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White-Box Tuning for Better Data Processing

Abstract
Data processing programs are largely parameterized, espe-

cially those based on heuristics. The quality of the generated
outputs depends on the parameter setting. Different inputs of-
ten have different optimal settings. Parameter tuning is hence
of great importance. Existing tuning techniques treat the data
processing program as a black-box and hence cannot leverage
the internal program states to achieve better tuning. We pro-
pose a white-box tuning technique that is implemented as a
library. The user can compose complex tuning tasks by adding
a small number of library calls to the original program and
providing a few callback functions. Our experiments on 14
widely-used real-world programs show that our technique sub-
stantially improves data processing results and outperforms
OpenTuner, the state-of-the-art black-box tuning technique.

1. Introduction
Data processing programs are becoming increasingly impor-
tant in the Big-data era. Their complexity is also growing
at an enormous pace, involving more and more computation
stages. A prominent challenge is that many of them are pa-
rameterized, meaning that the user has to configure a set of
parameters before running these programs. More importantly,
the optimal configuration is mostly dependent on the specific
input. Different inputs require different configurations in order
to achieve the best results.

For instance, the results of k-means [38], a well-known data
clustering algorithm, heavily depends upon the choice of k that
is the number of clusters into which the user wants to partition
the input data. A lot of research [22, 43, 44, 59, 60] has aimed
at automatically deriving the appropriate k value from the in-
put. However, as far as we know, there is no general solution
for finding k. Another example is object detection in satellite
image processing [15]. It is a computation-intensive and pa-
rameterized procedure that has to deal with a large volume of
images in a time unit. The parameter configuration that yields
the best results for one image may produce suboptimal results
for another image (e.g., missing objects and broken edges).
Consider, Canny [17], one of the most widely used image
processing algorithms that detect edges. It is a multi-staged al-
gorithm with three important parameters. It is well-known that
Canny’s results heavily depend on the provided parameters.
According to [27], each input image may require a specific
parameter setting to produce the best edge detection result.
Fig. 1 shows the results on two different images using Canny.
Left two are original images. Others images show the results
from two respective parameter configurations. Observe that
configuration (0.6, 0.5, 0.9) produces the better result for the
airplane whereas configuration two (1.8, 0.2, 0.7) produces the
better result for the trashcan. Therefore, automated parameter
tuning becomes critical in data processing as manual tuning is
not realistic.

Airplane (0.6, 0.5, 0.9) (1.8, 0.2, 0.7)

Trashcan (0.6, 0.5, 0.9) (1.8, 0.2, 0.7)

Figure 1: Canny’s results with different parameters

Key Observation of Staged Computation Paradigm By
observing Canny and many other real world data processing
applications, we find that they typically follow the staged
computing paradigm, i.e., they consist of multiple computa-
tion stages such that each stage have a unique set of tunable
parameters.

Existing Work Multiple frameworks have been proposed to
automate the program tuning, among which OpenTuner [7]
is the state-of-the-art. Oblivious of the staged computation
paradigm, these frameworks treat the computation as a black-
box. Guided by the user-provided scoring function of the final
result, they sample the parameter space to find the best param-
eter configuration. Internally, they may adopt the Stochastic
algorithms [33, 34, 51, 52] or Genetic algorithm [40] as the
search strategies. While the above frameworks have been
proven to be effective, they suffer greatly from poor perfor-
mance due to the inherent limitations of the black-box designs:
• All parameters are included in each parameter configuration,

which leads to the exponential number of configurations.
• A full execution accounts for the sampling of a single pa-

rameter configuration. Note that the full execution typically
needs to load large corpus of data and conduct the prepro-
cessing, which are very time consuming.

Our Work In this paper, we propose a novel white-box tun-
ing framework called WBTuner. It is aware of the staged
computation paradigm and tunes each stage independently.
Specifically, it spawns multiple processes to sample different
parameter configurations involved by a stage. At the end of
each stage, it aggregates the sampled internal results of that
stage through a default or custom (provided by the user) ag-
gregation strategy. The aggregation step reduces the processes
to one or a small number of processes (with good internal
results), which will proceed to tune the next stage. Intuitively,
the aggregation strategy may either select the min/max value
from all internal results or merge them as the average value
(Sec. 4.3).

Consider an application with n stages of computation with
each stage having one unique parameter to tune, whose domain
has m unique values. Initially, WBTuner spawns m sampling
processes to cover m configurations of the first stage. Assum-
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ing the ideal case that only one of the processes from one stage
proceeds to the next stage, WBTuner needs only m sampling
processes in each stage. Overall, WBTuner only needs to
cover m∗n configurations and achieves so with a single full
execution that keeps at most m alive processes in any stage.
Comparatively, OpenTuner needs to cover the mn unique pa-
rameter configurations with mn full execution instances. Fig. 2
illustrates the comparison.

Properties WBTuner features the following properties.

• By leveraging the independence between stages, WBTuner
needs to sample much fewer parameter configurations than
OpenTuner. In the above example, it needs to sample only
m∗n configurations, while OpenTuner needs to sample mn

configurations.
• The aggregation lets us discard early the redundant (or bad)

computations that follow the certain internal results, which
would be performed by the black-box approaches.

• A full execution is reused for sampling different configura-
tions and tuning different stages. Through the reused execu-
tion, WBTuner greatly reduces the number of full execution
instances needed. Remember that every full execution needs
to load and pre-process large corpus of data, which only
have to be done once in WBTuner.

TODO: we will work on contritutions finally. Our key
contributions include the following.

• We propose white-box tuning that treats the subject program
as a white-box and allows the user to access and manipulate
the internal program states during tuning. It is complemen-
tary to black-box tuning, especially when the user has access
to the source code and a certain level of domain knowledge.
• We develop a prototype WBTuner in the form of library.

The library provides a set of expressive tuning primitives
and an advanced runtime system to compose complex exe-
cution models. The runtime hides most of the underlying
complexity such as process management, data transfer, and
output aggregation from the user, who can hence focus on
writing the high level tuning logic.
• We use WBTuner to tune 13 widely used data processing

programs for image processing, data mining, machine learn-
ing, pattern matching, and bioinformatics. Our experiments
show that WBTuner can substantially improve the data pro-
cessing results with reasonable overhead. The comparison
with OpenTuner shows that in some cases, OpenTuner can
never achieve the same tuning results (scores differences
> 10%) as WBTuner. In the other cases, OpenTuner takes
3.08X time to achieve the same results under a single core
environment and 4.35X when multiple cores are used.
• We use WBTuner to tune the parameters of a large drone

controller software (278K LOC) to mimic the behavior a
different controller with a better algorithm.
• We release our implementation of WBTuner for the commu-

nity at [57].

Figure 2: Execution
models of black-box and
white-box tuning

Figure 3: Tuning Canny. TP/SP are
tuning/sampling processes.

2. Overview of White-Box Tuning Framework

We present an overview of WBTuner using Canny, a popular
image processing algorithm as shown in Fig. 5.

Running Example It has four stages: the Gaussian smooth-
ing stage (line 22 in Fig. 5) which removes the noise from
the image, the image transformation stage (line 30) which
performs non-maximal suppression, the edge traversal stage
(line 37) which leverages hysteresis analysis to track all po-
tential edges in the image, and the visualization stage which
visualizes the final results.
Canny takes three parameters: sigma, low, and high.

Specifically, the Gaussian smoothing stage relies on the pa-
rameter sigma and the edge traversal stage relies on the low
and high thresholds. Based on our observation, Canny is rep-
resentative of real world data processing applications, which
usually follow the staged computing paradigm, i.e., they con-
sist of multiple computation stages such that each stage have
a unique set of tunable parameters.

User Interface WBTuner provides the users with an intu-
itive interface, which consists of multiple tuning primitives
(i.e., library calls), as shown in Fig. 4. Note they are imple-
mented with the same programming language as the original
program, rather than some additional specification language.
Library Calls :

@sampling(n,cbStrgy) |
@aggregate(x,cbAggr) |
@sample(x,cbDist) |
@expose(x) |
@load(x) | @loadS(x, i) |
@split() | @sync(cbBarrier) |
@check(cbChk)

CallBack : cbStrgy, cbAggr, cbDist, cbChk, cbBarrier

Figure 4: Primitives

Fig. 5 shows how the interface is used (Note the symbol
@ is replaced with wbt_). Primitive wbt_sampling (line 20)
denotes the start of a sampling code region. It specifies the
number of samples that should be collected within this region
and a callback function that implements a sampling strategy.
WBTuner has a few built-in callbacks including random in
this example. Primitive wbt_aggregate (line 27) marks the
end of a sampling region. It specifies a callback function (e.g.,
AggregateGaussian) that aggregates the values of sImage
across sample runs. Primitive wbt_sample (line 21) indicates
that a program variable, e.g., sigma, is a sample input variable
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(i.e., a variable to tune). It also specifies the distribution of the
variable from which sample values are taken.

Function AggregateGaussian() is a callback function
provided by the user to facilitate tuning. In this example, we
implement it following an existing approach [32] to prune the
poorly smoothed ones. Specifically, it loads (line 6) the images
denoted by sImage which are sampled in different parameter
settings of sigma and determines (line 7) whether each image
is properly smoothed given the image size imgSize. We
will explain the relevant primitives wbt_loadS, wbt_loadS
and wbt_expose in Section 3.3. For each properly smoothed
image, a new process is spawned by the primitive wbt_split
(line 9) to continue to tune low and high in the edge traversal
stage (lines 34-41), while preserving the sigma value used to
produce the image. Next we will discuss the runtime execution
model that underlies the user interface.

Figure 5: White-box tuning for Canny. The highlighted state-
ments are added. Tuning primitives start with wbt.

Runtime Execution Model The runtime execution frame-
work is shown in Fig. 6. Initially, the original main process
executes normally until it reaches the start of a tuning region
( 1©). At this point, its role is switched to a tuning process. Intu-
itively, a tuning process is the “manager” of a pool of sampling
processes that it spawns. A sampling process is the “worker”
that conducts the computation within the region, and emits the
results at the end of the region. The tuning process invokes
the sampling driver ( 2©) to spawn a pool of child sampling
processes ( 3©). The driver determines how many sampling
processes to be spawned and exercises a given sampling strat-
egy. In some cases, the sampling strategy is feedback driven

and relies on previous tuning results.
After spawning, the tuning process pauses. The sampling

processes carry out the computation within the tuning code
region ( 4©), orchestrated by a scheduler (Sec. 3.2). When a
sampling process encounters a tuning variable, it acquires a
sample value from the variable’s distribution. The sampling
processes have different states afterwards. Upon reaching the
end of the tuning region, a sampling process calls the child
submitting driver ( 5©) to commit its own computation results
and terminates. After all sampling processes commit, the
tuning process resumes and invokes the the parent aggregation
driver to aggregate the sampling results ( 6©). It then continues
to execute normally with the aggregated results ( 7©).

Figure 6: Execution Model

The above simplified model assumes a single tuning pro-
cecss in the runtime system. It is usually necessary to have
multiple tuning processes. For example, consider the aggrega-
tion at line 27 in Fig. 5, the user may want to spawn multiple
(independent) tuning processes each continuing with one from
a subset of good internal results, i.e., properly smoothed im-
ages referred to by sImage, rather than a single tuning process
that continues with exactly one internal result. To achieve this,
the user can use our primitive wbt_split() (line 9) to explic-
itly spawn a new tuning process (not sampling process) if the
image is properly smoothed (line 7). Our runtime system fully
support multiple tuning processes (Section 3.2).

Result and Comparison Initially we have 600 samples
(line 20). At the end of the Gaussian smoothing stage (line
27), the invoked function AggregateGaussian() prunes 148
samples that are not properly smoothed, therefore only 452
samples need to be kept. WBTuner further spawns a tuning
process for each remaining sample. When each of these pro-
cesses reaches the edge traversal stage (line 34), it triggers a
new sampling procedure which explores 19 samples 1 (with
different configurations of the parameters low and high ) for
each smoothed image. Hence the total number of samples is
452×19=8588.

The sampling results are aggregated by majority voting (line
41), that is, a pixel is set if it is set in more than 50% of the

1 The reason we use a smaller number of samples in this stage is that
Canny is less sensitive to these thresholds.
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sample runs. WBTuner supports voting by default. Hence, the
user can aggregate results through one line of function call.
Finally, the aggregated image is visualized at line 44.

For comparison, we also apply OpenTuner to tune Canny.
Since no algorithm exists for computing a score for the output
quality, we use simple heuristics to determine the poor sam-
ples, such as those that have very few or too many pixels in the
final image. We use the default search strategy in OpenTuner
which is called the Multi-armed bandit search. We use the ex-
ecution time of WBTuner as the timeout for OpenTuner. The
images generated by OpenTuner through its sampling runs are
aggregated by the same voting procedure in WBTuner.

The tuning results for the coffeemaker image are shown in
Fig. 7. Observe that WBTuner spent 90 seconds on 8588 sam-
ples whereas OpenTuner can only finish 842 samples within
the same amount of time, because most of its computation
time was spent on the expensive image loading, Gaussian
smoothing, and gradient computation stages as it has to re-
peat such computation for each sample run. In addition to
the visual result, we use the SSIM score [56] to compare the
result with the ground truth result hand-picked by experts [27].
Both visual and scoring results demonstrate that that WBTuner
outperforms OpenTuner.

Origin Ground Truth OpenTuner WBTuner
samples 842 8588
SSIM 1 0.592 0.794

Figure 7: Tuning Canny with image cof-
feemaker in 90s.

3. Execution Model: Semantics and System
In order to achieve white-box tuning, we need to overcome a
number of prominent challenges related to the management
of processes and stores. First, an original process will spawn
many sampling processes, which may need to be terminated
(if the sampling result is poor), communicate with each other,
further spawn their own child sampling processes, and join at
specific execution points. Furthermore, each sampling process
produces a lot of sample data from internal states. Storing,
accessing, and aggregating such data (across processes) is also
challenging. All these complexities should be transparent to
the users. In this section, we present our runtime system along
with the formal semantics.

The semantics are presented in Fig. 8. The related defini-
tions are presented at the top of the figure.
3.1. Stores

WBTuner has two stores, the store σ for regular program
states and the sample store δ that is shared across all processes

to store sampling outputs. The two are isolated. Any state
transfers between the two are performed explicitly. In δ , states
can be divided into two classes: (1) exposed store, a store for
exposed variables, (2) aggregation store, a store for sampled
results from the children processes.

Exposed Store Exposed store is a mapping from variables
to values. A local variable is exposed by the primitive
wbt_expose(). The exposed local variable is saved to the ex-
posed store and can be retrieved with the primitive wbt_load().
Different from common local variables, the exposed local vari-
able is available even outside its local scope (e.g., function).
Therefore, the exposed local variable can be used to pass the
value across different scopes. For instance, in Fig. 5, the lo-
cal variable imgSize from the canny function is exposed at
line 26 and then loaded at line 7 in the AggregateGaussian
function.

We implemented the exposed store as follows. Our system
encodes a local variable with its name and its scope informa-
tion (e.g., the function name) before mapping it to the value
in the exposed store. Similarly, our system uses the name and
the scope information of a variable to retrieve the associated
value. The encoding guarantees we can access the value of
the exposed variable throughout the whole execution. Note
that the scope information is required to distinguish the local
variables with the same name from different scopes.

Aggregation Store Aggregation store of a tuning process
stores the sampled values from the children processes. It maps
each program variable x to a vector δ (x), of which the ith
entry holds the value of the variable from the ith child pro-
cess. Note that vector abstracts the mapping from index to
values. Check if this sentence is correct. From regular
store or some other store? At the semantic level, the primi-
tive wbt_aggregate(x, . . .) forces each child process to write
the value of x in its regular store to the aggregation store of the
tuning process, as illustrated by line 27 in Fig. 5. The primitive
wbt_loadS(x, i) loads the value of x from the ith child process,
as illustrated by line 6 in Fig. 5.

Our system achieves the semantics by leveraging the file
system in disk. In particular, a sampled value is stored as
a file, of which the name is in the form var_pid, where var
specifies the name of the variable (that holds the sample result)
and pid specifies which child process submits the value of the
variable. All the files are stored in a directory owned by the
tuning process. To load data from disk, our system searches in
the directory owned by the tuning process for the related file
based on the information in primitive wbt_loadS(x, i).

3.2. Processes

WBTuner supports two execution modes, T〈pid〉 denotes the
current process pid is a tuning process whereas S〈pid〉 a sam-
pling process. To facilitate discussion, we also extend the
statements to include a spawn(σ ,δ ,ω,s) statement that forks
a process with the specified stores, execution mode, and the
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DEFINITIONS: Store σ ::= Var→Value SmpStore δ ::= Var→Value | Var→ (Index→Value) Mode ω ::= T〈pid〉 | S〈pid〉
Stmt s ::= ... | spawn(σ ,δ ,ω,s) | notify(pid) | wait(pid) | invoke(cb)

STATEMENT RULES: σ ,δ ,ω : s s−→ σ
′,δ ′,ω ′,s′ Let CPID = {Child Process ID}, PPID = Parent Process ID in the following rules:

σ , δ , ω : x := v s−→ σ [x 7→ v], δ , ω, skip [ASSIGN]

σ , δ , T〈pid〉 : @sampling(n,cbStrgy); s s−→ σ , δ , T〈pid〉, ∀i ∈ [1,n], spawn(σ , δ , S〈i〉, invoke(cbStrgy);s); invoke(cbStrgy); s [SAMPLING]

σ , δ , T〈pid〉 : @aggregate(x,cbAggr); s s−→ σ , δ , T〈pid〉, invoke(cbAggr,x); s [AGGR−T ]
σ , δ , S〈pid〉 : @aggregate(x,cbAggr); s s−→ σ , δ [x[pid] 7→ σ(x)], S〈pid〉, skip [AGGR−S]
σ , δ , S〈pid〉 : @sample(x,cbDist); s s−→ σ , δ , S〈pid〉, x := invoke(cbDist); s [SAMPLE]
σ , δ , T〈pid〉 : @split(); s s−→ σ , δ , T〈pid〉, spawn(σ ,{},T〈newPid()〉,s); s [SPLIT ]
σ , δ , T〈pid〉 : @sync(cbBarrier); s s−→ σ , δ , T〈pid〉, ∀i ∈ CPID, wait(i); invoke(cbBarrier); ∀i ∈ CPID, notify(i); s [SY NC−T ]
σ , δ , S〈pid〉 : @sync(cbBarrier); s s−→ σ , δ 7→ σ(x)], S〈pid〉, notify(PPID), wait(PPID); s [SY NC−S]
σ , δ , S〈pid〉 : @check(cbChk); s s−→ σ , δ , S〈pid〉, if invoke(cbChk)≡ true then s else skip [CHECK]

σ , δ , T〈pid〉 : @expose(x); s s−→ σ , δ [x 7→ σ(x)], T〈pid〉, s [EXPOSE]
σ , δ , T〈pid〉 : y = @load(x); s s−→ σ [y 7→ δ (x)], δ , T〈pid〉, s [LOAD]

σ , δ , T〈pid〉 : y = @loadS(x, i); s s−→ σ [y 7→ δ (x)[i]], δ , T〈pid〉, s [LOADSAMPLE]
Figure 8: Operational Semantics

process body s, a notify(pid) statement that notifies a process
pid, a wait(pid) statement that wait for a notification from
the process pid, and an invoke(cb) statement that invokes a
callback function cb.

Process Scheulding In practicem there will be large number
of tuning and sampling processes executing concurrently at
runtime. Thus, WBTuner provides a scheduler to manage the
creation and termination of processes. It prevents excessive
process creation without sacrificing the tuning performance
greatly. Using a uniform process pool is not optimal because
of the difference between the two kinds of processes (tuning
and sampling). Instead, we prioritize a sampling process
over a tuning process because the former conducts the real
computation. In addition, we want to finish all the sampling
processes belonging to a tuning process as soon as possible
so that the tuning process can finish its work and yield the
resource.

The scheduler works as follows. Upon a spawn request,
it checks if there are enough resources. If not, the current
process is put in a priority queue. Upon a process termination
event, the highest priority process in the queue is woken up.

Algorithm 1 shows the details. The Schedule procedure is
called with pid (i.e., process id), event and todo. There are
three possible events: SPAWN_S (i.e., spawning a sampling
process), SPAWN_T (i.e., spawning a tuning process), and
EXIT . The parameter todo denotes the number of samples
remained for the current (tuning) process. Sampling processes
are ordered inside the priority queue based on the todo val-
ues of their parent tuning processes. Lines 2-7 correspond
to process termination, which wakes up the process with the
highest priority. What is watermark? is this a standard
term ??? At line 8, a threshold is computed to denote a wa-
termark of resources. If the available resources are below the
watermark, then the current process will be put back into the
priority queue (lines 9-12). Otherwise, it is allowed to proceed
(line 14). Since real tuning is done by sampling processes,
the threshold is always 0 for sampling processes so that they
don’t have to wait if there is any available process. A config-

urable variable is used to prevent spawning too many tuning
processes because they would inevitably lead to decreasing
the tuning efficiency. In Algorithm 1, we set the configurable
threshold of tuning process to 75% ( i.e., it has to wait if 25%
processes are occupied).

For benchmarks requiring a large number of samples and
consuming lots of memory (e.g., Canny), the scheduler limits
the number of concurrent samples and reduces the memory
consumption and execution time significantly (Fig. 10). Too
much memory consumption will result in excessive page fault
which degrades the runtime performance.

3.3. Primitives

Rule [SAMPLING] forks n sampling processes (indicated
by the S〈i〉 mode) through the spawn() primitive. Observe
that the last parameter of the primitive is the body of the
child process, which contains the same statements as the par-
ent, namely, “invoke(cbStrgy);s". After forking, callback
cbStrgy() is called to initialize the sampling strategy in the
children. We want to point out that Rule [SAMPLING] only
applies in a tuning process. It is a NOP in a sampling process.

Rule [AGGR-T] specifies that a tuning process invokes the
callback cbAggr() to aggregate the sampling results for vari-
able x. In the callback, the user can implement various ag-
gregation strategies. For example, the values of sample target
variable x from all sample runs can be averaged and written
back to x in the tuning process, which can proceed with the ag-
gregated value. In contrast, Rule [AGGR-S] specifies that upon
aggregation, a sampling process stores its sampling outcome
of x to the element of the sampling vector corresponding to
the process id. Then the sampling process terminates. Recall
that only the tuning process aggregates results and sampling
processes only produce results.

Rule [SAMPLE] only applies to sampling processes. It spec-
ifies that the callback cbDist() is invoked to acquire a sample
value for variable x, which denotes a parameter to tune. Rule
[SPLIT] specifies that a tuning process can explicitly spawn
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a child tuning process. The child process is for tuning the
next phase. Function newPid() returns a new pid. The child
process inherits the regular store but not the sample store from
the parent. Rule [SYNC-T] indicates that the tuning process
waits for all the child sampling processes to reach the barrier,
and then it invokes cbBarrier() to perform some operations
that access results across multiple sample runs. After that,
the tuning process notifies all its child sampling processes to
proceed. Compared to @aggregate, @sync is usually used in
the middle of a sampling region. Rule [SYNC-S] specifies that
a sampling process notifies its parent tuning process after it
has reached the barrier. It then waits for the tuning process to
finish the callback and notify it to proceed. Notifications from
child processes are queued to avoid message lost which may
lead to deadlocks.

Rule [CHECK] specifies that a sampling process invokes a
callback cbChk() to check its local states. If the check returns
f alse, the sampling process is terminated. This feature allows
us to terminate useless sample runs long before they get to
the aggregation point (e.g., k-means in Sec. 5.2.3), which
improves not only the performance but also the final cluster-
ing results. Note thats such improvements are impossible to
achieve in black-box tuning.

Rule [EXPOSE] exposes the values of x from the regular
store to the sample store, which is accessed by tuning callbacks.
The rule only applies to tuning processes. Observe that it
allows callbacks to access program variables outside their
scopes. Rule [LOAD] loads an exposed variable x (from the
sample store) inside some callback function in a tuning process.
Rule [LOADSAMPLE] loads the sample outcome of x from
the ith sample run.

4. Practical Challenges

Figure 9: Tuning-
validation Model for
the xth sample run

4.1. Overfitting

Since machine learning algorithms normally produce models
as their output, the tuning task of these parameters is usually
guided by the execution results of the models (e.g., lower
classification errors). Unfortunately, it may lead to overfitting,
meaning that the tuned parameters produce optimal results on

the training data but poor results on the testing data. Note that
other programs (e.g., Canny) do not have this problem as they
are tuning for the final output data but not models tested by
different data.

WBTuner provides intrinsic support to address overfit-
ting by combining its execution model with k-fold cross-
validation [53], a widely used technique for preventing over-
fitting. Specifically, to tune the parameters in a machine
learning algorithm, the user only indicates the k value in the
wbt_sampling() primitive and provides a validation callback.
By doing so, WBTuner will then transparently include k-fold
cross-validation during tuning.

The tuning-validation model is shown in Fig. 9. First, the
input data is transparently divided to k datasets. For each of the
original sample run, WBTuner spawns k−1 more processes,
that form a sampling and validation group (SVG). If the user
intends to collect n samples originally, WBTuner internally
creates n SVGs, that is, n∗ k processes. All the k processes in
a SVG share the same sample values for the tuning variables
but use different datasets for training and validation to prevent
overfitting. As illustrated in the figure, the ith process in the
SVG uses the ith dataset for validation and the remaining
k−1 datasets for training. At the end of the execution of an
SVG process, WBTuner invokes the user-supplied validation
callback to apply the produced model on its validation dataset
and computes the validation error. The validation errors from
all SVG processes are then aggregated to drive the remaining
steps of the tuning procedure. The experimental result in
Fig. 21 demonstrates the necessity for cross-validation.

4.2. Incremental Aggregation

According to the execution model of WBTuner, the sampling
results are submitted by the sampling processes and aggre-
gated by the tuning processes once the sampling is completed.
However, it entails massive storage and I/O overhead. We
observe that many benchmarks aggregation can be performed
incrementally as they involve functions such as finding the
min, max, average, or majority (voting). For instance, for the
aggregation strategy min, each sampling process updates a
shared global min by comparing its outcome to it. To support
incremental averaging, WBTuner uses a shared ring buffer to
which sampling processes copy their results. The tuning pro-
cess consumes the data from the buffer to perform incremental
averaging. Majority voting is handled in a similar fashion.
Fig. 10 demonstrates that incremental aggregation substan-
tially reduces the tuning time and memory consumption for
WBTuner.

4.3. Sampling/Aggregation Strategies

In addition to custom strategies provided by the user, WB-
Tuner supports several common sampling/aggregation strate-
gies. The user only have to denote the name of the strat-
egy inside the wbt_sampling/wbt_aggregate primitive to use
it. Currently the supported sampling strategies are random
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(RAND) and Markov chain Monte Carlo (MCMC). For ag-
gregation strategies, there are min, max, majority vote (MV),
averaging (AVG), and duplicate elimination (DEDUP). These
strategies are normally enough for most of the tuning task ac-
cording to our experience. Observe that only four benchmarks
use custom aggregation strategies out of 14 benchmarks.

4.4. Auto-tuning Sampling Number

Because the number of samples varies from one tuning region
to another, WBTuner provides an automatic way similar to
exponential backoff [11] to determine the number of required
samples. For the provided sampling number in each primitive
wbt_sampling(), WBTuner first checks whether the result is
better by doubling it. If yes, then the number of samples is
doubled again until the sampling result converges.

4.5. Specification

The specification offers the users great flexibility in designing
various tuning strategies by granting them the access to the
internal program states. Meanwhile, we argue the specification
overhead is modest. First, based on our experience, it is easy
to specify the top-level stages 2, which suffice to speed up the
performance measurably. Second, we summarize the common
patterns of the aggregation strategies (Sec. 4.3), which cover
the majority of the use cases.

5. Evaluation
We evaluate the efficiency and effectiveness of our WBTuner
implementation in C and compare it with OpenTuner. Experi-
ments were run on a machine with Intel i7-2640M 2.80GHz
processor and 16GB RAM.
Benchmarks.

A wide variety of benchmarks are used in our experiment,
including 13 widely used data processing programs and an
open-source controller software for commercial drones. These
are heavily parameterized applications. For further bench-
marks information, please refer to the technical report [57].

All programs have multiple datasets that can be found on-
line or come with the program. We have selected only the
datasets that have the outcome ground truth for comparison.
On average, we used 10 datasets for each program. The re-
sults are summarized in Table 1. Most benchmarks come with
their own scoring functions, so the callbacks for them are im-
plemented accordingly. Results comparison of benchmarks
without scoring functions (i.e., with superscript 1 in Tab. 1) is
explained in section 5.1.

Column 1-2 show programs names and lines of code. col-
umn 3 shows the number of tunable parameters and column
4 shows the number of WBTuner primitives added to the
source. The next two columns (5-6) describe the sampling
and the aggregation strategies. Most programs use random

2We plan to combine the program analysis and natural language processing
to automatically identify the fine-grained stages.

sampling. DBScan and K-means demonstrate using a different
sampling strategy (MCMC). C4.5 and SVM use random sam-
pling together with cross-validation. Cross validation is also
implemented in OpenTuner for these two benchmarks. Col-
umn 7 presents the lines of code in tuning callback functions.
Observe that the number of primitives is small, yet, it allows
to represent complex tuning models as we will demonstrate
in 5.2. The LOCs for callbacks are small compared to the
source code LOCs. They mainly implement scoring functions
or checks.

5.1. Tuning Results Summary

In the first experiment, we ran each benchmark with the largest
dataset under three settings – (1) native run without tuning;
(2) black-box tuning using OpenTuner; (3) white-box tuning
using WBTuner – and observed the best possible tuning results
and the corresponding execution time. Default search strategy,
the multi-armed bandit [23] is used in OpenTuner.

We ran WBTuner with the number of samples auto-tuned by
WBTuner until converging, then we collected the tuning time.
For OpenTuner, we gradually increased the timeout parameter
until it either reaches the similar results (difference < 10%) as
WBTuner or could not reach the similar results after spending
10 times of the tuning time of WBTuner. We measured the
quality of the tuning results by comparing with the ground
truth that comes with the datasets. Note that these ground
truths are only used in measuring quality, but not in tuning. As
stated before, OpenTuner requires scoring functions to guide
the search; however, a few benchmarks do not have a standard
scoring function (marked with the superscript 1 in Table 1).
To achieve fair comparison, for these benchmarks, we imple-
mented same domain-specific heuristics from WBTuner in
OpenTuner to distinguish good and bad samples, and to use
the same aggregation method from WBTuner to aggregate the
good sample results. To quantify the results for these pro-
grams, we compute their scores based on the comparison with
the ground truths. Such scores are not used in tuning.

Since OpenTuner does not support parallel sampling by
default, which requires substantial engineering effort, we con-
ducted the comparison in both single-core and multi-core. The
single-core results are shown in columns 8-14 in Table 1, while
the multi-core results are shown in columns 15-20. Columns
8 and 9 present the native execution time and the score with-
out tuning. Note that for the programs with ↑, the higher the
scores the better, and for the others with ↓, the lower the scores
the better. Column 10 presents the time of tuning execution
of WBTuner upon convergence. Column 11 shows the con-
verged score. Column 12 shows the tuning time for OpenTuner.
Those with “t/o" mean that those scores are apparently worse
(difference > 10%) than WBTuner after spending 10 times
more tuning time. Column 13 shows the final tuning score
of OpenTuner. Column 14 shows the overhead comparison.
Columns 15-20 are the results for multi-core.

Observe that for single-core environment, OpenTuner times
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Program LOC #P #PR Sampling Aggregation Ext LOC
Single Core Multi Core

Native WBTuner OpenTuner o/h(x) Native WBTuner OpenTuner o/h(x)
time(s) Score time(s) Score time(s) Score OT/WB time(s) time(s) Score time(s) Score OT/WB

↑Canny 1 1.1k 3 8 RAND CUSTOM/MV 151 0.159 0.29 51.53 0.636 t/o2 0.44 - 0.061 17.75 0.636 t/o 0.44 -
↑Watershed 1 270k 3 5 RAND MV 34 1.03 0.41 26.1 0.65 31.5 0.65 2.11 0.93 7.8 0.65 30.81 0.65 3.95
↑Kmeans 468 1 5 MCMC MAX 56 0.165 0.46 1.57 0.523 9.7 0.523 5.79 0.057 0.56 0.523 2.49 0.523 4.45
↑DBScan 408 2 7 MCMC MAX 80 0.657 0.299 25.41 0.502 124.08 0.502 3.21 0.021 2.94 0.502 15.7 0.502 5.34
↓Face Rec 9.6k 3 7 RAND MIN 92 4.788 17 578.62 7.3 1203.25 7.3 2.07 4.6 33.47 7.3 684.12 7.3 4.44
↑Speech Rec 1 19.8k 16 18 RAND MV 89 4.263 1 313.25 5 t/o 4.2 - 4.12 19.54 5 t/o 4.2 -
↓Phylip 12.6k 4 12 RAND DEDUP/MIN 95 4.67 20.4 1021.4 0.84 1910.23 0.84 1.87 2.4 211.15 0.84 493.21 0.84 2.33
↑FASTA 77.5k 2 4 RAND CUSTOM 108 0.12 40 1.56 523 4.91 523 3.54 0.02 0.25 523 t/o 461 -
↑TOPN Rec 33.5k 3 5 RAND MAX 3 6.16 0.1 273.45 0.126 560.5 0.126 3.04 5.9 81.2 0.126 513.1 0.126 6.32
↓METIS 44.3k 3 5 RAND MAX 30 0.16 6952 4.77 6706 20.57 6706 4.31 0.06 1.2 6706 7.34 6717.7 6.12
↑L2AP 37.2k 3 5 RAND CUSTOM 39 0.48 2018 1.21 2170 3.4 2170 2.8 0.362 0.84 2170 2.03 2170 2.42
↓C4.5 17.8k 2 4 RAND+CV MIN 58 0.059 2.46 7.23 0.082 21.54 0.082 3.18 0.036 1.68 0.082 6.54 0.082 3.89
↓SVM 11.3k 8 10 RAND+CV MIN 44 6.172 87 233.72 9.5 438.12 9.5 1.96 5.314 66.98 9.5 288.23 9.5 4.3
↓Ardupilot 278k 20 22 RAND CUSTOM 204 - 1954k - - - - - 192.3 151k 1074k - - -
↑: Higher scores are better; ↓: lower scores are better. 1. These benchmarks do not have default scoring functions.
2. “t/o” means OpenTuner cannot achieve the score of WBTuner.

Table 1: Benchmark statistics and the experiment results for achieving the best tuning scores.

out WBTuner in 2 out of the 14 cases. For the other cases, the
average tuning overhead of OpenTuner is 3.08X higher than
WBTuner. For multi-core environment, 3 programs time out
and the overhead ratio is 4.35X.

Figure 10: Optimization effects on different benchmarks

Observe that WBTuner substantially improves the result
quality compared to without tuning and it is much more effec-
tive than OpenTuner. For the cases that OpenTuner can reach
the scores of WBTuner, we have also given more tuning time
to OpenTuner. But OpenTuner did not produce better tuning
results.

Fig. 10 shows the effect of the various optimizations dis-
cussed in Sec. ?? and Sec. 4.2. The baseline is the time/mem-
ory consumption after optimizations. Observe that the in-
cremental aggregation is highly effective for several cases,
especially for reducing the memory consumption as it pre-
vents reading large number of results for one-shot aggregation.
Observe that the scheduler further improve the performance
in several cases, especially for Canny and K-means.

5.2. Tuning Case Studies

In this section, we study the details of tuning several represen-
tative programs under the single core environment and tuning
Ardupilot in the multi-core environment.
5.2.1. Image Processing
Canny. In Section 2, we have already shown the tunning
results of Canny. Here we used 10 different images from [27],
where each image comes with a ground truth result image
hand-picked by experts.

Since no general scoring function exists, we use majority

vote for results aggregation, meaning the result with the largest
number of supports from the sample runs is reported. Then
we use the SSIM [56] score to compare the voting result with
the ground truth, the higher the score the better. We extended
OpenTuner with the majority voting capability to achieve fair
comparison. For each image, we ran WBTuner and Open-
Tuner 10 times and took the average. Fig. 11 shows the tuning
score when WBTuner converges, the corresponding Open-
Tuner score after it runs the same amount of time, and the
score without tuning. Observe that WBTuner almost always
produces the best results.

On average, OpenTuner has 119% improvement over no-
tuning, whereas the improvement of WBTuner is 178%. The
reason is that WBTuner can prune a lot of sample runs that
will not yield promising results after stage one (see Fig. 5).

Figure 11: Canny tuning scores of 10 images.

Figure 12: Canny tuning score variation

The score variation with the tuning time is shown in Fig. 12
for the pitcher and brush images, which represent the max-
imum and minimum improvement over OpenTuner, respec-
tively. Observe that for pitcher, even 5-second tuning in
WBTuner yields much better results for 30 seconds tuning in
OpenTuner. The visualization in Fig. 13 shows that the result
by WBTuner is very close to the ground truth but the result by
OpenTuner is not. For brush, WBTuner has a very close but
lower score at the end, although the two have very comparable
performance all the time. And Fig. 13 seems to indicate the
WBTuner’s result is not inferior.
5.2.2. Bioinformatics
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Pitcher Ground Truth WBTuner OpenTuner

Brush Ground Truth WBTuner OpenTuner

Figure 13: Canny tuning results of WBTuner and OpenTuner
Phylip. Phylip [24, 46] generates the phylogenetic tree of
given protein or DNA sequences by calculating the distances.
It show the evolutional relationships between various biologi-
cal species. Phylip consists of five stages of computation as
shown in Fig. 14.

Stage 1 is for transition probability matrix generation. It
has a tunable parameter ease. Stage 2 loads data and per-
forms preprocessing. Stage 3 generates the distance matrix
based on the transition probability matrix and the input. It
has two tunable parameters invarfrac and cvi. Stage 4
initializes the phylogenetic tree. Stage 5 generates the tree
based on the distance matrix from stage 3. It has a tunable
parameter power. WBTuner tunes stages 1, 3 and 5. The
wbt_aggregation() primitive at the end of stages 1 and 3 are
called with duplicate-elimination (DEDUP) strategy to prune
the sample runs that have similar matrices. Thus, child tuning
processes are only spawned for unique matrices. At the end
of stage 5, the aggregation is to select the tree with the lowest
sum of squares, which is the default scoring function. Lower
score means the better result.

Figure 14: White-box tuning for phylogentic tree generation

Fig. 15 shows tuning score comparison for ten datasets
from [42] when WBTuner converges. Observe that tuning is
critical for this program. On average, WBTuner can reduce
the errors by a factor of 283 when compared with no tuning,
and by a factor of 4.77 when compared with OpenTuner.

Fig. 16 shows the tuning score variations over time for
data2 and data10 that have the maximum and minimum
improvement over OpenTuner, respectively. For data2, 40
seconds of tuning in WBTuner achieves a similar result as 135
seconds of tuning in OpenTuner. The improvement is achieved
by the independent tuning/pruning in the three tuning regions.
Although OpenTuner outperforms WBTuner for data10, the
difference between the two results is nearly invisible.

Figure 15: Phylogenetic tree tuning scores on 10 datasets.

Figure 16: Phylip tuning score variation

5.2.3. Data Mining / Machine Learning
K-means. K-means [38] partitions input dataset into K clus-
ters, each holding similar data. The algorithm is shown in
Fig. 17. Given the input objs, it first generates K initial cen-
troids (for clusters) through a non-deterministic random pro-
cedure (line 14). It then calls kmeansCore() (line 17) to
iteratively refine the centroids and the corresponding clusters.
The clustering result is stored in objsAssign. A data object
is put in the cluster of the closest centroid. Although there is
only one tunable parameter, K, in K-means, the clustering re-
sult is nondeterministic even K is fixed because it also depends
on the randomly selected initial centroids.

The tuning code is highlighted in Fig. 17. The quality of
clustering result is calculated by the Silhouette score [49].
Higher score means better clustering result. We use MCMC
sampling (line 11) to demonstrate the use of a different sam-
pling strategy. It computes the probability of accepting the
current sample result by computing its improvement over the
old score. If a sample is accepted, the next sample will be in
its neighborhood. Lines 2-5 denote the scoring function for
one sample. Observe that it is used for both sampling ad aggre-
gation strategy. Note that the scoring function implementation
is trivial because Silhouette score calculation is provided by
the benchmark. Furthermore, the rest of MCMC sampling and
MAX aggregation is transparent. In addition, line 15 invokes a
callback to prune the centroids with poor quality based on the
algorithm in [44], which prevents the expensive core algorithm
execution. Totally there are 5 lines of primitives and 98 lines
in callbacks.

Figure 17: White-box tuning for K-means
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Figure 18: K-means tuning scores for 10 datasets

Figure 19: K-means tuning score variation
Fig. 18 shows the clustering results when the tuning time

is the convergence time of WBTuner. The ten data sets are
from [19, 25, 26, 30, 36, 45, 55, 61]. Observe that WBTuner
consistently produces the best results. The result improvement
with OpenTuner over no tuning is 7% on average. The im-
provement with WBTuner is 38%. In other words, WBTuner
is almost six times more effective in tuning the results with the
same time. Fig. 19 shows the score variations for the blobs
and glass datasets, in which WBTuner has the maximum and
minimum improvement over OpenTuner. Fig. 20 visualizes
the different clustering results. Observe that the WBTuner
result is more reasonable. For glass, although the two yield
very similar final results, WBTuner reaches the result within
0.6 second whereas OpenTuner cannot reach the same score
in 1 second.

WBTuner (K=3, Score=0̃.65) OpenTuner (K=4, Score=0̃.53)

Figure 20: Blobs clustering

Support Vector Machine (SVM). SVM [21] is a widely used
machine learning algorithm for data classification and regres-
sion analysis. It is a supervised learning technique which takes
the training data with feature class labels to build a model, used
to classify new data later. We use the multi-class SVM [31]
to classify data with multiple class labels. The algorithm has
8 tunable parameters, which lead to substantially different
models if tuned differently. Furthermore, like most machine
learning algorithms, certain parameter settings may lead to
overfitting (Section 4.1). Thus, we leverage WBTunerś k-fold
cross-validation to tune the parameters while preventing over-
fitting (with k=10, a typical setting for cross-validation [53]).

We compare the results tuned by WBTuner with and with-
out cross-validation for 10 datasets obtained from [10]. We
divide each dataset into two equal sets and use the first half for
training and tuning and the second half for testing. We then
collect the results after both tuning converge. The results are
depicted in Fig. 21. Observe that although cross-validation
tuning produces much higher training errors than tuning with-
out cross-validation, it has much better testing results and thus
substantially mitigates the overfitting problem. That is, the

new model generalizes better from the training dataset, with-
out being affected by its details and noise. The results strongly
suggest that overfitting is a prominent challenge in tuning and
WBTuner effectively addresses this problems transparently.

Figure 21: SVM tuning scores of 10 datasets w/wo validation

We also compare the result generated by WBTuner and
OpenTuner. As OpenTuner does not handle overfitting by
default, we extended its implementation to provide the cross-
validation as well (using the same k). Observe that WBTuner
consistently outperforms OpenTuner. The tuning improvement
by OpenTuner over no-tuning is 35% whereas the improve-
ment by WBTuner is 47%. Fig. 23 shows the score variation
for the best and worst datasets. Observe that for Cleveland,
even after 1500 seconds, OpenTuner cannot reach the result
produced by WBTuner within 80 seconds.

Figure 22: SVM tuning scores of 10 datasets

Figure 23: SVM tuning scores variation

5.2.4. Training Drone’s Behavior.
In this case study, we demonstrate how we can leverage WB-
Tuner to tune large and complex cyber-physical systems for
behavior learning. Specifically, we aim to tune one drone’s
parameters so that it mimics the behavior of the other one.

We use two pieces of widely used drone control software:
PX4 [39] and Ardupilot [37]. They are complex (385k and
278k LOC respectively), and have completely different fea-
tures and implementations. For example, PX4 has 426 con-
figurable parameters and Ardupilot has 612. The meanings
of these parameters are quite different. From our experience,
drone controlled by PX4 took much fewer mission time than
the drone controlled by Ardupilot. However, simply tuning
the flying speed parameter does not work because many pa-
rameters need to be tuned accordingly. For example, the
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way-point radius represents a distance from a way-point, that
when crossed means it has been hit. Increasing the speed of
the drone without changing the way-point radius could result
in overshoot, which makes the drone waste time to fly back to
the track.

In order to achieve optimal flying performance, both
PX4 and Ardupilot provide their own specific black-box
parameter tuning tools. However, it allow tuning a very
limited number of parameters and thus cannot lead to
optimal results. Furthermore, they cannot be applied
to achieve more sophisticated tuning tasks such as be-
havior learning, which is a popular tendency for train-
ing autonomous vehicles with different purposes [5, 41,
62]. We aim to tune the parameters of Ardupilot

to make it learn the flying behavior of PX4.

We identify 20 parameters that are most relevant to drone
control in Ardupilot and mark them as the tuning variables.
We use the motor speed variables as the sample result vari-
ables since the drone’s behavior is mostly determined by the
speed of its four motors. For example, turning is achieved
by lowering the speed of a subset of the motors. We fly both
Ardupilot and PX4 under the same mission, and then employ
WBTuner to tune the tuning variables in Ardupilot while learn-
ing from PX4’s flying behavior. Namely, we define the scoring
function as the root-mean-square errors of the motors speed
between the two controllers. Furthermore, as a typical mis-
sion in Ardupilot often needs to execute under multiple flight
modes (e.g., takeoff, land, etc), we define the tuning regions
as the individual mode control functions. In terms of imple-
mentation, we added only 22 library calls and one callback
function with 204 LOC in the original Ardupilot controller.

To tune Ardupilot according to PX4’s behavior, we first
fly both Ardupilot and PX4 under 2 different missions. The
first one is fairly simple, consisting of taking off, rising to
10 meters, and finally landing. The second mission is more
complex, namely flying along a 45m route that contains 3
way points. Our experiments are conducted using the Gazebo
simulator [35]. The first mission uses 1500 sample runs, while
the second uses 4500 runs given its complexity, each taking
20-30 seconds. Overall, the tuning time is about 42 hours due
to real-time simulation. We will explain why black-box tuning
is unable to achieve the same goal later. Finally, to test the
subsequent performance of Ardupilot, we fly it with the tuned
parameters under a different and more complex test mission,
in which the drone zigzags and returns to the starting point
with a flight distance of 165m.

Fig. 24 shows both the motors speed and visual results for
the first tuning mission. Note that motor speeds represent the
key states of a drone. The gray point in the visual results
indicates the front of the drone. As illustrated, PX4 first
accelerates the drone to a high speed (with the initial spikes of
motor speeds close to time 0). It then maintains a stable high
speed till until timestamp 7 (sec). At this time, it decelerates as
it reaches the targeted height. In contrast, the default Ardupilot

Figure 24: Tuning mission 1

Figure 25: Tuning mission 2

rises very slowly and exhibits tilts and turns (due to some
calibrations when taking off). After tuning, Ardupilot is more
stable at take-off (i.e., the tilts and turns are avoided). If one
looks into the motor speed chart, the spike and the dip (at 7th
sec) appear, resembling the PX4’s chart. While WBTuner is
not able to achieve the same sharpness of the spike/dip as in
PX4 due to other un-tuned parameters, the result is promising.

Fig. 25 shows the results of the second tuning mission (The
three way points are indicated by A, B and C). When the
default Ardupilot reaches the middle way point (i.e., B), it first
tilts, turns at the same spot until its head points to the next way
point C, and then flies towards C. Intuitively, changing the
orientation at point B requires the drone to decrease its speed,
and hence leads to a longer mission. Conversely, both PX4 and
the tuned Ardupilot avoid turning as much as possible at point
B, and rather change their orientation while flying towards
C (as indicated by the white curved arrow), consequently
finishing the mission in a much shorter time.

Fig. 26 shows the results of the new mission. Observe that
after tuning, the motors speed of Ardupilot is quite similar to
PX4. Even more, its flight time is reduced from the original
105 seconds to 82 seconds (i.e., 22% mission time decrease).
The recorded videos for the test mission simulations are avail-
able at [1, 2, 47].

OpenTuner cannot be applied in this case for the follow-
ing reasons. (1) Several parameters that affect multiple flight
modes in a single mission. They are tuned to different values
for various modes. This cannot be supported by blackbox tun-
ing; (2) Each sample run in OpenTuner is a whole execution

Figure 26: Testing mission
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that includes expensive simulator startup and drone prepara-
tion taking 3-4 minutes per sample. In contrast, WBTuner
tunes small code regions and each sample run is just 20-30
seconds; (3) The simulator often fails to start (we suspect that
it results from the locked resources of previous full execution).
This is not a problem for WBTuner as it can spawn all the
sampling/tuning processes after a successful start.

6. Related Work
There are several autotuning frameworks for domain-specific
programs. For example, [13, 16] aimed to tune data-mining
algorithms; [58] aimed to generate an optimized matrix mul-
tiply routine by empirical autotuning; [20] is specialized for
tuning stencil computation; and [29] is a stochastic approach
for parameter tuning of SVM. However, OpenTuner [7] pro-
vides a general autotuning framework that allows users to use
multiple different tuning methods for different programs. Fur-
thermore, OpenTuner treats the whole program as a black box.
In contrast, WBTuner adopts white-box and hence comple-
mentary to OpenTuner. For users with the source code and
certain level of domain knowledge, WBTuner allows him/her
to compose highly sophisticated tuning schemes by accessing
and manipulating the internal states.

A number of dynamic autotuning frameworks like [3, 8, 12,
14, 18, 28, 48, 50] have been proposed to monitor program
execution to guide the program to perform self-adaptation
for achieving specific optimization goal. For example, [18]
provides a framework for tuning resource-aware distributed
applications. PowerDial [28] transforms static application
configuration parameters into dynamic controllable variables
to make programs power-aware. However, these techniques
mostly focus on tuning for a specific objective and for certain
types of programs.

PetaBricks [6, 9] proposes a language- and compiler-based
solution for tunable algorithm construction. Different algo-
rithms and parameter configurations are being tuned to achieve
better performance and accuracy. Different algorithms are se-
lected for execution by the Petabricks runtime. PetaBricks
advocates the concept of tuning by construction, targeting
on stream data processing. The individual streaming compo-
nents only interact through their interfaces and do not have
any other inter-dependences. It cannot tune pre-existing non-
streaming programs where inter-dependences across phases
are substantial like in Ardupilot. Furthermore, users need to
use its language to write data processing programs.

Automatic parallelization [4, 54] transforms a sequential
program to its concurrent version. The process is guided by an-
notations. Although parallelization spawns processes/threads,
it divides a computation task into multiple concurrent sub-
tasks. In contrast, WBTuner spawns processes to compute
similar but different tasks.

7. Conclusion
We propose WBTuner, a general white-box tuning engine. It
provides primitives that allow users to easily compose com-

plex tuning tasks as if they are writing extensions to the orig-
inal data processing programs. Our experiments show that
WBTuner substantially improves data processing results and
outperforms the state-of-the-art black-box tuning engine.
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