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Abstract

Preventing execution of unauthorized software on a
given computer plays a pivotal role in system security. The
key problem is that although a program at the beginning of
its execution can be verified as authentic, its execution flow
can be redirected to externally injected malicious code us-
ing, for example, a buffer overflow exploit.

We introduce a novel, simplified, hardware-assisted in-
trusion prevention platform. Our platform introduces over-
lapping of program execution and MAC verification. It par-
titions a program binary into blocks of instructions. Each
block is signed using a keyed MAC that is attached as a
footer to the block. When the control flow reaches a partic-
ular block, its instructions are speculatively executed, while
dedicated hardware verifies the attached MAC at run-time.
The computation state is preserved during speculative exe-
cution using a mediating buffer placed between the proces-
sor and L1 data cache. Upon MAC verification, the results
from this buffer are propagated externally. Central to this
paper is the proposal of a novel optimization technique that
initially identifies instructions that are likely to stall exe-
cution, and reorders basic blocks within a given instruc-
tion block to minimize the execution overhead. While the
presented optimization technique is problem specific, it is
flexible such that it can be adjusted for different optimiza-
tion goals. Preliminary results showed that our optimiza-
tion methods produced an average overhead reduction of
60% on the SPEC2000 benchmark suite and Microsoft Vi-
sual FoxPro.

1. Introduction

The key problem to security of modern computing sys-
tems is that although a program at the beginning of execu-
tion may be verified as authentic, while running, its execu-
tion flow can be redirected to externally injected malicious
code using, for example, a buffer overflow exploit [20].
Once the adversary executes injected code in the highest
trust mode, usually all system resources are at her disposal.
Ease of implementation and effectiveness have established
attacks that focus on redirecting program execution as the

most common threat to system security [19, 5]. Aside from
intrusion prevention, the research community has addressed
this problem from two perspectives:

• Intrusion detection – a set of mechanisms that aim at
scanning system resources and detecting the activity of
potentially intrusive agents [5].

• Formal verification – a set of formally defined methods
that either change the definition of the programming
language so that executables are impervious to buffer
overflow attacks [16], or perform static analysis on bi-
naries to verify that they do not have buffer overflow
exploits [10].

1.1. Intrusion Prevention - Previous Attempt

Intrusion prevention systems aim at forcing the adver-
sary to solve a difficult problem, preferably intractable, in
order to be able to run a program with desired functionality
on the target computer.

Recently, Kirovski et al. introduced a computing plat-
form that enables intrusion prevention [8]. Their platform,
SPEF, uses a framework of architectural and compilation
mechanisms to ensure software integrity at run-time. Dur-
ing software installation, SPEF computes a keyed message
authentication code (MAC) [1] for every block of instruc-
tions. The MAC is encoded within the associated block
of instructions. The MAC is keyed with a key unique for
a given processor. The key is burnt-in and not accessible
to any application except the software installer. The soft-
ware installer operates exclusively in a single-process mode
which cannot be accessed or interrupted by any other sys-
tem or user process. At run-time, each block is verified for
integrity by decoding its MAC and verifying that the exist-
ing block corresponds to the originally signed data.

The platform proposed by Kirovski et al. has three im-
portant disadvantages. First, its MAC verification mech-
anism is complex. Second, due to block preprocessing
and MAC decoding and verification, their system imposes
a clock cycle penalty approximately three times the cycle
count required to verify only the MAC. Finally, the verifi-
cation hardware is on most processors’ critical paths, e.g., it

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37’04) 
1072-4451/04 $ 20.00 IEEE 



intertwines with the instruction buffer, scheduler, and pos-
sibly with the L1 I$; hence, it can cause relatively high per-
formance overhead on super-scalar and pipelined machines.

1.2. A Simplified and More Effective Platform
In this paper, we propose a new intrusion prevention sys-

tem that retains the security aspects of SPEF, while signifi-
cantly improving upon its performance overhead. The basic
components of the new system are illustrated in Figure 1.
The system security mechanism is similar to the one pro-
posed with SPEF. In order to run an executable in one of
the protected modes, a privileged user of the system must
install the executable. During software installation, the exe-
cutable is partitioned into atomic execution units – instruc-
tion blocks (I-blocks). For each I-block, the installer com-
putes a keyed MAC [1] and attaches it as a footer to the
I-block. The size of the I-block is such that when the MAC
is attached to it, its total length does not exceed the size of a
single line of the L1 I$. As opposed to SPEF, the new sys-
tem does not reduce the code size overhead by storing bits
of the MAC in the I-block [8].

Once the protected binary is created, it can run in one
or more protected modes allowed by the operating system
(OS) for a given user (Figure 1). The protected binary is ex-
ecuted by following the normal control flow. The integrity
of executed instructions is verified on-the-fly for each I-
block freshly uploaded into the L1 I$. A single I-block
is considered an atomic execution unit because even in the
case when only a single instruction is executed from a given
I-block, the result of this instruction is not propagated to
the computation state that resides outside of the processor
until the entire I-block is verified. After the I-block is ver-
ified, the results of speculatively executed instructions are
committed. In case the integrity check fails, the processor
aborts the current process. Details on the adopted computa-
tion model can be found in Subsection 2.2.

The OS uses our platform to ensure that users are not
able to switch either from their assigned user mode into an-
other, higher security level mode or to impersonate other
users. The developed system represents a fundament for se-
cure execution of programs as it can police the crucial two
trusted modes on a given platform: trusted OS kernel mode
which cannot be accessed by any user and all variants of
user modes (private and shared). Software that is not pro-
tected, can still run on the computing machine but not in
the protected modes. It can only run in a distrusted pub-
lic mode. OS modes are described in further detail in [8],
Subsection §1.2.

In this paper, we also focus on techniques that reduce
the performance overhead of the above system. Software
optimization in our platform deploys two main mechanisms
to improve performance of software executed in protected
modes. The first mechanism is hardware-assisted specula-
tive execution (Figure 2). When an L1 I$ miss occurs, a

new I$ line is loaded and while the verification hardware
processes the new entry, the processor executes the freshly
loaded instructions. In case of a write to external memory,
if the current I-block is not verified yet, the processor stores
the value and address into a mediating FIFO buffer. If this
buffer is full, the processor stalls until the current I-block
is verified. Upon verification, all values from the mediating
buffer are propagated into the external memory space. An
additional constraint is that control flow from one I-block
cannot be transferred onto another until the verification of
the current I-block is completed. Consequently, a processor
may stall its execution due to a full mediating buffer or due
to an early exit of the control flow from the current I-block.
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Figure 1. Main components of the proposed
intrusion prevention framework.

The second optimization mechanism is a post-
compilation step. Using a novel profiling methodology, we
build an execution model that guides the relocation of basic
blocks within a binary so that performance of the program
within the new architecture is optimized (Section 3).

The adversary can operate either remotely or locally. In
the first case, she scans the remote computer’s ports for net-
working services with known security flaws and then pen-
etrates the system using these flaws. In the second case,
the adversary is already running a program on the remote
system, but not in the desired mode. Thus, she can use the
vulnerability of any system procedure already running in
the top priority mode and try to subvert its execution flow
towards a desired malicious procedure. The most common
type of such attacks are buffer overflows. For example, the
simplest buffer overflow attack, stack smashing [20, 19],
overwrites a buffer on the stack to replace the function call
return address with the address of the injected malicious
procedure. We refer the reader to [8], Section §3 for fur-
ther details on the attack model.

It is important to stress that our system does not prevent
nor detect buffer overruns. Thus, techniques with such a
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goal (e.g., StackGuard [5]) can be used in conjunction with
our platform. Our platform prevents the adversary from ex-
ecuting a single line of her code in a protected mode. Our
platform forces the adversary to jump into binaries that are
already running in protected mode and feed them with de-
sired data to perform malicious actions. By (re)loading pro-
grams at random locations in operating memory, this task
can be made difficult.

2. System Details
In this section, we review and discuss the basic compo-

nents and assumptions of the our system.
Software delivery. Two essential procedures associated

with software delivery are: initial installation and updates.
An application is distributed to users as a compiled binary -
we denote it as the master-copy. A recipient of the master-
copy validates its authenticity via standard public-key au-
thentication methods [1] or proof-carrying codes [18]. The
master-copy can run in a protected mode only after it is in-
stalled. We denote this copy as the working-copy, which
is functionally equivalent to the master but augmented with
processor-specific MACs for each I-block. The same pro-
cedure is performed for protected software updates.

Processor-unique secret key - CPU ID. The root of sys-
tem security is a read-only register with a secret key that is
unique for each processor. Kirovski et al. discuss the non-
impact of CPU ID on user privacy ([8], Section §3.1).

Software installation. Software installation consists of
several steps illustrated in Figure 1. First, the processor en-
ters a special installation mode (i-mode). In i-mode the pro-
cessor augments a given master-copy with processor-unique
MACs, stores the resulting working-copy in system’s mem-
ory, and finally, exits i-mode to return control to the caller,
the OS kernel. The CPU ID, as a system’s master secret,
must never leave processor’s pins. Since the installer must
access the CPU ID to create the working-copy, i-mode en-
sures that the CPU ID is kept secret from soft and most
hardware attacks. This is done by following a simple recipe:
(a) installation is executed atomically, i.e., without any in-
terrupts, (b) the installer must not write the CPU ID or any
other variable that discloses plain-text bits of the CPU ID
off chip, and (c) before completion, the installer must over-
write all intermediate results or variables stored in on-chip
memory. An example of steps that a processor should fol-
low to enter and exit i-mode is given in [8], Section §3.2.

2.1. Cryptographic Primitives
Our platform has only one cryptographic primitive, a

keyed message authentication code (MAC). The purpose of
a MAC is to facilitate, without the use of any additional
mechanisms, assurances regarding both the source of a mes-
sage and its integrity [1]. Our platform does not require
public-key signatures [1] because it operates under the as-
sumption that the CPU ID is never disclosed to the external

world. We assume that the MAC is robust with respect to
known-text attacks [1].

Secure MACs can be built by pipelining an n-bit block
cipher in a CBC-MAC mode (see [1], §9.58). The input
string is partitioned into n-bit blocks, each block is XORed
with the output from the previous stage and fed as input to
the current stage in the pipeline. For this purpose, we adopt
a 128-bit Rijndael cipher. An exemplary ASIC implemen-
tation of this cipher loads into its pipeline a 128 bit word
every cycle with an initial latency of 14 cycles [2]. Assum-
ing an eight byte L1 I$ to L2 $ bus, we adopt the following
latency model for our verification hardware:

tD = 14 +
L1 I$ line size

128 bits
cycles. (1)

For a 256B L1 I$ line, the expected delay tD is 30 cycles.
Not all of the resulting 128 bits of the MAC need to be used.
At the cost of reduced, however, still strong security, our
platform may chose to use a subset of the available 128-
bits. Security implications of such a decision are beyond
the scope of this paper.

Attaching the MAC to an I-block. MACs can be at-
tached to I-blocks in several ways: (i) as a footer to the
I-block and insert an instruction that circumvent the con-
trol flow around the MAC; (ii) create a separated associated
file with I-blocks’ MACs which is accessed during run-time
verification using a secure co-processor; and (iii) to have
hardware support in the form of an automatic update of the
program counter once it hits the last viable instruction in
an I-block. In the last case, the control flow would be au-
tomatically transferred to the first instruction in the I-block
located consecutively in the virtual memory. For conceptual
simplicity, we assume the third alternative as a basic control
flow mechanism.

Key management. In order to enable user protected
modes, a distinct secret key must be used for every individ-
ual user. In addition, a given program intended to run in a
protected mode must be installed for all users individually.
All restrictions related to secrecy and privacy for CPU ID
management discussed earlier in this section also apply to
user keys. Hence, we assume that the processor is using an
external non-volatile memory to store the user keys. When
a user is executing a program in protected mode, the pro-
cessor is responsible to load the appropriate key from the
key-store in order to verify the binary. User versions of the
same binary are instrumented on-the-fly before program ex-
ecution from a file which contains MACs for each (I-block,
user) pairing. This action is done by the OS in the highest
access mode. For brevity, we present results as if only one
key, the CPU ID, is used in the system.

2.2. Computation Model

In this subsection, we review the computation model
used to demonstrate how our platform works and quantify
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its performance characteristics. Basic components of the
computation model are presented in Figure 2. Since the
atomic execution unit is an I-block, we model all relevant
events related to fetching and executing an I-block.

First, we define an I-block as a sequence of instructions
the length equal to the system’s L1 I$ minus MAC’s length.
One I-block contains at least a part of one basic block. Gen-
eral expectation is to have several basic blocks contained by
an I-block. One basic block can span across one or more I-
blocks.

� � �� � � � � � 	 
 � �  � � �  
 � � �

� � � � �  �
� � � � �  � � � � � �

� � � �

� � � � 
  � � �
 � � �  

� ! " � #
� � � � � $ % �  �  
 � �

� � � &

� ' ' � � � �

( )

� * # �  �  

� � ' 
 �  
 � �
+ � + ,

� � � � � �

- . /

� * # �  �  

� � � '

0 � 
  �

0 � 
  � 1
� � � � 1

� � 
  
 � � �� � � 0 1

) , 1 2 ( � 1

� ! " �  � � �

0 � 
  � � � �

Figure 2. The computation model encom-
passes the L1 I$, the processor, and the cryp-
tographic unit.

We adopt the single clock cycle per instruction (1CPI)
model which assumes that one instruction is issued, fetched,
executed and its result sent to a memory write buffer in a
single cycle. Although this model is restrictively simple,
it captures well the performance of modern pipelined and
super-scalar processors such as the Pentium IV [4]. The
model does not account for the delay required to load pro-
cessor’s pipelines after an L1 I$ miss is resolved. Since
both platforms with and without MAC verification experi-
ence this additional overhead, realistic performance over-
head is upper bounded by the 1CPI model. The design ten-
dency past several decades has been to increase the number
of issued instructions per clock cycle, with recent proces-
sors experiencing strong sub-1CPI performance. A fixed
delay tD due to MAC verification would affect these sys-
tems more dramatically. The expectation is that more gates
available for the MAC verifier would speed up its operation
as well.

Our second assumption is that the size of the L2 $ is infi-
nite and that the entire program is loaded into the L2 $ prior

to its execution. Just as with the 1CPI computation model,
this assumption puts an upper bound on the performance
overhead. Delay due to L1 $ misses is modeled as follows:

t$ = 4
L1 $ size
128 bits

cycles, (2)

where we assume an individual 128-bit bus between both
the data and instruction L1 $ and the L2 $. We also assume
that this bus is operating at a clock rate four times slower
than the processor clock.

load instruction I from memory address m indexed
by processor’s program counter (PC)

if data from m is not cached in L1 I$
wait t$ due to I$ miss
verify MAC(l) of new I$ line l

if I is critical according to criteria (ii–iii) �
if MAC(l) is not verified

wait until MAC(l) verification done
if MAC(l) is invalid then abort process

execute I
if I produces a memory write

if MAC(l) is not yet verified
if mediating buffer is full

wait until MAC(l) verification done
if MAC(l) is invalid then abort process

else write data, mem-address to mediating buffer
else write data to L1 D$

if MAC(l) verified, mediating buffer non-empty, D$ idle
write data from mediating buffer to L1 D$

increment PC with smart skip of MAC(l)

Table 1. Control flow in a processor enhanced
with our platform.

A processor enhanced with our platform executes in-
structions following an algorithm described using the
pseudo-code in Table 1. According to the 1CPI computation
model, the flow in Table 1 is assumed to last one clock cycle
unless the processor ends up in one of the wait states. In ad-
dition, I$ lines are verified only after being fetched into the
I$. A single “safe to execute” bit attached to a cache entry,
is sufficient to denote this information back to the processor.

The computation flow also refers to critical instructions
(referral denoted as �). A critical instruction as an instruc-
tion that can cause a processor to stall. Such instructions
include:

(i) all memory writes,

(ii) all conditional branches and jumps onto non-cached
addresses, and

(iii) the last instruction in an I-block that precedes the
MAC.

Performance improvement techniques such as pre-
fetching, out-of-order execution, etc., may impose adverse
effects on our platform. For brevity and conceptual simplic-
ity we disregard this issue which should not be neglected
with all considerations for practical implementation.
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Exec. Basic Block Level Profile
SPEC time Total Live Significant W/ Write Branch λ/α [%] | λ

α
− 1

2
| < 0.2

[sec] Blocks count [%] count [%] [%] Taken [%] > 0.3 < 0.1 [%]
gzip 177 4832 1633 33.8 951 19.7 33.5 34.6 9.3 73.8 8.4
vpr 231 10495 2052 19.6 502 4.8 34.1 13.8 5.3 94.1 4.1
mcf 263 3971 1411 35.5 583 14.7 28.7 18.6 2.8 97.2 1.4
perlbmk 167 43075 15928 37.0 11498 26.7 36.0 12.2 3.4 88.9 3.3
vortex 159 25513 12217 47.9 7506 29.4 25.3 25.2 0.7 97.3 0.6
bzip2 209 4449 1793 40.3 1009 22.7 30.9 36.0 2.9 94.3 2.9
twolf 425 14671 5765 39.3 3669 25.0 39.1 32.7 2.2 95.7 1.6
FoxPro 6 363937 30216 8.3 2203 0.6 25.3 27.8 6.2 82.4 5.0

Table 2. Basic block and instruction level profile of SPEC2000 benchmarks and Microsoft Visual
FoxPro. The columns display the total number of basic blocks in a binary, actually executed
blocks(“Live”), blocks executed at least 100 times (“Significant”), percentages of blocks with at
least one branch instruction and taken branches. Last three columns represent the effect of λ pa-
rameter: the ratio of number of branch toggles (λ) vs. total number of executed blocks (α) greater
than 0.3, smaller than 0.1, and with | λ

α − 1
2 | smaller than 0.2 respectively.

2.3. Program Profiling

In order to position the optimization goals, we adopt a
program profiling method which models relatively accu-
rately the optimization problem. We use the SPEC2000
benchmark applications and Microsoft Visual FoxPro com-
piled for the x86 instruction set in order to demonstrate the
effectiveness of our platform. Instructions in this set are
of variable length, hence, we use rescheduling and NOP
padding to ensure that no instruction is spread over two I-
blocks. The profile is computed dynamically using data-sets
provided with our benchmarks. The profile information is
collected for each basic block bi and encompasses:

α(bi) – number of times bi executed,

β(bi) – number of times a branch at the end of bi was re-
solved as true,

γ(bi) – a flag denoting whether bi is a self-looping block,

δ(bi) – index of the first critical instruction in bi, assuming
its critical nature is due to criterion (i),

λ(bi) – if bi ends with a conditional jump, we record the
number of times the decision reached by that branch
toggled in the subsequent run,

χ(bi) – we record the average block self-execution distance
(bsed): a number of cycles passed until the same block
executes again.

The complexity of collecting this profile per block is
O(1) by using separate counters for α, β, and λ. Param-
eters γ, δ, and λ require an additional flag. Parameter χ
requires two registers, one to store the cycle count of its last
execution and another to store the sum of all bsed occur-
rences during program’s execution. While the {α, . . . , λ}-
profile is a standard way of modelling program execution, to
the best of our knowledge, we are the first to propose basic
block relocation algorithms based on block self-execution
distance.

3. Software Optimization for Intrusion Preven-
tion Platform

In this manuscript, we focus on software optimization
techniques that aim at remedying the performance overhead
due to run-time MAC verification. The main optimization
technique is centered on relocating basic blocks so that once
a new I$ line is loaded, the control flow within this line
reaches a critical instruction of type (ii-iii) after at least tD
clock cycles. Another goal is to minimize the number of
speculatively executed writes to memory before I-block’s
MAC is computed. Since relatively small mediating buffers
managed not to overflow on memory writes in most appli-
cations which we executed on our platform, we scaled ap-
propriately the importance of this optimization goal.

First, we formally define our optimization goal. For a
given set B of N basic blocks B = {b1, . . . , bN}, we seek
for their permutation π =< bπ

1 . . . bπ
N > which minimizes

the following delay metric:

arg min
π

M∑
i=1

φ(Ii)

α(Ii)

|P |∑
j=1

α(Ii, pj) · limit [tD − δ(Ii, pj)] , (3)

limit(x) =

{
0
x

,
,

x < 0
otherwise

,

where φ(Ii) and α(Ii) are the total number of cache misses
and executions respectively for I-block Ii, M is the total
number of I-blocks in tile π, and Ii is an individual I-block
from the tiling. We define a set of entry points of an I-block
as a subset of all basic blocks within an I-block that have
preceding points in the control flow graph outside of the I-
block. If an I-block contains only a part of a basic block,
this part is treated within this I-block as a separate basic
block. We further denote as P the set of all feasible crit-
ical paths P = {p1, . . . , p|P |} within the internal control
flow graph of a given I-block. A critical path is a path in
the control flow graph of an I-block such that there exists
exactly one basic block in this path which contains at least
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one critical operation. The first basic block in a critical path
must belong to the set of entry points. Parameter α(Ii, pj)
in Eqn. 3 denotes the number of times path pj ∈ Ii exe-
cuted in the profile. Parameter δ(Ii, pj) quantifies the tim-
ing in cycles before the first critical instruction in pj ∈ Ii is
reached.

�

� �

� �

�

�

�

Figure 3. An example control flow graph at the
basic block granularity.

3.1. Optimization Trade-offs

In order to address the optimization goal, we first review
the most important trade-offs involved in making reloca-
tion decisions that affect performance at our platform. The
main trade-offs are discussed using an example control flow
graph in Figure 3. First, we introduce a constraint ρ(bi)
of a basic block bi as a heuristic quantifier that measures
the performance overhead that bi can cause if relocated ran-
domly. We evaluate the dependency of ρ with respect to
the collected profile and control flow graph. Intuitively, fre-
quently executed basic blocks (α ↑) as well as basic blocks
terminated with a branch that cannot be predicted accurately
(|β/α − 1/2| ↓ and λ ↑) should be considered of high con-
straint. In addition, self-looping blocks (γ = 1) which do
not contain a critical instruction (δ = 0) should have lower
constraint because they cause large number of instructions
to be executed before any critical operation is issued. Basic
blocks which contain a critical instruction of type (i) early
on (δ ↓) are treated as constrained blocks. Basic blocks
with low bsed (χ ↓) execute often in bursts, hence, should
be relocated with more attention. In order to quantify ρ for
a basic block, we have empirically derived the following
metric:

ρ =
(−1)f(δ,γ)α(

Cλ +
∣∣∣ λ

α
− 1

2

∣∣∣) (
Cβ +

∣∣∣ β
α
− 1

2

∣∣∣) (
Cχ + χ

χ̄

) , (4)

where constants Cβ , Cλ, and Cχ all equal one, function
f(δ, γ) returns 1 if δ = 0 and γ = 1 and zero otherwise,
and χ̄ denotes the average χ computed over the subset of
all basic blocks B which are not self-looping and which are
executed at least 0.1 · maxB(α) times. For basic blocks
executed less than 0.1 · maxB(α) times, χ/χ̄ is set to zero.

Different trade-offs for basic block relocation can be ex-
tracted from the control flow graph (CFG). Consider the

CFG illustrated in Figure 3. Nodes denote basic blocks and
edges denote potential control flow between nodes.
FFF – frequent fan-in and fan-out concatenation. Block
A has blocks D and E as its fan-out, and it has blocks B
and C as a fan-in. Assuming A has a low λ(A)/α(A) with
most of the control being swayed towards D, then there is
an intuitive demand to concatenate A and D into a common
I-block. Similarly, for β(B → A) � β(C → A) we would
want to concatenate B and A. However, notice that in case
the other fan-out branch of B is β(B → A) � β(B → H),
then according to the same heuristics, it is better to concate-
nate B and H as opposed to A.
CAC – cache anti-collusion. If B → A → D is a common
route in the program profile and the three blocks cannot fit
one I$ line, then on the average, program performance is
not affected if the three blocks are stored in two different
I-blocks in memory that map to non-colluding cache lines.
This heuristic follows the results obtained on program hot
subpaths [17].
TB – toggling branches. In the case when the control flow
after block A relatively equiprobably (β(A) ≈ α(A)/2)
and unpredictively (λ(A) ≈ α(A)/2) branches out to D
and E, it is beneficial to store all three blocks in a common
I-block or if this is not possible due to block size, into two
non-conflicting I-blocks.
CSLB – constrained self-looped blocks. A self-looped
block F with memory writes is particularly sensitive to re-
location because of the high likelihood that the mediating
buffer overflows when F is an entry point to an I-block.
We place non-constrained blocks preceding F , such as G,
into the same I-block to mask the verification delay tD with
instructions that can be speculatively executed at no delay
cost.

The trade-offs for early avoidance of critical instructions
mash with the challenge of relocating basic blocks for cache
miss reduction, a problem which is well studied [14, 3, 13].
We address the two problems jointly, from both the problem
definition and solution perspective.

3.2. Optimization Problem Definition
INSTANCE: Given a sequence of instructions broken

into N basic blocks B = {b1, . . . , bN}, program CFG and
profile bi : {α, . . . , χ}, I-block size, T ∈ R.

QUESTION: Is there a reordering of basic blocks π =
〈bπ

1 . . . bπ
N 〉 such that partitioning of the new sequence into

M I-blocks yields limited cost:

T ≤
M∑

i=1

H(Ii)

LEi

Ei∑
j=1

L∑
k=1

α(Ii, p
k
j ) · limit

[
tD − δ(Ii, p

k
j )

]
, (5)

H(Ii) = −
w∑

i=1

q(Iw) log2(q(Iw)), (6)

q(Iw) =
v∑

i=1

α(bv), (7)
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where M is the total number of I-blocks that tile π and Ii

represents an individual I-block from this tiling. Set of ba-
sic blocks Ei represents the entry points for block Ii. We
further denote as Pi,j the set of L most likely critical paths
Pi,j = {p1

j , . . . , p
L
j } of Ii. Usually, L ∈ {2, 5}. Set of

paths Pi,j is computed based on the propagation of the α-
metric within the program control flow graph. Parameter
α(Ii, p

k
j ) in Eqn. 5 denotes the expected number of times

path pk
j in Ii has executed in the profile. This value is quan-

tified based on the expectation collected from the program
profile. Parameter δ(·) quantifies the timing in clock cycles
before the first critical instruction in pk

j is reached. Finally,
H(Ii) is a heuristic quantifier that models the likelihood of
a cache miss. For a given I-block Ii, we identify a subset of
I-blocks Iw that map to the same I$ line. For each of these
blocks Iw, we compute the sum q(Iw) of α(bv) parameters
over all basic blocks bv in Iw. Thus, we compute H(Ii) as
the entropy of these sums. The rationale behind this sim-
ple predictor is that cache lines that have large number of
blocks that are equiprobably executed yield higher entropy
and thus, higher likelihood of a cache miss. The optimiza-
tion objective quantified using Eqn. 5, aims at modeling the
delay due to run-time MAC verification as well as system’s
L1 I$ misses. It can be shown that the above problem is NP-
complete because instruction (or list) scheduling, which is
already NP-complete, can be reduced to it.

3.3. Optimization Algorithm

In order to address the difficult problem posed in the pre-
vious subsection, we have created an algorithm that relies
on a fast most-constrained least-constraining heuristic. The
prime objective behind the optimization tool is to find a ba-
sic block layout that minimizes the metric from Eqn. 5. The
algorithm is described using the pseudo-code in Table 3.

create M empty I-blocks I1, . . . , IM

denote I = ∪M
i=1Ii

sort B in decreasing order of ρ
α0 =

∑
b∈B α(b)

while
∑

b∈B α(b) < 0.95α0

b is basic block in B with highest ρ(b)
while limit(td − δ(b)) > 0

find block v from fan-in with minimal ρ(v)
merge b = v||b

endwhile
while b is smaller than maximum I-block size

find block v from fan-out with maximal ρ(v)
and which is not an entry point when merged with b
merge b = b||v

endwhile
find Ii that best fits b (�)
I ← b
remove b from B

endwhile
greedy positioning of blocks in B for best fit in I

Table 3. Basic block relocation.
The algorithm initially reserves memory space for the

resulting instrumented program as a multiple of the size of

an L1 I$ line. Next, it sorts all basic blocks in B according
to the heuristic constraint model quantified in Eqn. 4. After
the algorithm sets α0 =

∑
b∈B α(b), it enters a loop which

sequentially processes those blocks in B which account for
large percentage of α0 (typically 90-95%). Assuming that
large number of basic blocks are commonly not executed in
a binary, the number of blocks that remain at this point is
significantly larger than the blocks already processed.

Within the loop, the algorithm selects the most con-
strained basic block b according to the ρ metric. Since this
block is constrained, it is likely to be of type TB or CSLB
(see Subsection 3.1). In both cases, a solid heuristic is to re-
view the fan-in of b and merge all blocks in the fan-in with b
into one I-block such that paths starting from all entry points
in this block have sufficient depth before a critical instruc-
tion of type (ii-iii) is executed. If this cannot be achieved
for some path, then we concatenate blocks from this path
until the current I-block fills. This step aims at satisfying
the optimization constraint for the most constrained basic
block.

If the current I-block is still not full, we can additionally
concatenate blocks from the fan-out of b. Within the fan-
out, we select a basic block v with the highest value of ρ
and which is not an entry point itself when added to the
collection of blocks already merged with b. Since all paths
that lead to v are longer than tD, then in this step we want
to merge blocks of the highest available constraint from the
fan-out. The intuition behind this heuristic is to resolve the
most constrained components of our problem space using
the least-constraining location in an I-block.

We include the hot subpaths heuristic [17] (or CAC) in
this step by concatenating basic blocks until we encounter
a block which contains a critical instruction that is executed
for the containing I-block before the projected verification
delay tD. In that case, we undo the schedule for that I-block.

In order to optimize the relocation of basic blocks, we
place the resulting collection of basic blocks b into one or
more I-blocks according to the following heuristic (this step
is marked in Table 3 as �). If the average bsed of basic
blocks in b is small, we conclude that these blocks are exe-
cuted frequently in bursts. In order to avoid potential cache
conflicts, blocks from b should be placed in a memory loca-
tion that does not map to the same cache line as their imme-
diate neighbors. Neighborhood is quantified with respect to
the CFG, not the memory map of the original binary. In or-
der to find potential suspect I-blocks, we identify the nodes
in the CFG that are within the ε-neighborhood of the blocks
in b. An ε-neighborhood is defined as a subtree of the CFG
which contains nodes with a minimal shortest path to any
block in b equal to ε hops. Usually ε is set within 5 and 10
hops. Conflict I-blocks are identified as the ones that con-
tain at least one block from the ε-neighborhood of blocks
in b. Blocks b are relocated to the first I-block that does not
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map to a memory location that maps to the same cache line
as one of the conflict I-blocks. If conflict I-blocks cover all
I$ lines, we select the first I-block that maps to a line in the
I$ that has the fewest other conflict I-blocks map to it.

Once the blocks from B that account for 95% of all ba-
sic block executions are placed in their I-blocks, we apply
an iterative improvement algorithm which relocates individ-
ual I-blocks such that the overall optimization goal from
Eqn. 5 is improved. I-blocks are processed in decreasing
order of their cost from Eqn. 5. For each I-block, the al-
gorithm finds the most likely preceding basic block from
the fan-in of I-block’s entry points and the α profile. If this
block can be transferred to another memory location which
maps to a non-conflicting L1 I$ line such that the metric
from Eqn. 5 is reduced, the algorithm indeed relocates the
I-block to this position. Otherwise, it continues evaluating
the next I-block. If an I-block is relocated, costs are recom-
puted for affected I-blocks and the algorithm backtracks in
the sorted list of I-blocks to the one with the highest cost
which was affected in the last step. By following this rou-
tine, the iterative improvement algorithm quickly converges
to a local minimum. In the last step of the algorithm, we use
the remaining blocks in B to fill the gaps between I-blocks
which are only partially filled.

While the presented optimization technique is problem
specific, it is flexible such that it can be adjusted for differ-
ent optimization goals. In cases when an architecture facili-
tates “Critical Word First” cache line fetch, our platform in-
curs additional stall cycles. However, additional optimiza-
tion constraints can be applied such that critical words ap-
pear at the beginning of cache lines. Alternatively, commu-
tative MACs (where the order of the inputs does not affect
the final result) can be applied.

4. Experiments
In this work, we have collected program profiles in-line,

while executing binaries. We used two types of data collec-
tion: execution of instrumented binaries and process sand-
boxing. Instrumentation of binaries entails changing the bi-
nary layout with additional instructions. The role of the in-
jected code is to divert the execution to the code that up-
dates counters of registered events. The execution is di-
verted toward an external process with parameters that de-
scribe the observed event. This type of data collection is
suitable for parameters that do not depend on the memory
footprint, such as α, β, and γ. Instrumentation of binaries
cannot be used for extracting execution parameters that are
dependent upon cache behavior. These parameters include
δ and χ, which have to be extracted without changing the
binary layout. For such purpose, we have executed bina-
ries in a sand-boxing environment where instructions were
interpreted.

We evaluate the experimental results obtained for an im-
plementation of our platform. The tests were run on an Intel

Xeon processor at 2.8GHz. We have compiled and opti-
mized all but five of the SPEC2000 INT benchmarks due to
our inability to instrument or sand-box these programs. We
also present the results for Microsoft Visual FoxPro. Static
and some parts of the dynamic analysis of the main pro-
gram profile parameters {α, . . . , λ} for the benchmarks are
presented in Table 2.

Our preliminary results presented in Table 4 quantify
the performance of a system enhanced with our platform.
We have run three system configurations: a traditional plat-
form (I) optimized for L1 I$ misses using the algorithm
from Subsection 3.3 denoted with �, without optimizations
(II), and with optimizations (III). We considered four L1
I$ configurations A - 16KB/128B; B - 32KB/128B; C -
16KB/256B; D - 32KB/256B, where the ratios denote L1 I$
size and its line length. Benchmarks with small L1 I$ foot-
prints (gzip, vpr, mcf, and bzip2) resulted in negligible exe-
cution overhead due to run-time MAC verification. In order
to evaluate the effect of our system on more constrained
platforms, for these benchmarks we used two smaller L1 I$
configurations E - 4KB/128B; and F - 2KB/128B.

Column 2 in Table 4 shows the total number of executed
instructions in billions. Columns 4, 5, 6, and 7 identify
the number of L1 I$ misses, the penalty due to processor
stalls in clock cycles, the ratio of penalties due to proces-
sor stalls versus L1 I$ misses, and the percentage overhead
that system II incurs over system I due to processors stalls
for MAC verification respectively. The next two columns
labeled “First Write” and “First Exit” contain the average
number of instructions executed until a critical instruction
of type (i) for “First Write” and type (ii-iii) for “First Exit,”
is executed in system II. The “IBS” column displays the
number of times execution path switched between different
I-blocks in millions. The next two columns represent L1 D$
misses and miss percentage with a single L1 D$ configura-
tion: 8-way associative 32KB with 128B cache lines. The
last two columns represent the overhead achieved by system
III with respect to system I and thus, the improvement of
our code optimization techniques versus the overhead of the
non-optimized system II respectively. One can observe that
the normalized average overhead reduction totalled 60.4%
resulting in maximal overall overhead of 11.25% in only
one case. In the majority of other cases, the overhead was
negligible. The prototype optimization procedure presented
in Section 3 executed in less than 10 seconds for each pro-
gram on an Intel Xeon processor at 2.8GHz.

5. System Security
It is important to stress that our platform does not pre-

vent nor detect buffer overruns. It aims at preventing the
adversary from running a single line of her own code on
a protected machine. Our platform forces the adversary to
use a buffer overrun exploit to jump into binaries that are
already running in protected mode and feed them with de-
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Exec. instr. Cfg. I$ Penalty Pen. Ovhd. First First IBS D$ misses D$ miss I.O. Imp.
SPEC ×109 misses /mis. [%] Write Exit x109 x106 rate [%] [%] [%]

A 403 x103 5167 x103 12.8 0.01 0.00 11.3
B 130 x103 1582 x103 12.1 0.00

12.3 6.5 47.0
0.00 9.2

gzip 515 C 347 x103 6525 x103 18.8 0.00 6885 1.34 0.00 11.7
D 4 x103 66 x103 17.9 0.00

14.9 9.0 36.1
0.00 10.0

F 3170 x106 58 x109 18.2 11.2 15.1 10.1 47.0 6.87 38.7
A 54 x103 702 x103 13.1 0.01 0.00 93.7
B 5 x103 66 x103 13.1 0.00

8.1 6.6 10.8
0.00 18.8

vpr 138 C 18 x103 431 x103 23.7 0.00 1665 1.20 0.00 88.4
D 4 x103 66 x103 16.9 0.00

11.8 6.1 7.5
0.00 29.5

E 721 x106 15 x109 20.8 13.23 6.9 6.9 10.8 5.99 54.7
A 1498 19025 12.7 0.00 0.00 11.9
B 896 12275 13.7 0.00

12.8 6.4 12.5
0.00 11.2

mcf 112 C 1293 24696 19.1 0.00 4612 4.12 0.00 70.2
D 491 9722 19.8 0.00

15.7 6.9 8.2
0.00 9.5

F 2 x109 36 x106 17.2 32.34 8.9 5.8 12.5 11.25 68.0
A 1073 x106 15 x109 14.2 2.91 1.54 47.1
B 620 x106 9 x109 14.6 1.73

5.7 9.8 38.8
0.82 52.6

perlbmk 523
C 1071 x106 215 x109 19.2 10.74

640 0.12
4.61 57.1

D 554 x106 115 x109 19.9 7.19
6.7 12.8 26.7

2.03 71.8
A 3153 x106 35 x109 11.0 7.90 3.39 57.1
B 875 x106 10 x109 10.9 2.17

6.3 7.1 42.9
1.01 53.5

vortex 439
C 2075 x106 34 x109 16.4 7.75

1198 0.27
3.04 60.8

D 828 x106 13 x109 16.1 3.03
8.5 11.2 20.7

0.99 67.3
A 32298 413414 12.8 0.00 0.00 13.2
B 2791 35725 12.8 0.00

13.0 6.6 34.4
0.00 14.1

bzip2 526 C 16281 333761 20.5 0.00 2457 0.47 0.00 14.5
D 1668 35361 21.2 0.00

15.1 8.0 22.2
0.00 17.0

E 1323 x106 23 x109 18.9 4.43 11.2 5.2 34.4 2.13 43.2
A 671 x106 9 x109 13.4 1.93 0.36 81.3
B 190 x106 3 x109 13.9 0.55

5.1 6.9 24.1
0.23 58.2

twolf 476
C 484 x106 11 x109 22.7 2.31

5957 1.25
0.19 91.7

D 148 x106 4 x106 23.8 0.74
9.9 8.1 20.0

0.12 83.7
A 114 x106 854 x106 7.5 10.66 5.06 52.5

Visual B 39 x106 203 x106 5.2 2.53
13.1 13.8 0.77

1.48 41.5
FoxPro

8
C 115 x106 776 x106 6.8 9.68

16 0.20
5.23 46.0

D 44 x106 278 x106 6.3 3.47
14.9 11.0 0.58

2.81 19.0

Table 4. Cache statistics for SPEC2000 benchmarks with four I$ size / I$ line length configurations: A - 16KB/128B; B - 32KB/128B; C -
16KB/256B; D - 32KB/256B. For benchmarks with small L1 I$ footprints (gzip, vpr, mcf, and bzip2) we include two more configurations: E
(4KB/128B) and F (2KB/128B). Columns 2 contains the total number of executed instructions. Columns 4, 5, 6, and 7 contain number of L1 I$
misses, secure execution penalty, ratio penalties over L1 I$ misses, and total execution overhead incurred by the penalty. The next two columns
labeled “First Write” and “First Exit” contain average indexes of the first encountered write instruction in the L1 I$ line and average index of the
first instruction that causes switch of L1 I$ lines. The “IBS” column displays the number of times execution path switched between IBs. Fourth to
last and third to last columns represent L1 D$ misses and miss rates with a 128B CL, 8-way associative 32KB D$. The last two columns represent
the performance overhead and improvement yielded by our optimization algorithm.

sired data to perform malicious actions. By (re)loading pro-
grams at random locations in operating memory, this task
can be made difficult. Thus, our platform significantly re-
duces the likelihood and functionality of attacks an adver-
sary can launch against a protected system. Techniques that
prevent or detect buffer overruns (e.g., StackGuard [5]) can
be used in conjunction with our platform.

Our platform provides robust system security, only if cer-
tain conditions in the OS kernel mode are met. Namely,
system penetration can occur if the OS kernel mode is in-
terpreting instructions or scripts. Scripts or virtual machine
binaries are treated as data, not code; hence, they cannot
be authenticated using the mechanisms presented in this pa-
per. In order to enable the kernel to run scripts, the OS
can provide an associated script mode with limited access
to system resources and in particular, prohibitive policy for
calling the software installer from this mode. The OS in
this mode can perform script authentication before execu-
tion either via public-key signatures or proof-carrying code

[18]. However, there are no guarantees that the script is not
vulnerable to a buffer overrun attack.

Our platform has physical limits in protecting comput-
ing systems. It cannot survive physical breaches into the
computing system. For example, a detached hard-drive ex-
poses installed binaries which can be used to create small
malicious programs by patching signed I-blocks from exist-
ing working-copies. The resulting programs can be made
to infiltrate both the OS and other users’ accounts. Note
that the patching attack can be made difficult by encrypting
certain key storage containers of the OS. A sophisticated
adversary should be able to expose all secrets in the sys-
tem by thoroughly reverse engineering both hardware and
software. For an adversary who is operating remotely, the
patching attack is impossible according to the definition of
intrusion prevention systems.

6. Related Work
Four major approaches for code security have emerged:

code signing, sandboxes, firewalling, and proof-carrying
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code. Signing a program binary for authentication purposes
is conceptually the simplest code security technique. In this
case, authentication is done according to standardized au-
thentication protocols [1]. Sekar and Uppuluri developed a
security layer that includes a sandbox designed to protect
the application against malicious users and the host from
malicious applications [21]. The main idea behind the fire-
walling technique for code security is to conduct compre-
hensive examination of the provided program at the very
point where it enters the consumer domain. Necula devel-
oped the concept of proof-carrying code, a mechanism by
which a host system can determine with certainty that it is
safe to execute a program provided by an distrusted source
[18]. This is accomplished by requesting that the source
provides a security proof that attests to the code’s adherence
to a host defined security policy.

The developed attempts to detect or prevent buffer over-
flow attacks can be divided into two categories: run-time
detection and static source code analysis. A typical example
of the first type of solutions is StackGuard, a set of compiler
enhancement mechanisms that generates binaries which in-
sert a “dummy” value on the stack next to the return ad-
dress [5]. Programs check if the value has been tampered
with before jumping back to the calling function. The tech-
nology is not provably secure against a generic buffer over-
flow attack [5]. Similar run-time solutions observe poten-
tially dangerous operations to restrict further execution in
case of an intrusion [6]. XOM, a platform for tamper- and
copy-resistant software has been developed [9] to create the
kind of memory that is exclusively dedicated to program
binaries, that could not be read or modified, but only exe-
cuted. XOM decrypts program binaries at run-time and uti-
lizes hardware-supported memory management to achieve
tamper-resistance. In a sense, XOM is the closest relative
to both SPEF (described in Subsection 1.1) [8] and our plat-
form.

Static source code analysis techniques range from fast
and simple error detection, such as type errors and unini-
tialized variables [15, 22] to complex and relatively slow
formal verification-based tools that detect variety of bugs,
including null pointers and errors in definitions, allocation
and aliasing [7, 12, 11]. Wagner et al. used static analysis
techniques as the first step toward automated buffer over-
flow detection – their static analyzer commonly generates
false alarms that must be verified manually [10].

7. Conclusion
We have introduced a novel, simplified, hardware-

assisted intrusion prevention platform with a focus on cre-
ating techniques that significantly reduce the performance
overhead incurred due to run-time MAC verification. We
have proposed a software optimization technique that ini-
tially identifies critical instructions, ones that are likely to
fill the buffers dedicated to support speculative execution,

and then reorders basic blocks within a given block so that
critical instructions are executed as late as possible within
an instruction block in common cases. We have conducted
experiments by executing the SPEC2000 benchmark on a
traditional and x86 platform enhanced with our system. Pre-
liminary results show that our code optimization techniques
produced an overhead reduction of up to 90%.
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