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Abstract—Recent paradigm shifts in distributed computing
such as the advent of cloud computing pose new challenges to
the analysis of distributed executions. One important new char-
acteristic is that the management staff of computing platforms
and the developers of applications are separated by corporate
boundaries. The net result is that once applications go wrong,
the most readily available debugging aids for developers are
the visible output of the application and any log files collected
during their execution. In this paper, we propose the concept of
task graphs as a foundation to represent distributed executions,
and present a low overhead algorithm to infer task graphs from
event log files. Intuitively, a task represents an autonomous
segment of computation inside a thread. Edges between tasks
represent their interactions and preserve programmers’ notion
of data and control flows. Our technique leverages existing
logging support where available or otherwise augments it
with aspect-based instrumentation to collect events of a set of
predefined types. We show how task graphs can improve the
precision of anomaly detection in a request-oriented analysis of
field software and help programmers understand the running
of the Hadoop Distributed File System (HDFS).

Keywords-task graphs; happens-before; distributed comput-
ing; log analysis; anomaly detection;

I. I NTRODUCTION

Large scale distributed applications running in third-party
data centers have become increasingly popular due to the
developments of search engines, e-commerce, and online so-
cial networks. Notable examples of such distributed services
include Microsoft’s Windows Azure, Google’s App Engine
and Amazon’s Elastic Compute Cloud (EC2) platform [1].

The computing paradigm of large scale distributed ap-
plications presents new challenges to reliability. Because
the administrative staffs of the platforms and the owners
of applications running on them pertain to distinct corporate
entities, developers of distributed applications are commonly
limited to understanding execution and performing debug-
ging of their code based solely on visible outputs and logs
without the possibility of tapping into the execution. Tradi-
tional debugging practices such as stopping the application
and attaching debuggers to nodes are thus hardly feasible.

Yet, a developer still needs to understand how his/her
program proceeds when unexpected behavior occurs; how
the control flows through different nodes; what the com-
munication patterns and computing resource consumptions
are when the application serves different kinds of requests;

how a piece of high-level application logic ends up being
executed in smaller pieces on different nodes.

The goal of the work described in this paper consists in
developing lightweight techniques for forming a high-level
structural view of distributed program executions to facilitate
understanding and reasoning. Traditional approaches include
representations of the structures and dependences of com-
putation units in a program (static) or in an execution of the
program (dynamic). For example, to analyze sequential pro-
grams, researchers have extensively usedcontrol flow graphs
(CFGs) and static or dynamicprogram dependence graphs
(PDGs). Research has been undertaken to extend these
representations for parallel and distributed programs. For
example, TraceBack [2] is a system that builds distributed
control flow graphs with basic blocks and source line level
details. However, because of CFGs’ lack of inherent support
for modeling interactions between distributed processes as
opposed to their fine-grained structure offered foractions,
they are sub-optimal in distributed settings. Distributedex-
ecutions can generate large amounts of CFG data. Without
further abstraction, it is difficult for programmers to gain
insights about the relevant portions of executions, and it is
unclear whether such approaches can scale beyond simple
scenarios such as web services implemented with a three-tier
architecture.

Alternative models conversely center around threads-
/processes and their interactions. Examples are vector clock-
related approaches proposed as a means to preserve causality
relations [3], [4], [5] between interleaving threads/processes.
These approaches do capture interactions accurately but fail
to link them to actions expressed by high-level programming
constructs.

Our work aims at striking a balance between (a) con-
ciseness of the data presented to programmers and (b)
richness of relationships preserved between different pieces
of computations through three contributions:

• We introduce the notion oftask as abstraction for
representing distributed executions. One can think of
a task as an autonomous piece of computation that
runs within a thread or process and has only limited
and well-defined interactions with other tasks. These
interactions, e.g., a signal on a semaphore or data
received on a socket, induce task boundaries.Task
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Figure 1. Schematic view of dynamic task graph inference for understanding distributed executions.

graphs are obtained by connecting tasks by pairing
corresponding waits and signals or sends and receives.

• We propose a purely log-based light-weight approach
to infer tasks and construct dynamic task graphs for ex-
ecutions of distributed applications.Event logging may
already exist as an integral part of the application or can
be augmented through aspects. We show how dynamic
tasks are built by identifying two abstract types of
primitive events:acting andsignalingevents.

• We develop a declarative formulation of task graphs by
using Prolog. This formulation allows great flexibility
in exploring inferred task graphs by writing simple
Prolog queries. The output of such queries can then,
for example, be visualized by running through tools
like DOT, providing a valuable tool for program com-
prehension.

• We illustrate the benefits of inferred task graphs first by
showing — through Hadoop, an open-source distributed
file system implemented in Java — how they can aid
in understanding and debugging distributed executions.
Then we show how task graphs can improve anomaly
detection [6] in distributed applications. We focus on
request-based analysesof such applications, one of
whose main goals is attributing resource consumptions
(CPU, network) to request types, and show how task
graphs can increase accuracy by reducing false positives
(i.e. false anomaly alarms).

Note that the term “task” is quite overloaded and has
appeared in a number of different research contexts, with
diverging semantics. A good summary is given by Adve
et al.[7]: 1. tasks are used as a programming construct
to express parallelism;1 2. task graphs are used as an
abstraction for performance modeling or 3. by compilers
to partition programs and generate code for correspond-

1Several more recently proposed programming languages designed for
concurrent programming include abstractions of similar granularity as first-
order entities (e.g.activities in X10 [8]).

ing communication and by runtime systems for effective
scheduling. In 1 and 2, tasks are known a priori and input by
programmers. In 3, they are statically inferred by compilers.
In this paper, task graphs are automatically inferred from
event logs.

II. M ODEL AND OVERVIEW

We assume the following model for the distributed sys-
tems that we are analyzing. A distributed application consists
of a set ofprocessesrunning on different nodes, connected
pair-wise through reliable communication channels. Each
process encompasses a number ofthreads. Threads commu-
nicate with each other through inter-thread synchronization
mechanisms, e.g. semaphores, locks, or shared data struc-
tures, and across processes with inter-process communica-
tion mechanisms such as sockets or RPCs. Processes or
threads can log events into files. This execution model ac-
commodates realistic Java or C/C++ distributed applications.

Figure 1 gives a high-level system overview of what we
propose. Users interact with a distributed application running
in a computing cloud by sending requests and receiving
replies. Event logs are collected independently on individual
nodes and processed by our technique. The structure of
the distributed execution is reconstructed by discoveringthe
inter-process and -thread relations from the linear log files.
Finally, a task graph is produced, describing the logged
execution.

Figure 2 zooms in on the phase of inter-process and inter-
thread relation discovery. The events in a log file (collected
for a process) are first demultiplexed into per-thread event
sequences; then, sequences of related events are abstracted
into tasks (shadowed boxes); finally, interactions between
events are established by matching event attributes, without
demanding expensive vector clocks. The relations between
tasks are abstracted from the relations between the events
in the tasks. Since the second task in threadT=35 starts
threadT=36, there is an interaction from the second task of
T=35 to the first block of T=36. Furthermore, threadT=36



[From log files]

Event stream

[Demultiplexed; thread 17/31 not shown.]

T=35 T=36

T=35: read.sock=[50010,36961],size=3474

T=35: read.sock=[50010,36961],size=56
T=31: Object.notify*() HC = 1301078346
T=31: write.sock=[36935,9000],size=291
T=17: read.sock=[36935,9000],size=148
T=35: write.sock=[50010,36961],size=1
T=17: Object.notify*() HC = 481105279

T=35: Object.notify*() HC = 919099148

T=36: Object.notify*() HC = 919099148
T=36: Object.notify*() HC = 151481191
T=31: Object.notify*() HC = 1301078346
T=31: write.sock=[36935,9000],size=424
T=36: write.sock=[50010,36961],size=10

T=17: Object.notify*() HC = 2121366929

T=35: Object.notify*() HC = 919099148

T=35: startRunnable = 1013462002

T=31: Object.wait() HC = 481105279
T=35: Thread.start() TID = 36

T=35: read.sock=[50010,36961],size=4
T=36: startRunnable = 919099148

T=36: finishRunnable = 919099148
T=17: read.sock=[36935,9000],size=95

T=31: Object.wait() HC = 2121366929
T=35: Object.wait() HC = 919099148

T=35: Thread.join() TID = 36
T=35: finishRunnable = 1013462002

                                                                                 

                                                                                                                           
                                                                               

                                                                                    
                                                                                
                                                                                

                                                                                

                                                                                 
                                                                                

                                                      

startRunnable = 1013462002             
read.sock=[50010,36961],size=56                                                                    

write.sock=[50010,36961],size=1         

Thread.start() TID = 36                                                                              
read.sock=[50010,36961],size=3474                                                                   
Object.notify*() HC = 919099148                                                                  
read.sock=[50010,36961],size=4                   

read.sock=[50010,36961],size=3474  

Object.wait() HC = 919099148                                                                                    
Object.notify*() HC = 919099148
Thread.join() TID = 36                        
finishRunnable = 1013462002           

                                                                       startRunnable = 919099148     
                                                                       Object.notify*() HC = 919099148
                                                                       Object.notify*() HC = 151481191

                                                                       write.sock=[50010,36961],size=10
                                                                        finishRunnable = 919099148       

Figure 2. Zoom in on the “distributed control flow discovery”step in
Figure 1.

signifies an object with id919099148, on which thread
T=35 is waiting, hence there is an interaction fromT=36
to the sixth task ofT=35.

III. TASKS AND TASK GRAPHS

In this section, we present our definitions of events, tasks,
and task graphs.

Definition 1: An eventin a distributed program execution
is the execution of an operation that sends (receives) a
signal or data to (from) a different process/thread. There
are two types of events:acting eventsandsignaling events.
A signaling event passes a signal or data to a different
thread/process; the reception of this signal or data is called
the acting event; it enables the receiving thread/process to
proceed.

Events are the smallest building blocks of our system.
Intuitively, a signaling event is the producer of a signal
or data; an acting event is the consumer of a signal or
data. For instance in Figure 2, in the per-thread log of
T=35, at the end of the first shaded block, the event of
“Thread_start() TID=36” is a signaling event and the
corresponding acting event is the first log entry in the
receiving thread (T=36).

Property 1: Every acting event must have a unique cor-
responding signaling event; a signaling event can have zero
or multiple corresponding acting events.

The happens-beforerelation [3],−→e, is a partial order
over the setE of events of an application execution such
that for a, b ∈ E, a −→e b ⇔ a causally precedesb.
Relation−→e thus defines the set of such tuples(a, b); we
refer to these ashappens-before (instances)(HBs). More
specifically, in this paper relation−→e is defined between
an acting eventAE and its corresponding signaling event
SE, that isSE −→e AE.

In order to reconstruct system-wide task graphs, it is
important to identify all inter-thread and inter-process events
reflecting causality and data dependences. Table I shows the
primitive events considered in Java-based systems. Shared

variable reads and writes are not considered (directly) in the
table. If such reads and writes occur in a way following
specific synchronization then the synchronization patternis
captured by other means, such as the acquiring or relinquish-
ing of a lock, leading to signaling and acting events.

Definition 2: A taskis an autonomous computation inside
a thread delimited by a pair of acting events,[AE,AE′),
consisting of all the logged events between these two events
inside the same thread.

Acting events inside a thread divide the whole com-
putation of that thread into tasks. A task starts with an
acting event and ends right before the next acting event.
Conceptually, it represents the execution enabled by the
signal/data received by the start event. Note that tasks are
a dynamic concept. The following property can be directly
inferred from the definition.

Property 2: A task must contain one acting event and
zero to multiple signaling events.

The happens-before relation betweentasks, −→t, can be
defined based on the HBs betweenevents, i.e., t1 −→t t2
if two events in the two respective taskst1 andt2 comprise
an HB. For instance, threadT=36 in Figure 2 has one task
as there is only one acting event in this thread. Denote the
task ast36

1
, i.e., the first task in the thread. There are a

number of HBs involvingt36
1

: t35
2

−→t t36
1

, t36
1

−→t t35
6

and t36
1

−→t t35
7

.
Definition 3: A task graph is a directed acyclic graph

(DAG), whose nodes are tasks from all threads in the system,
and edges represent HBs between these tasks.

Later on, we will conduct experiments ofrequest-based
analysesof distributed systems. We formally define the
concepts of requests and replies as follows.

Definition 4: A requestis a pair of signaling and acting
events, with the signaling event originating from outside the
system, while the acting event happens inside the system.
The task starts with the acting event represented asTreq.
A reply usually associated with a request is also a pair
of signaling and acting events, but with the scope of the
two events reversed, i.e., with the signaling event inside the
system and the acting event outside. The task ending with
the signaling event is represented asTrep.

With the definitions of request and reply, we can now
defineend-to-end(E2E) request service graphs. The arrow
∗

−→t represents the transitive task level HBrelation.
Definition 5: A E2E request service graph for a request

req and corresponding replyrep is a task graph constructed
from the set of tasks,T = {Tx|Treq

∗

−→t Tx ∧ Tx
∗

−→t Trep},
and their HBs.

Our design choice of using acting events as task bound-
aries is essential to correctly attributing events to requests.
Consider the example in Fig. 3, which shows two threads.
T1 receives two requests,r1 andr2, and then delegates them
to T2. The requestr1 starts taskA© in T1. The task involves
all events until the next requestr2 is received. TaskA©



Table I
SAMPLES OF PRIMITIVE EVENTS FORJAVA BASED SYSTEMS. ∗ I/O STREAMS CREATED OVER SOCKETS.

Categories Acting Signaling
Semaphore Object.wait unblock, Object.notify[All] call,
Threading Thread.run start,Thread.join return, Thread.start call, Thread.run finish,

Other (JCU)

Condition.await unblock,
Runnable.run start,
Callable.call start,
Future.get return,
BlockingQueue.[take|poll|remove] return

Condition.signal[All] call,
Executor.execute call,
ExecutorService.submit call,
BlockingQueue.[add|offer|put] call

Inter-process SocketChannel.read, InputStream.read∗ SocketChannel.write, InputStream.write∗

recv request

object.notify… o1
write socket[…]

… 

recv request

write socket[…]

object.notify… o2

… 

read socket[s1, p1]

T1 T2
A

object.wait … o1
… 

write socket[s1, p1]

… 

object.wait … o2
… 

r1

r2 B

C

D

E

r1  relevant r2  relevant

Figure 3. Intuition of task definition.

has a HB edge withD© due to the object notify/wait. Our
technique does not introduce a HB edge betweenA© and B©
like most vector-clock based approaches do. The intuition is
that distributed systems implementations are mostly event
driven, the semantics of execution originate from events
from outside, namely, the acting events. Observe that laterin
T1, task C© is againr1 relevant, due to the socket read/write.
In comparison, if edges were introduced between tasks in the
same thread, all tasks would becomer1 relevant.

IV. TASK GRAPH CONSTRUCTION

A. Acquiring Events and HBs

We leverageaspect-orientedtechniques [9] to emit nec-
essary logging data for task graph construction. Aspects
allow for the type of interested events to be specified very
generally, without specific programs in mind, and thus,
permit reuse with different distributed programs. We use
AspectJ to instrument Java-based distributed applications.
The details are emitted for brevity.

Log files are parsed and each entry is canonicalized to
a 7-field tuple event: a unique event ID, process ID, thread
ID, source file location, type, tag, value. Most fields are self-
explanatory. The type field distinguishes acting and signaling
events. We discuss tag and value fields in the next section.
Samples are:

event(94,31,1,’Shell.java:189’,act,thread,37)
event(95,31,1,’Client.java:226’,sig,obj,484790)

HBs on events are essential for our task graph construc-
tion. Research has long focused on various designs of vector

clocks and their variants in recording such relations. The
space cost of timestamps based on vector clocks can become
prohibitive when there are a large number of concurrent
threads and processes or when inter-thread/inter-process
communication is intensive, as a timestamp (whose size is
decided by the number of threads and processes) has to
be assigned to each event, and piggy-backed on thread and
process interactions. While the resilience provided by vector
clock based approaches is necessary for online testing or
replaying concurrent applications, our goal is less stringent,
which is to discover event structure.

We observe that the pair of events involved in a HB
usually share common event data (fields). They may record
the IDs of requests or objects on which the events execute.
For example, a socket send event has a tagsock and
value〈FromIP:FromPort, ToIP:ToPort〉. Such informa-
tion can be used to discover the corresponding receive event.
In addition, the event type field indicates if an event is
signaling or acting. Thus, for a pair of signaling and acting
events from different threads with the same data tag and
value, we infer that the signaling event happens before the
acting event. For example, for the following events

event(68,3,32,’Client.java:149’,sig,obj,280630)
event(69,3,1,’Client.java:724’,act,obj,280630)

we can infere68 →e e69.

B. Prolog Based Event Processing

Our log processing and task graph construction techniques
are based using Prolog, for three reasons. First, Prolog excels
in inference over relations. It also provides the capability of
recursive inference that is very desirable in our application,
for example, in finding all reachable tasks from a given task.
Second, although the techniques could also be implemented
in an imperative language, the declarative style of Prolog
allows us to easily generate various new relations from the
existing ones. Third, Prolog implementation is concise and
well-formed.

In the remainder of the paper, we will present our algo-
rithms using Prolog predicates. Each predicate consists of
two parts separated by the symbol “:-”: the left hand side
is called thegoal; the right hand side is a set of conditions.
The goal and the conditions are essentially relations. The
meaning of the predicate is that an entry is created in



the goal relation if the set of conditions are satisfied. The
variables are instantiated during the predicate evaluation.
There are basic relations that do not have right hand side
conditions. They are calledfacts. As shown in Listing 1,
the event fact is used to define basic events as parsed
from log files. It has 7 arguments or fields. The goalhb

defines an HB between two events. It can be satisfied in
a number of ways, exemplified by the two predicates with
hb being the left hand side. The first predicate describes
that any two events from different threads with matching
data(Tag,Value) pair define an HB. The second predicate
describes HBs caused by socket communications between
threads or processes2. Relationpar_cond describes pair of
threads that are different. Note that simply using thread IDs
is inadequate as different threads in different processes may
have the same ID.

/ / Events are of form : ( parsed from log f i l e s )
event(#,Process,Tid,Source,act|sig,Tag,Value).
/ / Event happens-before: event (X)→e event (Y)
hb(X, Y):- event(X, M, T, _, sig, Tag, Data),

event(Y, M, S, _, act, Tag, Data),
not S = T, not Tag = sock.

/ / happens−before caused by socket communication
hb(X, Y):- event(X, M, T, _, sig, sock, Data),

event(Y, N, S, _, act, sock, Data),
par_cond(M, T, N, S).

hb(X, Y):- ...

/ / t rue when thread T in process M and S in N
par_cond(M, T, N, S) :- M = N, not T = S.
par_cond(M, _, N, _) :- not M = N.

/ / Event graph formed by event happens−before
event_graph(G):- findall(X-Y, hb(X, Y), L),

vertices_edges_to_ugraph([], L, G).

/ / Tasks: represented by two consecut ive act ing
/ / event ids from the same thread
task(Start, End):- event(Start,N,T,_,act,_,_),

event(End,N,T,_,act,_,_),
Start < End,
not(event(Z,N,T,_,act,_,_), Start<Z, Z<End).

/ / Task happens-before: task (T , )→t task (S , )
task_hb(T,S):- task(T,E),task_has_sig(T,E,X),

hb(X, S), task(S, _).
/ / task (B, E) has an signal ing event S
task_has_sig(B,E,S):- task_event(B,E,S),

event(S,_,_,_,sig,_,_).
/ / task (B, E) has event X in i t
task_event(B,E,X):- event(B,N,T,_,_,_,_),

event(X,N,T,_,_,_,_),
B =< X, X < E.

/ / Task graph formed by task happens−before
task_graph(G):- findall(X-Y, task_hb(X, Y), L),

vertices_edges_to_ugraph([], L, G).

Listing 1. Prolog task graph inference algorithm.

The remaining predicates in Listing 1 show how we
can build a system-wide task graph by processing existing
relations. The goalevent_graph defines a directed graph

2In Prolog, ’_’ represents a wildcard

with events being the vertices and all event HBs being the
edges. Bothfindall and vertices_edges_to_ugraph

are Prolog library predicates. The predicate binds a variable
L by retrieving all hb edges and then transformsL to a
graph. There are also library predicates finding paths or
transitive closures in a graph. The goaltask defines a task
as discussed in Section III: a task is represented by the IDs
of two consecutive acting events from the same thread. The
goaltask_hb defines HBs between tasks, namely, if there is
a signaling event in the first task[T, ) happening before an
acting event in the second task[S, ), thenT →t S. Finally,
the goaltask_graph operates similar toevent_graph.

C. False Positives/Negatives in HBs

As mentioned earlier, in order to constraint the overhead,
our analysis infers tasks and HBs purely from logs. Since
event logs are lossy, meaning they do not contain enough
information to faithfully reconstruct what had happened
during execution, our analysis has to handle false positives
and false negatives.
False Positives Caused by Common Synchronization
Objects. It is very common in Java programming to use
the same synchronization object in multiple places, for
instance, notify/wait on the same object may have multiple
occurrences. Simply matching object ids in thread logs gives
rise to false positives. Consider the example in Fig. 4.
ThreadT1 notifies objecto1 at two places,A© and B©. The
corresponding acting events areC© and D©, respectively.
However, if we simply match the event parameters, false
HBs are undesirably introduced betweenA© and D©, and
betweenB© and C©.

preceding(X, Y):-
event(X, M, T, _, sig, Tag, Data, Ts1),
event(Y, M, S, _, act, Tag, Data, Ts2),
not S = T, not Tag = sock, Ts1 < Ts2.

sig_preceding(X, Y):-
event(X, M, T, _, sig, Tag, Data, Ts1),
event(Y, M, S, _, sig, Tag, Data, Ts2),
not S = T, not Tag = sock, Ts1 < Ts2.

hb(X, Y):- preceding(X,Y), not sig_preceding(X,_)

Listing 2. Prolog task graph inference algorithm.

Note that if there exists a global wall clock or a vector
clock is used, the false positives can be eliminated. However,
we already mentioned that vector clocks are too expensive
in general. Realizing a global wall clock demands extracting
the current timestamp, which entails a system call. We
observe that the order of the events in the original process
log file (before they are demultiplexed into per thread logs)
can serve as logical timestamp. Now an event consists of 8
fields with an extra timestamp fieldts. The revised rule for
the HB relation regarding inter-thread interaction is shown
in Listing 2.

Relation preceding() describes all pairs of signal-
ing and acting events that operate on the same object
and the signal event precedes the acting event. Relation
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sig_preceding specifies all pairs of signaling events that
operate on the same object and with the first event precedes
the second event. Therefore, the HB relation is defined as a
pair of signaling and acting eventsX andY, with X preceding
Y, excluding any signaling events that precedeX.
False Positives Caused by Socket Communications.An-
other source of false positives is socket communication. The
root cause is that while the OS level I/O is able to receive
an entire packet sent by a socket write from a remote node,
the JVM calls to socket reads often retrieve only a piece
of the packet at a time. As a result, multiple sockets reads
are the acting events corresponding to the single signaling
event. However, allowing one to many mapping introduces
false positives. Consider the example in Fig. 5. NodeP1

sends two packets using the socket. The packet sent atA© is
read atC© and D©; the packet sent atB© is read atE©. Such
scenarios create problems for us if we simply match event
parameters: false positives are introduced fromA© to E© and
from B© to C© and D©. Note that we are dealing with logs
from two different processes and hence the aforementioned
timestamp idea is not applicable.

Our solution relies on the observation that the packet sizes
in the multiple reads corresponding to a write aggregate
to the size of the written packet. Hence, we maintain the
number of bytes that have been read, if the size of the
written packet has not been reached, the HB edges are still
introduced from the same write. Otherwise, the algorithm
moves on to the next written packet.

False Negatives Caused by Java’s Guarded Wait Idiom.
The intended semantics of Javawait/notify is as follows:
a notify call unblocks a thread currentlywaiting on the
object. However, a precisely conforming implementation is
very hard, if not impossible, due to the existence of “spurious
wakeups” (See the official Java API documentation on
java.lang.Object.wait(long) for details). Spurious

wakeups can unblock a thread when there has not been a call
to notify. To deal with this condition, Java programmers
are accustomed to write code like the following:

synchronized (ackQueue) {
while(ackQueue.size() != 0) {
try{

ackQueue.wait();
//log.info(’’wait unblock’’+ackQueue);/*A*/

}catch(InterruptedException e) {}
}
//WaitMarker.markWait(ackQueue); /*B*/

}

Namely, await is always coupled with a condition (here
ackQueue.size() != 0). The meaning of the loop is that
when a notification occurs, the size ofackQueue has to be
0. Otherwise, the unblocking of thewait is not caused by a
notification, but rather a spurious wakeup. However, one side
effect is that thewait may not even get executed, depending
on the condition. In other words, the condition may play the
role of synchronization in place of thewait. This poses a
challenge to our event generation code inserted at statement
A, which is supposed to emit an event after unblocking from
wait. That is, an unblocking event is missed. The missed
unblocking events will further cause missed event/task HBs
when analyzing the logs (false negatives). To combat this
problem, such wait idioms are singled out and a dummy
API WaitMarker.markWait(Object) is introduced and
placed right after the condition checking statement corre-
sponding to eachwait, as shown by statementB in the
above example. We then change our AspectJ instrumentation
code to log calls tomarkWait instead ofwait. We also
found that the rewriting burden is acceptable even for large
systems like Hadoop, for which only 30 lines of code change
are needed.

V. EVALUATION

A. Performance

Our experiments are done on the Hadoop Distributed File
System (HDFS), an open source project implemented in
Java. It is designed to run on commodity hardware and
supports MapReduce-style applications. The SVN checkout
as of February, 2009 of the system contains 1558 Java source
files, totaling 324K lines of code and 7.2M of class files
(excluding libraries).

The original logging statements in the source code do
not produce information meeting our requirements, i.e., they
are insufficient to infer task graphs. Thus, we applied the
logging aspects that we developed for Java-based distributed
code, and run the resulting modified version of Hadoop.
After weaving the aspects, the class file size grows to 8.8M,
a 22.2% increase. The end-to-end request handling time
increased by an average of 38% in instrumented version,
compared with original version. This number is collected on
an 8-node cluster on Emulab [10], with each node consisting
of a 850MHz PIII CPU and 500MB memory.



Table II
TASK GRAPH BUILDING TIME IN PROLOG.

Properties Log-A Log-B Log-C Log-D Log-E
# of events 2604 4768 6058 14042 21915
# of tasks 1359 2545 3339 5216 9872
# task hbs 597 2140 1867 6607 8488
time (s) 6 19 37 93 437

Table II shows the time that Prolog takes to infer the
HBs and build the task graphs for some sample logs. These
logs record between one to five minutes of Hadoop exe-
cutions. The second to fourth rows represent, respectively,
the number of events, the number of inferred tasks, and the
number of happens-before relations in the logs. The final
row represents the Prolog processing time in seconds; these
numbers are collected on an AMD Opteron platform with
two 2.4GHz CPUs and 6GB of RAM, running XSB Prolog
Version 3.2.

B. Program Comprehension

We demonstrate the utility of task graph in program com-
prehension as well as the flexibility of the query interface,
using Hadoop HDFS. HDFS implements a set of file system
APIs (PUT, GET, etc.) just like normal file systems. It
transparently stores file data to hosts in a network. On a high
level, its functionality is divided into three components:Na-
meNode, DataNode, and SecondaryNamenode. More than
one instance of these components can be configured to run
on hosts in a network.

Panoramic view.When a new developer or maintainer joins
the HDFS project, the first question to ask may be how
NameNode, DataNode, SecondaryNamenode are started and
interact with each other. To answer this question, we start
HDFS with a simple configuration of one instance for
each component, collect the logs, and build the task graph.
Figure 6(a) shows a panoramic view of the obtained task
graph depicting the interactions. This figure is produced by
DOT from the popular GraphViz software after a simple
conversion of the task graph data into DOT format. In this
graph, nodes represent tasks; edges represent task HBs, with
red edges denoting inter-process, blue edges denoting inter-
thread, and black edges denoting thread spawn and reap;
tasks are grouped by the component or process that executed
them.

One can observe a re-occurrent task interaction pattern
from Figure 6(a). The first interaction of each occurrence is
labeled from 1 to 9 in the graph. This pattern is abstracted
and shown in Figure 6(b). For example, the interaction
170 →t 71 →t 73 →t 176 is an instance of the pattern. By
examining the source code location attributes of the events
in the tasks, we discover that they represent RPC calls, one
of the main communication patterns in Hadoop. The 9 RPC
calls in the graphs are shown in Table III. The RPC call
names in the table suggest that at start-up, the very first
thing DataNode and SecondaryNamenode do is to ensure
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Figure 6. Task graph showing a panoramic view of the Hadoop HDFS
component interactions. Nodes represent tasks; edges represent HBs.

they are talking through the same protocol with NameNode.
Then, DataNode registers itself with the NameNode and
reports the data blocks managed by it. The multiple calls
of sendHeartbeatsuggest that they are the keep-live messages
between DataNode and NameNode. Indeed, the timestamp
difference between consecutive heartbeat calls matches the
value set in configuration file. These observations about
the behavior of HDFS largely match those described in its
development documentation.

# From To RPC Call Name
1 DataNode NameNode getProtocolVersion
2 DataNode NameNode versionRequest
3 SecondaryNamenode NameNode getProtocolVersion
4 DataNode NameNode register
5 DataNode NameNode sendHeartbeat
6 DataNode NameNode blockReport
7 DataNode NameNode sendHeartbeat
8 DataNode NameNode sendHeartbeat
9 DataNode NameNode sendHeartbeat

Table III
HADOOP HDFS START-UP INTERACTIONS.

Closer look at distributed control flow. Another question
that a developer or debugger may ask is how a distributed
system proceeds after a certain “point”. A point, for exam-



ple, can be an event indicating a fault or an event signifying
the starting of a request. We show that task graphs are
instrumental for answering such questions, using a case
study of how replication in HDFS works. In HDFS, client
files are broken into fixed-size data blocks; replication uses
these data blocks as basic units.

This experiment is conducted on a HDFS cluster in
Emulab with 7 hosts configured to run as DataNodes and
one remaining host to run as the master NameNode (as well
as SecondaryNamenode). We set the replication factor to
three. We then wrote a file of twice the configured data
block size to this cluster through the HDFS client, collected
logs, and built the task graph.

To see how replication requests are handled, the following
queries are performed:

findall([A, B], req_task(datanode, A, B), L).
reachable_tasks(A, B, Out) :- task_graph(G),

reachable([A,B], G, Out).

A req_task(datanode,A,B) is a task,task(A,B), that
starts with a socket receive event that does not have a
matching socket send event (since the send event happened
outside of the cluster in the client’s code). Thus, the first
queryfindall(..) will pick out all request starting tasks
that executed in DataNodes and put these tasks in a listL.
With our experiment set up, these tasks are the entry point
of handling file replication requests. For all the tasks inL,
we can run the second query to obtain all reachable tasks
from L, and save the result inOut. The subgraph,SubG,
formed by the tasks inOut are then converted to DOT file
for visualization.SubGwill show how the system proceeds
after receiving the replication request.

Due to space limitation, the complete graph ofSubG is
not presented here. However,SubGconsists of two disjoint
subgraphs with similar interaction patterns, one of which is
shown in Figure 7(a). Since the file written is of twice the
data block size, one can infer that each subgraph ofSubG
may correspond to executions that replicate each of the two
data blocks.

From the structure of Figure 7(a), we can gain some
knowledge of how each data block is replicated: first, the
data block replication request comes in to DataNode-1 at
Task-3040 in the top left of Figure 7(a). Then, it gets
forwarded to DataNode-2 and DataNode-3. The actual file
block data is then received from the client and written at
Task-3046 in DataNode-1 before being forwarded to the
other two nodes. Finally, after receiving these data blocks,
acknowledgments are propagated in the reverse direction,
e.g. 1298 →t 3053. To offer some confidence to this
understanding of replication, Figure 7(b) shows the task
graph with replication factor set to two.

As a side effect, we also notice a potential inefficiency
from the replication handling task graph: there seem to be
two kinds of acknowledgments being propagated, as shown
by the two different socket communications originated from

Task-1765 at Node-3 (highlighted green; similarly from
Task-1298 at Node-2). By querying the messages sizes as
well as the source code locations of the corresponding
events, we see that one acknowledgment is the packet
sequence number of 8 bytes, and the other acknowledgment
is a status value of two bytes. It seems that the sequence
number acknowledgment alone is enough. Our communi-
cation on the Hadoop developer mailing list confirms this
observation.

Lastly, we want to show that the task graph can also help
understand the faults in the system. We rerun the experiment
with replication set to three and force an fault by throwing
an IOException at DataNode-3 in the replication chain.
The exception is thrown in atry-catch block where such
an IOException could have happened. The exception is
thrown after DataNode-3 receives the data block, but before
it acknowledges. Figure 7(c) shows the resulting task graph.
Comparing it with Figure 7(a), we can clearly see that Task-
2322 (highlighted red) in DataNode-3 in Figure 7(c) has
behaved differently than the corresponding Task-1765 in
DataNode-3 in Figure 7(a). To debug this fault, the developer
can not only narrow down the fault location (by identifying
the mal-aligned task), but also gain a understanding of
its context, i.e., after receiving a data block and before
acknowledging.

C. Request-Oriented Analyses

Modern distributed systems provide their services to
clients through requests and replies. The goal of request-
oriented analyses is to attribute runtime events and resource
consumptions to each request or each request type. Data
mining techniques can then be employed to find anomalies
or inefficiencies. To be able to precisely attribute runtime
data to individual requests, previous approaches assume that
a unique ID is associated with each request and propagated
throughout the entire execution serving the request. This
assumption is unrealistic in practice as all the relevant data
structures would need to be changed to accommodate the
piggy-backed information. Changing the code is difficult in
modern distributed applications as most of them use third-
party library code. In this experiment, we illustrate that our
inferred task graphs can be used to improve the precision
of attributing runtime data to requests, which in turn reduce
false positives (false alarms) in anomaly detection built on
top.

Request-oriented analyses can be combined with a com-
ponent interaction model to detect anomalies [6] (see Sec-
tion VI). The premise of this technique is that a system’s
execution should behave similarly over time. One of the
kinds of behaviors is how the components in the system
interact with each other. Here, the number of interactions
measures the number of communication operations over
network sockets. Assuming that componentA interacts with
n other components,Bi, i ∈ [1..n] and we measure the
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Figure 7. Replicating a data block under different scenarios. The dotted edges serve to identify tasks in the same thread; they are not HBs.

number of interactions between them over two time periods,
t1 andt2, asc1,i andc2,i, respectively, withcx,i representing
the number of interactions betweenA and Bi over time
periodtx, then the technique uses the followingχ2 value to
quantify the behavior difference of time periodt2 compared
to t1:

χ2 = ΣN
j=1

(c2,j − wj)
2

wj

, with wj = pjC2, pj =
c1,j

C1

,

and C1 = ΣN
j=1

c1,j , C2 = ΣN
j=1

c2,j

In particular, C1 and C2 represent the interactions ofA
with all other components;pj is the ratio of the interactions
betweenA and Bj over the total interactions in periodt1;
wj can be understood as the expected interactions in period
t2 if the same behavior pattern is assumed;χ2 computes
the standard deviation. Here, a higher value ofχ2 indicates
a more significant divergence of the system behavior over
time periodt2 from t1.

Without task graphs, it is hard to know to which request
an interaction should be attributed to, because answering a
request might involve multiple processes and a process may
be serving many requests in parallel. With task graphs, the
origin request of an interaction can be correctly identified
through graph reachability analysis (See Figure 3). We set
up an experiment to demonstrate how task graphs improve
the precision of the aforementionedχ2 based anomaly detec-
tions. The experiment is conducted on a distributed storage
system being developed at Microsoft. It is used to provide
storage services for the Windows Azure cloud computing

platform. It is built with features such as load balancing and
fault tolerance. The application logic of the whole system
is divided into many modules, called roles. Depending on
the expected workload, these roles can be instantiated intoa
variable number of instances when deploying a live system.
This system interacts with clients by supporting basic file
system related operations: PUT operations that store client
data into the system, GET operations that retrieve previously
stored data, and a few others. Developers already have
logging facilities implemented in the code, and hence we use
the log files generated by the default setting. After collecting
all the log files from all roles, events are identified and
connected as described in Section IV.

In anomaly detection, it is a common practice to compare
the system behavior of a later period to a previous period [6].
During these two periods, it is highly likely that the system
will serve different mixtures of types of requests. To simulate
this situation, we then collect logs for two runs: inRun 1,
the system serves 750 PUT requests and 250 GET requests;
in Run 2, the system serves 500 requests of each type. Since
we use the same version of the system, we should expect
any anomaly detection model to conclude that the system
behavior during Run 2 is similar to Run 1, in other words,
small χ2 values should be expected.

Figure 8 summarizes our findings. We focus on a key
componentS in the system and observe its component
interaction behavior with other roles. From the figure, we
can see that if we apply the component interaction model
naively (Figure 8(a)), theχ2 value, 56.4, is quite large,
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suggesting anomaly. However, the largeχ2 is indeed caused
by different request combinations being served. After using
task graphs to attribute the interactions to different request
types (Figure 8(b)), theχ2 values are much smaller:2.2
for serving PUT requests and2.9 for GET requests, which
suggests that the system behaviors during the two runs are
similar, i.e., there are no anomalies. This latter result matches
the experimental setup, suggesting that the attribution ability
afforded by task graphs is critical to applying such models
in practice and achieving results with low false positives.

VI. RELATED WORK

Tracing. TraceBack [2] and Magpie [11], [12] also tar-
get the problem of understanding distributed applications.
TraceBack aims to reconstruct basic block level or source
line level control flows by using traces generated from
static and dynamic instrumentation. Its focus is on merging
traces from multiple threads into a single master trace. The
difference with our work is that the distributed control flows
that we aim to reconstruct are of coarser grain, i.e., tasks,
which enables us to reason about systems consisting of large
number of components and processes. Magpie generates
request description strings by joining logged events serving
the same request. These description strings record which
components and resources are used in serving requests.
The strings are then used to model workloads and detect
anomalies. The work focuses on mining request strings and
relies on domain knowledge to cluster events belonging to
the same request. The work in this paper moves us closer
to the goal of discovering request paths without relying on
domain knowledge, by offering reusable tracing aspects for
Java-based systems.

Other systems use a black-box approach to infer causal
paths from protocol-level traces. Aguilera et al. [13] traces
inter-node RPC messages, then, statistically infers causal
paths offline and uses them to performance debugging.
BorderPatrol [14] uses library call interceptors to generate
traces, with every low overhead demonstrated in real systems
(10-15%). To recover causal path, “a module designation
identifies which request the module is currently processing”.

Compared with our approach, both of these systems miss the
causal relations brought by inter-thread signals.

Debugging. Several efforts aim at finding bugs in dis-
tributed systems by verifyinginvariantslocally at some node
or globally through data aggregated from multiple nodes.
Research issues include choosing a logically consistent time
to perform the checking, and developing scripts for develop-
ers to specify invariants [15], [16].General behaviormodels
leverage statistical analysis on large sets of system behavior
data. Mirgorodskiy et al. studied the use of function-level
traces in debugging with fail-stop and non-fail-stop failures
in large systems with nodes running similar activities [17]
(replicated systems). For each node, a time profile vector
is built, summarizing percentages of time spent in each
function (or call chain). Outlier nodes are found by using a
distance measure for these vectors. Xu et al. [18] developed
a general anomaly detection methodology for large-scale
systems, in which they studied the effectiveness of applying
the statistical method PCA, Principal Component Analysis,
to feature matricies that were automatically constructed from
console logs.

Zhang et al. [19] studied how to use basic metrics
at system- and application-level to predicateservice level
objective (SLO) violations in three-tier architectures; in
particular, how to adaptively select these metrics to be used
in an ensemble of models for SLO violation detection. So
instead of using just one model with a set of preset metrics
to monitor the health of a distributed system, ensembles of
models are used over time. They argue that as the system
evolves, the system behavior might not be captured by the
current model, so a new metric and new model need to be
introduced to capture the evolved behavior. Their work is
orthogonal to ours.

Cherkasova et al. [20] proposed a regression-based trans-
action model and an application performance signature
model to detect application performance changes and dis-
tinguish these changes due to workload change from those
due to performance anomaly.

Friday [21] is a replay based debugging system for dis-
tributed systems, capable of causally consistent group replay,



with each replayed node running inside a GDB process. A
high-level script language is provided to break/watch/exam-
ine/update the distributed system as a whole; these com-
mands are automatically translated into sets of normal GDB
commands.

Visualization models.TotalView [22] is a parallel debug-
ger. It can control multiple processes concurrently and offers
rich UI for programmers to visually examine and change
data arrays in MPI programs, for example. Arnold et al. [23]
developed the Stack Trace Analysis Tool (STAT), which
provides a visualization of a snapshot of the call stacks of
all MPI processes by anchoring them in a tree structure. It
is shown to be quite effective in finding tricky bugs in large
networks running hundreds of MPI processes.

VII. C ONCLUSION

This paper introducedtasksand task graphs. They can
be used to analyze distributed systems the same way that
basic blocks and CFGs are used to analyze sequential
programs and their executions. They offer a box-and-arrow
view of how distributed computation proceeds. Tasks cannot
be mapped directly to programming language constructs
for mainstream languages. Rather, they refine traditional
operating systems concepts such as threads or processes and
cut cross software engineering concepts such as classes or
packages. We showed that task graphs are high-level enough
to aid the understanding of the structure of distributed ap-
plications while the causal paths of the graphs help increase
the accuracy of request-oriented anomaly detection.
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