some screenshots of a prototype Amber-based debugger 
to illustrate what is possible and to motivate Amber's design. Figure 2 shows the main window 
divided into four panes. The primary pane is the Timeline. The Timeline shows events in the 
program execution history with time increasing from top to bottom. In this example, the 
programmer has run the program to completion while saving a complete record, then launched the 
debugger. The programmer then created a query to populate the Timeline with all invocations of the 
method nsViewManager::Refresh. Each invocation comprises a Call event and an Exit event; the 
interval between the events is displayed as a bar on the left. Calls are detected with a query to find 
all executions of the first instruction of nsViewManager::Refresh; this query returns a set of 
timestamps, each corresponding to a Call event. In each Call event we display parameter values at 
the time of the call, using register and memory values reconstructed by Amber for the associated 
timestamp. (In this case, the interpretation of register and memory values is specified by DWARF2 
debug information produced by the gcc compiler and consumed by our prototype debugger.)

In Figure 2 the user has selected one particular invocation of nsViewManager::Refresh (shown in 
white in the Timeline). The debugger has computed the call stack for that timestamp. Each line in 
the Call Stack pane displays one stack frame, along with the parameter values for the call that 
created the stack frame, evaluated at the time of that call. (Contrast with traditional debuggers, 
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which attempt to display parameter values for all active stack frames, but only have access to the 
current contents of stack memory and therefore may display misleading values if the stack locations 
holding parameters have been modified after subroutine entry.)

The user has double-clicked on the “this” parameter to nsViewManager::Refresh to inspect that 
object in the Data pane. Amber has reconstructed the object's field values at the selected timestamp 
(the event bordered in yellow in the Timeline), and we display these values in the Data pane.

Next, suppose the value of field “mFirstChild” looks suspicious. The user control-clicks on the 
mFirstChild — a command to locate the previous write to that field. The debugger issues a single 
Amber query and receives the timestamp of that last write. This is inserted as a new event in the 

Figure 2: Debugger Window
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Timeline, as shown in Figure 3, and selected as the current timestamp. The Call Stack pane updates 
to show the call stack at the earlier time, and the Data pane updates to show the field values for the 
selected object at the time. If this write set an incorrect value we will quickly be able to determine 
why, moving further back in time as necessary.

2.Instrumentation
Valgrind is an open source dynamic binary instrumentation engine, similar to DynamoRio and PIN. 
It simulates a user-level Linux process at the machine-code level by translating extended basic 
blocks of instructions on-the-fly to an internal representation, and then recompiling the IR to native 
instructions for execution. Pluggable “tools” are permitted to modify the IR before recompilation, to 
introduce instrumentation. This IR rewriting approach can be cumbersome for sparse 
instrumentation but it is well suited to Amber's need for pervasive instrumentation.

Valgrind provides additional capabilities that are useful to Amber. It notifies tools of the memory 
read and write effects of all system calls (introduced to facilitate writing Purify-like memory 
checkers). Amber records the write effects of system calls in its log. Valgrind can also notify tools 
when memory changes due to subtle effects such as implicit growth of the stack virtual memory 
area, or the construction of a stack frame for signal delivery. Valgrind runs all program code on a 
single underlying thread and simulates operating system threads for multithreaded programs. This 
suits Amber, because single-threaded execution is much easier to record. (And as we shall see, 
Amber can exploit multiple CPUs in other ways.) Most importantly of all, Valgrind is robust at 
handling the intricacies of instruction sets and Linux kernel semantics.

Amber's instrumentation outputs a series of trace records to an indexing and compression engine 
running in another process, described below. We store a sequence of records in a shared memory 
buffer and the processes synchronize only when switching buffers. There are several types of 
records:

● INIT. This is always the first record.

● SET_ADDR_MAP. Emitted when the address space of the process changes, e.g. due to an 
mmap system call. Amber emits a series of these after INIT to record the initial address 
space configuration. The record describes the address space region and its new mapping (if 
any).

● BULK_WRITE. Emitted when a large amount of memory is written atomically, typically due 
an I/O system call, but also in conjunction with SET_ADDR_MAP when data has been 
mapped into the address space. We record the address range and data written. When read-
only files are mapped, Amber skips issuing a BULK_WRITE, assuming that the file 
contents will be available to the eventual debugger. This avoids having to write the contents 
of all executables into the log.

● SYSTEM_WRITE. Emitted when a system call writes memory as a side effect. The addres 
range is recorded. One or more BULK_WRITE records follow with the actual data. (We 
separate out data into multiple BULK_WRITEs because our implementation limits the size 
of a record to the size of the shared memory channel buffer.)

● RESET_STATE. Periodically the instrumentation emits the contents of all registers in one of 
these records. Certain pseudo-registers are also included (see below). Amber also emits one 
of these records at startup, and whenever registers are changed by a thread context switch.

● DEFINE_CODE. After Amber has instrumented an extended basic block, it emits one of 
these records. The record contains a unique ID assigned to the block, and describes what is 
statically known about the memory and register effects of the block. See below for more 
details.



● EXEC. An instrumented extended basic block emits one of these records every time it is 
executed. The record includes the block ID, from which the indexer locates the block's static 
descriptor. Any dynamic information about the block's effects needed by the indexer (e.g., 
the address of a memory write, if not statically known) is included in the EXEC record. The 
exact format of each EXEC record is tailored to the block, but can be reconstructed given 
the block static descriptor.

Valgrind's extended basic blocks (EBBs) are single-entry, multiple-exit instruction sequences 
connected by fall-through or direct control transfers. Valgrind can select overlapping EBBs, but this 
is irrelevant to Amber. One of the key items of dynamic information in each EXEC record is the 
number of instructions retired, which can be less than the total number of instructions due to a 
unexpected conditional branch or an exception.

Valgrind does not allow instrumentation to take control or easily detect when an exception occurs, 
so it is impossible to set the instructions-retired counter when an exception causes early termination 
of an extended basic block. (Often an exception will be simply set up an activation record and 
transfer control to a signal handler registered by the debugee program.) Therefore an instrumented 
EBB allocates its EXEC record on entry, fills in the dynamic effect information as the associated 
instructions execute, and updates the retired-instructions counter after each instruction completes. 
For EBBs that can terminate early, the instrumentation zeroes out the EXEC record after allocation 
so that upon early termination, any unused log entries are zero; the indexer will eventually compress 
this data and garbage could hurt compressor performance.

We use a pair of shared memory buffers to communicate between the Valgrind instrumentation and 
the spawned indexer process. The instrumentation fills one shared memory buffer with records 
while the indexer processes records from the other buffer. The processes use a pipe to signal each 
other that a buffer has been filled or emptied. The indexer automatically processes the last 
incompletely filled buffer when it detects the instrumented process has terminated. (This is useful 
for debugging Amber because it means when an error in the instrumentation (or Valgrind itself) 
causes a crash, we still get a complete record right up to the point before the crash.)

In Amber, a timestamp is simply the count of instructions retired since the start of the program.

3.Register Effects
The Amber instrumentation engine extracts from the Valgrind IR a static list of all register 
modifications performed by each program instruction (including instructions such as system calls 
that may indirectly change many registers). Each modification is assigned one of four classes:

● DYNREG_WRITE. Low bits of some register are set to some value. Neither the register nor 
the value are statically known, so both are recorded by the instrumentation.

● REG_WRITE. Low bits of a statically known register are set to some value that will be 
recorded dynamically by the instrumentation.

● REG_SETCONST. Low bits of a statically known register are set to a statically known value 
that is expressible as a signed 16-bit value.

● REG_ADDCONST. The low bits of a statically known register are set to the low bits of 
some (possibly other) statically known register plus some statically known value expressible 
as a signed 8-bit value.

Each of these classes comes in flavours specifying the number of bits affected — 8, 16, 32, 64 or 
128.

DYNREG_WRITE is the most general class but requires the most information to be recorded 
dynamically; we prefer classes that require less information to be recorded dynamically, especially 



REG_SETCONST and REG_ADDCONST, which require no information to be recorded 
dynamically. In our implementation DYNREG_WRITE is actually only required by x87 floating 
point operations — Valgrind treats the x87 floating point stack as a register array indexed by a 
hypothetical “FPTOP” register.

We could further reduce the amount of data that must be dynamically recorded by extending our set 
of modification classes, for example by adding REG_MULCONST to multiply a register by a 
constant or REG_ADD to add two registers. In the limit we could reexecute actual machine 
instructions (assuming they don't read memory or hidden processor state and have no side effects). 
This limited set of classes was chosen to be simple, easy to detect from the IR alone, trivial to 
serialize and deserialize, and still reduce dynamic register logging by a large factor.

The instrumentation engine transmits the static register modification list to the indexer in each 
DEFINE_CODE record. Then each time an EBB is executed, for each executed register 
modification, the instrumentation logs any necessary dynamic values (and possibly register 
numbers) and includes this log as part of the payload to the EXEC record.

With this static and dynamic information we can reconstruct the contents of all registers at any point 
by replaying register modifications, given the initial states of registers, which we know from 
RESET_STATE records. RESET_STATE records are emitted periodically to ensure that 
reconstruction costs are bounded. Along with the normal architected registers, RESET_STATE 
records also contain a “thread” pseudo-register recording the current kernel thread ID. Valgrind 
notifies the Amber tool whenever a thread switch occurs, and Amber immediately outputs a new 
RESET_STATE record with the new thread ID and register values.

4.Memory Effects
Amber records memory writes and instruction executions using a single unified mechanism: 
memory effect maps. A memory effect is simply an event that has an associated memory range and 
timestamp. The only difference between recording memory writes and instruction executions is that 
memory write events have associated data — the values written. Conceptually, all we need to do is 
send all these events to the indexer.

We observe that within a single EBB, we frequently see a set of memory effects whose ranges are 
statically known to partition some larger memory range. For example, the execution of a block of N 
sequential instructions induces N instruction execution effects whose ranges partition the memory 
range of the executed block. Byte writes to locations r3, r3-1, and r3-2 are three write effects whose 
ranges partition the range [r3-2, r3+1). We leverage this observation by grouping such related 
effects into bunches. A bunch is a compound memory effect that has an associated memory range 
and base timestamp. It also has a list of (timestamp-offset, length) pairs describing how the 
compound effect can be decomposed into a sequence (not necessarily in timestamp order) of basic 
memory effects that partition the range. The timestamp of each basic memory effect is obtained by 
adding its timestamp-offset to the base timestamp.

Our key optimization is to form bunches statically, when we instrument an EBB. For instruction 
execution this is trivial: each run of consecutive instructions is one bunch, and instruction addresses 
are statically known. For memory writes we form bunches using a simple heuristic as we scan the 
IR from beginning to end: if we can combine the current write into a bunch with the previous write 
(or bunch), then we do so. Write addresses are usually not statically known, but in many cases 
simple dataflow analysis can show that two symbolic address expressions are equal, letting us add a 
write to the beginning or end of the previous bunch. For example, if the current bunch partitions 
[r3-1, r3+1), then a write to [r3-2, r3-1) is easily seen to form a bunch partitioning the union [r3-2, 
r3+1).

In practice we impose some implementation constraints on bunches: we restrict bunches to at most 
8 component effects, we restrict the length of each component effect to at most 15 bytes, and we 
restrict the timestamp-offset of each component effect to at most 15. This lets us encode the static 



decomposition of a bunch into components in just 8 bytes.

For simplicity even single memory effects are encoded as bunches. (As a special case, these 
singleton bunches can affect up to 255 bytes ... some x86 SSE2 instructions can write 16 bytes  of 
memory, and some x86 instructions can be longer than 15 bytes!) We statically determine the 
overall length of the bunch and its decomposition into component effects. We also check whether 
the base address is statically known. If not, it must be emitted by the instrumentation dynamically 
when the first instruction in the bunch is executed. However, as a further optimization we detect 
when the dynamic base address is a known static offset from the dynamic base address of the 
previous bunch of the same type; if so, we can avoid logging the address of the current bunch. This 
is useful when we can't form a single bunch because there is a “hole” in the range of memory 
affected.

All static information about bunches is recorded in the DEFINE_CODE record for the EBB. 
Residual dynamic information is emitted in the EXEC record each time the EBB is executed. For 
memory writes, the written value is always emitted dynamically by the instrumentation around the 
write instruction.

Static bunch detection significantly reduces the number of memory events that must be handled by 
each stage of Amber, resulting in a major gain in efficiency.

5.Indexer
The Amber Valgrind tool spawns the indexing and compression engine as a separate process. This 
allows the indexer to use standard C libraries. (Valgrind tools cannot use standard libraries because 
they are instrumented.) It also limits the impact of Amber on the address space layout seen by the 
program being debugged. It allows the indexer to detect and recover from unexpected failure in the 
Valgrind process.

An architecture that put the indexing and compression engine into the Valgrind process and allowed 
direct calls from Amber instrumentation into the indexing and compression engine might be more 
efficient, but having indexing and compression in a separate thread or process allows that work to 
be performed by another CPU core. (Putting the indexer in a different thread of the same process 
would lose the advantages of separate processes for no gain.)

To maximise write bandwidth, the indexer always appends to the end of the database file, never 
seeking within it or writing to another file.

Memory map changes recorded by SET_ADDR_MAP records are accumulated into a single array 
along with their timestamps and written out in one chunk at the end of the run.

Beyond that, indexer outputs three main kinds of data to the database: the static information about 
EBBs as sent by the instrumentation, lists of EBBs executed plus dynamic register data (all 
compressed), and indexed and compressed memory effects. The volume of static EBB data is 
negligible compared to the rest of the data, so its storage format is not important as long as lookup 
by EBB ID is efficient. The next sections describe the storage of the dynamic data.

After formatting, dynamic log data is compressed using a compression engine, currently zlib 
[Zlib06]. The formatting breaks data into chunks that are compressed and written independently and 
asynchronously. In practice there are many chunks and compression is currently the performance 
bottleneck, so Amber uses all available CPU cores to compress multiple chunks simultaneously.

6.Indexed Execution History
The execution history is divided into epochs; each RESET_STATE event starts a new epoch. An 
array containing a list of all epochs is appended to the database; each array entry contains the 
timestamp of the epoch start, the thread ID of the epoch, a bitmask indicating which registers were 
written during the epoch, and the file offset of the compressed epoch details. The bitmask and 



thread ID allow reasonably efficient searches to determine which epochs belong to a given thread 
or which epoch contains a write to given register(s) by a given thread.

At the start of the details we record the contents of all registers at the start of the epoch, and the 
number of EBBs executed (or partially executed). Then follows an array with the number of 
instructions executed by each EBB (only one byte required per EBB execution), followed by 
another array with the ID of each executed EBB. (The arrays are separated to avoid wasted space 
due to alignment constraints, and also to make determining which EBB execution contains a given 
instruction timestamp as fast as possible.) After those arrays is the raw register log data for all EBB 
executions, as described in Section 3. We store out complete register log data even for for EBBs 
that exited early; unused log entries will have been zeroed out by the instrumentation as described 
above.

The key to achieving a high compression ratio is to ensure that repetitious code in the instrumented 
program produces repetitious input to the compressor. It is common for an instruction at address X 
that writes a register R to write the same value each time it is executed [LWS96]. However it is also 
common for the values written to R to form an arithmetic progression (e.g. as a counter increments 
or as a pointer strides through memory), and these values are not compressed well by a simple 
compressor such as zlib. Therefore we exploit our domain knowledge to improve the 
compression by preprocessing the data. When copying register log data for an EBB execution to the 
details buffer for compression, if this is not the first execution of the EBB in this epoch, we actually 
store the difference between the log data for this execution and the log data for the previous 
execution of the same EBB. To simplify the code and increase speed, we ignore the structure of the 
log data and simply perform word-by-word differencing of the memory blocks. With this 
optimization, repeated executions of instruction X that write the same values to register R produce 
zeroes as input to the compressor, and when the values form an arithmetic progression with stride 
C, the input to the compressor is very likely to be a string of Cs (interspersed with other values from 
other instructions).

Computing the value of any given register(s) at a given timestamp now requires locating the epoch 
containing the timestamp in the epoch array (binary search can be used), reading the compressed 
epoch data block from disk and decompressing it, initializing register values to the initial values and 
then replaying the register operations of the EBBs executed before the given timestamp. The 
instrumentation engine bounds the number of EBB executions between RESET_STATE events, so 
the cost of reconstructing registers is generally a single disk seek and some bounded amount of 
CPU time.

7.Indexed Memory Effects
Memory effects are stored per memory “page”. Amber's page size need not correspond to the 
system page size; currently we use 64K as the page size. For each memory page, we divide history 
into page epochs. We start a new page epoch when the current timestamp is at least 232 instruction 
executions after the start of the current epoch, or when the number of effects in the current epoch 
exceeds some limit (currently 60000) chosen to make the compressed data for each page epoch be 
on the order of 100KB.

The database contains a page directory, organized as a hash table mapping page numbers (the page 
address divided by the page size) to page records. Each page record contains the file offsets of an 
uncompressed array of page epoch records and an uncompressed array of bitmap records.

Each bitmap record contains the offset and length of compressed data for N (currently 8) bitmaps, 
each showing which memory locations were affected during a particular page epoch. (For example, 
the instruction execution effects bitmap for a page epoch indicates which instructions were executed 
in the page during the epoch.) The bitmaps for each page epoch are compressed using run-length 
encoding before being aggregated and sent to the general compressor. (In practice the run-length 
encoding is extremely effective, which is why we aggregate the results before doing a relatively 



expensive compress-and-write.) The query engine searches these bitmaps to determine which page 
epochs affected particular memory locations, especially to determine which page epoch was the last 
epoch to affect a particular location before some designated timestamp. It can actually perform this 
analysis directly using the run-length encoded form of the bitmap.

A page epoch record contains the timestamps of the first and last effect in the epoch. It also contains 
the file offset and length of a compressed list of all effects in the epoch. Each effect in the list 
records the timestamp of the effect relative to the start of the epoch (stored in 32 bits; this can't 
overflow because we have restricted the epoch duration), the 16-bit address within the page of the 
affected memory, and the 16-bit length (with zero interpreted as 216 bytes). The effects are actually 
bunches, so we also store the 8-byte bunch descriptor to indicate how the bunched effect breaks 
down into individual effects.

Again we apply the principle that repetitious program behaviour should produce repetitious input to 
the compressor. Loops that repeatedly write into a page with constant address stride are common, 
and timestamps of each write also often form an arithmetic progression (because the number of 
instructions executed per iteration is often constant). Therefore, for each effect we actually store the 
difference in timestamp and address between the effect and the previous effect.

It is often desirable to traverse the effects in reverse-time order, so we include in the page epoch 
record the timestamp and absolute address offset of the last effect. We can then reconstruct effects 
in reverse order by subtracting the differences instead of adding them.

For effect types that have associated data values (memory writes), the values for each effect are 
appended to the effect list before compression.

When the indexer receives an EXEC record from the instrumentation, it extracts the effects from the 
static EBB descriptor, merges them with the dynamic data to compute the final address of each 
effect, and appends each effect to the current page epoch for the affected memory page and effect 
type. An effect may span multiple pages (x86 permits unaligned accesses), so a slow path breaks up 
such effects into multiple effects (a nontrivial task when bunches must be decomposed). When an 
EBB exits early, we take another slow path that determines which effects actually happened and 
applies them (again, nontrivial when some of the effects in a bunch were not executed). Fortunately 
these slow paths are rarely required. Bunched effects almost always pass through the indexer 
without requiring decomposition, which is why they are a big performance win.

Memory writes not performed by program code, including user-space writes by the kernel and 
memory “writes” performed by address space changes, are received as BULK_WRITE records by 
the indexer, which turns them into one memory write effect to each affected page.

The indexer can consume a lot of memory as it stores partially-completed page epoch data for each 
active page. This overhead is roughly a constant times the debugee's memory usage; the constant 
can be tuned to trade off indexer memory usage against page epoch size (larger page epochs require 
more interim storage but compress better and reduce CPU overhead).

8.Query Engine
The query engine that reads Amber databases is simple. It accepts JSON-formatted queries over a 
socket and sends replies over the same socket. Queries are stateless and the engine never writes to 
the database, so it is easy to run queries in parallel. Almost the entire design of the engine is 
determined by the database structure described above. In fact, the hardest part of the engine was 
designing a query API to expose compiler-generated debug information to the debugger, and 
implementing that API for DWARF2. (Working with DWARF2 directly from a high-level language 
is undesirable since parsing debug information is often a performance problem in debugging 
sessions, and low-level memory manipulation is helpful. Also, if Amber is to be used for remote 
debugging, it will be helpful to avoid sending large program binaries over the connection.)



We have already described how to reconstruct register state for any time T. The memory write 
effect data lets us reconstruct memory contents for any time T. First the memory area required is 
divided into pages. For each page, we use the summary bitmaps to determine which page epochs up 
to time T wrote to the memory locations of interest. (For the page epoch containing T, the bitmap 
tells us which locations may have been written before T; for earlier page epochs, the bitmap tells us 
that locations were definitely written before T.) Then we fetch the effect list for each relevant page 
epoch and traverse it backwards to find the last write to each location of interest. (This step can be 
parallelized.) We also have to check the address space map events in case the last change to the 
contents of the memory was a memory map change. Note that this approach to memory 
reconstruction also reveals when the last write to each location occurred.

This approach may require a large number of page epochs to be considered, and a large number of 
effects to be scanned in each page epoch. We could avoid all this by saving the compressed contents 
of the page at the start of each page epoch, at the cost of a considerable increase in bandwidth. So 
far it appears this is not necessary; the debugger generally only reconstructs small amounts of data 
from any given page, or when it requires large amounts of data, the writes to store the data had 
temporal locality. More experience is required.

9.Results
The design goal was to squeeze the entire database into less than one byte per instruction executed, 
for realistic applications. This goal has been achieved. With a Firefox debug build running on a 32-
bit x86 laptop (single-core 1.5 GHz Pentium M, 1GB memory), a test run that starts up the browser, 
displays a Web page and shuts down executes more than 4.8 billion instructions and the resulting 
database size is 3870 MB. The number of bytes per instruction is about 0.838. The entire run takes 
about 20 minutes (about 300 times slower than a regular execution). This is slow, but it is easy to 
automate these runs so no human attention is required. It is a relatively short run, but very many 
interesting bugs can be reproduced in runs of this length. Recording is CPU-bound; the disk is 
mostly idle. Profiling suggests that almost all time is spent in the zlib compression code.

10.Related Work
Omniscient Debugging [Lew03] is the closest work to Amber in spirit, sharing the vision of 
debugging from trace data without reexecution, and using indexes to facilitate operations such as 
“find last write to this location”. However the Omniscient Debugger is limited to Java programs and 
has not addressed the challenges of indexing, compressing and storing large volumes of trace data.

Nirvana [BCJ06] is the closest work to Amber in implementation. Nirvana is a Valgrind-like 
dynamic code rewriting framework, which has been used to construct a tool for complete program 
recording to support debugging with reverse execution via reexecution and replay. Nirvana records 
the results of memory read instructions to allow deterministic replay of multithreaded applications 
on multiprocessors. Register state is periodically checkpointed as in Amber, so that register values 
can be reconstructed with bounded overhead. Unlike Amber, memory writes are not separately 
indexed, so it appears that many operations (such as finding the last write to a location) will require 
possibly costly reexecution. Indeed it is unspecified how, and how effectively, the Nirvana 
debugger supports reconstruction of general memory contents. In the language of the Introduction, 
“efficient state reconstruction” and “efficient reverse dataflow” are not directly supported. On the 
other hand, Nirvana supports lower overhead and smaller traces than Amber in the recording phase 
(5-15x time overhead is reported), but debugging requires an additional, slower reexecution phase 
(for which a further factor of 3-4x slowdown is suggested), so in total the overhead  is still high. 
Nirvana's trace data per instruction is 0.1-0.5 bits per instruction executed, which is a lot less than 
6.5 bits per instruction with Amber.

TTVM [KDC05] is a virtual-machine level trace-and-replay framework with associated gdb 
extensions to help debug the replayed VM's kernel. By recording only the I/O and and 



asynchronous events affecting the VM, slowdown is reduced to less than a factor of two. The main 
reason TTVM's recording is much more efficient than Nirvana's is probably that TTVM does not 
support replay of parallel execution of the guest VM on multiple processor cores, and therefore 
does not need to log memory reads in any way. There are proposals for hardware extensions to 
support deterministic replay of parallel execution much more efficiently [XBH03].

11.Conclusions And Future Work
With careful design it is not hard to meet the goals set out in the introduction. Complete recording 
(with indexing) can be carried out on commodity desktop hardware with reasonable efficiency. The 
challenge now is to exploit the full power of the model in an actual debugger.

This approach does have some limitations. Valgrind serializes thread execution so certain kinds of 
concurrency problems (e.g., memory coherence issues) are not captureable by Amber. However, the 
Valgrind scheduler could be made very aggressive to reveal many kinds of concurrency bugs. 
Furthermore Amber only needs to reproduce a bug once, and then it becomes much easier to debug 
than using traditional methods.

Amber does not capture the state of the environment. For example, the programmer cannot observe 
the contents of a program's window during the debugging session. A natural extension would be to 
support recording of environment state (e.g., window snapshots) into the database.

Another natural extension would be to support dynamic attachment. A program could run normally 
for a while before we attach Valgrind/Amber and start running it with instrumentation. (Other 
Valgrind-like frameworks (e.g., PIN [LCM05] and Nirvana [BCJ06]) support this.) This would let 
Amber debug long-running programs as long as the root causes of bugs occur after attachment.

Currently, when a process forks we disable recording of the child process. It would be interesting to 
record multiple processes to separate databases, but with enough synchronization for a debugger to 
reconstruct multi-process interactions.

Another possible extension is to record memory and/or register reads as well as writes. This would 
let the programmer see where values are used, and allow reconstruction of a complete dataflow 
graph for the program. This would require a large increase in bandwidth, and it is not yet clear how 
useful it would be in a debugger. (Amber already implements this as an option.)

Much work could be done to improve the efficiency of the entire process, for example by 
optimizing the compressor or the instrumentation. This is probably less important than building a 
better debugger using the existing infrastructure. Another option would be to use a low-overhead 
recorder (e.g., TTVM [KDC05]) to record at nearly normal speed, and then replay that execution 
offline under Amber to build a rich trace database. This is probably the best overall approach.

Currently Amber is focused on debugging C and C++ programs, but the infrastructure is very 
general and any machine-code program can be recorded. Any language could be supported as long 
as we have a mapping from process state to language-level state. Even interpreted languages can be 
debugged, since we can reconstruct the state of the interpreter. Multi-language debugging could 
also work well, if we can design a practical user interface for it.

As we increase the power of the debugger, we will probably need to extend Amber in new 
directions. One obvious direction is to record allocation and deallocation as memory effects, so the 
debugger can know the allocation state of all memory at all times, and efficiently determine when a 
particular memory location was allocated or freed. C++ construction and destruction could be 
recorded the same way --- then we would know the type of many memory locations. This would 
assist regular debugging and make it even easier to find certain kinds of memory errors.
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