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Abstract

Dynamic software bug detection tools are commonly used be-
cause they leverage run-time information. However, they suffer
from a fundamental limitation, the Path Coverage Problem: they
detect bugs only in taken paths but not in non-taken paths. In other
words, they require bugs to be exposed in the monitored execution.

This paper makes one of the first attempts to address this funda-
mental problem with a simple hardware extension. First, we pro-
pose PathExpander , a novel design that dynamically increases the
code path coverage of dynamic bug detection tools with no pro-
grammer involvement. As a program executes, PathExpander se-
lectively executes non-taken paths in a sandbox without side ef-
fects. This enables dynamic bug detection tools to find bugs that
are present in these non-taken paths and would otherwise not be de-
tected. Second, we propose a simple hardware extension to control
the huge overhead in its pure software implementation to a moder-
ate level. To further minimize overhead, PathExpander provides an
optimization option to execute non-taken paths on idle cores in chip
multi-processor architectures that support speculative execution.

To evaluate PathExpander, we use three dynamic bug detec-
tion methods: dynamic software-only checker (CCured), dynamic
hardware-assisted checker (iWatcher) and assertions; and conduct
side-by-side comparison with PathExpander’s counterpart software
implementation. Our experiments with seven buggy programs us-
ing general inputs that do not expose the tested bugs show that
PathExpander is able to help these tools detect 21 (out of 38) tested
bugs that are otherwise missed. This is because PathExpander in-
creases the code coverage of each test case from 40% to 65% on
average, based on the branch coverage metric. When applications
are tested with multiple inputs, the cumulative coverage also signif-
icantly improves by 19%. We also show that PathExpander intro-
duces modest false positives (4 on average) and overhead (less than
9.9%). The 3—4 orders of magnitude lower overhead compared with
pure-software implementation further justifies the hardware design
in PathExpander.

1. Introduction

1.1. The Path Coverage Limitation of Dynamic Bug
Detection

Software bug is one of the major causes of system down time
and security attacks. Although many debugging tools have been

*This work was supported in part by NSF CNS-0347854 (career award),
NSF CCR-0325603 grant, DOE DE-FG02-05ER25688, and Intel gift grant

proposed to detect bugs automatically, the ubiquity of software bugs
is a strong testimony to the fact that more innovations in this topic
are needed.

Dynamic bug detection [4, 12, 14, 27, 41] is a commonly used
method in detecting software bugs. These tools detect bugs by
monitoring programs’ execution at run-time. Therefore, they have
more accurate information on variable values and aliasing informa-
tion. As a result, they can catch more bugs and report fewer false
positives than static checkers. Examples of this method include
assertions, software-only dynamic checkers such as Purify [14],
DIDUCE [12] and CCured [27], and hardware-assisted dynamic
checkers such as ReEnact [31] and iWatcher [41].

Unfortunately, as often pointed out in previous work [7, 18], al-
most all dynamic bug detection tools suffer from a major limitation:
the path coverage problem, i.e. they can detect only those bugs
which appear in the executed paths. In other words, they require
the bug to manifest itself during the monitored runs (runs that are
monitored by the dynamic bug detection tool). If a bug is present
in a non-taken path (a control flow path which is not executed),
dynamic tools cannot detect it.

375: static int is_str_constant (char* tok)

376: { /* tok is declared as char[81] */
377: inti=1;
378: if (*tok==""")
379:  { while ( *(tok)!=10")
! /* BUG!! should check *(tok+i)!=\0" */
: 380: { if(*(tok+i)==""")
I 381: return (TRUE);
Y 382: else
383: i++;
BUG 384: }
386: }
O 387: else

N
BUG  389: }

Figure 1. A bug example from Siemens benchmark: bug can be
detected only if the solid-circle path is executed.

Figure 1 gives a simple example to illustrate the path cover-
age problem. This code segment comes from the print_tokens2
benchmark in the Siemens Benchmark Suite [13], a commonly used
benchmark suite for software testing and bug detection. This code
segment contains a severe bug in Line 379 that can cause a buffer
overrun if the solid-circle path (referred as the buggy path) is exe-
cuted. This bug can be detected by a dynamic buffer overrun detec-
tion tools such as Purify [14] if the bug is exposed in the monitored



run. But, unfortunately, to execute this buggy path requires that the
string tok starts with a quotation mark and does not contain another
quotation mark. Therefore, it needs a special program input that can
lead to such special tok string value. For all other inputs, the buggy
path is not executed and thus the bug does not manifest. As a result,
the underlying dynamic bug detection tool cannot detect this bug.
Here, we use this simple benchmark only for illustrative purpose.
Real-world examples are often much more complex. For example,
the string tok may be an intermediate variable and have complex
correlation with the end-user input. In that case, it would be very
difficult to generate a bug-triggering input and thus it is very likely
this bug will escape from the dynamic bug detection tool.

1.2. Why Path Coverage is So Challenging?

One might wonder why the coverage limitation cannot be solved
by simply running as many tests as possible to ensure every path
is checked by the dynamic bug detection tool. In fact, the path
coverage issue has been an open problem in software testing for
decades. There are many challenges:

(1) Incompleteness of test cases: Generating test cases to cover all
feasible paths is usually impractical, especially for real-world appli-
cations. This is because: (i) the total number of feasible paths in a
program is very large: at least exponential to the code size and even
infinite due to loops and recursive functions; (ii) even for any one
specific path, generating an input to cover it is theoretically uncom-
putable [33]. Although recently dynamic test generation [10] and
symbolic unit test generation [5, 8, 34] have made great progress,
they are still limited by the above unbounded computation complex-
ity problem and have many hard-to-handle cases, including loops,
dynamic data structures, nonlinear correlations, etc. For example,
it is difficult for them to generate an input to trigger the bug in the
simple example shown in Figure 1, because that bug triggering path
contains a loop.

(2) Dependence on other states: The above problem becomes even
harder if the control path also depends on system states (e.g. the
time of day), hardware states (e.g. disk status), resource states
(e.g. how much virtual memory has been allocated), and applica-
tion states (e.g. the total number of outstanding requests). While
fault injection-based testing can address this problem to some ex-
tent, it is usually very expensive and cannot test all possible state
combinations.

(3) Human Effort and Testing Efficiency: For real-world programs,
each test case can take a large amount of human effort to enforce
and a long time to execute. Therefore, the number of cases that can
be tested in reality is limited; it is critically important to reduce the
number of test cases without sacrificing significantly in overall test
coverage [19].

(4) Dynamic Monitoring Efficiency: Dynamic bug detection tools
are usually only applied to a small number of selected test runs, be-
cause many dynamic tools, such as Purify and Valgrind [28], incur
up to 40-100 times overhead [41], too time consuming to monitor
hundreds of or more test runs, especially for large software. For ex-
ample, if each test run without such tools takes 2 hours, using these
dynamic checkers to check 100 test runs would require 333-833
days!

Therefore, it is desirable to automatically increase the path cov-
erage for any single monitored run without significantly increasing
the execution time to allow the underlying dynamic bug detection
tool to detect more bugs.

1.3. New Opportunity: Hardware Support

Recent rapid advances in computer hardware have led to dra-
matic performance improvement. Multicore processor is becoming
a mainstream technology. This trend provides a unique opportu-
nity to enhance other functionalities in addition to performance,
such as software debugging. Recently, several hardware exten-
sions have been proposed to support speculative execution and roll-
back [2, 11, 24, 30, 31, 32], which also provide opportunities to
many functionalities such as increasing path coverage of bug detec-
tion proposed in this paper.

1.4. Our Contributions

In this paper, we make one of the first attempts (to the best of
our knowledge) to address the fundamental path coverage problem
of dynamic bug detection by using a simple extension to existing
and emerging hardware. Specifically, we propose an innovative, au-
tomatic, low-overhead, and general hardware-assisted framework,
called PathExpander . PathExpander allows dynamic bug detec-
tion tools to detect bugs, that would not be detected otherwise, on
non-taken paths (referred as NT-Paths). Specifically, PathExpander
combines two innovative ideas:

e Exploring both taken and non-taken paths in a single moni-
tored run. PathExpander addresses the path coverage problem
in dynamic bug detection by transparently and automatically
executing along both the taken edge and the non-taken edge
on selected branches at run time. Therefore not only the taken
path but also many non-taken paths can be monitored by dy-
namic bug detectors in each run. The feasibility of our idea is
validated through our crash latency measure and other analy-
sis (Section 3.2). The state inconsistency problem in NT-Path
execution is addressed by leveraging predicated instructions
(Section 4.4).

e Leveraging hardware support. While we also implement the
above idea in pure software, the huge overhead motivates us
to explore hardware extensions to support the PathExpander
idea, i.e. to select and execute NT-Paths. Hardware support
not only provides an efficient way to sandbox side effects made
by NT-Paths, but also conveniently exploits idle cores in a mul-
ticore architecture with speculative execution support to exe-
cute NT-Paths with little overhead.

The main characteristics that distinguish PathExpander are:

(1) Generality. PathExpander makes no assumption about bug
types or dynamic bug detection methods (tools). Therefore, it
can increase the path coverage of almost all dynamic bug de-
tection tools with little modification. Additionally, PathExpander
can potentially work with programs written in many different pro-
gramming languages. In our evaluation, PathExpander success-
fully helps three different dynamic bug detection methods: (1)
a software-only checker, CCured [27]; (2) a hardware-assisted
checker, iWatcher [41]; and (3) assertions, to extend their bug de-
tection coverage.



(2) Help Detecting Bugs with non Bug-triggering Inputs. Many
bugs require special inputs to manifest during execution. How-
ever, with the help of PathExpander, it is possible to expose these
bugs even with non bug-triggering inputs, which are usually much
more common than those bug-triggering ones. Our experiments
with seven buggy programs using general inputs that do not expose
the tested bugs show that PathExpander is able to help dynamic bug
detection tools detect 21 (out of the 38) tested bugs that are missed
otherwise (without PathExpander).

(3) Improving Code Coverage. PathExpander significantly in-
creases the code coverage of the monitored execution from 40% to
65% on average. Even when multiple inputs are used for each ap-
plication, the cumulative branch coverage improvement by PathEx-
pander is still significant, by 19% on average. (Branch coverage is
used as coverage metric in our experiments, because path coverage
is hard to directly measure.)

(4) Reducing Human Efforts. Since PathExpander significantly
increases the path coverage for dynamic bug detection without any
effort from programmers, it can reduce the large amount of human
effort in designing and enforcing various input cases to check bugs
on different paths, especially those bugs that require very special
inputs to trigger.

(5) Low Overhead. With simple hardware support, PathExpander
explores large number (hundreds to thousands in our experiments)
of new paths in each run with small overhead (less than 9.9% with
the CMP optimization; 3—4 orders of magnitude better than the
counterpart software-only implementation). This can greatly in-
crease the efficiency of software testing and debugging, which con-
tribute to 50-70% of software development cost.

(6) Modest False-Alarms. Because PathExpander uses predicated
instructions to fix key variables’ values before the NT-Path execu-
tion, it significantly reduces the number of false positives in bug
detection to only a few (4 on average) for our seven tested buggy
applications.

(7) Simple Integration with Dynamic Checkers. With hardware
support, PathExpander is almost transparent to dynamic checkers
and thereby can easily integrate with them (See Section 6.2).

2. Background of Testing Coverage

Testing coverage measures how much a program is executed in
amonitored run. It directly affects the effectiveness of dynamic bug
detection tools: the higher the coverage, the more bugs can poten-
tially be detected. There are various ways to measure the testing
coverage. The simplest one is statement coverage, i.c., the per-
centage of executable statements executed [33]. It is easy to mea-
sure but is insensitive to control structures, to which many bugs are
related. An alternative, branch coverage [33], is better in this, but
still limited in that it only looks at one branch at a time.

One of the most accurate code coverage metrics is path cover-
age [33]. It focuses on a sequence of branch decisions, instead of
single branch decision. Path coverage is stronger than statement and
branch coverage, because even if a certain branch decision or state-
ment has already been touched, the combinations with other branch
decisions (or statements) may have not been tested. Unfortunately,
path coverage is hard and in many cases impossible to measure due
to the infinite number of paths. Therefore, statement coverage and

branch coverage are the dominant criteria used in software testing.
For the same reason, in our evaluation, we can only show PathEx-
pander’s improvement on branch coverage, even though many of
our design decisions are targeted for improving path coverage.

High testing coverage is always hard to achieve. Especially,
as coverage increases, further coverage improvement becomes in-
creasingly difficult. In large software, after around 80-90% branch
coverage, each percent of coverage increase requires a huge amount
of effort [33]. Due to this difficulty, good engineering practices usu-
ally set 70-90% branch or statement coverage as the target. As a
result, bugs located in the remaining 10-30% uncovered program
parts will inevitably slip into production runs. PathExpander can
push bug detection into the remaining 10-30% uncovered program
parts without large overhead and programmer efforts and thus en-
hance the software quality.

3. PathExpander Idea

Terminology Definition: In this paper, we use a branch edge or
edge to denote one of the two edges (true and false) after a branch
instruction, and a path to denote a sequence of multiple consecutive
branch edges. We use branch coverage, a commonly used testing
coverage metric in software testing, to measure the percentage of
the tested program’s branch edges that are executed in the moni-
tored run. Note that our design is oriented by the more accurate
path coverage. However, as explained in section 2, path coverage
is very difficult to calculate, therefore, in this paper we use branch
coverage as the code coverage metric in evaluation.

3.1. Idea Overview

The main purpose of PathExpander is to enable dynamic bug
detection to check bugs on both taken and non-taken paths, so
that potentially more bugs can be detected from a single monitored
run without any extra effort from programmers to design, gener-
ate and monitor various special test cases. PathExpander does this
by “silently” (without side effects) executing non-taken paths in a
hardware or software sandbox.

Hardware
branch a
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Figure 2. NT-Path in PathExpander (The winding curves denote
that both the taken path and the NT-Path may also execute other
branch instructions.)

Figure 2 shows the main idea of PathExpander. At a branch
a, suppose the actual program execution will follow the right path.
PathExpander executes the left non-taken path (referred as an NT-
Path) and the right taken path one after another sequentially (in the
standard configuration) or in parallel (with the CMP optimization
option), as shown in Figure 4. At following branches, the NT-Path
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Figure 3. Crash-Latency and Unsafe-Latency statistics (Above cumulative distribution curves show the percentage of NT-Paths that crash
or reach an unsafe event before executing a given number of instructions.)

follows branch edges based on the actual branch condition while
the taken path may spawn new NT-Paths. The NT-Path will be ter-
minated before executing a threshold number of instructions due
to the resource competition, state consistency and some other con-
cerns. During the whole life time, all of the NT-Path’s memory up-
dates are sandboxed so that they do not influence the execution of
the taken path. Other side effects such as I/Os made by an NT-Path
are avoided by stopping the NT-Path execution upon such events.
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Figure 4. (a) PathExpander standard configuration; (b) PathEx-
pander CMP optimization.

PathExpander provides two options: a standard configuration
and a CMP optimization (only available in the hardware imple-
mentation). The standard configuration (Figure 4(a)) uses a sim-
ple checkpoint-and-rollback scheme. At branch a, a checkpoint
is taken and the program execution follows the NT-Path. When
the NT-Path terminates, PathExpander rolls back the memory and
processor state to the previous checkpoint and resumes the normal
execution, i.e. following the taken path. Besides the standard con-
figuration, PathExpander also provides a CMP optimization option
(Figure 4(b)) to minimize the overhead. This optimization leverages
the CMP architecture to hide the overhead of NT-Path execution. It
does so by executing an NT-Path on an idle core while continu-
ing the taken path execution on the primary core. At a subsequent
branch on the taken path, a new NT-Path can be explored in another
idle core before the previous NT-Path terminates.

PathExpander handles the state inconsistency of NT-Path by
simple variable fixing at the entrance of an NT-Path. Take Figure 2
as an example. PathExpander modifies the condition variables used
in branch a, so that the outcome of branch a will be flipped to the
left edge instead of the original right edge. More details can be
found in Section 4.4.

PathExpander does not spawn NT-Paths on all branches, because
blind spawning has huge overhead and is unnecessary. Instead,
PathExpander selectively executes those non-taken paths whose in-

structions and branch edges have not been well exercised so far
in the monitored execution, because these paths are more likely to
have undetected bugs. In our current prototype, we make the selec-
tion based on a branch edge exercise counter. In the future, we may
extend it to take into account other information, such as memory
state and some random factors.

Implementation Choices: Hardware or Software? Like all de-
signs that propose hardware extensions, the trade-off is usually be-
tween efficiency and hardware complexity. To evaluate this trade-
off, we have implemented PathExpander using simple hardware ex-
tensions (see Section 4) and with pure software (see Section 5).
Their tradeoffs are discussed in Section 7.5.

3.2. Feasibility Analysis

State inconsistency problem, i.e. the branch condition variables
indicating one branch target but the NT-Path executing the other
one, threats the feasibility of PathExpander in two aspects. First, it
may lead to an immediate termination of the NT-Path, and therefore
prevents NT-Paths from running long enough to reach the potential
buggy code region. Second, inconsistency may make the dynamic
bug detection tool unable to discover ‘real’ bugs. We investigate the
two issues through our feasibility analysis below.

(1) Termination Latency Analysis An NT-Path may be terminated
by a crash (e.g. divide-by-zero, access violations) due to state in-
consistency. Fortunately, several recent fault tolerance studies, in-
cluding the Y-branch study [37] and the Iyer et al’s Linux kernel
study [9], have examined the state inconsistency effects of injected
random branch mutation (forcing execution of a non-taken path).
Their results show that, in a large percent (30-40%) of the cases, the
state inconsistency does not result in any crashes or even silent er-
rors in the following execution, because many of these branches are
just optimization paths or short-cuts. These studies provide a good
foundation for our work. Actually, their condition is stronger than
what is required by PathExpander. Different from them, PathEx-
pander does not execute NT-Paths to the end of the program, and
not require N'T-Path have the same execution result as taken-path.

An NT-Path may also be terminated by another reason: some
special side effects of an NT-Path such as I/O events cannot be sand-
boxed by PathExpander via either hardware or software. Therefore
the NT-Path needs to be squashed when such event occurs. To sand-
box such unsafe events requires OS support, which remains as our
future work.

To validate the feasibility of our PathExpander idea, we have
conducted Crash-Latency (how long it takes an NT-Path to crash)



and Unsafe-Latency (how long it takes an NT-Path to reach an un-
safe event) measurements on all applications used in our experi-
ments (Section 6). In each experiment, we spawn an NT-Path at
every non-taken branch edge with zero exercise count and execute
it until it either (1) crashes, (2) reaches an unsafe event, (3) reaches
the end of the program, or (4) has executed a maximum threshold
of instructions (1000 in our experimental setup). In these experi-
ments, NT-Paths are executed without applying any variable-fixing
techniques described in Section 4.4.

Figure 3 shows the cumulative distribution of Crash-Latency and
Unsafe-Latency for three representative applications: one SPEC95
benchmark (099.go) and two SPEC2000 benchmarks (164.gzip and
175.vpr). As we can see, in all three applications, 65-99% of the
NT-Paths can execute at least 1000 instructions without interrupted
by unsafe events or crash. In particular, only 0.5% NT-Paths in
go stop before executing 1000 instructions. The results with other
applications are similar.

Our Crash-Latency and Unsafe-Latency statistical results indi-
cate that most NT-Paths can execute for a reasonably long time,
allowing the underlying dynamic bug detection tool to detect bugs
on these non-taken paths. Furthermore, for many applications, such
as gzip and vpr, the majority of NT-Paths stop early due to un-
safe events. Therefore, if we had an OS support to sandbox unsafe
events, more than 90% of NT-Paths may potentially execute up to
1000 instructions.

(2) Can ‘real’ bugs be detected in an inconsistent state?  The
answer is ‘yes’. First, we should note that the degree of the incon-
sistency on the NT-Path is small. Such degree is hard to quanti-
tatively measure. However, we can take above crash latency as an
indirect measure. Intuitively the more inconsistent the variables are,
the more likely the program will crash, therefore our crash latency
results indicate that usually the NT-Path inconsistency is not severe.

Second, PathExpander is designed for bug detection, which has
better inconsistency tolerability than software testing. Usually in
testing, if the variables are not completely consistent, the execu-
tion result can hardly be used. Different from that, in dynamic bug
detection, we do not care NT-Paths’ final results since they are sand-
boxed and discarded anyway. Instead, the goal is to find bugs. Since
most bugs are correlated to only a subset of variables, inconsistency
in unrelated variables has little interference in the exposure of these
bugs.

In the example shown in Figure 1, if the string tok does not
start with a quotation mark, the execution will directly jump to line
387 after the check at line 378. If PathExpander selects the non-
taken edge to start an NT-Path exploration, this NT-Path will follow
through and execute the while loop. Even though there is incon-
sistency between the tok’s starting character and the NT-Path, the
bug can still be exposed. In this case, the conditional variable in-
consistency will not prevent the bug from manifesting, as long as
the while loop is executed.

Undoubtedly, in some cases, such inconsistency may interfere
with bug detection in NT-Paths. Therefore, PathExpander also em-
ploys inconsistency fix techniques to further address this problem
(see Section 4.4).
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Figure 5. PathExpander hardware architecture (The Vtag in the
standard configuration is a single bit volatile tag. With the CMP
optimization, itis an 8-bit version tag, denoting the corresponding
path ID.)

4. Hardware PathExpander Implementation
4.1. Architecture Overview

To increase the path coverage of dynamic bug detection, PathEx-
pander needs to address the following major issues: (1) What
branch, when and how to spawn an NT-Path? (2) How to sand-
box the side effects of an NT-Path? (3) How to reduce overheads
imposed by executing NT-Paths? (4) How to reduce false positives
caused by state inconsistency in NT-Path execution?

As shown in Figure 5, the standard configuration of PathEx-
pander requires only simple hardware extensions: (1) extending
the branch target buffer (BTB) with 2 four-bit exercise counters,
one for each edge, to record the number of times this edge is ex-
ecuted; (2) a special predicate register to support consistency fixes
(Section 4.4); and (3) simple checkpoint and rollback support for
sandboxing NT-Paths’ effects. Specifically, PathExpander buffers
NT-Paths’ memory updates in L1 cache and uses a 1-bit Volatile
tag (Vrag) associated with each L1 cache line to differentiate cache
lines written by NT-Paths from those by taken path.

A special memory area pointed by the Monitor_memory_area
register in each core is not sandboxed. This memory area is used to
store error-reports made by the underlying bug detection tool during
an NT-Path execution. When an NT-Path ends, all its side effects
except those made to this memory area are discarded.

PathExpander’s CMP optimization option needs extra hardware
support to execute NT-Paths and taken-path in parallel on multicore
architectures. Specifically, such hardware support includes fast reg-
ister copy from one core to another for NT-Path spawn, cache ver-
sioning and data dependency tracking for correct isolation and data
flow among different execution paths, and special NT-Paths squash
mechanism. Most of these supports can be easily got from some
emerging advanced architectures. The current PathExpander proto-
type builds the CMP optimization based on the thread level specu-
lation architecture [6, 30]. The details are discussed in section 4.3.

4.2. PathExpander Standard Configuration

(1) NT-Path Selection PathExpander selects a non-taken branch
edge to begin an NT-Path exploration when this edge’s exercise
count, stored in the BTB, is smaller than a given threshold (NTPath-
CounterThreshold). The threshold can be larger than 1, because
even if a branch edge is already exercised, different execution con-
text may still bring up non-tested paths consisting of it and other
edges.

The exercise counters are updated during taken-path execution
at the entry of an NT-Path. They are periodically reset to zero (per



CounterResetInterval binary instructions) to support long-running
programs. The rationale is that during the long running period of
such programs, new application, system and hardware states may
emerge even after all these branch edges are thoroughly exercised.

The exercise counter of each branch edge is put in BTB (branch
target buffer), and read at every BTB access. A BTB miss is simply
treated as if the exercise counter is zero.

(2) NT-Path Sandboxing After PathExpander decides to explore
a non-taken path as an NT-Path, it checkpoints the architectural reg-
isters as well as the program counter in a way similar to previous
work [1] and redirects the execution to the NT-Path. During an NT-
Path’s execution, all memory writes are sandboxed within the L1
cache by leveraging the previously proposed versioned hardware
cache [24]. These cache updates are bookmarked by setting the as-
sociated 1-bit Vtag. When NT-Path terminates, all cache lines with
this bit set will be invalidated.

PathExpander chooses cache instead of store buffer inside the
processor [1, 29] to sandbox the NT-Path, mainly because cache
can buffer more updates, allowing NT-Paths to execute for longer
time to expose bugs.

(3) NT-Path Execution and Termination NT-Path execution does
not stop at the first encountered branch instruction. Instead, it may
execute many branch instructions. At each encountered branch,
NT-Path only explores the taken edge, because otherwise exploring
non-taken edges from an NT-Path may worsen the inconsistency
problem. This design choice is evaluated by a simple experiment
we conducted on 164.gzip. Experiment shows that exploring non-
taken edges from NT-Paths slightly enlarges the branch coverage by
2%, but significantly increases the NT-Paths crash ratio before ex-
ecuting 1000 instructions from 5% to 16%, indicating much worse
state consistency. Due to this, PathExpander does not follow non-
taken edges in NT-Paths.

An NT-Path is terminated when any of the following condi-
tions hold: (1) the NT-Path has executed long enough (i.e. reaches
MaxNTPathLength instructions); (2) the NT-Path crashes; and (3)
the NT-Path reaches an unsafe event such as a system call that can
not be sandboxed. The first condition prevents an NT-Path from
occupying too many resources. The second condition is obvious.
When an NT-Path crashes, it is squashed and the exception that
caused the crash is not delivered to the OS. The third condition is
necessary because an NT-Path’s side effects should not be visible
to the program’s normal execution. When squashing an NT-Path,
PathExpander rolls back the system states by gang-invalidating all
L1 cache lines whose Vtags are set. These operations can be done
in a handful of cycles using inexpensive custom circuitry[24].

4.3. CMP Optimization

Different from the standard configuration, the CMP optimiza-
tion can execute the original taken path and NT-Paths spawned at
different branch instructions simultaneously. For example, in Fig-
ure 6(a) and (c), after branch a, the NT-Path D is executed on idle
core 1, while the primary core continues executing the taken path.
At a subsequent branch b, the corresponding non-taken path £ may
be spawned as an NT-Path and executed on idle core 2 in parallel
with the taken path and NT-Path D. For convenience of descrip-
tion, we call code segment A as the parent of code segment B and
NT-Path D, and B as D’s sibling.

To spawn an NT-Path in the CMP optimization option, PathEx-
pander copies all register context from the primary core to the
selected idle core before the NT-Path begins there. If no idle
core is available, this NT-Path is temporarily queued using a free
thread context. To avoid spawning too many outstanding NT-Paths,
which can incur high resource contention, we use a threshold called
MaxNumNTPaths to limit the maximum number of outstanding NT-
Paths. A non-taken path is not spawned when there are MaxNum-
NTPaths of outstanding NT-Paths.

During an NT-Path’s execution, all memory updates except
those to the special monitor memory area are sandboxed within the
L1 cache. To support it, an eight-bit ID is assigned to each taken
path segment and NT-Path. Each cache line in L1 is tagged with a
path ID indicating its owner. ID zero is reserved to indicate commit-
ted data. Once a taken path code segment or NT-Path is committed
or squashed, its ID can be recycled. When an NT-Path is squashed,
all L1 cache lines tagged with its ID are gang-invalidated. When a
taken path code segment is committed, all cache lines tagged with
its ID are committed by changing the ID to zero lazily [30]. Updates
to the monitor memory area are always tagged with ID zero.
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Figure 6. PathExpander dependencies

Since multiple NT-Paths could be executed concurrently with
the taken path in the CMP option, special care needs to be provided
to ensure that each path reads from the correct version of the data
and their memory modifications do not interfere with each other.
Such functionality is achieved by maintaining and enforcing data
dependencies and commit and squash dependencies among them in
ways similar to the thread level speculation (TLS) architecture.

First, the data dependency follows a tree-structured partial order
(Figure 6(c)), slightly different from the original linear dependency
in TLS (Figure 6(b)). At each branch, both the taken edge (and fol-
lowing code) and non-taken edge (and following code) of a branch
may be executed concurrently, and they should read data produced
or propagated by their parent code segment. Any updates made
after their parent code segment should be invisible to them.

Due to the above data dependency constraint, PathExpander
cannot commit a taken path code segment (e.g. C) until its par-
ent segment (e.g. B) is committed and its sibling NT-Path (e.g. E)
is squashed. Otherwise, its sibling NT-Path (e.g. E') may read data
generated by this taken path segment (e.g. C), violating the data
dependency described above. In other words, in order to commit, a
taken path segment needs two tokens, a commit-token from its par-
ent segment and a squash-token from its sibling NT-Path. In cases



when a taken path is forced to commit, for example, when one of its
dirty lines is to be displaced from L1 to L2, related sibling NT-Paths
are squashed immediately, so that the taken path will not be stalled.

4.4. State Inconsistency Fix on NT-Paths

As mentioned in Section 3.2, NT-Paths may introduce state in-
consistency that may result in false positives and false negatives
in bug detection. To address this problem, PathExpander performs
some simple variable consistency fixes.

‘We should note that, to completely fix all state inconsistency in
an NT-Path execution is very difficult because it requires fixing not
only the condition variables that set the branch direction but also
the variables on which the condition variables depend. Fortunately,
such complete fix is also not required in PathExpander usage sce-
nario as discussed in Section 3.2. Therefore, current PathExpander
prototype only fixes the condition variables of the branch corre-
sponding to a given NT-Path. We will investigate using program
analysis, symbolic execution [8], or reverse execution with dynamic
slice information [40], to perform more sophisticated consistency
fix in our future work.

(1) How to Fix Key Variables? To ensure that the branch condi-
tion in an NT-Path holds, there can be many ways to fix the condi-
tion variables. For example, in an inequality comparison condition
such as x < 5, we can make the condition true in the NT-Path by
changing z’s value to anything smaller than 5 to force executing
the TRUE edge. To make the fix more accurate, one can rely on
static analysis and value-invariants inference [12] to pick a value
satisfying not only the desired branch direction but also the normal
value range and usage pattern of this variable. In our current imple-
mentation, if only one value satisfies the condition (e.g. an equality
condition), this variable is fixed to be this value at the entry of the
NT-Path. If a range of values satisfy the condition (e.g. an inequal-
ity condition), the variable is fixed to be either exactly the boundary
value, or close to the boundary.

Fixing pointer variables is more challenging. For example, the
condition of a branch may be based on whether a pointer p is null
or not. Suppose that p is null in the execution. If PathExpander
decides to execute the non-taken path as an NT-Path, the pointer
p needs to point to some real data. Otherwise, it may crash or in-
troduce false positives in bug detection. To address this problem,
PathExpander relies on the compiler to create a blank data struc-
ture for each data type, including both basic data types and user-
defined structures, at the beginning of the program execution. In
the above example, PathExpander would fix the problem by setting
the pointer p to point to the blank data structure of the correct type.
Even though the blank data structure does not have any meaning-
ful content, our experiments show that this simple fix is effective to
eliminate many false positives (Section 7.1).

(2) Who Fixes Key Variables? PathExpander uses a compiler to
insert variable-fixing instructions at the beginning of each branch
edge that could lead to an NT-Path. There are two ways to estimate
whether a branch edge can lead to an NT-Path: static analysis, and
profile-based analysis. In our current prototype implementation, we
simply assume that the two edges of any branch can possibly be
spawned to NT-Paths. Therefore, variable-fixing instructions are
inserted in both edges.

Line Number | Original Code | PathExpander Code
1 if x>2) { if (x>2) {
x=2 < p>;
2 big(var,x); big(var,x);
3 Yelse{ Yelse{
x=1<p>;
4 small(var,x); small(var,x);
5 } }

Table 1. Key variable fixing (x=2 <p>, x=1 <p> are predicated
instructions executed only at the NT-Path entrances.)

(3) When to Execute Variable-Fixing Instructions?
Variable-fixing instructions should be executed only at the begin-
ning of an NT-Path, not in a taken path or in the middle of an NT-
Path, where the actual semantic is already followed. To provide
the above functionality, variable-fixing instructions are predicated
in a way similar to previous work [16, 23] so that these instructions
are executed only at the entrance of an NT-Path. In all other cases,
the predicate register is unset, and, consequently, these instructions
behave like NOPs with little overhead.
(4) An Example

To illustrate our idea, Table 1 gives an example of how the
variable-fixing is performed before executing an NT-Path. Suppose
2’s value is 0, and an NT-Path is spawned from line 2 (function
big). To fix the condition variable x in this NT-Path, the compiler
inserts a predicated instruction z = 2 < p > to make the variable
equal to 2, the boundary value. As a result, executing this path as
an NT-Path is less inconsistent and thereby has smaller possibility
for extra false positives (introduced by PathExpander) in bug detec-
tion. If this path is executed as a taken path, the predicate for ‘x=2
< p >’ is false. Therefore it behaves like a NOP. The process is
similar for ‘x=1 < p >’ on the other edge.

5. Software-PathExpander Implementation

The pure software implementation of PathExpander is based on
PIN [22], a dynamic binary code instrumentation tool. As a state-
of-art instrumentation tool, PIN provides high-quality optimized in-
strumentation and many useful APIs, such as processor state check-
pointing and register value modification.

NT-Path Selection We instrument every branch instructions to
collect and maintain the dynamic branch exercise information. At
run time, after each branch instruction is resolved, the instrumented
analysis code dynamically makes decision whether an NT-Path
should be spawned based on the exercise history maintained in a
hash table.

NT-Path Spawn We use PIN API to first save the current pro-
cessor states into a special processor checkpoint data structure, then
directly modify the PC register to the non-taken branch edge, and
proceed the execution to the NT-Path.

NT-Path Side Effects Sandbox. During the NT-Path execution,
we instrument every memory write to log the old value of each over-
written memory location into a special restore-log, so that all mem-
ory effects can be rolled back when we want to resume the correct
branch edge.

NT-Path Termination. The termination condition, i.e. length
of NT-Path, unsafe NT-Path system call and NT-Path crash, is mon-
itored by another set of instrumentation. When one of these three



termination conditions is satisfied, a software NT-Path squash and
rollback routine is invoked. This routine writes all the overwritten
memory values back to corresponding memory locations based on
the restore-log, and then resets the processor registers based on the
previous processor checkpoint record and continues the taken path.

6. Experimental Methodology
6.1. Simulator

To evaluate PathExpander, we augment an existing cycle-
accurate execution-driven simulator [6, 41] that models a 4-core
CMP with PathExpander functionality. The parameters of the ar-
chitecture are shown in Table 2. We use one core when evaluating
the standard configuration of PathExpander and use all 4 cores for
the CMP optimization option.

| Core Parameters |

Squash CPU frequency 2.4GHz
overhead | 10 cycles || Int, Mem, FP FUs 3,2,2
BTB 2K, 2 way
Spawn ROB, I-window sizes 128, 64
overhead | 20 cycles || Fetch, Issue, Retire widths | 6, 4, 4
LD, ST queue entries 64, 48
L1 cache 16KB, 4-way, 32B/line
3 cycles latency (2 cycles for non-CMP)
Memory System Parameters |
L2 cache 1MB, 8-way, 32B/line, 10 cycles latency
Memory 200 cycles latency

Table 2. Parameters of the simulation

6.2. Evaluated Dynamic Bug Detection Tools

To show the generality of PathExpander, we evaluate PathEx-
pander using three different dynamic bug detection methods:
software-only dynamic checker (CCured [27]), hardware-assisted
dynamic checker (iWatcher [41]) and assertions. CCured is a pub-
licly available, dynamic-static hybrid tool and we use its dynamic
part. CCured and iWatcher can dynamically detect memory-related
bugs. We use assertions to evaluate programs with semantic bugs.

It is easy to integrate these dynamic bug detectors with PathEx-
pander. At run time, the checking code segments inserted by these
detectors are automatically executed by hardware on both taken
path and the NT-Paths. We just need to tag those checking func-
tions in advance so that PathExpander does not spawn NT-Paths
within them; and store those checking results to a special memory
region so that they will not be discarded at the NT-Path rollback.

6.3. Evaluated Applications

We have conducted two sets of experiments. The first set uses
seven buggy applications, containing 38 bugs in total, to evaluate
the functionality of PathExpander in helping bug detection. The
second adds three SPEC2000 benchmarks (gzip, vpr and parser) to
evaluate the overhead of PathExpander, the performance benefits of
CMP, etc.

The focus of our evaluation is to demonstrate how PathExpander
can help dynamic bug detection tools to detect bugs in non-taken
paths, not to compare these three bug detection methods. Therefore,

Application LOC | #Bugs | Detection Tool
099.go 29,623 2

bc-1.06 17,042 2 CCured
man-1.5h1 4,675 1 and iWatcher
Print_tokens 767 7

Print_tokens2 727 10

Schedule 411 8 Assertions
Schedule2 378 8

Table 3. Applications and bugs evaluated

we pick buggy applications with bugs that are possible to be de-
tected by the dynamic detection methods. As CCured and iWatcher
can detect only memory-related bugs, we use assertions for seman-
tic bugs in the Siemens suite [13].

Table 3 gives the details about the 7 buggy applications. 099.go
is from the SPEC95 benchmark, bc-1.06, man-1.5h1 are from the
open-source community. They all contain memory-related bugs
that fit for CCured and iWatcher. The other four are from the
Siemens suite [13], which is widely used for evaluating software
testing and bug detection methods. Each Siemens benchmark has
several versions and each version has one semantic bug. Since the
Print_tokens2 benchmark, version 10, contains a memory bug (Fig-
ure 1), we also use it to evaluate CCured and iWatcher.

Note that PathExpander only increases the path coverage of a
dynamic checker, and does NOT help the checker to detect other
types of bugs. Therefore, in table 3, the number of bugs here means
the number of detectable bugs by the corresponding dynamic bug
detection method in the last column, and do not include those types
of bugs that cannot be detected by the corresponding tool.

To demonstrate the effectiveness of PathExpander in increasing
the dynamic bug detection coverage, we use inputs that do not ex-
pose the tested bugs in normal execution. Almost all inputs used in
our experiments are very general. If PathExpander can help expose
bugs on NT-Path with these inputs, the probability of exposing the
bugs to dynamic detection tools would be greatly increased, given
a randomly generated test suit. Take Print_tokens2 version10 (Fig-
ure 1) as an example. The original bug triggering input file should
contain a token that starts with quotation mark and does not have a
second quotation mark. In contrast, the input we use does not have
any constraint on the the starting character of the tokens in the file.

Additionally, we also evaluated the effectiveness of PathEx-
pander with multiple different test cases based on the cumulative
coverage increase. In particular, the Siemens benchmark suite pro-
vides many test cases for each benchmark and we randomly choose
50 cases for each application. For the SPEC benchmarks, we use
inputs provided in SPEC. For bc, we have used a production-rule
based test case generation technique to generate a large number of
random test inputs, in addition to those provided by the bc package.

In our experiments, the threshold MaxNTPathLength is 100 in-
structions for the four small Siemens benchmarks and 1000 instruc-
tions for the other large open-source applications and SPEC bench-
marks. If we use 1000 for the Siemens benchmarks, almost all NT-
Paths will have reached the end of the program before finishing
1000. The NTPathCounterThreshold is set to 5, and the MaxNum-
NTPaths for CMP-option is 32. All results are obtained using this
default setup unless otherwise mentioned in Section 7.6, where we
study the effects of these parameters.



We should note that, PathExpander is designed to improve path
coverage. However, since path coverage percentage is hard and of-
ten impossible to measure (the total number of possible paths in a
program is usually unlimited due to loops and recursive functions),
we use branch coverage as the metric in our evaluation. Branch cov-
erage is subsumed by path coverage, so our results may not show
the full strength of PathExpander in increasing path coverage.

6.4. Software PathExpander Experiment Settings

In order to study the tradeoff between PathExpander hardware
design and software implementation, we also run the software
PathExpander on the same set of applications described earlier and
compare the performance with our hardware design. The software
PathExpander experiments are conducted on x86 machine with 2.4
GHz Pentium 4 processor, IMB L2 cache and 1GB of memory.

7. Experimental Results

Dynamic | Application | #Bug #Bug Detected

Tools Tested | Baseline | PathExpander

099.g0 2 0 1

Software | bc-1.06 2 0 1

Tool man-1.5h1 1 0 1

(CCured) | P_t2(v10) 1 0 1

099.go 2 0 1

Hardware | bc-1.06 2 0 1

Tool man-1.5h1 1 0 1

(iWatcher) | P_t2(v10) 1 0 1

P_t 7 0 5

Assertions | P_t2 10 0 6

Schedule 8 0 3

Schedule2 8 0 4

Table 4. Bug detection results of PathExpander (Baseline
means no PathExpander; P_t, P_t2 stand for Print_tokens and
Print_tokens2.)

This section first shows the PathExpander’s results in bug detec-
tion, false positives before and after consistency fix, and path cover-
age improvement with single and multiple inputs. All these results
of different PathExpander implementation (i.e. software or hard-
ware) are similar. We present the overhead results for the standard
configuration and the CMP-optimization option; compare the trade-
off between the hardware and software implementations of PathEx-
pander. Finally, we evaluate the effects of parameters setting.

7.1. Bug Detection Results

Benefits: As shown in Table 4, using common inputs that do not ex-
pose the tested bugs, the baseline case (without PathExpander) fails
to detect any bug due to their path coverage limitation. However,
with PathExpander, these methods can detect 21 of the 38 tested
bugs using the same non-bug-triggering inputs used in the baseline
case. For example, in the Print_tokens benchmark, PathExpander
enables assertions to detect 5 out of 7 tested bugs. In the real ap-
plication be-1.06, PathExpander also helps CCured and iWatcher to
detect one of the two tested bugs. Since the inputs used in our ex-
periments are common and originally non-bug-triggering, the prob-
ability of exposing bugs to dynamic detection tools using random

test generator is significantly improved by PathExpander. It saves
programmers effort to design and generate special inputs to detect
bugs in those uncovered paths.

Limitations: However, PathExpander is definitely not a panacea.
PathExpander fails to help the tested dynamic bug detection tools
detect 17 of the 38 tested bugs. The main causes and solutions to
address each corresponding problem can be summarized as follows:
(1) Some bugs such as the ones in Schedule version 1 and 3 cannot
be detected by assertions with the help of PathExpander because
they are limited by the value coverage problem instead of the path
coverage problem. To address it would require a value-coverage re-
lated solution like the one by Austin et al [18]. (2) Some bug such as
the one used in bc-1.06 is limited by the path-coverage problem, but
the entry branch edge has been intensively exercised before the bug
triggered. Therefore PathExpander would not explore it as an NT-
Path. As a result, CCured and iWatcher still fail to detect the bug
even with PathExpander. However, this problem can be addressed
by adding random factor into PathExpander’s NT-Path selection.
(3) Some bugs such as the one in Print_tokens2 version 3 escape
the detection due to the inconsistency problem introduced by the
NT-Path execution. Addressing this issue needs more sophisticated
consistency fixing techniques described in Section 4.4. (4) Some
bugs such as the ones in Print_tokens2 version 6 and go can be de-
tected by PathExpander if some special non-bug-triggering input is
used. Since this input is as uncommon as the bug-triggering one,
we do not count them as “being helped” by PathExpander.

7.2. Effects of Consistency Fixing

Table 5 shows the number of false positives and the bugs de-
tected due to PathExpander, before and after consistency fixing with
CCured and iWatcher. As false positives/negatives with the asser-
tion method depend on how and where assertions are inserted, the
results can be very subjective and not very meaningful. Therefore,
we do not report the results with assertion.

Bug #False #Bug
Detection [Application Positives Detected
Method Before | After | Before | After
099.go 83 20 1 1
Software | bc-1.06 10 7 1 1
Tool man-1.5hl 7 0 0 1
(CCured) | P_t2(v10) 4 1 1 1
099.go 2 2 1 1
Hardware| bc-1.06 3 2 1 1
Tool |man-1.5h1 0 0 0 1
(iWatcher)| P_t2(v10) 0 0 1 1
Average 13 4 0.75 1

Table 5. False-positive pruning by key variable value fix (False
positive results include only those caused by PathExpander, not
those caused by the dynamic checker itself; P_t2 stands for
Print_tokens2.)

Our results show that our consistency fixing techniques are ef-
fective in pruning false positives and detecting more bugs. Fixing
key variables can help detect the bug in man and reduce the number
of false positives from an average of 13 to only 4. Consistency fix-
ing can help detect more bugs because some bugs in NT-Paths have



data dependencies on the branch condition variables and the incon-
sistency problem can interfere with the detection of these bugs.

However, some false positives still remain. For example, go’s
remaining 20 false positives are caused by its intensive array oper-
ations and complicated variable correlations. These false positives
can be further pruned by some extensions such as skipping initial-
ization phases, more sophisticated consistency fixing, etc, which
remain as our future work.

7.3. Coverage Improvement
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Figure 7. PathExpander’s improvement on branch coverage
(Baseline means no PathExpander.)

The main reason for the capability of PathExpander in helping
detecting bugs with non-bug-triggering inputs is that PathExpander
extends the detection coverage to include non-taken paths in the
monitored run. Here, we show the quantitative measurement result
of the coverage increase by PathExpander. Of course, the coverage
results would better be interpreted slightly different from those in
software testing, because there exists some variable inconsistency.
We only use these results for illustration purposes.

As shown in Figure 7, PathExpander improves the branch cover-
age of the baseline by 35-100%. For example, in Print_tokens, the
original monitored execution only exercises 48.3% branch edges of
the whole program. With PathExpander, this percentage increases
to 92.2%. Therefore, bugs on the 43.9% additional branch edges
that are not taken in the monitored run can be detected by the under-
lying bug-detection methods. On average, PathExpander increases
branch coverage from 39.8% to 65.0%.

To understand more on PathExpander’s effects on code coverage
improvement, we also conduct an evaluation using multiple differ-
ent test cases.
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Figure 8. Cumulative branch coverage with multiple test cases

Figure 8 (a) gives the evaluation result with Print_tokens, a
Siemens benchmark. The 50 inputs used here are randomly picked
from the input pool provided by the Siemens benchmark. As we can
see, after 50 inputs, Print_tokens’ branch coverage becomes stable

at around 80% in the baseline. As explained in Section 2, usually
the last 5-20% branch edges are prohibitively hard to cover [33],
but, fortunately, PathExpander can help to push bug detection into
these remaining edges to achieve almost 100% coverage as shown
in the figure. The results for other Siemens benchmarks are similar.
Their result figures can be found in our technical report [21].
Testing in larger real world software is more difficult. Fig-
ure 8(b) shows such an example of bc, a moderate sized open source
application. We use a production-rule based test generator to gen-
erate many random test inputs (the first 25 cases in the figure) in
addition to the inputs provided by the bc programmers in the bc
package. The final cumulative branch coverage without PathEx-
pander is around 55%, and PathExpander improves that to 75.4%.

7.4. Hardware PathExpander Overhead

In order to measure the execution performance, we use 3 SPEC
benchmarks and 3 real applications (bc, man, go). We do not use
the Siemens benchmarks here because they are too small to show
meaningful performance results. As shown in Figure 9, with the
standard configuration, PathExpander imposes an average of 50.4%
overhead for tested applications. The overhead with the SPEC
benchmarks are relatively small, only 4.5-23.2%, because they have
lower NT-Paths spawning frequency than the open-source real ap-
plications (Table 6). With the CMP optimization, PathExpander’s
overhead is significantly minimized to only less than 10% for all
applications. The main reason for such a low overhead is that the
NT-Paths are executed on idle cores concurrently with taken paths.

Our results show that hardware PathExpander is definitely a
more efficient and cheaper way to improve the dynamic bug de-
tection coverage than conventional methods, which usually require
significantly more runs with different inputs. Taking application
bc as example, with only 64.3% overhead (9.9% with CMP opti-
mization), PathExpander explores 623 new paths and increases the
branch coverage by 76%. Similar improvement may need 623 dif-
ferent runs with dedicatedly generated test inputs, which means 623
times overhead excluding the test generation overhead.

#Spawns| Avg. NT- |#Predicated L1 Miss (%)

per MlIns|Ins per MIns|Ins per MIns|Baseline|PathExpander| CMP-Opt
164.gzip | 6.0 59K 106K | 5.52 6.39 5.55
175.vpr | 9.3 9K 103K | 3.64 3.66 3.66
195.parser| 23.1 22K 136K | 1.96 2.02 1.97
099.go |364.3| 375K 75K | 2.32 4.43 2.35
bc-1.06 | 669.3| 372K 45K | 0.39 3.63 0.46
man-1.5h1| 821.9 | 688K 41K 1.47 4.03 1.53

Table 6. PathExpander detailed performance results (MIns de-
notes one million instructions counting both NT-Path and taken-
path instructions. By default, PathExpander means our standard
configuration unless specified by CMP-Opt.)

Table 6 shows the detailed performance results with the hard-
ware PathExpander. The overhead of the standard PathExpander
comes from three main sources: NT-Path spawning and termina-
tion; NT-Path execution; and slightly higher cache miss rate. As
for the CMP option, the optimization effects vary. On one hand,
it hides N'T-Path execution overhead by parallelism. Therefore, for
applications such as gzip, bc, man and go, CMP-optimization suc-
cessfully decreases their overhead from 23.2%-142.3% to less than
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9.9%. On the other hand, it also introduces extra overhead, such
as worse cache performance due to cache versioning, extra register
copy between different cores, etc. If the original sequential over-
head is small, these extra overheads may not be totally hidden by
the parallelism benefit. That is why for parser and vpr, the opti-
mization effect is less pronounced and even negative.

7.5. Comparison between PathExpander Hardware
and Software Implementations

Figure 10 shows the performance of PathExpander’s software
implementation on the same set of applications and workloads. As
we can see, the slow down ranges from 373 times to 2511 times,
and is 1240.7 times on average. Among different applications, the
performance distribution shares the similar trend as that in our pre-
vious hardware PathExpander experiments.

The large overhead comes from almost every modules of
software-PathExpander: 1) NT-Path spawning needs software
checkpointing, which is very expensive and contributes a big part
to the large slow down; 2) logging-based sandboxing and rollback
introduce a lot of extra memory writes; 3) instrumentation-based
branch exercise history maintenance adds extra overhead to the ex-
ecution of taken-path.

Comparing the PathExpander hardware and software implemen-
tations, they differ with each other on the hardware cost and big
performance gap. Our hardware implementations incur 3—4 or-
ders of magnitude smaller overhead than the software implemen-
tation, which means significant reduction in the programmers’ de-
bugging time! Such gain is achieved via simple hardware exten-
sions including the hardware checkpointing and sandboxing which
are already available in the emerging transaction memory architec-
ture [2, 11, 32], and a simple extension to the BTB to add two ex-
ercise counters per entry. More importantly, the hardware imple-
mentation also provides an interesting and promising opportunity
to exploit idle cores on multicore architectures to enhance software
quality. All these reasons validate that hardware PathExpander is
definitely worthwhile for exploration.

As for the software-PathExpander, though much slower than its
hardware counterpart, it still provides a useful option to increase
coverage of dynamic bug detection on existing machines to detect
bugs on those paths that are difficult to generate test cases to cover.

7.6. Effects of Parameters

We also evaluate the performance effects of the two parameters,
namely MaxNTPathLength and MaxNumNTPaths. The result fig-
ures can be found in our technical report [21]. Our results show
that, with the increase of these two parameters, overhead increases
gradually in the standard configuration, but only slightly in CMP
optimization, because the latter can hide the extra NT-Path spawn-
ing and exploration by parallel execution. The CMP optimization
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Figure 10. PathExpander software implementation overhead
(The overhead of PIN dynamic code rewriting is NOT included.)

provides PathExpander good potential to conduct more intensive
NT-Path exploration, hence more help to dynamic bug detection.

8. Related Work

Our work builds upon many previous studies. Due to space limi-
tation, we briefly describe closely related work that is not discussed
in earlier sections.

Multipath Branch Execution Several previous studies [1, 3, 15,
17, 36] have used the technique of running both paths of a branch
to reduce the branch mis-prediction penalty, and some of them also
explore spare contexts in a SMT to reduce overhead. We execute
non-taken paths to increase the coverage of software bug detection.
Therefore, we need to address different issues: (1) Our NT-Paths
need to run much longer because we want to detect bugs. In con-
trast, the multipath architectures need to run multiple branch edges
only until the branch is resolved. Therefore, PathExpander needs
to buffer many more side effects than the above works. (2) PathEx-
pander needs to keep track of exercise count of every branch edges
in order to select NT-Paths to avoid incurring large overhead. (3)
Our NT-Paths are spawned after a branch is resolved, whereas mul-
tipaths are executed before a branch is resolved. (4) PathExpander
needs to address the state inconsistency problem because it may in-
troduce false positives and negatives in bug detection.

Value Coverage Problem A recent work conducted by Larson and
Austin addressed a closely related, complementary, but different
coverage problem called value coverage (value ranges of variables)
for detecting buffer or string overflows [18]. This work increases
the value coverage for detecting buffer overruns by shadowing each
input value with an interval constraint variable. At potentially dan-
gerous uses of inputs, such as array references, the entire range of
an input value is validated using the computed interval constraint.
This way, even if the user-specified input value does not directly
expose the bug, the dynamic buffer overrun monitoring system can
still detect it. Since it is a software-only solution, it slows down
applications by 13-220 times. This work is very useful in increas-
ing the value coverage for buffer overflow detection, but does not
address the path coverage problem. In contrast, our work exactly
addresses this path coverage problem and therefore well comple-
ments theirs.

Dynamic Bug Detection and Debugging Many tools have been
proposed for dynamic execution monitoring. Well-known examples
include Purify [14], Valgrind [28], CCured [27] and others [4, 20].
PathExpander would benefit almost all such tools by increasing
their path coverage in each monitored run.

Delta debugging[39] changes variable values on-the-fly to force
the control flow to different paths in order to find a correct exe-
cution that is very similar to a known wrong one for postmortem



bug diagnoses. PathExpander also forces control flow down differ-
ent paths, but for a very different goal: increasing the coverage for
dynamic bug detection tools. As such, PathExpander needs to ad-
dress very different design issues such as how to sandbox the side-
effects of non-taken paths, how to select which non-taken paths to
explore, etc. In addition, PathExpander leverages hardware support
and thereby is much more efficient.

Recently, many researchers have shown the effectiveness of ar-
chitectural support for software debugging. Just to name a few,
ReEnact [31], Flight Data Recorder [38], BugNet [26], and many
others [35, 41] are examples of architectural innovations to improve
software robustness. None of them addresses the path coverage
problem of commonly-used dynamic bug detection methods, and
PathExpander can benefit them in detecting bugs in non-taken paths
during each single monitored run.

Model Checking and Static Analysis Model checking [25] is also
related to our work because it explores multiple paths to verify cer-
tain properties such as deadlock or data-race free. But model check-
ing is usually done statically and is mostly based on specification or
program annotation, whereas PathExpander is a dynamic approach
and requires no specification or annotation.

9. Conclusions

This paper addresses the fundamental problem of path cov-
erage for commonly-used dynamic bug detection tools. Specifi-
cally, we have proposed an innovative, automatic, general and low-
overhead approach, called PathExpander, which dynamically in-
creases the path coverage of dynamic bug detection and thus re-
duces the amount of efforts required for software engineers to de-
sign and implement test cases to cover these extra paths in testing.
We have also presented two implementations of PathExpander, one
with simple hardware extensions and the other purely in software.

Our experiments with seven buggy programs and three different
dynamic bug detection methods using general inputs that do not ex-
pose the tested bugs show that PathExpander is able to help these
tools detect 21 out of 38 tested bugs that would otherwise be missed.
This is because PathExpander increases the branch coverage of the
monitored execution from 40% to 65% on average. In addition, it
incurs few (4 on average) false positives with simple consistency
fixes. Our results also show that the hardware PathExpander im-
poses small overhead (less than 9.9% with CMP option), 3—4 orders
of magnitude lower than the pure-software implementation.

We believe that our work provides a fundamentally different
way to address the path coverage problem in dynamic bug detection
and thereby well compliments other research work in bug detection
and software testing. In addition, our work also provides a strong
demonstration case of leveraging hardware, particularly the multi-
core architecture and the sandbox/rollback functionality available
in the emerging transaction memory architecture, for software en-
gineer tasks. As hardware vendors are searching for innovations to
enrich the microprocessor capability in areas in addition to perfor-
mance, our work provides one of the first studies on improving the
efficiency of general software testing, a challenging and important
research problem that is attracting much attention, and thereby will
likely inspire many follow-up works in this promising direction.
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