
IntroPerf: Transparent Context-Sensitive Multi-Layer
Performance Inference using System Stack Traces

Chung Hwan Kim†
∗

, Junghwan Rhee‡, Hui Zhang‡, Nipun Arora‡,
Guofei Jiang‡, Xiangyu Zhang†, Dongyan Xu†

†Purdue University and CERIAS, ‡NEC Laboratories America
†{chungkim,xyzhang,dxu}@cs.purdue.edu, ‡{rhee,huizhang,nipun,gfj}@nec-labs.com

ABSTRACT
Performance bugs are frequently observed in commodity soft-
ware. While profilers or source code-based tools can be used
at development stage where a program is diagnosed in a well-
defined environment, many performance bugs survive such
a stage and affect production runs. OS kernel-level tracers
are commonly used in post-development diagnosis due to
their independence from programs and libraries; however,
they lack detailed program-specific metrics to reason about
performance problems such as function latencies and pro-
gram contexts. In this paper, we propose a novel perfor-
mance inference system, called IntroPerf, that generates
fine-grained performance information – like that from ap-
plication profiling tools – transparently by leveraging OS
tracers that are widely available in most commodity operat-
ing systems. With system stack traces as input, IntroPerf
enables transparent context-sensitive performance inference,
and diagnoses application performance in a multi-layered
scope ranging from user functions to the kernel. Evalu-
ated with various performance bugs in multiple open source
software projects, IntroPerf automatically ranks poten-
tial internal and external root causes of performance bugs
with high accuracy without any prior knowledge about or
instrumentation on the subject software. Our results show
IntroPerf’s effectiveness as a lightweight performance in-
trospection tool for post-development diagnosis.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques

Keywords
Performance inference; stack trace analysis; context-sensitive
performance analysis

∗Work done during an internship at NEC Laboratories
America, Princeton.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMETRICS’14, June 16–20, 2014, Austin, Texas, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2789-3/14/06 ...$15.00.
http://dx.doi.org/10.1145/2591971.2592008 .

1. INTRODUCTION
Performance diagnosis and optimization are essential to

software development life cycle for quality assurance. Ex-
isting performance tools such as profilers [3, 6, 7, 19] and
compiler-driven systems [17, 22, 34, 33] are extensively used
in application development and testing stages to identify
inefficient code and diagnose performance problems at fine
granularity. Despite these efforts, performance bugs may
still escape the development stage, and incur costs and frus-
tration to software users [21].

In a post-development setting, software users investigat-
ing performance issues are usually not the developers, who
have source code and can debug line by line. Therefore, it
is desirable for those users to have a diagnosis tool that will
work transparently at the binary level, look into all com-
ponents in the vertical software layers with a system-wide
scope, and pinpoint the component(s) responsible for a per-
formance issue. Furthermore, detailed and context-rich di-
agnosis reports are always helpful to such users so that they
can provide meaningful feedback to the developers hence
speeding up the resolution of performance issues.

Commodity software is commonly built on top of many
other software components. For instance, the Apache HTTP
server in Ubuntu has recursive dependencies on over two
hundred packages for execution and over 8, 000 packages
to build. Unfortunately, the maintenance of such diverse,
inter-dependent components is usually not well coordinated.
Various components of different versions are distributed via
multiple vendors, and they are integrated and updated by
individual users. Such complexity in the maintenance of
software components makes the localization of performance
anomaly challenging due to the increased chances of unex-
pected behavior.

OS tracers [1, 2, 15, 27] are commonly used as “Swiss
Army Knives” in modern operating systems to diagnose ap-
plication performance problems. These tools enable deep
performance inspection across multiple system layers and
allow users to spot the “root cause” software component.
Given diverse applications and their complex dependencies
on libraries and lower layer components, compatibility with
all layers is an important requirement. OS tracers are very
effective in this aspect because they are free from the depen-
dencies by operating in the OS kernel – below any applica-
tion software or library.

On the other hand, the tracers’ location in the OS kernel
makes them lose track of details of program internals such
as function latencies and program contexts, which are very

Figure 1: Main idea of IntroPerf: context-sensitive
performance diagnosis using inferred latency from
system stack traces.

useful to localize root cause functions. These tools collect in-
formation on coarse-grained kernel-level events; they do not
precisely capture the calls and returns of application func-
tions, the tracing of which is often performed by application
profilers or dynamic analysis engines.

Recently, OS tracers provide stack traces generated on
OS kernel events [1, 15, 27] to improve the visibility into
programs. They cover all system layers from applications
to the kernel as shown on the left of Figure 1; therefore,
we call the traces system stack traces. While they pro-
vide improved software performance views, their usage is
mostly within event-based performance analysis. For exam-
ple, Windows Performance Analyzer provides a summary of
system performance computed with the weights of program
functions’ appearances in the system stack traces. An im-
portant performance feature missing for performance anal-
ysis is the measurement of application-level function laten-
cies. Since the system stack events are generated not on the
boundaries of function calls but on OS kernel events (e.g.,
system calls), the timestamps of the events do not accurately
reflect how long each function executes.

We propose a novel performance inference system, called
IntroPerf, that offers fine-grained performance diagnosis
data like those from application profiling tools. IntroP-
erf works transparently by leveraging the OS tracers widely
available in most operating systems. Figure 1 illustrates the
main idea. With system stack traces as input, IntroPerf
transparently infers context-sensitive performance data of
the traced software by measuring the continuity of calling
context1 – the continuous period of a function in a stack
with the same calling context. The usage of stack traces
commonly available from production OS tracers [1] allows
IntroPerf to avoid the requirement of source code or mod-
ification to application programs while it analyzes detailed
performance data of the traced application across all layers.
Furthermore, it provides context-driven performance analy-
sis for automating the diagnosis process.

Contributions: The contributions of this paper are sum-
marized as follows.

• Transparent inference of function latency in mul-
tiple layers based on stack traces: We propose
a novel performance inference technique to estimate

1Calling context is a sequence of active function invocations
as observed in a stack. We interchangeably use calling con-
text, call path, and stack trace event in this paper because
we obtain calling contexts from the stack traces.

the latency of program function instances with sys-
tem stack traces [1] based on the continuity of calling
context. This technique essentially converts system
stack traces from OS tracers to latencies of function
instances to enable fine-grained localization of perfor-
mance anomalies.

• Automated localization of internal and external
performance bottlenecks via context-sensitive
performance analysis across multiple system lay-
ers: IntroPerf localizes performance bottlenecks in
a context-sensitive manner by organizing and analyz-
ing the estimated function latencies in a calling context
tree. IntroPerf’s ranking mechanism on performance-
annotated call paths automatically highlights potential
performance bottlenecks, regardless of whether they
are internal or external to the subject programs.

Section 2 presents related work. The design of IntroP-
erf is presented in Section 3. The implementation of In-
troPerf is described in Section 4. Section 5 presents eval-
uation results. Discussion and future work are presented in
Section 6. Section 7 concludes this paper.

2. RELATED WORK
Root cause localization in distributed systems: There

is a large body of research work on performance analysis and
root cause localization in distributed systems [9, 11, 16, 18,
24, 29, 31, 28]. They typically focus on end-to-end tracing of
service transactions and performance analysis on transaction
paths across distributed nodes. These nodes are connected
through interactions such as network connections, remote
procedure calls, or interprocess procedure calls. While there
is a similarity in the goal of localizing performance anomaly,
the performance symptoms in our study do not necessar-
ily involve interactions; instead, they require a finer-grained
analysis because the localization target could be any possi-
bly small code. For instance, if a performance anomaly is
caused by an unexpectedly extended loop count or a costly
sequence of function calls, the related approaches will not be
able to localize it because all program execution is seen as a
single node without differentiating internal code structures.
Therefore, the related approaches are not directly applicable
to our performance debugging problem due to their coarse
granularity.

Profilers: Profilers [3, 6, 19] are tools for debugging ap-
plication performance symptoms. Many tools such as gprof
require source code to embed profiling code into programs.
However, in a post-development stage these tools are of-
ten not applicable because the subject software may be in
binary-only form. Also, user-space profilers may not be able
to detect the slowdown of lower layer functions such as sys-
tem calls due to their limited tracing scope.

Oprofile [6] provides whole system profiling via support
from recent Linux kernels. Oprofile samples the program
counter during execution using a system timer or hardware
performance counters. Oprofile’s output is based on a call
graph, which is not context-sensitive. In addition, relatively
infrequent appearance of lower layer code in the execution
may lead to a less accurate capture of program behaviors.
In contrast, system stack traces recorded by the OS kernel
reliably capture all code layers in a context-sensitive way.

Dynamic binary translators: Dynamic binary trans-
lators [23, 26] are commonly used in the research community

and some of production profiling tools (e.g., Intel vTune is
based on Pin) for binary program analysis. These tools can
transparently insert profiling code without requiring source
code. However, the significantly high performance overhead
makes them suitable mainly for the development stage.

Performance bug analysis: Performance analysis has
been an active area in debugging and optimization of ap-
plication performance. Jin et al. [21] analyzed the charac-
teristics of performance bugs found from bug repositories,
and reported new bugs by analyzing similar code patterns
across software. This method requires source code that is
often not available in a post-development stage. StackMine
[20] and DeltaInfer [32] are closely related to IntroPerf
in the aspect of using run-time information to detect per-
formance bugs. StackMine focuses on enabling performance
debugging by clustering similar call stacks in a large num-
ber of reports. StackMine relies on PerfTrack for detecting
performance bugs. PerfTrack works by inserting assert-like
statements in Microsoft’s software products for possible per-
formance degradation of functions of interest. This is a very
efficient and effective approach for generating warnings when
the monitored functions experience a slowdown. However,
it requires manual insertion of performance checks in certain
locations of the source code that may become a bottleneck.

DeltaInfer analyzes context-sensitive performance bugs [32].
It focuses on workload-dependent performance bottlenecks
(WDPB) which are usually caused in loops which incur ex-
tended delay depending on workload. IntroPerf is dif-
ferent from DeltaInfer in several aspects. First, it is less
intrusive since it avoids source code modification required
by DeltaInfer, and thus is suitable for a post-development
stage. Second, in code coverage, DeltaInfer mostly focuses
on characteristics of the main binary similar to profilers.
IntroPerf, however, is able to cover all layers in the local-
ization of root causes; this is due to its input, system-wide
stack traces, which include information regarding the main
binary, libraries, plug-ins, and the kernel.

Diagnosis with OS tracers: Production OS tracers are
commonly used in modern OSes. DTrace [15] is the de facto
analysis tool in Solaris and Mac OS X. Linux has a variety of
tracing solutions such as LTTng [5], Ftrace [2], Dprobe [25],
and SystemTap [27]. Event Tracing for Windows (ETW) is
the tracing mechanism in Windows supported by Microsoft
[1]. These tools are widely used for diagnosis of system prob-
lems. For instance, ETW is used not only by the perfor-
mance utilities of Windows (e.g., Performance Monitor) but
also as an underlying mechanism of other diagnosis tools
(e.g., Google Chrome Developer Mode). Stack walking [8]
is an advanced feature to collect stack traces on specified
OS events. This feature is included in ETW from Windows
Vista. Other OS tracers such as DTrace and SystemTap also
have similar features. The prototype of IntroPerf is built
on top of ETW stack walking, but its mechanism is generic
and is applicable to other platforms.

Calling context analysis: Calling context has been
used in program optimization and debugging [10, 35]. In-
troPerf uses dynamic calling context from stack traces
to differentiate function latencies in different contexts and
enable context-sensitive performance analysis. Several ap-
proaches [12, 13, 30] have been proposed to efficiently encode
calling context for various debugging purposes. If combined
with OS tracers, these approaches will benefit IntroPerf
by simplifying the context indexing process.

3. DESIGN OF INTROPERF
In this section, we present the design rationale of IntroP-

erf for transparent performance inference across multiple
software layers.

Effective diagnosis of performance bugs in post-development
stage poses several requirements:

• RQ1: Collection of traces using a widely deployed
common tracing framework.

• RQ2: Application performance analysis at the fine-
grained function level with calling context information.

• RQ3: Reasonable coverage of program execution cap-
tured by system stack traces for performance debug-
ging.

In general, profilers and source code level debugging tools
provide high precision and accuracy in analysis at the cost
of stronger usage prerequisites such as availability of source
code. In a post-development stage, such requirements may
not be easily satisfied. Instead, IntroPerf uses system
stack traces from OS tracers which are widely deployed for
software performance analysis. These tracers operate at the
kernel layer without strong dependency on programs or li-
braries; therefore, IntroPerf can be easily applied as an
add-on feature on top of existing tracers without causing
extra efforts in instrumenting or recompiling a program.

The metrics of runtime program behavior such as function
latency and dynamic calling context have been used to ana-
lyze program performance issues [3, 7, 19]. This information
is typically collected using instrumentation that captures
function calls and returns in profilers and in source code-
based approaches. In IntroPerf we aim to obtain fine-
grained performance monitoring information without pro-
gram instrumentation. Instead, such information is inferred
using stack traces generated on OS kernel events, which oc-
cur in coarser granularity compared to program function
calls, leading to lower overhead.

The last requirement in the design of IntroPerf is rea-
sonable coverage of program execution by system stack traces.
Our observation is that, even though there are inherent in-
ference errors in the performance analysis results due to the
coarse granularity of OS level input events, the accuracy is
reasonable for our purpose – performance debugging. This
is because performance bottleneck functions with stretched
execution time have higher likelihood to appear in call stack
samples compared to other functions with short execution
time. The inferred results of IntroPerf of such functions
hence give high accuracy to analyze the root causes of per-
formance problems. This observation is intuitive and should
apply to any sampling-based approach. Our evaluation re-
sults (Section 5) support this claim.

3.1 Architecture
The architecture of IntroPerf is shown in Figure 2. The

input is system stack traces which are stack traces collected
by OS tracers. As briefly described in Section 1, these events
do not directly indicate function latency – a useful metric for
bottleneck analysis – because the timestamps of the events
are for OS events.

To address this challenge, IntroPerf provides transpar-
ent inference of application performance, which is the second
block from the left in Figure 2. The key idea of our inference

Figure 2: Architecture of IntroPerf

mechanism from stack traces is the continuity of a function
context in the stack : measuring how long a function’s con-
text continues without a change in the stack. Essentially
IntroPerf converts system stack traces to a set of func-
tion latencies (Section 3.3) along with their calling context
information. This context shows a specific sequence of func-
tion calls from the “main” function; therefore, it is useful
to detect any correlation between performance anomaly and
how a function is executed. This context-sensitive perfor-
mance analysis requires recording and retrieving calling con-
text frequently and efficiently; to do that, IntroPerf has
a component for dynamic calling context indexing (Section
3.2).

The third component in Figure 2, context-sensitive per-
formance analysis, determines which functions are perfor-
mance bottlenecks and in which calling contexts they exist.
Our mechanism infers function latency from all layers of the
stack in the traces. This leads to potential overlaps of func-
tion latencies. The true contributing latency is extracted
using the hierarchy of function calls (Section 3.4.1). Our al-
gorithm then ranks the performance of each dynamic calling
context and lists the top latency calling context and the top
latency functions within each context (Section 3.4.2), which
are the list of performance bug candidates generated as the
output of IntroPerf.

Next, we will present the underlying functions to support
context-sensitive performance analysis and then present our
main idea for the inference of function latency.

3.2 Calling Context Tree Construction and
Dynamic Calling Context Indexing

Calling context has been widely used in program optimiza-
tion and debugging [10, 12, 35, 30]. At runtime there are
numerous instances of function calls with diverse contexts,
forming a distinct order of a function call sequence starting
from the “main” function. To reason about the relevance
between performance symptoms and calling contexts, it is
necessary to associate each function call with its indexed
dynamic calling context.

There are several approaches proposed to represent call-
ing context in a unique and concise way [13, 30]. Such ap-
proaches require maintaining the context at runtime, and
therefore, demand mechanisms to instrument the code and
compute the context on the fly. As an offline analysis, we
adopt a simple method to represent a dynamic calling con-
text concisely. We use a variant of the calling context tree
(CCT) data structure [10]. By assigning a unique number to
the pointer going to the end of each path, we index each path
with a unique integer ID. Here we define several notations
to represent the information.

Algorithm 1 Dynamic Calling Context Indexing

si = 〈f1, ..., fk〉: a call stack . order: bottom to top
1: function PathToID(si, CCTw)
2: Node *v = &root of CCTw

3: for f in si do
4: v = getNode(v, f)

5: if v.pid == −1 then
6: v.pid = path counter++
7: map path[v.pid] = v

8: return v.pid

9: function getNode(Node* v, function f)
10: if {∃v′|f == v′.f and v′ ∈ v.children} then
11: return v′

12: else
13: v′ = new Node(); v′.parent = v; v′.f = f
14: v.children = v.children ∪ {v′}
15: v′.id = node counter++
16: map node[v′.id] = v′

17: return v′

18: function IDtoPath(i, CCTw)
19: Node *v = map path[i]
20: s = ∅
21: while *v != root of CCTw do
22: s = {v.f} ∪ s
23: v = v.parent

24: return s

Let a calling context tree be a tree denoted by 〈F, V,E〉:
F = {f1, . . . , fm} is a set of functions at multiple layers in a
program’s execution. V = {v1, . . . , vn} is a set of nodes rep-
resenting functions in different contexts. Note there could
be multiple nodes for a function as the function may oc-
cur in distinct contexts. E = {e1, . . . , eo} ∈ V × V is
a set of function call edges. An edge e is represented as
〈v1, v2〉 where v1, v2 ∈ V . A calling context (i.e., a call
path) pk = 〈v1, . . . , vk〉 in the CCT is a sequence of function
nodes from the root node v1 to a leaf node vk. We use the
ending function node to uniquely identify a call path.

The input to IntroPerf is a system stack trace T =
〈(t1, s1), . . . , (tu, su)〉 which is a sequence of OS events with
stack traces. Each trace event is represented as a pair: (1) a
dynamic calling context si = 〈f1, . . . fk〉 and (2) the times-
tamp ti of an OS kernel event (e.g., a system call) which trig-
gers the generation of si. PathToID in Algorithm 1 presents
how to generate the nodes and edges of a dynamic calling
context tree for si and index it with a unique ID. Each node
has several properties: v.f ∈ F indicates the function that v
represents; v.children is a set of edges connecting v and its
child nodes; v.id is the node ID number; v.pid is the path
ID in case v is a leaf node.

Once a path is created in the CCT, any path having the
same context will share the same ID by traversing the same
path of the tree. The pair of the unique path ID and the
pointer to the leaf is stored in a hash map, map_path, for
quick retrieval of a path as shown in the IDToPath function.

Our context-sensitive performance analysis uses this in-
dexing scheme and the enhanced CCT as the underlying
mechanism and data structure to store and efficiently re-
trieve intermediate analysis results.

3.3 Inference of Function Latencies
In this section, we describe how we infer the latency of

function instances using system stack traces which include

Table 1: Inference of function instances of the example shown in Figure 3. I: isNew, A: AllNew, L: LastStack,
T: ThisStack[0], R: Register[0-2].

Time t1 t2 t3 t4
Depth I A L T R I A L T R I A L T R I A L T R

0 1 1 - A (t1,t1,A) 0 0 A A (t1,t2,A) 0 0 A A (t1,t3,A) 0 0 A A (t1,t4,A)
1 1 1 - B (t1,t1,B) 0 0 B B (t1,t2,B) 1 1 B C (t3,t3,C) 0 0 C C (t3,t4,C)
2 1 1 - D (t1,t1,D) 0 0 D D (t1,t2,D) 1 1 D D (t3,t3,D) - - D - -

Figure 3: Inference of function latencies across mul-
tiple layers using stack trace events.

the function information across the application, intermedi-
ate libraries, and the kernel (e.g., system calls).

Figure 3 presents the high-level idea of the inference al-
gorithm 2. The sub-figure at top left shows an example of
the latencies between the calls and returns of five function
instances: A, B, C, D, and D′ (the notation on the second
D′ indicates its distinct context). Capturing these function
call boundaries precisely would require code instrumenta-
tion for profilers. Instead, the input to our algorithm is a
set of system stack traces which are illustrated as four dotted
rectangles at times t1, t2, t3, and t4.

The algorithm infers the latency of function calls based
on the continuity of a function context. In Figure 3, we
can see that function A continues from time t1 to t4 without
any disruption in its calling context; thus, the algorithm
considers this whole period as its latency. On the other
hand, function D experiences a change in its context. During
t1 and t2, it was called in the context of A->B->D. However,
at t3 its context changes to A->C->D leading to discontinuity
of its context even though function D stays at the same stack
depth. Note that this discontinuity propagates towards the
top of the stack. If there are any further calls from D in
this case, their context will be disrupted all together. The
algorithm scans the stack trace events in the temporal order
and tracks the continuity of each function in the stack frame
along with its context.

Our approach infers function latencies in two modes, con-
servative estimation and aggressive estimation, as illustrated
in Figure 3. The conservative mode estimates the end of a
function with the last event of the context while the ag-
gressive mode estimates it with the start event of a distinct
context. In our analysis, we mainly use the conservative
mode. However, we also observe that these two modes are
complementary when context change is frequent.

Algorithm 2 Function Call Latency Inference

T : a system stack trace, si: a call stack at time ti
1: function inferFunctionInstances(Trace T , CCTw)
2: for (tk, sk) in T do
3: newStackEvent(tk, sk, CCTw)

4: for d in (0, ..., |Register|) do
5: closeRegister(tlast, d)

6: function newStackEvent(tk, sk, CCTw)
7: initialize ThisStack, LastStack,Register
8: AllNew = 0, d = 0
9: pid = PathToID(sk, CCTw)

10: for f in sk do
11: isNew = (f == LastStack[d])
12: if AllNew==1 then
13: isNew = 1 . Context change propagates.

14: if isNew==1 then
15: AllNew = 1 . Context change triggered.

16: ThisStack[d++] = (f, d, isNew)

17: if |LastStack| > |ThisStack| then
18: i = LastStack[|LastStack| − 1]
19: while i >= |ThisStack| do
20: closeRegister(tk, i)
21: remove LastStack[i - -]

22: reverse ThisStack
23: for (f, d, isNew) in ThisStack do
24: if isNew == 1 then
25: closeRegister(tk, d)
26: nid= getNodeIDfromCCT (pid, d, |sk|, CCTw)
27: Register[d] = [tk, tk, f, nid, pid]
28: else
29: Register[d][1] = tk . The end time stamp

30: LastStack[d] = f

31: tlast = tk
32: function closeRegister(tk, d)
33: (ts, te, f, nid, pid) = Register[d]
34: ta = tk − ts; tc = te − ts
35: newFunctionInstance(f, pid, nid, ta, tc)
36: remove Register[d]

Now we present how Algorithm 2 processes the illustrated
example in detail step by step. The states of variables in
each step of the algorithm are illustrated in Table 1. Func-
tion inferFunctionInstances calls newStackEvent for each
stack event. This function tracks the continuity of a func-
tion context by putting each frame of the stack in a register
as far as the context continues. isNew is a boolean value
showing whether a function newly appears or not (Line 11).
Table 1 shows that isNew (shown as I) is set to 1 for all
stack levels at time t1 due to their initial appearance. Then
at time t2 the values become 0 due to the identical stack sta-
tus. The duration of the context continuity of the currently
active functions in the stack are tracked using the Regis-

ter array (shown as R in the Table). On a new function,
its registration is performed in Line 27. As the function’s
context continues over time, its duration in Register is up-

dated accordingly (Line 29). For instance, three function
instances are registered at time t1 as shown in the R column
(6th column in Table 1). At time t2 the duration of all three
functions are updated from t1 to t2 (11th column).

If discontinuity of a function context is detected, the con-
texts of the functions in the higher level of the stack should
all be discontinued because they are from a different con-
text. This mechanism is performed by enforcing isNew’s
status (Line 12-15). Function D appears twice (at times t2
and t3) at the same stack depth. But they have different
contexts and hence are considered distinct instances.

Function returns are inferred using the moments when the
context changes or at the end of the trace. When that hap-
pens, the registered functions are closed by calling closeReg-

ister (Lines 5, 20, 25). Inside this function the new function
instance is created as newFunctionInstance.

The inferred function latencies are associated with their
contexts by recording the corresponding function node in the
calling context tree. When a function is registered, the cor-
responding CCT node ID (nid) is obtained using the current
context (pid) and the depth (d) of the given function in the
context (Line 26-27). Later when this function is removed
from Register and stored as an inferred function instance
(Line 32-36), the CCT node ID (nid) is recorded along with
the latency.

The inferred latency of a program L is a set of function
latency instances (l ∈ L) where l = 〈f, pid, nid, ta, tc〉. ta
and tc are aggressive and conservative estimations of a func-
tion latency, respectively. nid is a function node ID in CCT
(when the node is v ∈ V , v.id = nid). pid is the ID of the
call path that this node belongs to. f ∈ F is the function
ID that this node represents.

We manage the extracted function latency instances in
two ways. First, we keep the inferred latencies in a list to
enable the examination of individual cases in a timeline for
the developers. Second, we aggregate the instances in the
CCT so as to have an aggregated view of function latencies
accumulated in each context. This is performed using the
nid field which can directly point to the corresponding node
in the CCT using data structure map_node in Algorithm 1.
A function node v is extended to have three additional fields:
v.C is the number of function counts accumulated in each
node; v.µa and v.µc are the average function latencies in the
aggressive and conservative modes respectively. Let L′ be
a subset of L where its estimated function instances belong
to a function node, vj , whose node ID is j, L′ = {l | l ∈
L, l.nid = j}. vj ’s average function latency is computed as
follows.

vj .µ =
1

vj .C

∑
l∈L′

l.t,

The operations on function latency are applied to both esti-
mation modes, and we will use one expression in the follow-
ing description for brevity.

We call this extended CCT with the accumulated function
latency a performance-annotated calling context tree (PA-
CCT). We will use it in the next stage to localize perfor-
mance bugs.

3.4 Context-Sensitive Analysis of Inferred Per-
formance

IntroPerf provides a holistic and contextual view re-
garding the performance of all layers of a program by asso-

Algorithm 3 Top-Down Latency Normalization and Dif-
ferential Context Ranking

1: function LatencyNormalization(Node *v)
2: µchildren = 0;
3: for vi ∈ v.children do
4: LatencyNormalization(vi)
5: µchilden += vi.ta

6: v.µown = v.µ− µchildren

7: function getPathSet(CCTw)
8: return getPath(the root of CCTw, [], 0)

9: function getPath(Node *v, p)
10: P = ∅
11: if v.children = ∅ then
12: P = P ∪ {p · v}
13: else
14: for vi ∈ v.children do
15: P = P ∪ getPath(vi, p · v)

return P
16: function DiffRankPaths(N,CCTbase, CCTbuggy)
17: Pbase = getPathSet(CCTbase)
18: Pbuggy = getPathSet(CCTbuggy)
19: for p′ ∈ Pbuggy do
20: if {∃p ∈ Pbase|p′ ≡ p } then
21: c = Σ diff µ of equivalent nodes in p′ and p
22: else
23: c = Σ µ in each node in p′

24: ∆P .append(c, p′)

25: for (c, p′) ∈ ∆P do
26: Sort all function nodes in p′ with regard to v.µ
27: Annotate the rank of each node v in p′ in v.rank

28: Sort all paths in ∆P with regard to c
29: return top N paths of ∆P

ciating the inferred function latencies and the calling con-
texts available in the stack traces. We use such information
to localize the root causes of performance bugs at the func-
tion level along with its specific calling context, which is
valuable information to understand the bugs and generate
patches. In this section we present how to automatically lo-
calize a potential performance bottleneck in a PA-CCT that
we construct in the previous stage.

To determine the likely root causes of performance symp-
toms in terms of latency and context, we perform several
steps of processing of the inferred function latencies. First,
we normalize the function latencies at multiple layers to
remove overlaps across call stack layers and extract true
contributing latencies in a top down manner. Second, we
present a calling context-based ranking mechanism which
localizes potential root cause contexts and the bottleneck
functions within the contexts automatically.

3.4.1 Top-Down Latency Normalization
IntroPerf estimates the latency of all function instances

(i.e., duration between their invocations and returns) in the
call stack. While this estimation strictly follows the defini-
tion of function latency, raw latencies could be misleading
for identifying inefficient functions because there are over-
laps in the execution time across multiple stack layers as il-
lustrated in Figure 4. With raw latencies, function A would
be determined as the slowest function because its duration is
the longest. Without properly offsetting the latency of child
functions, such top level functions (e.g., “main”) that stay at
the bottom of the call stack would always be considered as
expensive functions. Note that this challenge does not oc-

Figure 4: Top-down latency normalization. Non-
overlapped latency is shown in shade.

cur in profilers because their approaches are bottom-up by
sampling the program counters and always accounting for
latency at the low shaded levels in Figure 4.

To remedy this problem, we use the association between
callers and callees in the CCT. As shown in Figure 4, the
latencies of callees always overlap with the latency of their
caller. This relationship can be expressed as the following
formula. Let V ′ = {vi|〈vj , vi〉 ∈ vj .children}, and the non-
overlapped latency of v be v.µown:

vj .µ = vj .µown +
∑

vi∈V ′

vi.µ

Based on this observation, we address the above issue by
recursively subtracting the latency of callee functions from
the caller functions in a PA-CCT. Given the root node of a
PA-CCT, function LatencyNormalization (Line 1-6 in Al-
gorithm 3) recursively traverses the entire tree and subtracts
the sum of the child node latencies from its parent’s, leav-
ing the latency truly contributing to the execution of that
function.

3.4.2 Performance-Annotated Calling Context Rank-
ing

In this section, we present how IntroPerf automatically
localizes the likely cause of performance problems. We use
the runtime cost of executed code estimated by the inferred
latency from system stack traces to localize the root cause.
While this approach is able to localize hot spot symptoms,
there is an additional challenge in finding out which code
region should be fixed because program semantics need to
be considered. For instance, the root cause of high latency
could be due to a bug triggered inside a function. On the
other hand, it is also possible that the root cause is in other
related functions such as a caller of a hot spot function be-
cause it introduces the symptom due to its invocation pa-
rameters. Our validation case in the evaluation section 5.1
indeed shows that in some applications the final patched
functions could be away from the hot spots by a couple of
frames in the call stack.

Our approach ranks hot calling contexts, which expose
closely related functions in the call stack such as callers and
callees in addition to the hot function particularly in the
context when a high latency is triggered. The invocation
relationship in calling contexts allows developers to inspect
neighboring functions in the call stack that may have impact
on the hot spot function and to find the most suitable code
region to patch especially when complex code semantics are
involved.

In order to locate the hot spot calling contexts, we gener-
ate a set of call paths by traversing a CCT and rank them.
Let Ps be a set of paths observed in an execution s. Function
getPathSet in Algorithm 3 recursively traverses the CCT
and generates Ps. As the algorithm moves from a node to

its child node, the path is updated by concatenating the
function node (p · v). When the algorithm reaches a leaf
node which does not have any children, it stores the path
from the root to the current node in the path set (Ps).

One challenge in hot spot ranking to investigate perfor-
mance bugs is that some code is inherently CPU intensive
and ranked high regardless of workload changes (e.g., crypto,
compression functions). While such code region needs care-
ful inspection for optimization, its behavior is not unusual in
the developers’ perspective because it reflects the character-
istics of the program. Performance bugs reported in the
community typically describe unexpected symptoms that
are triggered in a particular input or workload (e.g., a large
input file). In that sense, such originally costly code is less
important for our purpose to determine the root cause of a
performance bug symptom.

To address this problem and improve the quality of rank-
ing output, we employ a systematic differential method in
the ranking of calling contexts. The method uses two sets of
CCTs produced from the workload samples under two differ-
ent inputs: a base input that a program was tested and con-
firmed to work as expected with, and another buggy input
that a user discovered and reported to have a performance
bug symptom (e.g., a moderate sized input and a large in-
put). By subtracting the inferred execution summary based
on a base input from that based on a buggy input, we prior-
itize the hot spots sensitive to the buggy input in a higher
rank and reduce the significance of the commonly observed
hot spots. To apply this technique, we first need to define
the equivalence of paths in multiple workloads.

Let there exist two paths which respectively belong to P1

and P2 (pk = 〈v1, . . . , vk〉, pk ∈ P1, p′k = 〈v′1, . . . , v′k〉, p′k ∈
P2). We define that two paths are equivalent (pk ≡ p′k) if
the represented functions of two paths are identical in the
same order. The differential cost of the paths is calculated
as follows: P1 and P2 are for a base input and a buggy input,
respectively. In comparison between the two sets of paths
in dynamic calling contexts, a new context may appear due
to the buggy input. In such a case, we consider the latency
of the base workload as zero and use only the context of the
buggy input.

k∑
x=1

(v′x.µ− vx.µ) : ∃pk, ∃p′k, pk ≡ p′k
k∑

x=1

v′x.µ : Otherwise

The paths are ranked using the above cost formula and the
top N ranked functions are listed for evaluation (function
DiffRankPaths in Algorithm 3). The number of dynamic
calling contexts can go up to tens of thousands even though
a partial workload is sampled depending on the complex-
ity of workload. Such context ranking significantly reduces
analysis efforts by limiting the scope to a small set of hot
calling contexts. Furthermore, for each hot calling context
we provide the ranking of function nodes illustrating hot
functions inside the path.

Later in Section 5 (Figure 7), we will present a few cases
of real world performance bugs with the top-N% hot calling
contexts and hot functions in the ranked order in the heat-
map (i.e., a color-mapped table with rows for distinct con-
texts, columns for the functions within a path, and colors
for function latencies). It provides a concise and intuitive
view on context-sensitive hot spots and assists developers

by automatically narrowing down their focus from massive
amount of dynamic calling contexts to a few highly ranked
code contexts.

4. IMPLEMENTATION
IntroPerf is built on top of a production tracer, Event

Tracing Framework for Windows (ETW) [1] – a tracing fa-
cility available on Windows (introduced in Windows 2000)
and is used by management tools such as Resource Moni-

tor. We use ETW to generate system stack traces, which
are the stack dumps generated when kernel events happen,
thus including a range of function information from user
functions to kernel functions. Stack traces are generated on
a selection of kernel events specified as input to the frame-
work as the stack walking mode. We use two configurations:
(1) system call events, and (2) system call + context switch
events. In addition, we include several miscellaneous events
in tracing (e.g., process, thread, and image loading events)
without stack walking. These events are included as a com-
mon practice to disclose execution status during tracing such
as the loaded program images and the memory address of
the kernel necessary to understand the trace.

The front-end of IntroPerf parses the ETL (Event Trac-
ing Log, the output of ETW) files and extracts both kernel
and user space function information which are sliced for each
process and thread. The back-end consists of several stages
of programs performing the construction of the calling con-
text tree, inference of function latencies, and ranking of the
performance annotated-CCT. The entire framework includ-
ing both the front-end and back-end has a total of 42K lines
of Windows code written in Visual C++. All experiments
are done on a machine with Intel Core i5 3.40 GHz CPU,
8GB RAM, and Windows Server 2008 R2.

In the presentation of our evaluation, we use the debug-
ging information in the program database (PDB) format for
convenience of illustration and validation of data. However,
it is not a requirement for our mechanism because our frame-
work, instead, can represent instructions (e.g., function en-
tries) by their offsets within the binary. As an example usage
scenario, IntroPerf can generate detailed bug localization
reports on problematic performance symptoms only based
on the binary packages on users’ sites. If the user deter-
mines that a root cause belongs to a software component,
he/she can report it to the vendor. The developers on the
vendor side should have the debugging information which
is stripped in the release. They can interpret the details
of IntroPerf’s report with function names using symbolic
information.

The Visual Studio compiler produces PDB files for both
executable files (e.g., *.exe) and libraries (e.g., *.dll) re-
gardless whether it uses the debug or release mode. Most
Microsoft software products (e.g., Internet Explore, Win-
dows kernel, and low level Windows subsystems) provide
such information which can be automatically retrieved from
the central server with a configuration. Therefore interpret-
ing the software layers of Windows including the kernel and
GUI system is straightforward even though Windows is a
proprietary OS. Most open source projects make their sym-
bol files available in addition to the binary packages to assist
debugging. If not, this information can be easily generated
by compiling the code.

Currently ETW does not support the stacks of virtual
machines (e.g., Java) or interpreters due to limited parsing

Figure 5: Dynamic calling contexts of the Apache
45464 case showing hundreds of distinct call paths.

capability of non-native stacks. Supplemental stack inter-
pretation layers such as in jstack [4] will resolve this prob-
lem.

5. EVALUATION
In this section, we evaluate several aspects of IntroPerf

experimentally. Here are the key questions in the evaluation:

• How effective is IntroPerf at diagnosing performance
bugs?

• What is the coverage of program execution captured
by system stack traces?

• What is the runtime overhead of IntroPerf?

5.1 Localizing Root Causes of Performance Bugs
IntroPerf enables transparent performance introspec-

tion of multiple software layers which includes relative per-
formance cost of individual functions in each specific con-
text. This information is valuable for developers to un-
derstand “where” and “how” (in terms of function call se-
quences) performance bugs occur and eventually to deter-
mine the most suitable code regions to be fixed. In this
section, we evaluate the effectiveness of IntroPerf in lo-
calizing the root causes of performance bugs in a set of open
source projects which are actively developed and used.

Evaluation setup: We selected open source projects
with various characteristics such as server programs (Apache
HTTP server: web server, MySQL: database server), desk-
top applications (7zip: file compressor/decompressor), and
a low-level system utility (ProcessHacker: an advanced ver-
sion of Task Manager) to highlight generic applicability of
IntroPerf. The life span of these projects range from five
to eighteen years as of 2014 with continuous development
and improvement of code due to popularity and user bases.

Input to experiments: As the input cases to be ana-
lyzed, we use the performance bug symptoms that are re-
ported by users. We checked the forums of the projects
where users post their complaints on performance issues,
and collected cases which include instructions to trigger the
performance issues. In addition to the workload described
to trigger symptoms, we created another workload with a
similar input on a smaller scale as a base input to offset
costly code which is not closely relevant to the symptom.

IntroPerf analyzes bug symptoms without any prior
knowledge; thus it is capable of identifying the root causes
of new bugs. Such a process, however, typically requires
non-trivial turn-around time for evaluation by developers
and patch generation. While our long-term evaluation plan
includes finding un-patched bugs, in this paper, for valida-
tion purposes we use the cases whose patches are available to

Figure 6: A zoomed-in view of the PA-CCTs of the
Apache 45464 case.

compare with IntroPerf’s output derived with zero knowl-
edge and evaluate its efficacy.

Performance-annotated calling context tree (PA-
CCT): A calling context tree provides a very informative
view to developers to understand the root cause by distin-
guishing the overhead along with distinct call paths. In-
troPerf creates this view on all layers by overlaying the
estimated function latencies from system stack traces. Fig-
ure 5 illustrates this holistic view of a dynamic calling con-
text for the Apache 45464 case with hundreds of distinct
call paths. Due to its complexity, we show a zoom-in view
in Figure 6 around a costly function call path of Figure 5.
Each node represents a function and an edge shows a func-
tion call. We use two workloads in a combined view showing
the edges from two PA-CCTs. The workloads of a large in-
put and a small input are respectively illustrated as thick red
arrows and thin blue arrows. The thickness of the arrows
represents the inferred latency showing a clear contrast of
the performance of the two workloads. Note that a PA-CCT
shows a more informative view than a program CCT due to
the distinct calling context in all software component layers.

The details of the PA-CCTs in the evaluated cases are
presented in Table 2. Columns 3, 4, 5, and 6 show the
runtime program characteristics captured in stack traces:
the number of loaded program binaries and libraries (|I|),
the number of distinct dynamic calling contexts (|P |), the
total number of functions present in the stack (|F |), and the
average length of paths (l).

Costly calling contexts and functions: While human
inspection of a PA-CCT is useful for analysis on a small
scale, for a PA-CCT with non-trivial size, as shown in Figure
5, the amount of details would be overwhelming for a manual
approach. Hence IntroPerf provides an automated rank-
ing of costly (i.e., hot) calling contexts. Algorithm 3 ranks
call paths using their runtime cost, which is the sum of the
function’s aggregated inferred latencies.

In this evaluation, we use two metrics: hot calling contexts
(i.e., paths) and hot functions within the paths. To validate
how effective IntroPerf is, we compare IntroPerf’s re-
sults with the patch (considered as the ground truth) and
present how closely IntroPerf’s metrics match the ground
truth using two distance metrics. A path distance, pmin,

represents the similarity between the bottleneck path and
the root cause path in the ground truth using the top (min-
imum) rank of the path that includes a patched function. A
function distance, fmin, shows the effectiveness of IntroP-
erf in a finer function level using the minimum number of
edges between the most costly function node and a patched
function node within a path.

The comparison result is presented in columns 7-10 in
Table 2. As in-depth information, top ranked costly calling
contexts are further illustrated as heat-maps in Figure 7,
where each row represents the cost of one path and the top
row is the call path (context) with the highest estimated
latency. The latency of an individual function is represented
in colors (log10 scale) showing the bottlenecks in red and the
patched functions (ground truth) are illustrated as circled
“P” marks. To ease the identification of a bottleneck within
a path, the function with the highest latency is marked as
0 and the adjacent functions are marked with the distance
from it.

In all cases, we can confirm that the bottleneck contexts
ranked by IntroPerf effectively cover the patched func-
tions from the data shown in Table 2 and illustrated in Fig-
ure 7 while such data vary depending on the characteris-
tics of the program and the performance symptoms. For
instance, the patch can be placed in a hot function if the
bottleneck is in the function. On the other hand, a patch
could be placed in its caller if its parameter is anomalous.
Note that in both cases IntroPerf offers an opportunity to
correlate the bottleneck and the patch using calling context
performance ranking. It enables developers to easily check
the adjacent functions around the bottleneck function in the
context and to reason about the suitable program points for
patches.

5.2 External Root Causes of Performance Bugs
So far we have presented the cases that the root causes

of performance bug symptoms are present inside the pro-
gram. In a post-development stage, software components
are installed, integrated, and updated in an un-coordinated
manner. If any of the multiple layers has a problem, it will
impact the overall performance of the software. Note that
this problem is beyond a typical scope of traditional debug-
ging or testing techniques because the analysis requires the
capability to inspect multiple software layers that are sepa-
rately built.

Since IntroPerf uses system stack traces that include
information at multiple system layers, IntroPerf is not
limited to the analysis of software’s internal code but is able
to address performance problems external to the program
binary as well. In this section, we evaluate potential cases
that a dependent but external software component, such as
a plug-in or an external library, causes performance issues.
It shows the unique advantage of IntroPerf: introspecting
all vertical layers and identifying the source of performance
impact automatically without requiring source code.

This type of performance bugs are in general not well
studied because the root causes may depend on the inte-
gration and deployment of external components including
the system environment. This type of performance anomaly
tends to be quite common in the field. However, because
of currently limited documentation of real cases and time
constraints, we choose one of the components on which the
target software depends, and manually inject a time lag into

Table 2: Evaluation of IntroPerf on the root cause contexts of real world and injected performance bugs.
Program Bug Program Characteristics IntroPerf Evaluation Internal/ Ground

Name ID |I| |P | |F | l pmin fmin Root Cause Binary Root Cause Function External Truth

Apache 45464 29 319 712 40.96 1 36 libapr-1.dll, Internal Library apr_stat Internal Patch
MySQL 15811 36 1051 1275 31.22 1 0 mysql.exe, Main Binary strlen Internal Patch
MySQL 49491 13 144 368 33.71 3 5 mysqld.exe, Main Binary Item_func_sha::val_str Internal Patch

ProcessHacker 3744 23 2704 1172 49.34 1 0 ProcessHacker.exe, Main Binary PhSearchMemoryString Internal Patch
7zip S1 28 1160 1182 72.21 11 16 7zFM.exe, Main Binary CPanel::RefreshListCtrl Internal Patch
7zip S2 33 1793 1496 59.61 3 16 7zFM.exe, Main Binary CPanel::RefreshListCtrl Internal Patch
7zip S3 22 656 819 58.78 1 15 7zFM.exe, Main Binary CPanel::Post_Refresh_StatusBar Internal Patch
7zip S4 30 1002 1274 55.95 2 16 7zFM.exe, Main Binary CPanel::RefreshListCtrl Internal Patch

ProcessHacker 5424 25 1488 978 40.60 1 54 ToolStatus.dll, Plug-in MainWndSubclassProc External Patch
ProcessHacker - 26 1241 906 41.56 1 0 ToolStatus.dll, Plug-in NcAreaWndSubclassProc External Inject

Internet Explorer - 92 18716 6168 71.64 1 0 MotleyFool.dll, Toolbar Plug-in CMFToolbar::GetQuote External Inject
Miranda - 42 1032 1245 52.40 1 0 Yahoo.dll, Plug-in upload_file External Inject
Apache - 14 77 302 26.12 3 0 mod_log_config.so, Plug-in ap_default_log_writer External Inject
Apache - 18 96 331 25.89 2 0 mod_deflate.so, Plug-in deflate_out_filter External Inject

VirtualBox - 39 1288 1031 39.36 1 0 QtCore4.dll, External Library QEventDispatcherWin32::processEvents External Inject

it. Injection of the code enables the validation by knowing
the ground truth of the fault. In the long term, we expect
to study real cases in future work.

Evaluation setup: For evaluation, we selected the
cases where the source of the bottleneck is separate from
the main software binary. Such external modules are inte-
grated on the deployment site or optionally activated such
as independent libraries which the main software is relying
on or plug-ins implemented as dynamic libraries. In addi-
tion to one real case of ProcessHacker, we have six delay-
injection cases: ToolStatus is a plug-in for ProcessHacker.
MotleyFool is a toolbar for Internet Explorer. Miranda is
a multi-protocol instant messenger and we selected the file
transfer module of the Yahoo messenger plug-in. Virtual-
Box relies on several libraries for graphics and multimedia.
We injected a bottleneck in the Qt library. Also we injected
bottlenecks in the mod_log_config and mod_deflate mod-
ules of Apache HTTP server which log and compress user
requests respectively.

Ranked costly contexts: The bottom 7 rows of Table
2 show the results of IntroPerf’s capability of localizing
the external root causes of performance bottlenecks. In all
cases, IntroPerf successfully identified the root cause of
the injected bottleneck with high accuracy.

5.3 Coverage of System Call Stack Traces
The system stack trace is a collection of snapshots of the

program stack sampled on OS kernel events. Therefore, the
sampled calling context and function instances will be lim-
ited to the frequency of the kernel events (e.g., system calls,
context switch). However, we found that this coarse granu-
larity suffices for diagnosis of performance anomalies based
on a critical observation that the quality of this sampled view
improves as the latency of a function increases. This prop-
erty leads to a larger number of appearances of function
contexts and instances in the stack traces and higher accu-
racy in the inference accordingly. In this section, we will
experimentally confirm this hypothesis.

Evaluation method: The necessary information for this
experiment is the fine-grained function call instances and the
kernel events which trigger the generation of system stack
traces. We used a dynamic translator, Pin [23], to capture
function calls and returns. System stack traces are gener-
ated by taking the snapshots of the stack on kernel events.
System calls are captured by Pin because they are triggered
by the program. However, context switches are driven by
the kernel; hence, they are hard to capture in user mode ex-

periments on Pin. Therefore, such events are simulated by
taking stack snapshots for every time quantum in the offline
trace analysis.

We evaluate three configurations regarding the kernel events
to generate system stack traces: (1) system calls, (2) system
calls and low rate context switches, and (3) system calls and
high rate context switches. The context switch quantum
in Windows systems vary from 20 ms to 120 ms depending
on scheduling policies and the configuration of the system
[14]. We use 120 ms as the low rate of context switch in the
second configuration as a conservative measure. We also
evaluate the higher context switch rate (20 ms interval) in
the third configuration. These three configurations present
the views of stack traces in three sampling rates. Note that
the dynamic translation framework is slower than the native
execution having an effect similar to executing on a slow ma-
chine. Thus we mainly focus on the relative comparison of
the three configurations.

We evaluate the coverage of stack traces in two criteria.
First, the dynamics of calling context are analyzed to eval-
uate the diversity of call paths shown in the stack traces.
The second criterion is regarding the function call instances
that are captured by the stack traces.

Coverage of dynamic calling context: Figures 8 (a)-
(c) illustrate the coverage of dynamic calling context based
on the three configurations described above. The X-axis
shows the order of dynamic calling contexts in percentage
sorted by the latency in the ascending order. The graph
shows the coverage of dynamic calling contexts for all calling
contexts whose ranks are the same or higher than the order
shown in the X-axis, and the Y-axis shows the coverage of
dynamic calling contexts in percentage. For example, if x
is 0%, the corresponding y value shows the coverage of all
dynamic calling contexts. If x is 99%, y shows the coverage
of calling contexts with the top 1% high latencies.

Each figure shows multiple lines due to MySQL’s usage
of multiple processes/threads. In the experiment using Pin
on Windows, we observed that some threads only execute
OS functions in their entire lifetime. We used the processes
and threads that include the application code (e.g., “main”)
in the execution since OS-only behavior could be dependent
on platforms (e.g., program runtime setup) and may not be
representative application characteristics.

In the overall scope (x = 0), the stack traces cover under
20% of dynamic calling contexts. However, the results are
improved on high latency contexts which are the focus of
IntroPerf for performance diagnosis. The right sides of

Figure 7: Top ranked contexts of performance bug symptoms. Each row represents a calling context. Columns
represent the functions within contexts. The root causes in the ground truth are highlighted with circles.

Figures 8 (a)-(c) show that the coverage increases for top
ranked contexts. For the top 1 % slowest functions shown at
the right end of the X-axis (x = 99), the coverage increases
to 34.7%-100% depending on processes/threads.

Coverage of function call instances: Figures 8 (d)-
(f) show the coverage of individual function call instances in
the stack traces. In all the executions, most threads covered
1.2%-8.05% of the instances. However, for the top 1% high
latency functions the coverage increases to 29.1%-100%.

Table 3 summarizes the coverage analysis of dynamic call-
ing contexts and function call instances on three programs:
Apache HTTP server, MySQL server, and 7zip. Apache and
MySQL are the examples of web and database server pro-
grams with I/O oriented workload. 7zip is a data compres-
sion/decompression program which would be an example of
a desktop application with intensive CPU workload. The
table shows different characteristics of these programs. The
second column shows the percentage of system calls com-
pared to regular function calls.

Although there are variations in the behavior of the three
programs due to their characteristics as shown in columns,
the general observation applies in the same way in the com-
parison between the coverage of the entire scope (columns
“Cov. of Context: All,” “Cov. of Instances: All”) and the
coverage of top 1% slowest contexts and latencies (columns
“Cov. of Context: Top 1%,”“Cov. of Instances: Top 1%”):
the coverage of contexts and function instances is signifi-
cantly higher for high latency functions. In other words, for
slow functions experiencing performance bug symptoms, In-

troPerf generates higher quality views compared to shorter
(time-wise) functions. This is the core reason for IntroP-
erf’s effectiveness in performance bug diagnosis despite the
relatively coarse granularity of stack traces.

5.4 Performance
IntroPerf can work with any system stack trace from

production event tracers [1, 15, 27], which are already de-
ployed and being used in production systems. IntroPerf is
an offline trace analysis engine. The tracing efficiency is en-
tirely determined by the design and implementation of OS
kernel tracers. Even though studying the performance of
the tracing sessions is not the focus of this work and cannot
be generalized due to the differences and evolution of trac-
ing mechanisms, we present the tracing performance that
we measured for ETW [1] to provide some insight into the
potential overhead of current production tracers.

We present the overhead for the tracing sessions of three
benchmarks: the Apache benchmarking tool (ab), MySQL
benchmark suite (sql-bench --small-test), and 7zip bench-
mark (7z.exe b). Ab measures the time that an Apache
HTTP server takes to handle 10k requests. Sql-bench pro-
vides a set of sub-benchmarks that measure the wall-clock
times of database operations such as SELECT, INSERT,
UPDATE, etc. The Apache and MySQL benchmarks are
performed in a local network. 7zip has a built-in bench-
mark that operates with the b option which measures the
compression and decompression performance with internal
data.

Figure 8: Coverage of dynamic calling contexts (a)-(c) and function instances (d)-(f) of MySQL database.

Table 3: Coverage of dynamic calling context and function instances in multiple sampling schemes of system
stack traces in percentage. Ranges are used due to the data of multiple threads. Sys: system calls, LCTX:
system calls and low rate context switch events, HCTX: system calls and high rate context switch events.

Program Syscall Cov. of Context: All Cov. of Context: Top 1 % Cov. of Instances: All Cov. of Instances: Top 1 %
Name Rate Sys LCTX HCTX Sys LCTX HCTX Sys LCTX HCTX Sys LCTX HCTX

Apache 0.33-2.79 18.7-19.3 19.3-20 22.3-24.5 58.6-84.6 61.8-92.3 75.3-100 1.5-20.1 1.5-20.3 1.8-21.6 27-86.7 30.1-93.3 42.6-100
MySQL 0.21-1.48 5.3-18.2 6.4-18.2 10.8-19.2 34.7-100 44.2-100 64.7-100 1.2-7.48 1.3-7.48 1.7-8.05 29.1-100 33.3-100 52.3-100

7zip 0.11-5.03 13.6-47.5 14.5-49.4 17.5-47.5 38.5-100 41-100 50.1-100 0.6-30.2 0.6-30.2 0.8-31.2 16.6-100 18.6-100 26.5-100

Our configuration of ETW flushes the trace records to
the disk when the 512 MB kernel buffer is full. The goal of
this experiment is to measure the runtime impact due to the
generation of stack traces. To minimize the impact due to
the flush to disk, we stored the trace on RAM disk. ETW
provides another option, on-the-fly trace processing, instead
of flushing events to disk. If a custom tracer can be built, it
can further lower the overhead.

Figure 9 shows the overhead for tracing OS kernel events
along with system stack traces. When system calls and mis-
cellaneous events, which are required to comprehend events
described in Section 4, are recorded, the overhead is 1.38%-
8.2%. If context switch events are additionally collected,
the overhead increases to 2.4%-9.11%. Note that IntroP-
erf is not required to be active for the entire execution of a
program because OS tracers can dynamically start and stop
a tracing session without interfering applications. A rea-
sonable scenario would be to sample the abnormal period
when the program begins to show it. Moreover, with the
efficiency of OS tracers being improved, IntroPerf will be
able to perform faster offline analyses.

6. DISCUSSION AND FUTURE WORK
Our evaluation in Section 5 is based on a simple and con-

servative scheme (i.e., conservative estimation shown in Fig-
ure 3) to estimate the latencies of functions. A more re-
laxed latency estimation scheme (e.g., aggressive estimation
or variants) may have either increased or decreased accuracy
depending on which scheme closely matches the actual tim-
ing of function calls and returns. Improving the estimation
accuracy with advanced schemes would be an interesting di-
rection for future work.

Applications heavily relying on system functions may cause
high frequency of kernel events. Since the overhead of the

Figure 9: Overhead of ETW stack trace collection.

OS tracer is likely proportional to the frequency of the events
recorded, it would be important to lower the number of
recorded events for efficiency as far as the coverage is not
significantly affected. Sampling could be leveraged to miti-
gate the problem. Existing sampling schemes such as those
employed by traditional profilers could be similarly effective.

7. CONCLUSION
We present IntroPerf, a performance inference tech-

nique that transparently introspects the latency of multi-
ple layers of software in a fine-grained and context-sensitive
manner. We tested it on a set of widely used open source
software, and both internal and external root causes of real
performance bugs and delay-injected cases were automati-
cally localized and confirmed. The results showed the effec-
tiveness and practicality of IntroPerf as a lightweight ap-
plication performance introspection tool in a post-development
stage.

Acknowledgments
We thank Brendan Saltaformaggio and anonymous review-
ers who provided valuable feedback for the improvement of
this paper.

8. REFERENCES

[1] Event Tracing for Windows (ETW).
http://msdn.microsoft.com/en-us/library/

windows/desktop/aa363668(v=vs.85).aspx.

[2] Ftrace: Function Tracer. https://www.kernel.org/
doc/Documentation/trace/ftrace.txt.

[3] gperftools: Fast, multi-threaded malloc() and nifty
performance analysis tools.
https://code.google.com/p/gperftools/.

[4] jstack - Stack Trace.
http://docs.oracle.com/javase/7/docs/

technotes/tools/share/jstack.html.

[5] LTTng: Linux Tracing Toolkit - next generation.
http://lttng.org.

[6] Oprofile: a system-wide profiler for linux systems.
http://oprofile.sourceforge.net/.

[7] perf: Linux profiling with performance counters.
https://perf.wiki.kernel.org/.

[8] Stack Walking (Windows Driver).
http://msdn.microsoft.com/en-us/library/

windows/desktop/ff191014(v=vs.85).aspx/.

[9] M. K. Aguilera, J. C. Mogul, J. L. Wiener,
P. Reynolds, and A. Muthitacharoen. Performance
debugging for distributed systems of black boxes. In
SOSP’03.

[10] G. Ammons, T. Ball, and J. R. Larus. Exploiting
hardware performance counters with flow and context
sensitive profiling. In PLDI’97.

[11] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier.
Using magpie for request extraction and workload
modelling. In OSDI’04.

[12] M. D. Bond, G. Z. Baker, and S. Z. Guyer.
Breadcrumbs: efficient context sensitivity for dynamic
bug detection analyses. In PLDI’10.

[13] M. D. Bond and K. S. McKinley. Probabilistic calling
context. In OOPSLA ’07.

[14] M. Buchanan and A. A. Chien. Coordinated thread
scheduling for workstation clusters under windows nt.
In Proceedings of the USENIX Windows NT
Workshop 1997.

[15] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal.
Dynamic instrumentation of production systems. In
USENIX’04.

[16] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and
E. Brewer. Pinpoint: Problem determination in large,
dynamic internet services. In DSN’02.

[17] T. Chilimbi, B. Liblit, K. Mehra, A. Nori, and
K. Vaswani. Holmes: Effective statistical debugging
via efficient path profiling. In ICSE’09.

[18] U. Erlingsson, M. Peinado, S. Peter, and M. Budiu.
Fay: extensible distributed tracing from kernels to
clusters. In SOSP ’11.

[19] S. L. Graham, P. B. Kessler, and M. K. McKusick.
gprof: a call graph execution profiler. SIGPLAN Not.,
39(4):49–57, Apr. 2004.

[20] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie.
Performance debugging in the large via mining
millions of stack traces. In ICSE’12.

[21] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu.
Understanding and detecting real-world performance
bugs. In PLDI’12.

[22] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I.
Jordan. Scalable statistical bug isolation. In PLDI’05.

[23] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In PLDI
’05.

[24] M. L. Massie, B. N. Chun, and D. E. Culler. The
ganglia distributed monitoring system: Design,
implementation and experience. In Parallel
Computing, 2004.

[25] R. J. Moore. A universal dynamic trace for linux and
other operating systems. In Proceedings of the
FREENIX Track: 2001 USENIX Annual Technical
Conference, 2001.

[26] N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In
PLDI ’07.

[27] V. Prasad, W. Cohen, F. C. Eigler, M. Hunt,
J. Keniston, and B. Chen. Locating system problems
using dynamic instrumentation. In Proceedings of the
2005 Ottawa Linux Symposium (OLS), 2005.

[28] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul,
M. A. Shah, and A. Vahdat. Pip: detecting the
unexpected in distributed systems. In NSDI’06.

[29] B. H. Sigelman, L. A. Barroso, M. Burrows,
P. Stephenson, M. Plakal, D. Beaver, S. Jaspan, and
C. Shanbhag. Dapper, a large-scale distributed
systems tracing infrastructure. Technical report,
Google, Inc., 2010.

[30] W. Sumner, Y. Zheng, D. Weeratunge, and X. Zhang.
Precise calling context encoding. Software
Engineering, IEEE Transactions on, 38(5), 2012.

[31] B. C. Tak, C. Tang, C. Zhang, S. Govindan,
B. Urgaonkar, and R. N. Chang. vpath: precise
discovery of request processing paths from black-box
observations of thread and network activities. In
USENIX ’09.

[32] X. Xiao, S. Han, D. Zhang, and T. Xie.
Context-sensitive delta inference for identifying
workload-dependent performance bottlenecks. In
ISSTA’13.

[33] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and
S. Pasupathy. Sherlog: Error diagnosis by connecting
clues from run-time logs. In ASPLOS’10.

[34] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage.
Improving software diagnosability via log
enhancement. In ASPLOS’11.

[35] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D.
Choi. Accurate, efficient, and adaptive calling context
profiling. In PLDI’06.

