
Efficient Collection And Storage
Of Indexed Program Traces

Robert O'Callahan, Novell

December 30, 2006

1.Introduction
Debugging is fundamentally about tracing effects back to causes. However, traditional debuggers
for software merely monitor a program's forward execution and are not well suited to the debugging
task. There is increasing interest in direct support for “reverse-time debugging” using a combination
of techniques such as logging, checkpointing, and replay [BCJ06, Lew03, Boo00, GHS06, KDC05]
to give the programmer access to past program states.

Unfortunately there is no technology available today that provides a debugger with the following
desirable properties:

● Complete recording. The debugger should capture enough information from one run of the
program that every detail of the program state during the run can be reconstructed without
having to run the program again. This hoists “run the program” out of the loop of the
programmer's debugging activity. It also aids debugging of nondeterministic programs; once
a bug has manifested once in the debugger, it can be diagnosed.

● Efficient state reconstruction. The debugger should be able to reconstruct program state at
any time point with a cost proportional to the amount of state reconstructed but independent
on the time point chosen. This can be a problem for replay-based techniques, which tend to
have a cost proportional to the differences in time points of interest.

● Efficient reverse dataflow. A fundamental debugging step is “the value of X at time T is
wrong; when and where was it set?” It should be possible to answer such questions
efficiently, with a cost independent of the difference in time between T and when X was set.

● Additional queries. The debugger should be able to efficiently answer “when was the last
execution of program point P (before time T)”, and other similar queries.

● Practical implementation. An ideal debugger would be usable by as many programmers as
possible. Therefore it should run on PC-class hardware, supporting standard operating
systems, languages, and runtime systems. It should handle large complex programs, since
that is where the hardest debugging problems occur.

● Reasonable overhead. A debugger with “complete recording” separates debugging into two
phases: recording and diagnosis. When automated testing is available (as most development
methodologies recommend) the recording phase can run unattended, and performance
during diagnosis is much more important. Nevertheless the space and time requirements for
recording must not exhaust the programmer's hardware or patience.

I have created a tool (provisionally called Amber) which meets these requirements. Amber uses
Valgrind [NS03] to instrument a Linux process at the binary level and log every memory and
register write and all control flow. The log is indexed to provide efficient support for the desired
queries, and compressed to reduce storage requirements and especially to avoid the bottleneck of
limited disk write bandwidth. During the diagnosis phase, a debugger passes queries to a query
engine which answers them from the log data. Figure 1 illustrates the architecture.

Amber exceeds almost all previous systems in the intensity of its logging for the sake of efficient
program state reconstruction and query processing. The only comparable system is Omniscient
Debugging, but that system is limited to smallish Java programs, whereas Amber was designed
from the outset to support debugging of Firefox, which is written in a mixture of C, C++, Javascript
and assembly and which executes more than three billion instructions to start up and display a
simple Web page (in a debug build). This requires new techniques for gathering, indexing and
compressing a torrent of machine-code level log data, taking advantage of multiple CPUs now that
multiprocessor systems are mainstream. These techniques are Amber's primary contribution to the
state of the art. A secondary contribution is a set of experimental results showing that such an
aggressive tracing approach is practical on stock hardware, even with programs as large as Firefox,
and therefore the time is ripe to adopt this approach to debugging. The rest of this paper describes
the Amber design and implementation in detail, along with the experimental results.

Fully exploiting the power of Amber in a debugger user interface is challenging and beyond the
scope of this paper. However, we present some screenshots of a prototype Amber-based debugger
to illustrate what is possible and to motivate Amber's design. Figure 2 shows the main window
divided into four panes. The primary pane is the Timeline. The Timeline shows events in the
program execution history with time increasing from top to bottom. In this example, the
programmer has run the program to completion while saving a complete record, then launched the
debugger. The programmer then created a query to populate the Timeline with all invocations of the
method nsViewManager::Refresh. Each invocation comprises a Call event and an Exit event; the
interval between the events is displayed as a bar on the left. Calls are detected with a query to find
all executions of the first instruction of nsViewManager::Refresh; this query returns a set of
timestamps, each corresponding to a Call event. In each Call event we display parameter values at
the time of the call, using register and memory values reconstructed by Amber for the associated
timestamp. (In this case, the interpretation of register and memory values is specified by DWARF2
debug information produced by the gcc compiler and consumed by our prototype debugger.)

In Figure 2 the user has selected one particular invocation of nsViewManager::Refresh (shown in
white in the Timeline). The debugger has computed the call stack for that timestamp. Each line in
the Call Stack pane displays one stack frame, along with the parameter values for the call that
created the stack frame, evaluated at the time of that call. (Contrast with traditional debuggers,

Figure 1: Amber Architecture

Debuggee Program

Valgrind/Amber Process

Input Output

Indexer Process

Raw log data (shared memory channel)

Indexed, compressed trace
Recording

Diagnosis

Query Engine Source files

Compiler-generated
debug information

Local Debugger

Remote Debugger

Network

which attempt to display parameter values for all active stack frames, but only have access to the
current contents of stack memory and therefore may display misleading values if the stack locations
holding parameters have been modified after subroutine entry.)

The user has double-clicked on the “this” parameter to nsViewManager::Refresh to inspect that
object in the Data pane. Amber has reconstructed the object's field values at the selected timestamp
(the event bordered in yellow in the Timeline), and we display these values in the Data pane.

Next, suppose the value of field “mFirstChild” looks suspicious. The user control-clicks on the
mFirstChild — a command to locate the previous write to that field. The debugger issues a single
Amber query and receives the timestamp of that last write. This is inserted as a new event in the

Figure 2: Debugger Window

Figure 3: Found Last Write

Timeline, as shown in Figure 3, and selected as the current timestamp. The Call Stack pane updates
to show the call stack at the earlier time, and the Data pane updates to show the field values for the
selected object at the time. If this write set an incorrect value we will quickly be able to determine
why, moving further back in time as necessary.

2.Instrumentation
Valgrind is an open source dynamic binary instrumentation engine, similar to DynamoRio and PIN.
It simulates a user-level Linux process at the machine-code level by translating extended basic
blocks of instructions on-the-fly to an internal representation, and then recompiling the IR to native
instructions for execution. Pluggable “tools” are permitted to modify the IR before recompilation, to
introduce instrumentation. This IR rewriting approach can be cumbersome for sparse
instrumentation but it is well suited to Amber's need for pervasive instrumentation.

Valgrind provides additional capabilities that are useful to Amber. It notifies tools of the memory
read and write effects of all system calls (introduced to facilitate writing Purify-like memory
checkers). Amber records the write effects of system calls in its log. Valgrind can also notify tools
when memory changes due to subtle effects such as implicit growth of the stack virtual memory
area, or the construction of a stack frame for signal delivery. Valgrind runs all program code on a
single underlying thread and simulates operating system threads for multithreaded programs. This
suits Amber, because single-threaded execution is much easier to record. (And as we shall see,
Amber can exploit multiple CPUs in other ways.) Most importantly of all, Valgrind is robust at
handling the intricacies of instruction sets and Linux kernel semantics.

Amber's instrumentation outputs a series of trace records to an indexing and compression engine
running in another process, described below. We store a sequence of records in a shared memory
buffer and the processes synchronize only when switching buffers. There are several types of
records:

● INIT. This is always the first record.

● SET_ADDR_MAP. Emitted when the address space of the process changes, e.g. due to an
mmap system call. Amber emits a series of these after INIT to record the initial address
space configuration. The record describes the address space region and its new mapping (if
any).

● BULK_WRITE. Emitted when a large amount of memory is written atomically, typically due
an I/O system call, but also in conjunction with SET_ADDR_MAP when data has been
mapped into the address space. We record the address range and data written. When read-
only files are mapped, Amber skips issuing a BULK_WRITE, assuming that the file
contents will be available to the eventual debugger. This avoids having to write the contents
of all executables into the log.

● SYSTEM_WRITE. Emitted when a system call writes memory as a side effect. The addres
range is recorded. One or more BULK_WRITE records follow with the actual data. (We
separate out data into multiple BULK_WRITEs because our implementation limits the size
of a record to the size of the shared memory channel buffer.)

● RESET_STATE. Periodically the instrumentation emits the contents of all registers in one of
these records. Certain pseudo-registers are also included (see below). Amber also emits one
of these records at startup, and whenever registers are changed by a thread context switch.

● DEFINE_CODE. After Amber has instrumented an extended basic block, it emits one of
these records. The record contains a unique ID assigned to the block, and describes what is
statically known about the memory and register effects of the block. See below for more
details.

● EXEC. An instrumented extended basic block emits one of these records every time it is
executed. The record includes the block ID, from which the indexer locates the block's static
descriptor. Any dynamic information about the block's effects needed by the indexer (e.g.,
the address of a memory write, if not statically known) is included in the EXEC record. The
exact format of each EXEC record is tailored to the block, but can be reconstructed given
the block static descriptor.

Valgrind's extended basic blocks (EBBs) are single-entry, multiple-exit instruction sequences
connected by fall-through or direct control transfers. Valgrind can select overlapping EBBs, but this
is irrelevant to Amber. One of the key items of dynamic information in each EXEC record is the
number of instructions retired, which can be less than the total number of instructions due to a
unexpected conditional branch or an exception.

Valgrind does not allow instrumentation to take control or easily detect when an exception occurs,
so it is impossible to set the instructions-retired counter when an exception causes early termination
of an extended basic block. (Often an exception will be simply set up an activation record and
transfer control to a signal handler registered by the debugee program.) Therefore an instrumented
EBB allocates its EXEC record on entry, fills in the dynamic effect information as the associated
instructions execute, and updates the retired-instructions counter after each instruction completes.
For EBBs that can terminate early, the instrumentation zeroes out the EXEC record after allocation
so that upon early termination, any unused log entries are zero; the indexer will eventually compress
this data and garbage could hurt compressor performance.

We use a pair of shared memory buffers to communicate between the Valgrind instrumentation and
the spawned indexer process. The instrumentation fills one shared memory buffer with records
while the indexer processes records from the other buffer. The processes use a pipe to signal each
other that a buffer has been filled or emptied. The indexer automatically processes the last
incompletely filled buffer when it detects the instrumented process has terminated. (This is useful
for debugging Amber because it means when an error in the instrumentation (or Valgrind itself)
causes a crash, we still get a complete record right up to the point before the crash.)

In Amber, a timestamp is simply the count of instructions retired since the start of the program.

3.Register Effects
The Amber instrumentation engine extracts from the Valgrind IR a static list of all register
modifications performed by each program instruction (including instructions such as system calls
that may indirectly change many registers). Each modification is assigned one of four classes:

● DYNREG_WRITE. Low bits of some register are set to some value. Neither the register nor
the value are statically known, so both are recorded by the instrumentation.

● REG_WRITE. Low bits of a statically known register are set to some value that will be
recorded dynamically by the instrumentation.

● REG_SETCONST. Low bits of a statically known register are set to a statically known value
that is expressible as a signed 16-bit value.

● REG_ADDCONST. The low bits of a statically known register are set to the low bits of
some (possibly other) statically known register plus some statically known value expressible
as a signed 8-bit value.

Each of these classes comes in flavours specifying the number of bits affected — 8, 16, 32, 64 or
128.

DYNREG_WRITE is the most general class but requires the most information to be recorded
dynamically; we prefer classes that require less information to be recorded dynamically, especially

REG_SETCONST and REG_ADDCONST, which require no information to be recorded
dynamically. In our implementation DYNREG_WRITE is actually only required by x87 floating
point operations — Valgrind treats the x87 floating point stack as a register array indexed by a
hypothetical “FPTOP” register.

We could further reduce the amount of data that must be dynamically recorded by extending our set
of modification classes, for example by adding REG_MULCONST to multiply a register by a
constant or REG_ADD to add two registers. In the limit we could reexecute actual machine
instructions (assuming they don't read memory or hidden processor state and have no side effects).
This limited set of classes was chosen to be simple, easy to detect from the IR alone, trivial to
serialize and deserialize, and still reduce dynamic register logging by a large factor.

The instrumentation engine transmits the static register modification list to the indexer in each
DEFINE_CODE record. Then each time an EBB is executed, for each executed register
modification, the instrumentation logs any necessary dynamic values (and possibly register
numbers) and includes this log as part of the payload to the EXEC record.

With this static and dynamic information we can reconstruct the contents of all registers at any point
by replaying register modifications, given the initial states of registers, which we know from
RESET_STATE records. RESET_STATE records are emitted periodically to ensure that
reconstruction costs are bounded. Along with the normal architected registers, RESET_STATE
records also contain a “thread” pseudo-register recording the current kernel thread ID. Valgrind
notifies the Amber tool whenever a thread switch occurs, and Amber immediately outputs a new
RESET_STATE record with the new thread ID and register values.

4.Memory Effects
Amber records memory writes and instruction executions using a single unified mechanism:
memory effect maps. A memory effect is simply an event that has an associated memory range and
timestamp. The only difference between recording memory writes and instruction executions is that
memory write events have associated data — the values written. Conceptually, all we need to do is
send all these events to the indexer.

We observe that within a single EBB, we frequently see a set of memory effects whose ranges are
statically known to partition some larger memory range. For example, the execution of a block of N
sequential instructions induces N instruction execution effects whose ranges partition the memory
range of the executed block. Byte writes to locations r3, r3-1, and r3-2 are three write effects whose
ranges partition the range [r3-2, r3+1). We leverage this observation by grouping such related
effects into bunches. A bunch is a compound memory effect that has an associated memory range
and base timestamp. It also has a list of (timestamp-offset, length) pairs describing how the
compound effect can be decomposed into a sequence (not necessarily in timestamp order) of basic
memory effects that partition the range. The timestamp of each basic memory effect is obtained by
adding its timestamp-offset to the base timestamp.

Our key optimization is to form bunches statically, when we instrument an EBB. For instruction
execution this is trivial: each run of consecutive instructions is one bunch, and instruction addresses
are statically known. For memory writes we form bunches using a simple heuristic as we scan the
IR from beginning to end: if we can combine the current write into a bunch with the previous write
(or bunch), then we do so. Write addresses are usually not statically known, but in many cases
simple dataflow analysis can show that two symbolic address expressions are equal, letting us add a
write to the beginning or end of the previous bunch. For example, if the current bunch partitions
[r3-1, r3+1), then a write to [r3-2, r3-1) is easily seen to form a bunch partitioning the union [r3-2,
r3+1).

In practice we impose some implementation constraints on bunches: we restrict bunches to at most
8 component effects, we restrict the length of each component effect to at most 15 bytes, and we
restrict the timestamp-offset of each component effect to at most 15. This lets us encode the static

decomposition of a bunch into components in just 8 bytes.

For simplicity even single memory effects are encoded as bunches. (As a special case, these
singleton bunches can affect up to 255 bytes ... some x86 SSE2 instructions can write 16 bytes of
memory, and some x86 instructions can be longer than 15 bytes!) We statically determine the
overall length of the bunch and its decomposition into component effects. We also check whether
the base address is statically known. If not, it must be emitted by the instrumentation dynamically
when the first instruction in the bunch is executed. However, as a further optimization we detect
when the dynamic base address is a known static offset from the dynamic base address of the
previous bunch of the same type; if so, we can avoid logging the address of the current bunch. This
is useful when we can't form a single bunch because there is a “hole” in the range of memory
affected.

All static information about bunches is recorded in the DEFINE_CODE record for the EBB.
Residual dynamic information is emitted in the EXEC record each time the EBB is executed. For
memory writes, the written value is always emitted dynamically by the instrumentation around the
write instruction.

Static bunch detection significantly reduces the number of memory events that must be handled by
each stage of Amber, resulting in a major gain in efficiency.

5.Indexer
The Amber Valgrind tool spawns the indexing and compression engine as a separate process. This
allows the indexer to use standard C libraries. (Valgrind tools cannot use standard libraries because
they are instrumented.) It also limits the impact of Amber on the address space layout seen by the
program being debugged. It allows the indexer to detect and recover from unexpected failure in the
Valgrind process.

An architecture that put the indexing and compression engine into the Valgrind process and allowed
direct calls from Amber instrumentation into the indexing and compression engine might be more
efficient, but having indexing and compression in a separate thread or process allows that work to
be performed by another CPU core. (Putting the indexer in a different thread of the same process
would lose the advantages of separate processes for no gain.)

To maximise write bandwidth, the indexer always appends to the end of the database file, never
seeking within it or writing to another file.

Memory map changes recorded by SET_ADDR_MAP records are accumulated into a single array
along with their timestamps and written out in one chunk at the end of the run.

Beyond that, indexer outputs three main kinds of data to the database: the static information about
EBBs as sent by the instrumentation, lists of EBBs executed plus dynamic register data (all
compressed), and indexed and compressed memory effects. The volume of static EBB data is
negligible compared to the rest of the data, so its storage format is not important as long as lookup
by EBB ID is efficient. The next sections describe the storage of the dynamic data.

After formatting, dynamic log data is compressed using a compression engine, currently zlib
[Zlib06]. The formatting breaks data into chunks that are compressed and written independently and
asynchronously. In practice there are many chunks and compression is currently the performance
bottleneck, so Amber uses all available CPU cores to compress multiple chunks simultaneously.

6.Indexed Execution History
The execution history is divided into epochs; each RESET_STATE event starts a new epoch. An
array containing a list of all epochs is appended to the database; each array entry contains the
timestamp of the epoch start, the thread ID of the epoch, a bitmask indicating which registers were
written during the epoch, and the file offset of the compressed epoch details. The bitmask and

thread ID allow reasonably efficient searches to determine which epochs belong to a given thread
or which epoch contains a write to given register(s) by a given thread.

At the start of the details we record the contents of all registers at the start of the epoch, and the
number of EBBs executed (or partially executed). Then follows an array with the number of
instructions executed by each EBB (only one byte required per EBB execution), followed by
another array with the ID of each executed EBB. (The arrays are separated to avoid wasted space
due to alignment constraints, and also to make determining which EBB execution contains a given
instruction timestamp as fast as possible.) After those arrays is the raw register log data for all EBB
executions, as described in Section 3. We store out complete register log data even for for EBBs
that exited early; unused log entries will have been zeroed out by the instrumentation as described
above.

The key to achieving a high compression ratio is to ensure that repetitious code in the instrumented
program produces repetitious input to the compressor. It is common for an instruction at address X
that writes a register R to write the same value each time it is executed [LWS96]. However it is also
common for the values written to R to form an arithmetic progression (e.g. as a counter increments
or as a pointer strides through memory), and these values are not compressed well by a simple
compressor such as zlib. Therefore we exploit our domain knowledge to improve the
compression by preprocessing the data. When copying register log data for an EBB execution to the
details buffer for compression, if this is not the first execution of the EBB in this epoch, we actually
store the difference between the log data for this execution and the log data for the previous
execution of the same EBB. To simplify the code and increase speed, we ignore the structure of the
log data and simply perform word-by-word differencing of the memory blocks. With this
optimization, repeated executions of instruction X that write the same values to register R produce
zeroes as input to the compressor, and when the values form an arithmetic progression with stride
C, the input to the compressor is very likely to be a string of Cs (interspersed with other values from
other instructions).

Computing the value of any given register(s) at a given timestamp now requires locating the epoch
containing the timestamp in the epoch array (binary search can be used), reading the compressed
epoch data block from disk and decompressing it, initializing register values to the initial values and
then replaying the register operations of the EBBs executed before the given timestamp. The
instrumentation engine bounds the number of EBB executions between RESET_STATE events, so
the cost of reconstructing registers is generally a single disk seek and some bounded amount of
CPU time.

7.Indexed Memory Effects
Memory effects are stored per memory “page”. Amber's page size need not correspond to the
system page size; currently we use 64K as the page size. For each memory page, we divide history
into page epochs. We start a new page epoch when the current timestamp is at least 232 instruction
executions after the start of the current epoch, or when the number of effects in the current epoch
exceeds some limit (currently 60000) chosen to make the compressed data for each page epoch be
on the order of 100KB.

The database contains a page directory, organized as a hash table mapping page numbers (the page
address divided by the page size) to page records. Each page record contains the file offsets of an
uncompressed array of page epoch records and an uncompressed array of bitmap records.

Each bitmap record contains the offset and length of compressed data for N (currently 8) bitmaps,
each showing which memory locations were affected during a particular page epoch. (For example,
the instruction execution effects bitmap for a page epoch indicates which instructions were executed
in the page during the epoch.) The bitmaps for each page epoch are compressed using run-length
encoding before being aggregated and sent to the general compressor. (In practice the run-length
encoding is extremely effective, which is why we aggregate the results before doing a relatively

expensive compress-and-write.) The query engine searches these bitmaps to determine which page
epochs affected particular memory locations, especially to determine which page epoch was the last
epoch to affect a particular location before some designated timestamp. It can actually perform this
analysis directly using the run-length encoded form of the bitmap.

A page epoch record contains the timestamps of the first and last effect in the epoch. It also contains
the file offset and length of a compressed list of all effects in the epoch. Each effect in the list
records the timestamp of the effect relative to the start of the epoch (stored in 32 bits; this can't
overflow because we have restricted the epoch duration), the 16-bit address within the page of the
affected memory, and the 16-bit length (with zero interpreted as 216 bytes). The effects are actually
bunches, so we also store the 8-byte bunch descriptor to indicate how the bunched effect breaks
down into individual effects.

Again we apply the principle that repetitious program behaviour should produce repetitious input to
the compressor. Loops that repeatedly write into a page with constant address stride are common,
and timestamps of each write also often form an arithmetic progression (because the number of
instructions executed per iteration is often constant). Therefore, for each effect we actually store the
difference in timestamp and address between the effect and the previous effect.

It is often desirable to traverse the effects in reverse-time order, so we include in the page epoch
record the timestamp and absolute address offset of the last effect. We can then reconstruct effects
in reverse order by subtracting the differences instead of adding them.

For effect types that have associated data values (memory writes), the values for each effect are
appended to the effect list before compression.

When the indexer receives an EXEC record from the instrumentation, it extracts the effects from the
static EBB descriptor, merges them with the dynamic data to compute the final address of each
effect, and appends each effect to the current page epoch for the affected memory page and effect
type. An effect may span multiple pages (x86 permits unaligned accesses), so a slow path breaks up
such effects into multiple effects (a nontrivial task when bunches must be decomposed). When an
EBB exits early, we take another slow path that determines which effects actually happened and
applies them (again, nontrivial when some of the effects in a bunch were not executed). Fortunately
these slow paths are rarely required. Bunched effects almost always pass through the indexer
without requiring decomposition, which is why they are a big performance win.

Memory writes not performed by program code, including user-space writes by the kernel and
memory “writes” performed by address space changes, are received as BULK_WRITE records by
the indexer, which turns them into one memory write effect to each affected page.

The indexer can consume a lot of memory as it stores partially-completed page epoch data for each
active page. This overhead is roughly a constant times the debugee's memory usage; the constant
can be tuned to trade off indexer memory usage against page epoch size (larger page epochs require
more interim storage but compress better and reduce CPU overhead).

8.Query Engine
The query engine that reads Amber databases is simple. It accepts JSON-formatted queries over a
socket and sends replies over the same socket. Queries are stateless and the engine never writes to
the database, so it is easy to run queries in parallel. Almost the entire design of the engine is
determined by the database structure described above. In fact, the hardest part of the engine was
designing a query API to expose compiler-generated debug information to the debugger, and
implementing that API for DWARF2. (Working with DWARF2 directly from a high-level language
is undesirable since parsing debug information is often a performance problem in debugging
sessions, and low-level memory manipulation is helpful. Also, if Amber is to be used for remote
debugging, it will be helpful to avoid sending large program binaries over the connection.)

We have already described how to reconstruct register state for any time T. The memory write
effect data lets us reconstruct memory contents for any time T. First the memory area required is
divided into pages. For each page, we use the summary bitmaps to determine which page epochs up
to time T wrote to the memory locations of interest. (For the page epoch containing T, the bitmap
tells us which locations may have been written before T; for earlier page epochs, the bitmap tells us
that locations were definitely written before T.) Then we fetch the effect list for each relevant page
epoch and traverse it backwards to find the last write to each location of interest. (This step can be
parallelized.) We also have to check the address space map events in case the last change to the
contents of the memory was a memory map change. Note that this approach to memory
reconstruction also reveals when the last write to each location occurred.

This approach may require a large number of page epochs to be considered, and a large number of
effects to be scanned in each page epoch. We could avoid all this by saving the compressed contents
of the page at the start of each page epoch, at the cost of a considerable increase in bandwidth. So
far it appears this is not necessary; the debugger generally only reconstructs small amounts of data
from any given page, or when it requires large amounts of data, the writes to store the data had
temporal locality. More experience is required.

9.Results
The design goal was to squeeze the entire database into less than one byte per instruction executed,
for realistic applications. This goal has been achieved. With a Firefox debug build running on a 32-
bit x86 laptop (single-core 1.5 GHz Pentium M, 1GB memory), a test run that starts up the browser,
displays a Web page and shuts down executes more than 4.8 billion instructions and the resulting
database size is 3870 MB. The number of bytes per instruction is about 0.838. The entire run takes
about 20 minutes (about 300 times slower than a regular execution). This is slow, but it is easy to
automate these runs so no human attention is required. It is a relatively short run, but very many
interesting bugs can be reproduced in runs of this length. Recording is CPU-bound; the disk is
mostly idle. Profiling suggests that almost all time is spent in the zlib compression code.

10.Related Work
Omniscient Debugging [Lew03] is the closest work to Amber in spirit, sharing the vision of
debugging from trace data without reexecution, and using indexes to facilitate operations such as
“find last write to this location”. However the Omniscient Debugger is limited to Java programs and
has not addressed the challenges of indexing, compressing and storing large volumes of trace data.

Nirvana [BCJ06] is the closest work to Amber in implementation. Nirvana is a Valgrind-like
dynamic code rewriting framework, which has been used to construct a tool for complete program
recording to support debugging with reverse execution via reexecution and replay. Nirvana records
the results of memory read instructions to allow deterministic replay of multithreaded applications
on multiprocessors. Register state is periodically checkpointed as in Amber, so that register values
can be reconstructed with bounded overhead. Unlike Amber, memory writes are not separately
indexed, so it appears that many operations (such as finding the last write to a location) will require
possibly costly reexecution. Indeed it is unspecified how, and how effectively, the Nirvana
debugger supports reconstruction of general memory contents. In the language of the Introduction,
“efficient state reconstruction” and “efficient reverse dataflow” are not directly supported. On the
other hand, Nirvana supports lower overhead and smaller traces than Amber in the recording phase
(5-15x time overhead is reported), but debugging requires an additional, slower reexecution phase
(for which a further factor of 3-4x slowdown is suggested), so in total the overhead is still high.
Nirvana's trace data per instruction is 0.1-0.5 bits per instruction executed, which is a lot less than
6.5 bits per instruction with Amber.

TTVM [KDC05] is a virtual-machine level trace-and-replay framework with associated gdb
extensions to help debug the replayed VM's kernel. By recording only the I/O and and

asynchronous events affecting the VM, slowdown is reduced to less than a factor of two. The main
reason TTVM's recording is much more efficient than Nirvana's is probably that TTVM does not
support replay of parallel execution of the guest VM on multiple processor cores, and therefore
does not need to log memory reads in any way. There are proposals for hardware extensions to
support deterministic replay of parallel execution much more efficiently [XBH03].

11.Conclusions And Future Work
With careful design it is not hard to meet the goals set out in the introduction. Complete recording
(with indexing) can be carried out on commodity desktop hardware with reasonable efficiency. The
challenge now is to exploit the full power of the model in an actual debugger.

This approach does have some limitations. Valgrind serializes thread execution so certain kinds of
concurrency problems (e.g., memory coherence issues) are not captureable by Amber. However, the
Valgrind scheduler could be made very aggressive to reveal many kinds of concurrency bugs.
Furthermore Amber only needs to reproduce a bug once, and then it becomes much easier to debug
than using traditional methods.

Amber does not capture the state of the environment. For example, the programmer cannot observe
the contents of a program's window during the debugging session. A natural extension would be to
support recording of environment state (e.g., window snapshots) into the database.

Another natural extension would be to support dynamic attachment. A program could run normally
for a while before we attach Valgrind/Amber and start running it with instrumentation. (Other
Valgrind-like frameworks (e.g., PIN [LCM05] and Nirvana [BCJ06]) support this.) This would let
Amber debug long-running programs as long as the root causes of bugs occur after attachment.

Currently, when a process forks we disable recording of the child process. It would be interesting to
record multiple processes to separate databases, but with enough synchronization for a debugger to
reconstruct multi-process interactions.

Another possible extension is to record memory and/or register reads as well as writes. This would
let the programmer see where values are used, and allow reconstruction of a complete dataflow
graph for the program. This would require a large increase in bandwidth, and it is not yet clear how
useful it would be in a debugger. (Amber already implements this as an option.)

Much work could be done to improve the efficiency of the entire process, for example by
optimizing the compressor or the instrumentation. This is probably less important than building a
better debugger using the existing infrastructure. Another option would be to use a low-overhead
recorder (e.g., TTVM [KDC05]) to record at nearly normal speed, and then replay that execution
offline under Amber to build a rich trace database. This is probably the best overall approach.

Currently Amber is focused on debugging C and C++ programs, but the infrastructure is very
general and any machine-code program can be recorded. Any language could be supported as long
as we have a mapping from process state to language-level state. Even interpreted languages can be
debugged, since we can reconstruct the state of the interpreter. Multi-language debugging could
also work well, if we can design a practical user interface for it.

As we increase the power of the debugger, we will probably need to extend Amber in new
directions. One obvious direction is to record allocation and deallocation as memory effects, so the
debugger can know the allocation state of all memory at all times, and efficiently determine when a
particular memory location was allocated or freed. C++ construction and destruction could be
recorded the same way --- then we would know the type of many memory locations. This would
assist regular debugging and make it even easier to find certain kinds of memory errors.

12.References
[BCJ06] Framework for Instruction-level Tracing and Analysis of Program Executions. Sanjay
Bhansali, Wen-Ke Chen, Stuart de Jong, Andrew Edwards, Ron Murray, Milenko Drinic, Darek
Mihocka, Joe Chau. Proceedings of the Second International Conference on Virtual Execution
Environments (VEE 2006).
http://research.microsoft.com/manuvir/papers/instruction_level_tracing_VEE06.pdf

[Boo00] Efficient Algorithms For Bidirectional Debugging. Bob Boothe. Proceedings Of The ACM
SIGPLAN 2000 Conference On Programming Language Design And Implementation (PLDI 2000).

[GHS06] Time Machine Debugger For Embedded Systems. Green Hills Software.
http://www.ghs.com/products/timemachine.html

[KDC05] Debugging Operating Systems With Time-Traveling Virtual Machines. Samuel T. King,
George W. Dunlap, and Peter M. Chen. Proceedings of USENIX 2005.
http://www.eecs.umich.edu/virtual/papers/king05_1.pdf

[LCM05] Pin: Building Customized Program Analysis Tools with Dynamic Instrumentation. Chi-
Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven
Wallace ,Vijay Janapa Reddi, and Kim Hazelwood. Proceedings Of The ACM SIGPLAN 2005
Conference On Programming Language Design And Implementation (PLDI 2005).

[Lew03] Debugging Backwards In Time. Bil Lewis. Proceedings of the Fifth International
Workshop On Automated And Algorithmic Debugging (AADEBUG 2003).
http://www.lambdacs.com/debugger/AADEBUG_Mar_03.pdf See also
http://www.lambdacs.com/debugger/debugger.html.

[LWS96] Value Locality And Load Value Prediction. Mikko H. Lipasti, Christopher B. Wilkerson
and John Paul Shen. ASPLOS VII. October 1996. pp. 138-147.

[NS03] Valgrind: A Program Supervision Framework. Nicholas Nethercote and Julian Seward.
Electronic Notes in Theoretical Computer Science 89 (2003), no. 2. See also http://valgrind.org.

[XBH03] A “Flight Data Recorder” For Enabling Full-System Multiprocessor Deterministic
Replay. Min Xu, Rastislav Bodik, and Mark D. Hill. International Symposium on Computer
Architecture (ISCA ’03) (2003), 122–35.
http://www.cs.wisc.edu/multifacet/papers/isca03_flight_data_recorder.pdf.

[Zlib06] Zlib. http://zlib.net.

http://research.microsoft.com/manuvir/papers/instruction_level_tracing_VEE06.pdf
http://www.cs.wisc.edu/multifacet/papers/isca03_flight_data_recorder.pdf
http://zlib.net/
http://valgrind.org/
http://www.lambdacs.com/debugger/debugger.html
http://www.lambdacs.com/debugger/AADEBUG_Mar_03.pdf
http://www.eecs.umich.edu/virtual/papers/king05_1.pdf
http://www.ghs.com/products/timemachine.html

	1.Introduction
	2.Instrumentation
	3.Register Effects
	4.Memory Effects
	5.Indexer
	6.Indexed Execution History
	7.Indexed Memory Effects
	8.Query Engine
	9.Results
	10.Related Work
	11.Conclusions And Future Work
	12.References

