Lightweight Task Graph Inference for Distributed Applicat ions

Bin Xin, Patrick Eugster, Xiangyu Zhang Jinlin Yang
Dept. of Computer Science Center for Software Excellence
Purdue University Microsoft Corp.
{xinb,peugster,xyzhan@cs.purdue.edu jinliny@microsoft.com

Abstract—Recent paradigm shifts in distributed computing how a piece of high-level application logic ends up being
such as the advent of cloud computing pose new challenges to executed in smaller pieces on different nodes.
the analysis of distributed executions. One important new char- The goal of the work described in this paper consists in
acteristic is that the management staff of computing platforms d lobing lightweiaht techni for f . high-lle
and the developers of applications are separated by corporate eve oplng_ 9 We_'g . echniques for ormlng a hig) ve
boundaries. The net result is that once applications go wrong, ~ Structural view of distributed program executions to fiéaié
the most readily available debugging aids for developers are understanding and reasoning. Traditional approachesdacl
the visible output of the application and any log files collected representations of the structures and dependences of com-
during their execution. In this paper, we propose the concept of putation units in a program (static) or in an execution of the
task graphs as a foundation to represent distributed executions, d i0) E le t | tial i
and present a low overhead algorithm to infer task graphs from program (dynamic). For examp ?' 0 analyze sequental pro
event log files. Intuitively, a task represents an autonomous drams, researchers have extensively usedrol flow graphs
segment of computation inside a thread. Edges between tasks (CFGs) and static or dynamjgrogram dependence graphs
represent their interactions and preserve programmers’ notion (PDGs). Research has been undertaken to extend these
of data and control flows. Our technique leverages existing representations for parallel and distributed programs. Fo

logging support where available or otherwise augments it . . N
with aspect-based instrumentation to collect events of a set of example, TraceBack [2] is a system that builds distributed

predefined types. We show how task graphs can improve the control flow graphs with basic blocks and source line level
precision of anomaly detection in a request-oriented analysis of details. However, because of CFGs’ lack of inherent support

field software and help programmers understand the running for modelinginteractions between distributed processes as

of the Hadoop Distributed File System (HDFS). opposed to their fine-grained structure offered dations
Keywords-task graphs; happens-before; distributed comput- they are sub-optimal in distributed settings. Distribuged
ing; log analysis; anomaly detection; ecutions can generate large amounts of CFG data. Without
further abstraction, it is difficult for programmers to gain
. INTRODUCTION insights about the relevant portions of executions, and it i

Large scale distributed applications running in thirdtpar unclear whether such approaches can scale beyond simple
data centers have become increasingly popular due to thecenarios such as web services implemented with a three-tie
developments of search engines, e-commerce, and online sarchitecture.
cial networks. Notable examples of such distributed sessic Alternative models conversely center around threads-
include Microsoft's Windows Azure, Google's App Engine /processes and their interactions. Examples are vectok-clo
and Amazon’s Elastic Compute Cloud (EC2) platform [1]. related approaches proposed as a means to preserve gausalit

The computing paradigm of large scale distributed ap-+elations [3], [4], [5] between interleaving threads/pesses.
plications presents new challenges to reliability. Beeaus These approaches do capture interactions accurately ibut fa
the administrative staffs of the platforms and the ownerdo link them to actions expressed by high-level programming
of applications running on them pertain to distinct corp@ra constructs.
entities, developers of distributed applications are comign Our work aims at striking a balance between (a) con-
limited to understanding execution and performing debug<iseness of the data presented to programmers and (b)
ging of their code based solely on visible outputs and loggichness of relationships preserved between differergesie
without the possibility of tapping into the execution. Trad of computations through three contributions:
tional debugging practices such as stopping the applicatio « We introduce the notion otask as abstraction for
and attaching debuggers to nodes are thus hardly feasible. representing distributed executions. One can think of

Yet, a developer still needs to understand how his/her a task as an autonomous piece of computation that
program proceeds when unexpected behavior occurs; how runs within a thread or process and has only limited
the control flows through different nodes; what the com- and well-defined interactions with other tasks. These
munication patterns and computing resource consumptions interactions, e.g., a signal on a semaphore or data
are when the application serves different kinds of requests received on a socket, induce task boundarigssk

request| A reply
v | @
S

P2
P1 a

Task grap% abstraction P3

. Ti
‘ Cloud Service P1 —o ;IL
N Ta Ta S
L P2 —— Tb Tc !
Distributed Ce=s =
control M 7
- = > ==
flow P3 ;%/
Event logs discovering
o Event —— Inter—process - Inter—thre

Figure 1. Schematic view of dynamic task graph inference fatewstanding distributed executions.

graphs are obtained by connecting tasks by pairinging communication and by runtime systems for effective
corresponding waits and signals or sends and receivescheduling. In 1 and 2, tasks are known a priori and input by
o We propose a purely log-based light-weight approactprogrammers. In 3, they are statically inferred by compiler
to infer tasks and construct dynamic task graphs for exin this paper, task graphs are automatically inferred from
ecutions of distributed applications.Event logging mayevent logs.
already exist as an integral part of the application or can
be augmented through aspects. We show how dynamic
tasks are built by identifying two abstract types of We assume the following model for the distributed sys-
primitive events:acting and signaling events. tems that we are analyzing. A distributed application cstssi
« We develop a declarative formulation of task graphs byof a set ofprocessesunning on different nodes, connected
using Prolog. This formulation allows great flexibility pair-wise through reliable communication channels. Each
in exploring inferred task graphs by writing simple process encompasses a numbethaéads Threads commu-
Prolog queries. The output of such queries can thenpicate with each other through inter-thread synchrorozati
for example, be visualized by running through tools mechanisms, e.g. semaphores, locks, or shared data struc-
like DOT, providing a valuable tool for program com- tures, and across processes with inter-process communica-
prehension. tion mechanisms such as sockets or RPCs. Processes or
« We illustrate the benefits of inferred task graphs first bythreads can log events into files. This execution model ac-
showing — through Hadoop, an open-source distributeccommodates realistic Java or C/C++ distributed applioatio
file system implemented in Java — how they can aid Figure 1 gives a high-level system overview of what we
in understanding and debugging distributed executionspropose. Users interact with a distributed applicatiomiuig
Then we show how task graphs can improve anomalyn a computing cloud by sending requests and receiving
detection [6] in distributed applications. We focus on replies. Event logs are collected independently on indiaid
request-based analysesf such applications, one of nodes and processed by our technique. The structure of
whose main goals is attributing resource consumptionghe distributed execution is reconstructed by discovettireg
(CPU, network) to request types, and show how taskinter-process and -thread relations from the linear log file
graphs can increase accuracy by reducing false positivdsinally, a task graph is produced, describing the logged
(i.e. false anomaly alarms). execution.
Note that the term “task” is quite overloaded and has Figure 2 zooms in on the phase of inter-process and inter-

appeared in a number of different research contexts, nghread relation d|scqvery. The _events ina log file (colldcte
diverging semantics. A good summary is given by Advefor a process) are first demultiplexed into per-thread event
et al.[7]: 1.tasksare used as a programming constructS€auences; then, sequences of related events are albtracte

to express parallelisth: 2. task graphs are used as an into tasks (shadowed boxes); finally, interactions between
abstraction for performance modeling or 3. by compilers

events are established by matching event attributes, utitho
to partition programs and generate code for Correspono(jemandlng expensive vector clocks_. The relations between
tasks are abstracted from the relations between the events
1 . in the tasks. Since the second task in thr@ad5 starts
Several more recently proposed programming languages ddsfgne

concurrent programming include abstractions of similar gleity as first- threadT=36, there is an interaction from the second task of
order entities (e.gactivitiesin X10 [8]). T=35 to the first block of T=36. Furthermore, threae36

II. MODEL AND OVERVIEW

Event stream T=35 T=36

5. stariRumable = 1013462002 _(SlariRunnable = 1013452002)
Tead.so ,36961], §

5: read.sock=[50010,36961],size=5¢
1: Object.notify*() HC = 1301078346
1: write.sock=[36935,9000],size=29.
7: read.sock=[36935,9000],size=148 _ o
5: write.sock=[50010,36961],size=1 | Write.S0ck=[50010,36961] size=1

3 variable reads and writes are not considered (directlyén t
§ table. If such reads and writes occur in a way following
3 specific synchronization then the synchronization pattern
3 captured by other means, such as the acquiring or relinguish
§ ing of a lock, leading to signaling and acting events.

3 sarRurnabie oloosolas P e Definition 2: A taskis an autonomous computation inside
g

3

3

3

1

1

3

3

3

3

3

7: Object.notify*() HC = 481105279
1: Object.wait() HC = 481105279
5: Thread.start() TID = 36

5: read.sock=[50010,36961],size=34
5: Object.notify*() HC = 919099148 -

5: read.sock=[50010,36961],size=4 (T€ad-SOCK=[50010,3696

o Oblectnothy’(HC = 191461101 et ORETISI® 3 thread delimited by a pair of acting eventd,E, AE'),
1: write.sock=[36935,9000],size=424

6 wiite. Sock=[50010,36961] size=10 wite.50ck=[50010,36961] i consisting of all the logged events between these two events

finishRunnable = 91909914

7: read.sock=[36935,9000],size=95 inside the same thread.

7: Object.notify*() HC=212136692gread.sock=[50010,36961],size=34} . i . L.
L O e = 2 e (Qectwang e = o100591as | Acting events inside a thread divide the whole com-

5: Object.notify*() HC = 919099148

6: finishRunnable = 919099148

B B o B B B e e e e e e e e e o e e B B R I

5: Thread join{) TID = 36 Thiead o) TD=36 putation of that thread into tasks. A task starts with an
5: finishRunnable = 1013462002 (fINiShRunnable = . . .

acting event and ends right before the next acting event.
Conceptually, it represents the execution enabled by the
Figure 2. Zoom in on the “distributed control flow discoverstep in signal/data received by the start event. Note that tasks are

[From log files] [Demultiplexed; thread 17/31 not shown.]

Figure 1. a dynamic concept. The following property can be directly
inferred from the definition.

signifies an object with i®19099148, on which thread ~ Property 2: A task must contain one acting event and

T=35 is waiting, hence there is an interaction frors36 z€ro to multiple signaling events.

to the sixth task off=35. The happens-before relation betweaesks —, can be
defined based on the HBs betweeventsi.e.,t; —; o

I1l. TASKS AND TASK GRAPHS if two events in the two respective tasksand, comprise
In this section, we present our definitions of events, tasksan HB. For instance, threatk36 in Figure 2 has one task
and task graphs. as there is only one acting event in this thread. Denote the

Definition 1: An eventin a distributed program execution task ast3, i.e., the first task in the thread. There are a
is the execution of an operation that sends (receives) aumber of HBs involvingt$6: 35 —; 36, 3¢ —, 3°
signal or data to (from) a different process/thread. Thereandt3¢ —, t3°.
are two types of eventsicting eventandsignaling events Definition 3: A task graphis a directed acyclic graph
A signaling event passes a signal or data to a differen{DAG), whose nodes are tasks from all threads in the system,
thread/process; the reception of this signal or data iedall and edges represent HBs between these tasks.
the acting event; it enables the receiving thread/process t Later on, we will conduct experiments oféquest-based
proceed. analysesof distributed systems. We formally define the

Events are the smallest building blocks of our systemconcepts of requests and replies as follows.

Intuitively, a signaling event is the producer of a signal Definition 4: A requestis a pair of signaling and acting

or data; an acting event is the consumer of a signal oevents, with the signaling event originating from outside t
data. For instance in Figure 2, in the per-thread log ofsystem, while the acting event happens inside the system.
T=35, at the end of the first shaded block, the event ofThe task starts with the acting event represented’as.
“Thread_start() TID=36" is a signaling event and the A reply usually associated with a request is also a pair
corresponding acting event is the first log entry in theof signaling and acting events, but with the scope of the
receiving thread=36). two events reversed, i.e., with the signaling event indide t

Property 1: Every acting event must have a unique cor-system and the acting event outside. The task ending with
responding signaling event; a signaling event can have zerhe signaling event is representedZgs,.
or multiple corresponding acting events. With the definitions of request and reply, we can now

The happens-beforeelation [3], —., is a partial order defineend-to-end(E2E) request service graphs. The arrow
over the setF of events of an application execution such =, represents the transitive task level HBrelation.
that fora,b € E, a —. b < a causally precedes. Definition 5: A E2E request service graph for a request
Relation—. thus defines the set of such tuplesb); we req and corresponding replep is a task graph constructed
refer to these aappens-before (instance¢jiBs). More from the set of tasks]' = {T;|T}¢q S Ty ATy Sy Trepts
specifically, in this paper relatien—. is defined between and their HBs.
an acting eventd £ and its corresponding signaling event Our design choice of using acting events as task bound-
SE, thatisSE —. AE. aries is essential to correctly attributing events to rstpie

In order to reconstruct system-wide task graphs, it isConsider the example in Fig. 3, which shows two threads.
important to identify all inter-thread and inter-proceserms T1 receives two requests; andry, and then delegates them
reflecting causality and data dependences. Table | shows thie T2. The request; starts task® in T1. The task involves
primitive events considered in Java-based systems. Sharedl events until the next request is received. Task®

Table |
SAMPLES OF PRIMITIVE EVENTS FORJAVA BASED SYSTEMS. * I/O STREAMS CREATED OVER SOCKETS

Categories | Acting Signaling
Semaphore | Obj ect. wai t unblock, Obj ect.notify[All] call,
Threading Thr ead. run start, Thr ead. j oi n return, Thread. start call, Thr ead. r un finish,

Condi t1on. awai t unblock,

Runnabl e. run start,

Other (JCU) | Cal | abl e. cal | start,

Fut ur e. get return,

Bl ocki ngQueue. [t ake| pol | | renove] return
Inter-process| Socket Channel . read, | nput Stream r ead* Socket Channel .write, InputStreamwite*

Condi tion.signal [All] call,

Execut or. execut e call,

Execut or Servi ce. subm t call,

Bl ocki ngQueue. [add| of f er | put] call

T1 T2

recv request
object.notify... o;
write socket]...]

2 tecv request B
write socket[...]
object.notify... o, write socket[s;, p;]
object.wait ... 0,
read socket[s;, p;]
P ®

> r; relevant > r; relevant

clocks and their variants in recording such relations. The
space cost of timestamps based on vector clocks can become
\ prohibitive when there are a large number of concurrent

¥y

threads and processes or when inter-thread/inter-process
communication is intensive, as a timestamp (whose size is
decided by the number of threads and processes) has to
be assigned to each event, and piggy-backed on thread and
process interactions. While the resilience provided byorect
clock based approaches is necessary for online testing or
replaying concurrent applications, our goal is less séirg
which is to discover event structure.

Figure 3. Intuition of task definition. We observe that the pair of events involved in a HB
usually share common event data (fields). They may record
the IDs of requests or objects on which the events execute.

has a HB edge witD due to the object notify/wait. Our For example, a socket send event has a ¢agk and
technique does not introduce a HB edge betw@and® value (From P: FronPort, Tol P: ToPort). Such informa-

like most vector-clock based approaches do. The intuion ition can be used to discover the corresponding receive event
that distributed systems implementations are mostly evenih addition, the event type field indicates if an event is
driven, the semantics of execution originate from eventssignaling or acting. Thus, for a pair of signaling and acting
from outside, namely, the acting events. Observe thatilater events from different threads with the same data tag and
T1, task@© is againr; relevant, due to the socket read/write. value, we infer that the signaling event happens before the
In comparison, if edges were introduced between tasks in thecting event. For example, for the following events

same thread, all tasks would becomerelevant.

object.wait ... 0;

event (68, 3,32, dient.java: 149, si g, obj, 280630)

IV. TASK GRAPH CONSTRUCTION event (69, 3,1, Cient.java: 724’ , act, obj, 280630)

A. Acquiring Events and HBs we can inferegs —. ego.

We leverageaspect-orientedechniques [9] to emit nec- B. Prolog Based Event Processing

essary logging data .for task graph construction: -Aspects Our log processing and task graph construction techniques
allow for the type of interested events to be specified VerYare based using Prolog, for three reasons. First, Prolagexc

generally, without specific programs in mind, and thus,n jnterence over relations. It also provides the capabit
permit reuse with different dlstrlbuteq programs. We US€ecursive inference that is very desirable in our applicati
Aspect] to instrument Java-based distributed application o oy ample, in finding all reachable tasks from a given task.
The det_a|ls are emitted for brevity. . L Second, although the techniques could also be implemented
Log files are parsed and each entry is canonicalized % an imperative language, the declarative style of Prolog

a 7-field tuple event: a unique event ID, process ID, threaq:lllows us to easily generate various new relations from the

ID, source file location, type, tag, value. Most fields aré-sel g ising ones. Third, Prolog implementation is concise and
explanatory. The type field distinguishes acting and siggal well-formed

events. We discuss tag and value fields in the next section. In the remainder of the paper, we will present our algo-

Samples are: rithms using Prolog predicates. Each predicate consists of

event (94,31, 1," Shell.java: 189', act, t hread, 37) two parts separated by the symbol “: the left hand side

event (95, 31,1, dient.java: 226", si g, obj, 484790) is called thegoal; the right hand side is a set of conditions.
HBs on events are essential for our task graph construcfhe goal and the conditions are essentially relations. The

tion. Research has long focused on various designs of vectoneaning of the predicate is that an entry is created in

the goal relation if the set of conditions are satisfied. Thewith events being the vertices and all event HBs being the

variables are instantiated during the predicate evalnatio

edges. Bothfi ndal | andvertices_edges_t o_ugraph

There are basic relations that do not have right hand sidare Prolog library predicates. The predicate binds a viriab

conditions. They are calletacts As shown in Listing 1,

L by retrieving allhb edges and then transformsto a

the event fact is used to define basic events as parsedraph. There are also library predicates finding paths or

from log files. It has 7 arguments or fields. The goal

transitive closures in a graph. The goalsk defines a task

defines an HB between two events. It can be satisfied imas discussed in Section Ill: a task is represented by the IDs
a number of ways, exemplified by the two predicates withof two consecutive acting events from the same thread. The
hb being the left hand side. The first predicate describegoalt ask_hb defines HBs between tasks, namely, if there is
that any two events from different threads with matchinga signaling event in the first tagk’, _) happening before an
data(Tag, Val ue) pair define an HB. The second predicate acting event in the second tagk _), thenT —; S. Finally,
describes HBs caused by socket communications betwedhe goalt ask_gr aph operates similar tevent _gr aph.

threads or processesRelationpar _cond describes pair of
threads that are different. Note that simply using threasl 1D
is inadequate as different threads in different processsgs m
have the same ID.

//Events are of form: (parsed from log files)
event (#, Process, Ti d, Sour ce, act | si g, Tag, Val ue) .
/1 Event happens-before event(X)-.event(Y)
hb(X, Y):- event(X, M T, _, sig, Tag, Data),
event(Y, M S, _, act, Tag, Data),
not S =T, not Tag = sock.
/I happensbefore caused by socket communication

hb(X, Y):- event(X, M T, _, sig, sock, Data),
event (Y, N S, _, act, sock, Data),
par_cond(M T, N, S).

hb(X, Y):- ...

/l'true when thread T in process Mand S in N
par_cond(M T, N, §) :- M= N, not T = S.
par_cond(M _, N,) :- not M= N

//Event graph formed by event happenbefore
event _graph(Q:- findall (X-Y, hb(X Y), L),
vertices_edges_to_ugraph([], L, §.

//Tasks: represented by two consecutive acting
/levent ids from the same thread

task(Start, End):- event(Start,N T,_,act,_,_),
event (End, N, T, _, act, _,),
Start < End,
not (event (Z, N, T, _,act, _,_), Start<Z, Z<End).

/| Task happens-before task (T,)—:task(S.)

task_hb(T,S):- task(T,E),task_has_sig(T,E X),
hb(X, S), task(s, _).

//task(B, E) has an signaling event S

task_has_sig(B,E S):- task_event(B,E 9S),
event (S, _, _,_,sig,_,_).

//task(B, E) has event X in it

task_event (B, E X):- event(B,NT, , ,_,),
event (X, N T, , , ,),
B=<X X<E

/1 Task graph formed by task happen®efore
task_graph(Q:- findall (XY, task_hb(X V),
vertices_edges_to_ugraph([], L, §.

Prolog task graph inference algorithm.

L.

Listing 1.

The remaining predicates in Listing 1 show how we

C. False Positives/Negatives in HBs

As mentioned earlier, in order to constraint the overhead,
our analysis infers tasks and HBs purely from logs. Since
event logs are lossy, meaning they do not contain enough
information to faithfully reconstruct what had happened
during execution, our analysis has to handle false positive
and false negatives.

False Positives Caused by Common Synchronization
Objects. It is very common in Java programming to use
the same synchronization object in multiple places, for
instance, notify/wait on the same object may have multiple
occurrences. Simply matching object ids in thread logsggive
rise to false positives. Consider the example in Fig. 4.
ThreadT1 notifies objecto; at two places@® and ®. The
corresponding acting events a@ and O, respectively.
However, if we simply match the event parameters, false
HBs are undesirably introduced betweéh and ©), and
between®) and ©.
precedi ng(X, Y):-

event(X, M T, _, sig, Tag, Data, Tsl),

event(Y, M S, _, act, Tag, Data, Ts2),

not S =T, not Tag = sock, Tsl < Ts2.

sig_preceding(X, Y):-
event (X, M T, _

sig, Tag, Data, Tsl),
event(Y, M S, _, sig, Tag, Data, Ts2),
not S =T, not Tag = sock, Tsl < Ts2.

hb(X, Y):- preceding(X Y), not sig_preceding(X _)

Listing 2. Prolog task graph inference algorithm.

Note that if there exists a global wall clock or a vector
clock is used, the false positives can be eliminated. Howeve
we already mentioned that vector clocks are too expensive
in general. Realizing a global wall clock demands extractin
the current timestamp, which entails a system call. We
observe that the order of the events in the original process
log file (before they are demultiplexed into per thread logs)
can serve as logical timestamp. Now an event consists of 8
fields with an extra timestamp field. The revised rule for
the HB relation regarding inter-thread interaction is show

can build a system-wide task graph by processing existin! Listing 2.

relations. The goakvent _graph defines a directed graph

2In Prolog, '’ represents a wildcard

Relation precedi ng() describes all pairs of signal-
ing and acting events that operate on the same object
and the signal event precedes the acting event. Relation

T1 T2 wakeups can unblock a thread when there has not been a call

to noti fy. To deal with this condition, Java programmers
(A)object.notify ... o are accustomed to write code like the following:
. X object.wait ... 0; ©

synchroni zed (ackQueue) {
whi | e(ackQueue.size() !'=0) {
try{
ackQueue.wait ();
/11og.info(’ " wait unblock’’ +ackQueue);/*Ax/

Figure 4. False positives (dotted edges) caused by syrigatimm objects. }catch(InterruptedException e) {}

}
P1 P } / /Wi t Mar ker . mar kWi t (ackQueue) ; | *Bx/

(A)write socket[X], n=100

(B)write socket[X], n=50 £

object.notify ... o, &

®

4

object.wait ... 0; (D)

5d

read socket[X], n=50 (C)
"3\ _read socket[X], n=50 (D)

read socket[X], n=50 (E)

Namely, awai t is always coupled with a condition (here
ackQueue. si ze() != 0). The meaning of the loop is that
when a notification occurs, the size afkQueue has to be

0. Otherwise, the unblocking of thai t is not caused by a
notification, but rather a spurious wakeup. However, one sid
Figure 5. False positives caused by socket communication. effect is that thewai t may not even get executed, depending
on the condition. In other words, the condition may play the

. _ o . . . role of synchronization in place of theai t . This poses a

si g_pr ecedi ng specifies all pairs of signaling events that challenge to our event generation code inserted at statemen

operate on the same object and with the first event preced%\s which is supposed to emit an event after unblocking from
the second event. Therefore, the HB relation is defined as a’

- of sianali d acti axsandy. with X di wai t . That is, an unblocking event is missed. The missed
pair 0l Signafing and acting everssandy, wi preceding unblocking events will further cause missed event/task HBs
Y, excluding any signaling events that precede

2 - when analyzing the logs (false negatives). To combat this
False Positives Caused by Socket Communicationdn- yzing gs (g)

h f fal itives i ket cati Thproblem, such wait idioms are singled out and a dummy
other source of false positives is socket communicatio® Th 5"\t var ker . mar KVai t(bj ect) is introduced and

root cause is that while the OS level I/O is able to receive laced right after the condition checking statement corre-

an entire packet sent by a socket write from a remote nOd‘gponding to eactwai t, as shown by statemer in the

the JVM calls to sgcket reads often retr!eve only a PIeC& bove example. We then change our AspectJ instrumentation
of the packet at a time. As a result, multiple sockets read

h " i ding 1o the sinale sianali Tode to log calls tavar kWit instead ofwai t. We also
are the acting events corresponding 1o the single Signaiing, ,q tyat the rewriting burden is acceptable even for large

event. However, allowing one to many mapping introducesS : : .
" . Lo stems like Hadoop, for which only 30 lines of code change
false positives. Consider the example in Fig. 5. Nede a)r/e need(Ied P whl Y I 9

sends two packets using the socket. The packet sefdtiat

read at© and ©); the packet sent gB) is read atE. Such V. EVALUATION

scenarios create problems for us if we simply match evenk parformance

parameters: false positives are introduced fi@mo © and) o)
from ® to © and ©. Note that we are dealing with logs Our experiments are done on the Hadoop Distributed File

from two different processes and hence the aforementionegyStem (HDFS), an open source project implemented in
timestamp idea is not applicable Java. It is designed to run on commodity hardware and

Our solution relies on the observation that the packet sizeSUPPOrts MapReduce-style applications. The SVN checkout
in the multiple reads corresponding to a write aggregaté"s of February, 2009 of the system contains 1558 Java source

to the size of the written packet. Hence, we maintain theﬂles’ tqtaling 32.4K lines of code and 7.2M of class files
number of bytes that have been read, if the size of théexcr:Udmg !|br|ar||es).. in th
written packet has not been reached, the HB edges are still The original logging statements in the source code do

introduced from the same write. Otherwise, the algorithmnOt produce information meeting our requirements, i.@y th
moves on to the next written packet are insufficient to infer task graphs. Thus, we applied the

logging aspects that we developed for Java-based distdbut
False Negatives Caused by Java’s Guarded Wait Idiom. code, and run the resulting modified version of Hadoop.
The intended semantics of Javai t / noti fy is as follows: After weaving the aspects, the class file size grows to 8.8M,
anotify call unblocks a thread currentlyai ting on the a 22.2% increase. The end-to-end request handling time
object. However, a precisely conforming implementation isincreased by an average of 38% in instrumented version,
very hard, if notimpossible, due to the existence of “spugio compared with original version. This number is collected on
wakeups” (See the official Java APl documentation onan 8-node cluster on Emulab [10], with each node consisting
java.l ang. Obj ect. wai t (1 ong) for details). Spurious of a 850MHz PllIl CPU and 500MB memory.

SecondaryNamenode NameNode DataNode
1

Table Il
TASK GRAPH BUILDING TIME IN PROLOG.

Properties | Log-A | Log-B | Log-C | Log-D | Log-E
#of events| 2604 | 4768 | 6058 | 14042 | 21915
#oftasks | 1359 | 2545| 3339 | 5216 | 9872
task hbs 597 | 2140 | 1867 | 6607 | 8488
time (s) 6 19 37 93 437
Table 1l shows the time that Prolog takes to infer the
HBs and build the task graphs for some sample logs. These
logs record between one to five minutes of Hadoop exe-
cutions. The second to fourth rows represent, respectively
the number of events, the number of inferred tasks, and the
number of happens-before relations in the logs. The final
row represents the Prolog processing time in seconds; these
numbers are collected on an AMD Opteron platform with
two 2.4GHz CPUs and 6GB of RAM, running XSB Prolog
Version 3.2. (a) Overall task interactions.

Component A Component B

B. Preram Comprehensmn [Thread Mj [Thread@ [Thread}([Thread]Y

We demonstrate the utility of task graph in program com- . senli REC call
prehension as well as the flexibility of the query interface, \\,,\\7
using Hadoop HDFS. HDFS implements a set of file system
APIs (PUT, GET, etc.) just like normal file systems. It
transparently stores file data to hosts in a network. On a high
level, its functionality is divided into three componenia-
meNode, DataNode, and SecondaryNamenode. More than
one instance of these components can be configured to run 4. receive cgl results;
on hosts in a network.

N

.|accept a call request,
___land place it on @ queue.

Mrn RPC call,
_—and send back resul

. . . . (b) Re-occurrent RPC call pattern from (a).
Panoramic view.When a new developer or maintainer joins
the HDFS project, the first question to ask may be howrigure 6. Task graph showing a panoramic view of the Hadoop $iDF

NameNode, DataNode, SecondaryNamenode are started affiPonent interactions. Nodes represent tasks; edgesseepreis.

interact with each other. To answer this question, we starfn€y are talking through the same protocol with NameNode.
HDFS with a simple configuration of one instance for Then, DataNode registers itself with the NameNode and

each component, collect the logs, and build the task grapf€POrts the data blocks managed by it. The multiple calls

Figure 6(a) shows a panoramic view of the obtained taslef sendHeartbeasuggest that they are the keep-live messages
graph depicting the interactions. This figure is produced byetween DataNode and NameNode. Indeed, the timestamp
DOT from the popular GraphViz software after a simple difference between consecutive heartbeat calls matclees th

conversion of the task graph data into DOT format. In thisvalue set in configuration file. These observations about

graph, nodes represent tasks; edges represent task HBs, wibe behavior of HDFS Iar.gely match those described in its

red edges denoting inter-process, blue edges denoting intel€velopment documentation.

thread, and black edges denoting thread spawn and reap;

From To RPC Call Name
tasks are grouped by the component or process that executed ——pg-—ricde NameNode getProtocolVersion
them. 2 DataNode NameNode versionRequest

One can observe a re-occurrent task interaction pattern 3 SecondaryNamenode NameNode getProtocolVersion

from Figure 6(a). The first interaction of each occurrence is 2 DataNode NameNode register

g :) :] 5 DataNode NameNode sendHeartbeat
labeled from 1 to 9 in the graph. This pattern is abstracted 6 DataNode NameNode blockReport
and shown in Figure 6(b). For example, the interaction ; ga:amoge Hamemoge Se”g:eaftgea:

. . ataiNode ameNode sen eartbeal

170 —.>t'71 —, 73 —; 176 is an m;tance Qf the pattern. By 9 DataNode NameNode sendHeartbeat
examining the source code location attributes of the events Table I

in the tasks, we discover that they represent RPC calls, one HADOOP HDFS START-UP INTERACTIONS

of the main communication patterns in Hadoop. The 9 RPC

calls in the graphs are shown in Table Ill. The RPC callCloser look at distributed control flow. Another question
names in the table suggest that at start-up, the very firgdhat a developer or debugger may ask is how a distributed
thing DataNode and SecondaryNamenode do is to ensuystem proceeds after a certain “point”. A point, for exam-

ple, can be an event indicating a fault or an event signifyingrask-1765 at Node-3 (highlighted green; similarly from
the starting of a request. We show that task graphs ar@ask-1298 at Node-2). By querying the messages sizes as
instrumental for answering such questions, using a caseell as the source code locations of the corresponding
study of how replication in HDFS works. In HDFS, client events, we see that one acknowledgment is the packet
files are broken into fixed-size data blocks; replicationsuse sequence number of 8 bytes, and the other acknowledgment
these data blocks as basic units. is a status value of two bytes. It seems that the sequence
This experiment is conducted on a HDFS cluster innumber acknowledgment alone is enough. Our communi-
Emulab with 7 hosts configured to run as DataNodes andation on the Hadoop developer mailing list confirms this
one remaining host to run as the master NameNode (as webbservation.
as SecondaryNamenode). We set the replication factor to Lastly, we want to show that the task graph can also help
three. We then wrote a file of twice the configured dataunderstand the faults in the system. We rerun the experiment
block size to this cluster through the HDFS client, colldcte with replication set to three and force an fault by throwing

logs, and built the task graph. an | OExcepti on at DataNode-3 in the replication chain.
To see how replication requests are handled, the following'he exception is thrown in &ry- cat ch block where such
queries are performed: an | Cexcepti on could have happened. The exception is
findall ([A B], req_task(datanode, A B), L). thrown after DataNode-3 receives the data block, but before
reachabl e_tasks(A, B, Qut) :- task_graph(Q, it acknowledges. Figure 7(c) shows the resulting task graph

reachable([A B], G Qut). Comparing it with Figure 7(a), we can clearly see that Task-

A req_task(dat anode, A B) is a tasktask(A B), that 2322 (highlighted red) in DataNode-3 in Figure 7(c) has
starts with a socket receive event that does not have behaved differently than the corresponding Task-1765 in
matching socket send event (since the send event happenBataNode-3 in Figure 7(a). To debug this fault, the develope
outside of the cluster in the client’s code). Thus, the firstcan not only narrow down the fault location (by identifying
queryfindal I (..) will pick out all request starting tasks the mal-aligned task), but also gain a understanding of
that executed in DataNodes and put these tasks in a.list its context, i.e., after receiving a data block and before
With our experiment set up, these tasks are the entry poiracknowledging.
of handling file replication requests. For all the taskd jn i
we can run the second query to obtain all reachable tasks: Reduest-Oriented Analyses
from L, and save the result iout . The subgraphSubG Modern distributed systems provide their services to
formed by the tasks i@ut are then converted to DOT file clients through requests and replies. The goal of request-
for visualization.SubGwill show how the system proceeds oriented analyses is to attribute runtime events and resour
after receiving the replication request. consumptions to each request or each request type. Data
Due to space limitation, the complete graphQifbGis mining techniques can then be employed to find anomalies
not presented here. Howev&ubGconsists of two disjoint or inefficiencies. To be able to precisely attribute runtime
subgraphs with similar interaction patterns, one of which i data to individual requests, previous approaches assuame th
shown in Figure 7(a). Since the file written is of twice the a unique ID is associated with each request and propagated
data block size, one can infer that each subgrapBulfG throughout the entire execution serving the request. This
may correspond to executions that replicate each of the twassumption is unrealistic in practice as all the relevata da
data blocks. structures would need to be changed to accommodate the
From the structure of Figure 7(a), we can gain somepiggy-backed information. Changing the code is difficult in
knowledge of how each data block is replicated: first, themodern distributed applications as most of them use third-
data block replication request comes in to DataNode-1 aparty library code. In this experiment, we illustrate that o
Task-3040 in the top left of Figure 7(a). Then, it getsinferred task graphs can be used to improve the precision
forwarded to DataNode-2 and DataNode-3. The actual filef attributing runtime data to requests, which in turn resluc
block data is then received from the client and written atfalse positives (false alarms) in anomaly detection built o
Task-3046 in DataNode-1 before being forwarded to theop.
other two nodes. Finally, after receiving these data blocks Request-oriented analyses can be combined with a com-
acknowledgments are propagated in the reverse directioponent interaction model to detect anomalies [6] (see Sec-
e.g. 1298 —; 3053. To offer some confidence to this tion VI). The premise of this technique is that a system’s
understanding of replication, Figure 7(b) shows the taslexecution should behave similarly over time. One of the
graph with replication factor set to two. kinds of behaviors is how the components in the system
As a side effect, we also notice a potential inefficiencyinteract with each other. Here, the number of interactions
from the replication handling task graph: there seem to beneasures the number of communication operations over
two kinds of acknowledgments being propagated, as shownetwork sockets. Assuming that componghninteracts with
by the two different socket communications originated fromn other componentsB;,i € [1..n] and we measure the

DataNodel

DataNode2 DataNodel DataNodel

sock
3040 1284 2009

“ sock

1286 sock)

>) DataNode2
/
’ thread'}\ sock !

DataNode3 qad
.

Camo) g

)
1

DataNode2

sock

[sock

t DataNode3

’
’
i
’
'
'

'

!
[
'

thread

(@) replication=3 (b) replication=2 (c)replication=3, w Faults

Figure 7. Replicating a data block under different scemsafibie dotted edges serve to identify tasks in the same thrheg;are not HBs.

number of interactions between them over two time periodsplatform. It is built with features such as load balancing an

t; andty, ascy ; andcg 4, respectively, withe, ; representing fault tolerance. The application logic of the whole system
the number of interactions betweeh and B; over time is divided into many modules, called roles. Depending on
periodt,, then the technique uses the followigg value to the expected workload, these roles can be instantiatedhinto
guantify the behavior difference of time perioglcompared variable number of instances when deploying a live system.
to ty: This system interacts with clients by supporting basic file

(cai — w;)2 o system related operations: PUT operations that storetclien
2= 2?;12”%, with w; = p;Ca, p; = Cl,’J, data into the system, GET operations that retrieve prelyious
Wi ! stored data, and a few others. Developers already have

and Cy = 2 jc15, Co =5} 1ea logging facilities implemented in the code, and hence we use
the log files generated by the default setting. After coilfert

with all other components); is the ratio of the interactions all the log files from aII. roles,.events are identified and
betweenA and B; over the total interactions in period; connected as descrllbed'ln. Section IV. _
w; can be understood as the expected interactions in period In anomaly detection, it is a common practice to compare
t, if the same behavior pattern is assumad; computes the system behavior of a later period to a previous period [6]
the standard deviation. Here, a higher valueydfindicates ~ During these two periods, it is highly likely that the system
a more significant divergence of the system behavior oveWill serve different mixtures of types of requests. To siatel
time periodt, from ¢;. this situation, we then collect logs for two runs: Run 1,
Without task graphs, it is hard to know to which requestthe system serves 750 PUT requests and 250 GET requests;
an interaction should be attributed to, because answering I8 Run 2 the system serves 500 requests of each type. Since
request might involve multiple processes and a process maj/e use the same version of the system, we should expect
be serving many requests in parallel. With task graphs, th@ny anomaly detection model to conclude that the system
origin request of an interaction can be correctly identifiedPehavior during Run 2 is similar to Run 1, in other words,
through graph reachability analysis (See Figure 3). We segmall x> values should be expected.
up an experiment to demonstrate how task graphs improve Figure 8 summarizes our findings. We focus on a key
the precision of the aforementiongd based anomaly detec- componentS in the system and observe its component
tions. The experiment is conducted on a distributed storagmteraction behavior with other roles. From the figure, we
system being developed at Microsoft. It is used to providecan see that if we apply the component interaction model
storage services for the Windows Azure cloud computingnaively (Figure 8(a)), thex? value, 56.4, is quite large,

In particular, C; and C5 represent the interactions of

All requests PUT requests GET requests

CD%% .% -@
= % % A
)) OO
2-22 =29

=56.4
(a) (b)

Figure 8. Improvements in the precision of component intesacthodel based anomaly detection. The numbers on the edgeseariptee number of
interactions (a) applying the model naively; (b) applying thodel after using task graph to classify the interactionsézh request type.

suggesting anomaly. However, the largis indeed caused Compared with our approach, both of these systems miss the
by different request combinations being served. After gisin causal relations brought by inter-thread signals.
task graphs to attribute the interactions to different esgu Debugging. Several efforts aim at finding bugs in dis-
types (Figure 8(b)), the¢? values are much smalleR.2 tributed systems by verifyingvariantslocally at some node
for serving PUT requests arl9 for GET requests, which or globally through data aggregated from multiple nodes.
suggests that the system behaviors during the two runs arResearch issues include choosing a logically consiste ti
similar, i.e., there are no anomalies. This latter resutcimes to perform the checking, and developing scripts for develop
the experimental setup, suggesting that the attributidityab ers to specify invariants [15], [16§eneral behaviomodels
afforded by task graphs is critical to applying such modeldeverage statistical analysis on large sets of system bahav
in practice and achieving results with low false positives. data. Mirgorodskiy et al. studied the use of function-level
traces in debugging with fail-stop and non-fail-stop feglsl
VI. RELATED WORK in large systems with nodes running similar activities [17]

Tracing. TraceBack [2] and Magpie [11], [12] also tar- (replicated systems). For each node, a time profile vector
get the problem of understanding distributed applicationsis built, summarizing percentages of time spent in each
TraceBack aims to reconstruct basic block level or sourcdunction (or call chain). Outlier nodes are found by using a
line level control flows by using traces generated fromdistance measure for these vectors. Xu et al. [18] developed
static and dynamic instrumentation. Its focus is on merging® general anomaly detection methodology for large-scale
traces from multiple threads into a single master trace. Th&ystems, in which they studied the effectiveness of apglyin
difference with our work is that the distributed control flew the statistical method PCA, Principal Component Analysis,
that we aim to reconstruct are of coarser grain, i.e., taskd0 feature matricies that were automatically constructenhf
which enables us to reason about systems consisting of larg@nsole logs.
number of components and processes. Magpie generatesZhang et al. [19] studied how to use basic metrics
request description strings by joining logged events sgrvi at system- and application-level to predicaervice level
the same request. These description strings record whicpbjective (SLO) violations in three-tier architectures; in
components and resources are used in serving requesparticular, how to adaptively select these metrics to beluse
The strings are then used to model workloads and detedd an ensemble of models for SLO violation detection. So
anomalies. The work focuses on mining request strings antstead of using just one model with a set of preset metrics
relies on domain knowledge to cluster events belonging tdo monitor the health of a distributed system, ensembles of
the same request. The work in this paper moves us closénodels are used over time. They argue that as the system
to the goal of discovering request paths without relying onevolves, the system behavior might not be captured by the
domain knowledge, by offering reusable tracing aspects fogurrent model, so a new metric and new model need to be
Java-based systems. introduced to capture the evolved behavior. Their work is

Other systems use a black-box approach to infer causgrthogonal to ours.
paths from protocol-level traces. Aguilera et al. [13] &ac Cherkasova et al. [20] proposed a regression-based trans-
inter-node RPC messages, then, statistically infers tausaction model and an application performance signature
paths offline and uses them to performance debuggingnodel to detect application performance changes and dis-
BorderPatrol [14] uses library call interceptors to getera tinguish these changes due to workload change from those
traces, with every low overhead demonstrated in real systentue to performance anomaly.

(10-15%). To recover causal path, “a module designation Friday [21] is a replay based debugging system for dis-
identifies which request the module is currently processing tributed systems, capable of causally consistent groupyep

with each replayed node running inside a GDB process. A[6] M. Y. Chen, A. Accardi, E. Kiciman, D. A. Patterson,

high-|eve| Script |anguage is provided to break/watchiexa A. Fox, and E. A Brewer, “Path-Based Failure and Evolution

ine/update the distributed system as a whole; these com- Management” ifNSDI ‘04, pp. 309-322.

mands are automatically translated into sets of normal GDBJ[7] v. S. Adve and R. Sakellariou, “Compiler synthesis of task

commands. graphs for parallel program performance prediction.@PC
Visualization models.TotalView [22] is a parallel debug- 2000Q pp. 208-226.

ger. It can control multiple processes concurrently andreff [8] P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa, A. Kiel-
rich Ul for programmers to visually examine and change stra, K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an
data arrays in MPI programs, for example. Arnold et al. [23] Object-Oriented Approach to Non-Uniform Cluster Comput-
developed the Stack Trace Analysis Tool (STAT), which Ing,” in OOPSLA "05 pp. 519-538.

provides a visualization of a snapshot of the call stacks of [9] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
all MPI processes by anchoring them in a tree structure. It~ C. Lopes, J. Loingtier, and J. Irwin, “Aspect-Oriented Pro-
is shown to be quite effective in finding tricky bugs in large gramming,” inECOOP '97 pp. 220-242.

networks running hundreds of MPI processes. [10] “Emulab:network emulation testbed,” http://www.emulab.net.
VIl. CONCLUSION [11] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan, “Magpie

Online modelling and performance-aware systemsPaOS

This paper introducedasksand task graphs They can IX. 2003

be used to analyze distributed systems the same way that

basic blocks and CFGs are used to analyze sequentif#2] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using
programs and their executions. They offer a box-and-arrow ~ Magpie for Request Extraction and Workload Modelling,” in
view of how distributed computation proceeds. Tasks cannot OSDI04 pp. 259-272.

be mapped directly to programming language construct§l3] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
for mainstream languages. Rather, they refine traditional ~ A. Muthitacharoen, “Performance debugging for distributed
operating systems concepts such as threads or processes and Systems of black boxes,” IBOSF 2003.

cut cross software engineering concepts SU(fh as classes [@4] E. Koskinen and J. Jannotti, “BorderPatrol: Isolating events
packages. We showed that task graphs are high-level enough for black-box tracing,” inEuroSys 2008, pp. 191-203.

to aid the understanding of the structure of distributed ap-

licati hile th | paths of th hs helo i S[15] C. E. Killian, J. W. Anderson, R. Jhala, and A. Vahdat, “Life,
plications while the causal paths of the graphs help inerea Death, and the Critical Transition: Finding Liveness Bugs in

the accuracy of request-oriented anomaly detection. Systems Code,” itlNSDI 07, pp. 243-256.

ACKNOWLEDGMENT [16] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu,
. . . .) M. F. Kaashoek, and X. Zhang/>®S: Debugging Deployed
This research is supported, in part, by the National Sci- Distributed Systems,” itlNSDI "08,
ence Foundation (NSF) under grants 0847900 and 0834529. _ _) .
Any opinions, findings, conclusions, or recommendations if17] A. Mirgorodskiy, H. Maruyama, and B. Miller, “Problem
. : Diagnosis in Large-scale Computing Environments," @8
this paper are those of the authors and do not necessarily 555

reflect the views of NSF.
[18] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan,
REFERENCES “Detecting large-scale system problems by mining console
logs,” in SOSP ACM, 2009, pp. 117-132.
[1] N. Leavitt, “Is Cloud Computing Really Ready for Prime
Time?” Computer vol. 42, no. 1, 2009. [19] S. Zhang, I. Cohen, J. Symons, and A. Fox, “Ensembles

of Models for Automated Diagnosis of System Performance

[2] A. Ayers, R. Schooler, C. Metcalf, A. Agarwal, J. Rhee, and Problems,” inDSN '05 pp. 644-653.
E. Witchel, “TraceBack: First Fault Diagnosis Reconstruc-

tion of Distributed Control Flow.” inPLDI '05. [20] L. Cherkasova, K. Ozonat, M. Ningfang, J. Symons,

and E. Smirni, “Anomaly? Application Change? Workload
Change? Towards Automated Detection of Application Per-

[3] L. Lamport, “Time, Clocks, and the Ordering of Events in a formance Anomaly and Change.” DSN 08

Distributed System,’Communications of the ACMol. 21,

no. 7, pp. 558-565, 1978. [21] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica,

]]]) “Friday: Global Comprehension for Distributed Replay,” in
[4] C. Fidge, “Timestamps in Message Passing Systems that NSDI '07, pp. 285-298.

Preserves Partial Ordering,” iblth Australian Computing
Conference 1988, pp. 56—66. [22] “TotalView debugger,” http://www.totalviewtech.com.

[5] R. Schwarz and F. Mattern, “Detecting causal relationshipsl23] D- C. Arnold, D. H. Ah‘f" B. R. de Supinski, G. Lee, B. P.
in distributed computations: in search of the holy grail” Miller, and M. Schulz, "Stack trace analysis for large scale

Distributed Computingvol. 7, no. 3, pp. 149-174, 1994. debugging,” inlPDPS 2007.

