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ABSTRACT

Ajax becomes more and more important for web applications
that care about client side user experience. It allows send-
ing requests asynchronously, without blocking clients from
continuing execution. Callback functions are only executed
upon receiving the responses. While such mechanism makes
browsing a smooth experience, it may cause severe prob-
lems in the presence of unexpected network latency, due to
the non-determinism of asynchronism. In this paper, we
demonstrate the possible problems caused by the asynchro-
nism and propose a static program analysis to automatically
detect such bugs in web applications. As client side Ajax
code is often wrapped in server-side scripts, we also develop
a technique that extracts client-side JavaScript code from
server-side scripts. We evaluate our technique on a number
of real-world web applications. Our results show that it can
effectively identify real bugs. We also discuss possible ways
to avoid such bugs.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids; D.3.4 [Programming Languages]: Pro-
cessors—Debuggers

General Terms

Algorithms, Reliability, Experimentation

Keywords

JavaScript, Ajax, Static Analysis, Automatic Debugging

1. INTRODUCTION
JavaScript (JS) is becoming more and more important as

web applications are providing more and more complex func-
tionalities on the client side. In Web 1.0, browsers simply
render pages received from servers so that little JavaScript
is needed. With the concept of using browsers as the reg-
ular computation platform, complex computations and in-
teractions with the server side are becoming a trend. Con-
sequently, JS starts to play a substantial role in Web 2.0
applications. In the early stage of Web 2.0, an annoying
problem is that whole-page reloads are required during the
client server communications and end-clients are not allowed
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1 var req = new XMLHttpRequest();
2 req.open(‘GET’, ‘login.php?name=’+ username, true);
3 req.onreadystatechange = function () {
4 if(req.readyState == 4) {

// do something
}

};
5 req.send(null);

Figure 1: Ajax Request and Response Handler.

to perform any actions at the meantime. Such experience
degrades users’ satisfaction.

To address such problems, the Asynchronous JavaScript
and XML (Ajax) technique is introduced. Ajax allows send-
ing requests asynchronously, without blocking the current
browsing. Upon receiving data from the server, callback
functions are invoked to process the response in background.
Since then, more and more complex and interactive web ap-
plications are powered by Ajax, such as Gmail or Google
Maps, inspired by the smooth browsing experience.

A typical Ajax request and its response handler are shown
in Fig. 1. It constructs a GET request to a server side page
login.php with an argument name. The third parameter of
method req.open() at line 2 is true, meaning the request is
sent asynchronously. Then at line 3, an anonymous function
is registered as the handler to event onreadystatechange. At-
tribute readyState holds the status of the request and ranges
from 0 to 4 to indicate communication stages. When the
status changes, the event handler will be invoked.

JS execution is sequential and event driven. Events such
as user interactions and server side responses are queued
and handled one by one. However, asynchronous requests
allow arbitrary user actions, such as exercising interfaces
and sending new requests, happen between a request and
the corresponding response. Depending on the order of the
user actions and the response, non-deterministic behavior
may be observed. Some may lead to serious problems.

Fig. 2 presents execution models with and without asyn-
chronous requests and the possible problems. It describes
the interactions of three entities: the user, the browser, and
the server. Each box represents an action. A user can per-

form an action (denoted as A ), such as clicking a link or
pressing a button, or seeing the outcome of a previous action

(denoted as V ). The browser can send a request ( R ) or

process the response from the server ( P ). The server can

serve a request ( X ). An arrow between two boxes repre-
sents they have happens-before relationship. Actions that
are atomic are circled.

(a) In the first case, requests are sent synchronously. In
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Figure 2: User, browser, and server interactions and
possible problems.

such a scenario, once the user triggers a request, the
browser starts to refresh. The user can not take any
further actions until the request is served, processed,
and visualized. In other words, there is atomicity be-
tween what the user triggers and what she sees. Such
atomicity is ensured by the atomicity of the request
and its response at the browser level. In this execu-
tion model, user actions are processed one after the
other. There is no out-of-order execution and hence
no non-determinism.

(b) The remaining three cases correspond to asynchronous
requests. With asynchronous requests, there is no longer
atomicity between a request and its corresponding re-
sponse. Consequently, the user level atomicity is not
promised. The arbitrary interleavings of actions lead
to various problems.

Fig. 2 (b) presents the buggy case of “what you op-
erate on is not what you see”. We use subscripts to

represent the origin of actions. For instance, R2 is

the request send originating from the user action A2 .

In case (b), the user can perform an action A2 be-

fore she sees the outcome of the previous action A1

due to the client-server latency and nature of Ajax.

When the user performs A2 , she thinks she is oper-
ating on the data that she sees, which is still the data

when A1 happens. However, note that JS execution
is facilitated by an event queue that admits events in
their arrival order. Assume from the perspective of the

browser, A2 arrives after X1 . Hence, R2 happens

after P1 . If P1 updates some data that is used by

R2 , R2 is indeed operating on the new data instead
of what the user sees. The inconsistent data may be
used to compose the request so that the inconsistency
gets propagated permanently to the server side. We
called it the inconsistency problem.

For instance, the user clicks a button to delete an im-
age that she sees. But when the request is composed
and sent, the image to be deleted is undesirably up-
dated. As a result, a wrong image is deleted on the
server side. Note that such damage is unrevokable.
We will see a real example in Section 2.

(c) In case (c), request R2 happens before response P1 .

The atomicity of R1 and P1 may be broken by R2

if they operate on the same data. This may lead to
runtime exceptions. For example, assume an object is

tested to be not null in R1 . As JS execution is largely
sequential, programmers often mistakenly assume that

the object remains not null till it is used in P1 to ac-

cess its attributes. However, an interleaving R2 may

set the object to null and lead to an exception in P1 .
Exceptions can lead to strange browser behavior if not
properly captured. We call it the atomicity violation
problem.

(d) In case (d), whereas user action A1 happens before

A2 , their outcomes V1 and V2 are visualized in
the opposite order. Assume these two actions are per-
formed on the same object. When the user performs

an action A3 according to what she sees, she might
get confused and think that she is operating on the

result of A1 . We call it the user confusion problem.
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Figure 3: System Overview

In this paper, we develop a static program analysis to
detect the inconsistency and atomicity violation problems.
The analysis is directly applicable to web applications with-
out the need of installing them on a server or using a browser
to explore pages. In particular, our technique takes a web
application and automatically extracts client side pages by
exploring the relevant paths of the server side code. For
each extracted client side page, the non-JS content (such as
the html part) is filtered out. We finally perform program



analysis on the remaining JS code and report faults. Fig. 3
gives an overview of the system.

We observe that the inconsistency problem can be formu-
lated as a special data race problem in JS code. It involves
a response handler and a function that modifies permanent
state, such as a request sender that modifies server content
or a JS method that changes cookies. We call them the side-
effect function. In other words, depending on the order of
the handler and the side-effect function, undesirable modi-
fications may be made to the permanent state. Traditional
data race detection techniques assume multiple threads or
processes, and rely on reasoning about synchronizations and
shared variables [7, 19, 16]. In our case, JS execution is es-
sentially single-threaded and there are no synchronizations.

The atomicity violation problem defined in case (c) is sim-
ilar to that for regular programs. Our problem is unique in
the sense that we don’t have synchronizations to leverage.
Furthermore, traditional atomicity violation detection relies
on users to provide an approximation of atomic regions in
subject programs [9]. In our case, such information can be
precisely derived from JS code as we know where the atom-
icity should hold. That is the duration between a request
and its response. Thus, our technique is fully automated.

Our JS analysis identifies all the handlers that process
server responses for asynchronous requests, and all the event
handlers that handle user actions. The executions of these
handlers (and the functions that they call) can arbitrarily
interleave. We then analyze the global variables that can
be accessed in these handlers. Race and atomicity violation
detections are performed on the handlers that can interleave
and operate on the same variables.

Note that the problems we are addressing can not be han-
dled by existing web application testing tools. There are
two kinds of client side testing techniques. The first kind
is record-and-replay, such as Seleninum, WebKing and Sahi.
For most of these tools, at the beginning, testers need to
manually exercise input controls on client GUI. The user ac-
tions are recorded and replayed. Replay could be faithful or
more intelligent with automatic manipulations. Such tech-
niques require lots of manual efforts. The other kind of tech-
niques is to automatically discover user interfaces and exer-
cise them to reduce the human efforts, such as ATUSA [14].
In general, these testing techniques focus on achieving high
coverage on the user action sequences. They hardly serve
our purpose as our problems are due to non-determinism.
Even with the same action sequence, a bug may or may not
manifest itself, depending on the interleaving.

Our contributions are summarized as follows.

• We formally model the possible problems in the pres-
ence of asynchronous requests for web applications.
We show that they can be formulated as special cases
of data race and atomicity violation problems.

• We propose static program analysis for JS code to de-
tect the problems. The analysis is automatic. It is
interprocedural, handles aliases, and supports various
popular third-party libraries.

• We develop an approach to extract JS code from server
side scripts. It avoids deploying and executing the sub-
ject web application. The technique takes a server side
script, rewrites it to a C program. During rewriting,
we replace predicates in the script with calls to our
functions. Our technique then automatically executes

@ admin/inc/admin.js

003 var thumbArray;

227 function populateThumbArray(id, name){

229 var request = initializeXMLHttpRequest();
...

233 thumbArray = Array();
235 if(request){
236 request.open(‘GET’,

‘../ajallerix.php?action=3&catid=’ + id,
true);

// Register an Ajax response handler
237 request.onreadystatechange = function(){
238 if(request.readyState==4){

239 var todo = request.responseText.split(‘:’);
241 for(x=0; x < todo.length - 1 ; x++){

...
248 thumbArray[x] = ...;

249 }
250 showThumbs(name); // render received images
251 }

252 }
253 request.send(null);

254 }
255 }

552 function doDelete(id){
...

555 var request = initializeXMLHttpRequest();
556 if(request){

557 url = ‘admin.php?...&imgname=’ + thumbArray[id].name;
558 request.open(‘GET’, url, true); // Exception!
559 request.onreadystatechange = function(){ ... };

...
563 request.send(null);

564 }
566 }

568 function showThumbs(name) {
581 for(i = 0; i < thumbArray.length ; i++){

664 myDeleteDC.innerHTML += ‘<input type="button" onclick="’
+ ‘doDelete(\‘’+ i ‘\’);">’

+ ...;
}

681 }

Figure 4: Code snippet from Ajallerix[4]

the transformed program. During execution, our func-
tions gain control at each predicate point and guide the
execution to go through relevant paths. Consequently,
various client side pages are generated.

• We evaluate our technique on a set of real world web
applications. Our technique can find a number of real
bugs on these applications with reasonable cost.

2. MOTIVATING EXAMPLE
We use bugs in Ajallerix [4] to motivate our technique.

Ajallerix is a web image gallery. A user can be either a guest
or an administrator. The administrator can upload, modify
and organize images. The guest can view published images.
Images are classified into groups and can be presented in
different styles, such as full screen and slide-show.

Ajax is used to make browsing smooth. For example,
when presenting images in slide-show, images are automat-
ically loaded one by one. The functionality is implemented
by asynchronously sending requests to fetch images period-
ically and rendering them when the responses arrive.

Fig. 4 shows the relevant code snippet. Function pop-
ulateThumbArray() is an onclick event handler. It will be
invoked when a category link is clicked. Function doDelete()
is associated with the onclick event to delete an image.

In function popluateThumbArray(), an Ajax object is cre-
ated at line 229. The Ajax request is set as ‘GET ’ and
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Figure 5: Buggy Behavior Example. Bugs are man-
ifested at the highlighted places.

sent to ajallerix.php with two arguments action and catid,
which tells the server to send images with group id catid.
At line 237, an anonymous function is registered as an Ajax
response handler.

Note that the global variable thumbArray has two defi-
nition points (lines 233 and 248) and gets used in url at
line 557. In particular, thumbArray will be initialized to an
empty array immediately when function populateThumbAr-
ray() is invoked. It is set to the values returned from the
server side in the response handler. The code has both an
inconsistency bug and an atomicity violation that leads to
runtime exceptions.
Inconsistency. With the inconsistency bug, the user may
delete a wrong image on server. The bug inducing inter-
action sequence is shown in Fig. 5 (a). At first, images of
group G1 are shown on the current page. The user requests

to show images of G2 in action A1 . While waiting for the

display of the images, the user issues another request A2

to delete an image that she sees, which is an image of G1.

Assume the response X1 arrives before A2 . The JS en-
gine queues the events in their arrival order. Later, the re-

sponse handler P1 at line 237 is executed before the delete

request is sent in doDelete() R2 . Note, at line 557 in-

side doDelete(), the delete request is composed by thumbAr-
ray[id].name such that the request sent will use the name
of an image belonging to G2 because thumbArray is rede-
fined in the preceding response handler. The server is state-
less and will process such a request. Undesirably, the user
deletes an image that was not intended. [YZ] Please note
the bug is not caused by the delay between client
internal status update and UI repaint. Instead, it
is caused by the delay between response arrival and
internal status update if JS engine is occupied when
response arrives.

Exception Caused by Atomicity Violation. In another

scenario (Fig. 5 (b)), the delete request is processed ( R2 )

before the response of the earlier request is handled ( P1 ).

Variable thumbArray is set to empty at line 233 in R1 ,

but gets used at line 557 in R2 . A runtime out-of-bound
exception is generated. The root cause is that the empty
array is not supposed to be visible to other methods before
it is properly defined at line 248 according to the response.
It is an atomicity violation. The bug occurs when the server
has a heavy workload or the network is busy so that there is
non-trivial delay on receiving the response. If the exception
is not properly handled, strange browser behavior can be
observed. In this case, we observed FireFox invokes the edit
window while the user clicks the delete button. Besides,
other controls become responseless.

3. JAVASCRIPT STATIC ANALYSIS
In this section, we introduce the JS static analysis that

detects the inconsistency and the atomicity violation prob-
lems. Previously, these problems are illustrated as the in-
terleavings of actions at the user, browser and server levels
as in Fig. 2. Due to the difficulty of co-analysis on the three
levels, we aim to detect them only from the perspective of
the browser.

Projected to the view of browser, the inconsistency prob-
lem is essentially a data race problem between write accesses
in the response handler and reads in event handlers that re-

act to user actions (such as the write in P1 and the read

in R2 in Fig. 5 (a)). In other words, the user may take
some action based on what she sees, but the racy condition
determines that the action is not processed until the data
seen by the user is undesirable updated by a response, caus-
ing inconsistency. Note that JS execution is event driven.
Due to the uncertainty of the arrival time of a response, a
response handler can interleave with any user event handler
in an arbitrary order. Therefore, the essence of the analysis
for the inconsistency problem is to check if a piece of JS
code has an asynchronous response handler that writes to a
global variable and a user event handler that reads the same
global variable. In this paper, we particularly focus on reads
(in a user event handler) that can cause permanent damage
such as data lost on the server side or change of cookie state
on the client side. Specifically, we consider user event han-
dlers that send requests to the server and the requests are
composed of the global variable in a racy condition. We also
consider handlers that update cookies based on the variable.

The atomicity violation problem is caused by the intended

atomicity between a request (e.g. R1 in Fig. 5) and the cor-

responding response ( P1 ) being violated by the interleaving

of non-seriablizae accesses from other event handlers ( R2 ).
Note that the three parties involved: the request, the cor-
responding response, and the violating event handler, must
access the same variable. Otherwise, although there are user
event handlers execute in between a request and the corre-
sponding response, the interleavings do not have any effect.
In other words, the interleaved execution is equivalent to
one without any interleavings. A more thorough analysis
is presented in Table 1, which shows some of the possible
access patterns in the three parties. Case one corresponds
to the request does not access the variable, the interleav-
ing handler reads it, and the response reads it too. This



Table 1: Assume event handler s executes in be-
tween a request r and its response. Different access
patterns in the three parties may or may not lead to
atomicity violations. R and W mean read and write
to the same variable.
case request interleaving event response serializable

r handler s to r

1 R R yes
2 R W yes
3 W W yes
4 R W W no
5 R R W yes
6 W W W yes
7 W R W no
8 W W R no
... ...

1 var seed, prefix;

2 function bar(b1, b2) {
3 var myId = b1;
4 var req = new XMLHttpRequest();

5 req.open(‘GET’, ‘login.php?id=’+ myId, true);
6 req.onreadystatechange = function () {

7 if(req.readyState == 4) { prefix = req.responseBody; }
8 };
9 req.send(null);

10 }
11

12 function foo(f1, f2, f3) {
13 var temp = prefix + f3;

14 bar(temp, f1);
15 }

Figure 6: Inter-procedure analysis example

interleaving is serializable as it is equivalent to the request
and the corresponding response execute atomically first and
then the handler s. Case 2 can be serialized to s first and
then the atomic execution of r and its response. Case 5 can
be serialized to the same order. In comparison, patterns 4,
7, and 8 are not serializable. Although case 8 is not serial-
izable, in our context, it is unlikely that a request writes to
a variable and the corresponding respone reads it. Because
a response handler is mostly to process the retrieved data
and update the client side variables. Hence, our analysis
essentially searches for patterns 4 and 7.

In the following, we describe our analysis for the inconsis-
tency problem in details. The analysis is interprocedural. It
assumes call graphs and points-to set 1. For each variable x

in the program our analysis computes the set of global vari-
ables that x is directly or transitively dependent on. In other
words, the value of x may be affected by the values of those
global variables. We further compute the global variables
that are defined by each function, including response han-
dlers. A consistency problem is found if there is a request
or a cookie update using a variable dependent on a global
variable, and the same global variable is in the definition set
of a response handler.

Take the code in Fig. 6 as an example, in which function
foo() calls function bar() at line 14. The global variable
dependence set of myId at line 3 is {prefix}. This is because
temp is computed from prefix at line 13, then used as a
parameter at line 14 to call foo(). Hence, we know that the
request at line 5 is composed of the global variable prefix.
Due to the definition at line 7, the global variable definition
set of the anonymous handler function is {prefix}. According
to our buggy pattern, it is an inconsistency problem.

1The infrastructure WALA we used is able to generate call
graphs and perform points-to analysis for JS code.

We describe our analysis formally in the datalog language [5].
Datalog uses a Prolog-like notation for relation computation.
It provides a neat representation for program analysis, es-
pecially flow analysis. Data flow facts can be formulated as
relations. Analysis is represented as inference rules on these
relations.

Relations are in the form p(X1, X2, ..., Xn) with p being a
predicate. X1, X2, ..., Xn are terms of variables or constants.
In our context, variables are essentially program artifacts
such as statements, program variables and function calls. A
predicate is a declarative statement on the variables. For
example, path(L1, L2) denotes if there are paths from state-
ment L1 to L2. If so, we say the pair L1 and L2 is in the
path relation.

Rules are a way of expressing logic inferences. The form
of a rule is

H :- B1 & B2 & ... & Bn

H and B1, B2,...Bn are either relations or negated rela-
tions. We should read the :- symbol as“if”. The meaning of a
rule is if B1, B2,...Bn are true thenH is true. A sample infer-
ence rule is that path(L1, L3) : − path(L1, L2)&path(L2, L3).

Relations can be either inferred or atoms. In program
analysis, we often start with a set of atoms that are basic
facts and then infer the other more interesting relations.

Our analysis is presented in Fig. 7. We have atoms de-
scribing facts that can be directly acquired from the WALA
infrastructure. For instance, the atom invoke(F,H,L) de-
notes a function F calls function H at call side L. It es-
sentially encodes the call graph of the JS code. One can
intuitively understand that we have a relation with three
attributes. A tuple is present in the relation when the pred-
icate is true.

The def(L,X) and use(L,X) relations describe if a vari-
ableX is defined and used at L, respectively. L is a label that
represents a program point. Relation depOnArgument(L,X
,M,A) determines if variable X defined at L is (transitively)
dependent on the M th formal argument A of the residence
function. The first inference rule for this relation means that
if X is directly defined from A, then the predicate is true.
The second rule says if X is defined from Y , Y is dependent
on a formal argument A, and the definition of Y is reachable
to the definition of X, then X is dependent on A.

Relation depOnGlobal(L,X,G) determines if X defined
at L is (transitively) dependent on a global variable G. The
first two rules are similar to those for depOnArgument. The
third rule describes that if X is dependent on an argument
A and there is a call site to the function that provides an
actual argument dependent on a global variable G, then X

is dependent on G.
Relation defGlobal(F,G) represents the global variable

definition set of a function. It dictates function F defines a
global variable G. It simply aggregates global definitions in
F and those in F ’s children.

Relation inconsistency(L, F,X,G) computes the set of
inconsistency errors in the program. It means the use of
variable X at the request sending point L is (transitively)
dependent on a global variable G and G is defined in a re-
sponse handler F or its children. The first rule handles a
simple case in which the global variable is directly used in
the request. The second rule handles that the request is
transitively dependent on the global variable. The third one
handles that the request is transitively dependent on the
global variable through an argument. Rules for inconsis-



Atoms

invoke(F,H,L) : F calls H at program point L.
inFunction(L,F ) : program point L is in function F .
global(X) : variable X is a global variable
formal(F,M,X) : variable X is the M th formal argument of function F ()
actual(L,M,X) : variable X is the M th actual argument at call site L.
path(L1, L2) : there is an intraprocedural path from L1 to L2.
defFree(X,L1, L2) : X is not defined along a path from L1 and L2.

Rules

def(L,X) : - “L : X = Y ” /*X is defined at program point L */
use(L, Y ) : - “L : X = Y ” /*Y is used at program point L */
def(L,X), use(L, Y ), use(L,Z) : - “L : X = Y op Z”

/*var X defined at L depends on the M th argument of the function.*/
depOnArgument(L,X,M,A) :- def(L,X) & use(L,A) & formal(F,M,A) & inFunction(L,F )
depOnArgument(L,X,M,A) :- def(L,X) & use(L, Y ) & depOnArgument(L1, Y,M,A) & path(L1, L) & defFree(Y,L1, L)

/*var X defined at L depends on global var G.*/
depOnGlobal(L,X,G) : - def(L,X) & use(L,G) & global(G)
depOnGlobal(L,X,G) : - def(L,X) & use(L, Y ) & depOnGlobal(L1, Y,G) & path(L1, L) & defFree(Y,L1, L)
depOnGlobal(L,X,G) :- depOnArgument(L,X, F,M,A) & argDepOnGlobal(F,M,A,G)

/*the M th formal argument of F depends on G.*/
argDepOnGlobal(F,M,A,G) : - formal(F,M,A) & invoke(H,F,L) & actual(L,M, Y ) & depOnGlobal(L, Y,G)

/*global var G is defined in F .*/
defGlobal(F,G) : - def(L,G) & global(G) & inFunction(L,F )
defGlobal(F,G) : - invoke(F,H, L) & defGlobal(H,G)

/*inconsisency exists for global var G in request send L1 and function F .*/
inconsistency(L1, F,G,G) : - usedInRequest(L1, G) & defGlobal(F,G) & ajaxResponseHandler(F )
inconsistency(L1, F,X,G) : - usedInRequest(L1,X) & depOnGlobal(L2, X,G) & path(L2, L1) & defFree(X,L2, L1) &

defGlobal(F,G) & ajaxResponseHandler(F )
inconsistency(L1, F,A,G) : - usedInRequest(L1, A) & inFunction(L1, H) & argDepOnGlobal(H,M,A,G) & defGlobal(F,G) &

ajaxResponseHandler(F )

Native JS
isAjax(X) : - “X = newXMLHttpRequest()” /*X is an ajax object.*/
isAjax(X) : - “X = new ActiveXObject(′′Msxml2.XMLHTTP ′′)”
isAjax(X) : - “L : X = Y ” & isAjax(Y )
usedInRequest(L,X) : - isAjax(R) & “L : G = R.post()” & actual(L, 1, X) /* X is used in a request composed at L*/
usedInRequest(L,X) : - isAjax(R) & “L : G = R.open()” & actual(L, 2,X)
ajaxResponseHandler(F ) : - isAjax(R) & “R.onreadystatechange = F”

Prototype
isAjax(X) : - “X = newAjax.Request()”
isAjax(X) : - “L : X = Y ” & isAjax(Y )
usedInRequest(L,X) : - isAjax(R) & “L : R.url := X”
usedInRequest(L,X) : - isAjax(R) & “L : R.parameters := X”
ajaxResponseHandler(F ) : - isAjax(R) & “R.OnSuccess := F”

jQuery and YUI
Similar to prototype, omitted

Figure 7: Datalog Rules for Detecting Inconsistency Bugs.



<?php
1 switch($_GET[‘action’]) {

2 case 1:
3 ?>
4 <html> ...<script>...</script>... </html>

5 <?php
6 break;

7 case 2:
8 ?>

9 <html> ...<script>...</script>... </html>
10 <?php
11 break;

12 default:
13 die("no action"); break; }

?>

Figure 8: PHP sample code

tency caused by cookie updates are elided for brevity.
The relation usedInRequest(L,X), dictating X be used

in a request sent out at L, and ajaxResponseHandler(F ),
dictating F be a response handler are library dependent.
Most websites make use of third-party JS libraries to provide
rich functionalities and speed up the development proce-
dure. Study in [3] shows that JQuery, Prototype and Yahoo
User Interface are the three most frequently used libraries
for Ajax development. We support all these libraries. Re-
quests and response handlers are in different forms in these
libraries. Hence, we develop different inferences rules as
shown in Fig. 7. Our technique does not analyze the body
of libraries. Instead, we only provide abstraction for the in-
terface functions. Recursions do not impose problems for
datalog inference as a fixed point would be reached at the
end as our analysis is monotonic.

The rules for detecting atomicity violations are omitted
due to the space limitation.

4. HANDLE SERVER-SIDE SCRIPT
In the previous section, we present the analysis on client-

side pages. In many cases, client side pages can be generated
dynamically by server-side script. As a server side script
may have conditional statements, a piece of server code may
generate several different client pages. In order to make our
testing approach practical, we develop a technique to extract
JS from the server code without deploying the application.

4.1 Dynamic generated JavaScript
On the aspect of developer, HTML and JavaScript is em-

bedded in the server-side pages. When server script inside is
evaluated, HTML as well as JavaScript will be printed out
to client. So, it’s possible a server page can generate several
different client pages.

Server side scripts are like normal programs so that they
have conditional statements and loops, which entail different
control flow paths and thus different versions of client side
pages. In the example shown in Fig. 8, the execution path
is dynamically decided by the value of action sent in the
client’s request. Thus, two different pages can be generated.

Several existing techniques are relevant to solving client
side page extraction problem. Minamide’s work [15] ana-
lyzes server scripts and presents the possible client pages
in regular expressions. However, since such regular expres-
sions are not valid JS code, program analysis would not be
directly applicable. Besides, [6] and [11] apply symbolic exe-
cution technique to generate inputs to cover feasible control
flow paths in server side scripts. Thus, the pages generated
by their technique are precise. However, symbolic execution
is usually expensive and may have scalability problems. In

if P then trueBranch → if choice(2) then trueBranch

else falseBranch else falseBranch

switch P { → switch choice(n) {
case c1: ... case 0: ...
case c2: ... case 1: ...
... ...
case cn−1: ... case n-2: ...
default: ... case n-1: ...

while P do LOOP end → if choice(2) then LOOP

Figure 9: PHP Rewriting Rules

our context, the requirement on feasible paths is not as strin-
gent. We can adopt a light-weight approach as long as the
JS code is completely captured and the syntax is correct.

To get client pages, A naive way is to filter out the php
code in a server page. However, it is problematic. For ex-
ample in Fig. 8, simply filtering out the php code results
in the page having two group of <html> labels. Hence,
a constraint is that the control flow should be respected.
Then another thought is to traverse all possible control flow
paths. Although server page is not complex, in large pro-
grams, traversing all paths does not scale.

We leverage the observation that JS are usually embedded
by two means. The first one is to put them in a separate ‘.js’
file and then include the file at run-time. The second one is
directly put in a page outside the range of server script tags,
like <?php?>. From the perspective of the server script, JS
code or JS file location are present as a long constant string
or a constant string with a fixed pattern. Based on such
assumptions, we can ignore paths that do not encounter such
strings. It is rare to load JS from database or to construct
them via string concatenation. Instead, strings dynamically
generated by server-script are usually user data or DOM
objects. They are irrelevant to our analysis.

4.2 PHP Rewriting
Then, the key idea of our client page extraction is to

brute-forcely traverse control flow paths that have JS rel-
evant strings.

We still assume all paths are feasible in a piece of server
script for the sake of static analysis. We blacklist branches
that can not produce JS relevant strings. Then, replace all
predicates in the script with calls to our runtime functions.
Upon execution, our runtime functions steer executions to
cover all the paths that are not blacklisted.

We use the open source PHP compiler[2] for the above
purpose. It allows us to manipulate Abstract Syntax Tree
(AST) to conduct predicate replacement and eventually trans-
lates the script to a stand-alone C code that can be compiled
and executed independently. Each execution explores an un-
blocked path and generates one version of client page.

The rewriting is done on AST. In particular, the technique
traverses the tree to look for two things: constant strings
containing JS as well as predicates on the path to reach
those strings. These predicates are replaced with a function
choice(n), where n denotes the number of choices allowed
in the predicate. For instance, a boolean predicate has two
choices. At runtime, all the choices are explored except those
that can not lead to JS strings.

The rules for rewriting is shown in Fig. 9. Please note loop
is transformed into if because we don’t need repetitive client
side page content to be generated. Instead, one iteration or
no-iterations are the two choices we are interested in.



Let’s look at how the extraction works for the example
shown in Fig. 8. There are two constant strings containing
JS code and they share the same switch predicate. Then
in transformed C program, the two corresponding branches
will be traversed, generating two client side pages.

To handle external functions such as database related func-
tionsmssql connect(). We replace the function with an empty
string based on the assumption that it’s not a common prac-
tice to store JS in databases.

Note that not all generated pages are valid because of
functions such as die() or infeasible control flow paths. Thus,
before feeding the pages to our JS analysis, a HTML syntax
checker is used to filter out invalid pages.

5. EVALUATION
Our system is implemented based on the WALA infras-

tructure[1] and the open source PHP compiler (phc) [2]. The
implementation consists of two parts.

The client page extraction part is implemented as a plug-
in of the phc compiler. The plug-in traverses the AST pro-
vided by the phc parser and replaces the predicates. We
also modify phc’s PHP-to-C translation plug-in to insert our
path manipulation function. Then the transformed C code
is compiled and executed to generate pages.

The JS analysis is implemented on top of WALA. We
leverage WALA’s existing analysis passes to construct call
graphs and control flow graphs. We also make use of WALA’s
points-to analysis.

We apply our technique on a set of real world web appli-
cations and websites. They are listed as follows.

Ajallerix: online image gallery.
http://developer.novell.com/wiki/index.php/Ajallerix

AjaxLogin: secure login plug-in.
http://www.jamesdam.com/ajax login/login.html

XHTML Chat: online chatting plug-in.
http://chat.plasticshore.com/

Ajax File Browser: view, add, edit or delete files.
http://sourceforge.net/projects/ajaxfb/

Tixean chat: web chat based on AJAX.
http://sourceforge.net/projects/tixean-chat/

Phormer: PHP without MySQL PhotoGallery.
http://sourceforge.net/projects/rephormer/

Quizzy: PHP AJAX quiz library.
http://sourceforge.net/projects/quizzy/

Rogozhka chat: Ajax Easy Customizable Web Chat plug-in.
http://sourceforge.net/projects/php-ajax-chat/

All experiments are run on an Intel Dual Core 2.5GHz
machine with 2GB memory. The OS is Linux-2.6.35.

Table 2: Program characteristics.
Program #file total LOC JS LOC *

XHTML Chat 5 706 138
AjaxLogin 2 614 517
Tixean chat 11 2989 596
Rogozhka chat 34 6542 951
Phormer 6 8145 1755
Quizzy 8 5561 5165
Ajallerix 16 10960 3927
Ajax File Browser 204 76024 3776

www.msn.com 1 6378 + 3921
* For compressed JS where line breaks and spaces are
removed, use ”JS Beautifier” to pretty print it.

+ Pretty printing using ”HTML Beautifier” for the
same reason

Table 2 presents the characteristics of the benchmark pro-
grams. Column ‘#file’ is the number of files, including .php,
.inc and .html in the program. The ‘total LOC’ column lists
the total lines of code in the program files. ‘JS LOC’ lists

the total lines of independent JS code. The MSN website
is just the client side web page as we don’t have the access
to the server side scripts. Our technique can nonetheless
analyze individual client side pages.

Table 3: Client page extraction.
Program #php php LOC #page JS LOC

/ rel. / rel. gen. gen.

XHTML Chat 4 / 0 307 / 0 1+ 138

AjaxLogin 1 / 0 105 / 0 1+ 517
Tixean chat 10 / 3 1024 / 597 1 596

Rogozhka chat 33 / 0 5554 / 0 1+ 951
Phormer 6 / 4 6390 / 6188 13 955

Quizzy 8 / 0 396 / 0 0* 455
Ajallerix 16 / 4 6605 / 663 7 1327
Ajax File Browser 203 / 9 63882 / 3492 24 1893
* Quizzy is a plug-in app and doesn’t provide a runnable server page.
Manual setup required.

+ ‘.html’ Static server page.

Table 3 presents the results of the client page extraction.
The second column shows the number of PHP files and the
number of relevant PHP files. Not all PHP files are relevant
because many simply retrieve data from the server and re-
turn them as plaintext. In other words, they don’t emit html
pages or JS code. There is a possibility that JS code can be
sent in plaintext and extracted via eval() on the client side.
However, it’s not a common practice for the sake of security.

We define a server side PHP file to be relevant as long as it
can emit (part of) a client html page. The formal definition
is as follows.

(1) If a server page p has <html> tags, which means its
output can be a valid client page, p is relevant.

(2) If a page p1 is (transitively) included in another page
p2 that has <html> tags and p1 has JS strings, p1 is
relevant.

The third column lists the lines of code of .php and .inc
files and the lines of relevent code. Page extraction is only
applied to the relevant pages. Column ‘#page gen’ shows
the number of valid client pages generated (passing the HTML
syntax check). The last column shows the total LOC of the
extracted JS, which are subject to our static analysis.

From the data, we can make the following observations.
Although there may be many server pages, the relevant ones
are small. Furthermore, in the relevant pages, the part with
JS strings (our technique would manipulate path conditions
to reach those places) are often not guarded by conditionals.
In other words, no matter what control flow paths of the
server script are taken at runtime, the same JS is likely to
be emitted to the resulting client page. This is supported
by the small number of extracted client pages presented.

Table 4: Analysis Result.
Time Type-1 Type-2

(seconds) Total FP Total FP
Xhtml chat 3.62 1 0 1 0
AjaxLogin 5.49 1 0 0 0
Tixean chat 5.64 1 0 1 0
Rogozhka chat 7.23 1 0 1 0
Phormer 7.58 1 1 1 1
Quizzy 5.62 3 0 1 0
Ajallerix 9.56 4 2 1 0
Ajax file browser 12.53 7 1 1 0
www.msn.com 4.79 0 0 0 0
Total — 19 4 7 1

Table 4 presents the final results. Time is the average
analyzing time for one client page. Type-1 and Type-2 stand
for the inconsistency problem and the atomicity violation,
respectively. False positives are also collected. Observe that



our technique is quite effective and identifies a set of real
bugs in these applications. We manually confirm those bugs.

5.1 Case Study
We have presented two motivating cases for Ajallerix in

Section 2. Next, we will present two other cases to demon-
strate the effectiveness of our technique.

Inconsistency in Ajax File Browser. The following is
a simplified code snippet from Ajax File Browser.

@ _js/afb.js

5 var currentShare = 0;

53 function loadShare(id,path) {

// cbLoadShare() is ajax response handler
63 getUrl(xmlFile+‘?getShare&share=’+id+‘&path=’+escape(path),

id, cbLoadShare, function(){...} );

70 }

74 function cbLoadShare(xhr) {
86 currentShare = xhr.argument;
91 }

129 function download(path) {

140 window.location = ‘index.php?download=’ + path + ‘&share=’
+ currentShare;

145 }

Event handler loadShare() will be triggered when a shared
folder is selected. Event handler download() will be triggered
upon the download button being clicked. Both handlers use
Ajax to send requests. Function cbLoadShare() is the re-
sponse handler for the request made in loadShare(). A global
variable currentShare is defined at line 86 in cbLoadShare(),
and used at line 140 in a request sent in download().

To trigger the bug, assume folder one is presently shown,
the user then selects folder two. While seeing no response,
the user clicks the download button, expecting to download
a file in folder one. Due to the non-determinism, cbLoad-
Share() responding for the selection request may get exe-
cuted before download(). In this case, a request with incon-
sistent parameters is sent to server at line 140: the path is a
filename in folder one but the value of currentShare stands
for folder two. A wrong file may be downloaded.

Atomicity Violation in XhtmlChat. Another exam-
ple is from a chatting plug-in XhtmlChat.

@ scripts.js

15 var lastID = -1;

26 function receiveChatText() {

28 httpReceiveChat.open("GET",GetChaturl + ’?lastID=’ + lastID
+ ..., true);

29 httpReceiveChat.onreadystatechange = handlehHttpReceiveChat;
32 }

35 function handlehHttpReceiveChat() {
36 if (httpReceiveChat.readyState == 4) {

37 results = httpReceiveChat.responseText.split(’---’);
39 for(i=0;i < (results.length-1);i=i+3) {

//inserts the new messages into the page
40 insertNewContent(results[i+1],results[i+2]);
41 }

42 lastID = results[results.length-4];
44 setTimeout(’receiveChatText();’,4000);

45 }
46 }

As shown in the above code snippet, receiveChatText()
is triggered after sending a message or when a timer set
at line 44 fires. It sends out a request at line 28 to the
server to retrieve messages that happen after the timestamp
lastID. In the response handler handlehHttpReceiveChat(),
the updated messages are inserted to the current page at

line 40. A global variable lastID is defined in the at line 42
and used in an Ajax request at line 28.

Consider the following execution sequence: (1) an update
request R1 with lastID=t is sent; (2) the user sends a mes-
sage so that another update request R2 also with lastID=t
is sent before the response of R1 has arrived; (3) response
to R1 arrives and lastID is defined to t + x, meaning the
messages in between t and t + x are retrieved and inserted
to the current page; (4) response to R2 arrives and lastID is
set to t+ x+ y and the messages in between t and t+ x+ y

are appended. Note that the messages in between t and t+x

are duplicated due to the atomicity violation.

5.2 False Positives
Currently, we manually examine reported bugs to confirm

they are real ones. We have found some false positives (FP).
They may be caused by the following two scenarios.

The first case is that the event handlers that are needed to
trigger the problems may never be present in the same client-
side web page in reality. However, they may be present in
the same page extracted by our server side technique. Re-
call our method explores all relevant paths including those
infeasible ones as our current technique can not reason about
the feasibility. Exercising an infeasible path leads to an im-
possible page. Bugs identified on the page may be FPs.
The problem can be mitigated using the symbolic execution
techniques in [6, 11] to exclude infeasible paths.

The second case is that although all the event handlers are
present on the same page, the failure inducing interleaving
is not feasible. For example, an Ajax request is only used to
load a page. The response handler is used to initialize that
page. In other words, they are supposed to be executed only
once, before any other events can be triggered. So interleav-
ing is impossible. In our future work, we plan to analyze the
happens-before relations enforced in the code and use them
to prune the infeasible interleavings. In practice, this case
is what we have observed. All FPs presented in Table.4 are
caused by this reason.

6. FIXING THE BUGS
We can avoid the Ajax problems in two ways.

Disabling Relevent Controls. If the use of a shared vari-
able in a request and the corresponding response handler is
not avoidable, we can enforce the atomcity of the request and
response in the user layer by preventing events that may lead
to accesses to the same variable from happening in between
the request and response. Naively, we can block the user
by setting Ajax in the synchronous mode. However, that
degrades the user experience. To avoid completely freezing
the page, the programmer can disable only the controls that
can fire offending requests.

This method can avoid the inconsistency problem. How-
ever, atomicity violations are still possible. Please note user
controls are not the only way to send requests to server.
Others such as the interval timer events (e.g. those gener-
ated by setInterval()) can too.
Using Conditional Variables. In concurrent program-
ming, besides locks and wait/notify, conditional variables
can be used to play the role of synchronization. We can
leverage conditional variables too. A conditional variable
can be used to indicate whether the response is handled. If
not, another request shares the same variable is not allowed.
It has been used in practice by some complex JS programs,



although not consistently.

7. RELATED WORK
Web application testing. Server side script testing is
increasingly studied lately. Artzi et al. [6] propose a tech-
nique called Apollo for finding bugs in PHP scripts. They
leverage symbolic execution to generate test inputs so that
control flow paths can be covered. The tool can detect PHP
faults that generate invalid client pages. Hanfold et al. [11]
propose a static symbolic execution technique to identify in-
terface. By analyzing server-side Java code, it can extract
parameter combinations sent by clients and their possible
values to generate test input suite. Although they may need
to manipulate client side controls to provide inputs, the tar-
get problem is to locate bugs in server-side scripts. In com-
parison, we are analyzing problems in client side JS code.

Also, there are many web application testing tools, such as
Seleninum, WebKing, and Sahi, that work in a record-and-
replay fashion. Testing starts with recording the manual
interactions between the tester and the controls on subject
interface. Then these techniques either faithfuly replay the
interactions or heuristically generate combinations of these
interactions to test both the client and the server. The fault
detection capability depends on the quality of the recorder
interactions. They require lots of manual effort. Further-
more, these techniques are not good at the problems we are
addressing because they do not consider non-determinism.

Marchetto et al. [13] propose a state-based approach to
test Ajax applications. They collect traces of JS execution
and construct state machines from the traces. Test cases are
generated from the state machines to expose problems in JS
code. They look into problems caused by event orders. Non-
trivial manual efforts are required in their model construc-
tion and refinement. Then Mesbah et al. [14] crawl Ajax
applications, simulate user events and infer model automat-
ically. In comparison, our technique is static and focusing
specifically on problems caused by asynchronous calls.
JavaScript Analysis. Recent work [21, 18] survey the use
of JS, including dynamic features and their impact on secu-
rity concerns. Several works apply static analysis to iden-
tify the vulnerabilities including Drive-by Download and
Cross Site Scripting(XSS). Chugh [8] applies information
flow analysis to avoid information lead. Wassermann and
Su [20] apply taint analysis and string analysis to perform
input check in order to detect the XSS vulnerabilities. Guha
et al. [10] use static analysis to extract a model of expected
user behavior to detect Ajax intrusion. Our analysis is also
static but aims at a different problem.
Data Race Detection and Atomicity Violation. There
are many existing works on data race detection [7, 19, 16]
and atomicity violation [17, 9, 12]. Most of them are de-
signed for threads or processes. The execution model is dif-
ferent from that of JS. They often leverage synchronization
primitives. Hence, they are not directly applicable.

8. CONCLUSION
We propose a static analysis that detects non-deterministic

problems caused by asynchronous calls through Ajax. The
problems we are addressing are data inconsistency that may
cause permanent damage on the server side and atomicity
violations that may cause runtime exceptions. The analy-
sis is automatic. It handles individual client side pages and

server side scripts. Our results show that it is very effec-
tive in identifying real bugs in real world applications with
reasonable cost.
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