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Abstract
State-of-the-art memory forensics involves signature-
based scanning of memory images to uncover data struc-
ture instances of interest to investigators. A largely unad-
dressed challenge is that investigators may not be able to
interpret the content of data structure fields, even with a
deep understanding of the data structure’s syntax and se-
mantics. This is very common for data structures with
application-specific encoding, such as those represent-
ing images, figures, passwords, and formatted file con-
tents. For example, an investigator may know that a
buffer field is holding a photo image, but still can-
not display (and hence understand) the image. We call
this the data structure content reverse engineering chal-
lenge. In this paper, we present DSCRETE, a system
that enables automatic interpretation and rendering of in-
memory data structure contents. DSCRETE is based on
the observation that the application in which a data struc-
ture is defined usually contains interpretation and render-
ing logic to generate human-understandable output for
that data structure. Hence DSCRETE aims to identify
and reuse such logic in the program’s binary and create
a “scanner+renderer” tool for scanning and rendering in-
stances of the data structure in a memory image. Differ-
ent from signature-based approaches, DSCRETE avoids
reverse engineering data structure signatures. Our evalu-
ation with a wide range of real-world application binaries
shows that DSCRETE is able to recover a variety of ap-
plication data — e.g., images, figures, screenshots, user
accounts, and formatted files and messages — with high
accuracy. The raw contents of such data would otherwise
be unfathomable to human investigators.

1 Introduction

Traditionally, digital investigations have aimed to re-
cover evidence of a cyber-crime or perform incident re-
sponse via analysis of non-volatile storage. This routine

involves powering down a workstation, preserving im-
ages of any storage devices (e.g., hard disks, thumb drive,
etc.), and later analyzing those images to recover eviden-
tiary files. However, this procedure results in a signifi-
cant loss of live evidence stored in the system’s RAM —
executing processes, open network connections, volatile
IPC data, and OS and application data structures.

Increasingly, forensic investigators are looking to ac-
cess the wealth of actionable evidence stored in a sys-
tem’s memory. Typically, this requires that an investiga-
tor have access to a suspected machine, prior to it being
powered down, to capture an image of its volatile mem-
ory. Further, memory acquisition (both hardware [6] and
software [25] based) must be as minimally invasive as
possible since they operate directly on the machine under
investigation. The resulting memory image is then ana-
lyzed offline using memory analysis tools. Therefore, the
goal of memory analysis tools (like the work presented in
this paper) is to recreate, in the forensics lab, the system’s
previously observable state based on the memory image.

Uncovering evidence from memory images is now
an essential capability in modern computer forensics.
Most state-of-the-art solutions locate data structure in-
stances in a memory image via signature-based scan-
ning. Currently these signatures are either value-
invariant based [2, 3, 9, 21, 23, 26], where data struc-
ture fields are expected to have known value patterns,
or structural-invariant based [5, 16, 17, 24], which rely
on points-to invariants between data structures. In both
cases, data structure signatures will first be derived by
analyzing the corresponding programs. Then the signa-
tures will be used to scan memory images and identify
instances of the data structures. Contents of the identi-
fied instances will be presented to forensic investigators
as potential evidence.

A significant challenge, not addressed in existing
memory forensics techniques, is that investigators may
not be able to interpret the content of data structure
fields, even with the data structure’s syntax and seman-
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(a) Signature-based scanner output. (b) DSCRETE-based scanner output.

Figure 1: Illustration of content reverse engineering challenge. (a) Raw content of an in-memory data structure
instance representing a PDF file. (b) The same data structure after applying DSCRETE’s scanner based on content
reverse engineering.

tics. This is very common for data structures with
application-specific encoding, such as those represent-
ing images, passwords, messages, or formatted file con-
tents (e.g., PDF), all of which are potential evidence in
a forensic investigation. For example, an investigator
may know that a buffer field is holding a photo image
(through existing data structure reverse engineering and
scanning techniques [9, 15–17, 24, 26]), but still cannot
display (and hence understand) the image. Similarly, a
message_body field may hold an instant message, but
the message is encoded, and hence it cannot be readily
interpreted. We call this the data structure content re-
verse engineering challenge.

To enable automatic data structure content reverse en-
gineering, we present DSCRETE1, a system that auto-
matically interprets and renders contents of in-memory
data structures. DSCRETE is based on the following
observation: The application, in which a data structure
is defined, usually contains interpretation and rendering
logic to generate human-understandable output for that
data structure. Hence the key idea behind DSCRETE
is to identify and reuse such interpretation and render-
ing logic in a binary program — without source code —
to create a “scanner+renderer” tool. This tool can then
identify instances of the data structure in a memory im-
age and, most importantly, render them in the applica-
tion’s original output format to facilitate human percep-
tion and avoid the overhead of reverse engineering data
structure signatures required by signature-based memory
image scanners.

To illustrate the challenge of data structure content re-

1DSCRETE stands for “Data Structure Content Reverse Engineer-
ing via execuTable rEuse,” pronounced as “discrete.”

verse engineering, we present a concrete example (from
Section 4). Figure 1a shows the raw content of an in-
memory data structure graph representing a PDF file.
This is the output produced by existing signature-based
scanners. For comparison, Figure 1b shows the same
data structure content after applying DSCRETE’s scan-
ner with content reverse engineering capability. It is
quite obvious that the reverse-engineered content would
be far more helpful to investigators than the raw data
structure content.

We have performed extensive experimentation with
DSCRETE using a wide range of real-world commodity
application binaries. Our results show that DSCRETE is
able to recover a variety of application data — e.g., im-
ages, figures, screenshots, user accounts, and formatted
files and messages — with very high accuracy. The raw
contents of such data would otherwise be unfathomable
to human investigators.

The remainder of this paper is organized as follows:
Section 2 presents an overview of DSCRETE. Section 3
details the design of DSCRETE. Section 4 presents our
evaluation results. Section 5 discusses some observations
from our evaluation, current limitations, and future direc-
tions for this research. Section 6 discusses related works
and Section 7 concludes the paper.

2 System Overview

2.1 Key Idea: Executable Code Reuse
DSCRETE is based on reusing the existing data struc-
ture interpretation and rendering logic in the original
application binary. As a simple example, consider the
Linux gnome-paint application. At the high-level,



gnome-paint works as follows: An input image file
is processed into various internal application data struc-
tures. The user then performs edits to and saves the im-
age. To save the image, gnome-paint will reconstruct
a formatted image from its internal data structures and
write this image to the output file.

Later, if a forensic investigator wanted to recover the
edited image left by gnome-paint in a memory snap-
shot, DSCRETE would be used to identify and auto-
matically reuse gnome-paint’s own data structure ren-
dering logic. First, DSCRETE will identify and iso-
late the corresponding data structure printing function-
ality within the application binary. For brevity, let us re-
fer to this printing/rendering component as the function
P. P should take as input a data structure instance and
produce the human readable application output which
is expected for the given data structure. In the case of
gnome-paint, this component is the file_save func-
tion. It takes as input a GdkPixbuf structure and out-
puts a formatted image to a file. Note that P may not
be a function in the programming language sense, but
instead a subsection of the application’s code responsi-
ble for converting instances of a certain data structure
into some human-understandable form (e.g., output to
the screen, file, socket, etc.).

Once P is identified, DSCRETE will reuse this func-
tion to create a memory scanner+renderer (or “scanner”
for short) to identify all instances of the subject data
structure in a memory image. If P is well defined for the
input data structure, then one can expect P to behave er-
roneously when given input which is not a valid instance
of that data structure. Under this assumption, we can
present each possible location in the memory image to
P and see if P renders valid output for the data structure
of interest. We note that should an investigator alterna-
tively choose to use a signature-based memory scanner to
locate data structure instances, the DSCRETE-generated
scanner is still able to render any located instances.

2.2 Overview of DSCRETE Workflow

Figure 2 presents the key phases and operations of
DSCRETE. The first input is a binary application for
which an investigator wishes to recover application data
of interest from a memory image. To avoid compatibility
issues (such as different data structure field layouts), this
binary should be the same as the one that has contributed
to the memory image.

The subject binary is then executed under instrumen-
tation to identify the code region responsible for convert-
ing a specific data structure into application output (the
function P defined earlier). We refer to this phase of
DSCRETE as “tracing,” and the details of this step are
presented in Section 3.1. In the next phase, “identifica-

tion” (Section 3.2), a graph closure algorithm is used to
formulate a list of possible candidates for P. Each can-
didate is tested, by the “tester” component (Section 3.3),
with a ground truth data structure instance to determine
if it can serve as a viable memory scanner.

Once the specific application logic (P) is identified,
DSCRETE packages this logic as a context-free memory
scanner (Section 3.4), which will be presented to foren-
sic investigators to scan and interpret memory images in
this and future investigations involving the same appli-
cation. We point out that the first three phases (tracing,
identification, and tester) are a one-time procedure inter-
nal to DSCRETE and do not involve field investigators
who will be using the DSCRETE scanners in their prac-
tice.

It is important to note that, unlike signature-based
memory scanning techniques, we do not attempt to find
and return the raw contents (bytes) of identified data
structure instances in a memory image. Instead, we aim
to present the investigator a set of application-defined
outputs that would naturally be generated by the subject
application, had it executed P with the data identified in
the memory image. We emphasize that DSCRETE does
not infer data structure definitions (unlike [17, 24]), nor
does it derive data structure signatures (unlike [16]).

2.3 Assumptions and Setup

Firstly, we assume that when producing DSCRETE-
based memory scanners (which is typically the task of
a central lab of a law enforcement agency), the subject
binary can be executed. This includes recreating any ex-
ecution environment (i.e., operating system and applica-
tion version, required libraries, directory configurations,
etc.) which the application requires. We believe that this
assumption is not overly difficult to realize. In a real
forensic investigation, such runtime configuration infor-
mation can be collected via preliminary examination of
suspect or victim machines. Additionally, our dynamic
instrumentation requires that address space layout ran-
domization (ASLR) be turned off during the production
of the DSCRETE memory scanners (i.e., only the inves-
tigator’s personal workstation, not the suspect machine
under study). The reason for this will become clear in
Section 3.3.

Secondly, we assume that the OS kernel’s paging data
structures in the subject memory image are intact. This
is a similar assumption made by many previous mem-
ory forensics projects [16, 21, 26]. We require this be-
cause DSCRETE takes as input only the subject appli-
cation’s memory session from the suspect machine. For
our evaluation, we extracted the memory pages directly
from running applications — which is preferred when
an investigator has physical access to a suspect’s ma-



Figure 2: Overview of DSCRETE workflow.

chine. However in many forensic investigations only
the memory snapshot and hard disk image are available.
In this case the Volatility [26] linux_proc_maps and
linux_dump_map plug-ins (or memmap and memdump for
Windows) can be used to identify and extract process
pages and mapping information from a whole system
memory image.

3 System Design

In this section, we explain each phase of DSCRETE.

3.1 Dynamic Data Dependence Tracing
The first phase of DSCRETE, “tracing,” collects a dy-
namic data dependence trace from the subject application
binary. This trace must contain some portion of the fu-
ture scanner’s code (i.e., the code responsible for render-
ing a data structure of interest as human-understandable
output). To collect this trace, we (as the central lab staff
producing the scanners for field investigators) interact
with the application to perform the following actions:

1) Create and populate an instance of the data struc-
ture used to store the data of interest. However, we make
no assumptions on the knowledge about this data struc-
ture. We only assume that some data structure exists in
the application which holds forensically interesting in-
formation in its fields.

2) The data structure of interest must be emitted as ob-
servable outputs (e.g., to files, network packets, or dis-
played on screen). This is to allow the scanner produc-
tion staff to express their forensic interest by marking
(part of) the output.

Again let us use gnome-paint to illustrate this pro-
cedure. To accomplish Step 1, we only need to execute
gnome-paint with some input image. This will cause
gnome-paint to create and populate numerous internal
data structures to store the image’s content. To accom-
plish Step 2, we only need to save the image to an output
file. gnome-paint will process the image for output and
call the GDK library’s gdk_pixbuf_save function with
the image’s content as a parameter. While this may seem
like a highly simplified example, the case studies in Sec-

tion 4 show that in general we do not need to perform
lengthy or in-depth interaction with an application to ac-
complish these two requirements.

Meanwhile, DSCRETE will be collecting each in-
struction’s data dependence and recording any library
functions or system calls invoked by the application as
well as their input parameters. This is used to later
identify which known external functions, specifically
those which emit data to external devices, were invoked
with the forensically interesting content as a parameter
(gdk_pixbuf_save from our gnome-paint example).
Note that since our analysis is at the binary level without
symbolic information, we consider a parameter to be any
memory read inside a function that depends on a value
defined prior to the function’s invocation. The memory
may be accessed inside the function, subsequent func-
tions, or as an argument to a system call2, and the content
read is logged as parameters. We exclude any memory
not previously written to by the application or a previ-
ous library function, allowing us to ignore any memory
which is private to the library function and not related to
the parameter (i.e., the transformed data structure). This
logging results in an output file containing the list of in-
voked external functions and parameters to each (similar
to the Linux strace utility).

It is important to note here that DSCRETE saves a
snapshot of the process’s stack and heap memory at
the invocation of any external library function which
leads to an output-specific system call (i.e., sys_write,
sys_writev, etc.). We (as the forensics lab staff) may,
optionally, further specify individual library functions
for which a snapshot should be taken. For example,
if we know that the forensic evidence will be rendered
on the application’s GUI, then we may choose to only
log visual-output related library calls in the GTK library.
These snapshots will later be used to test possible closure
points (defined in Section 3.2).

Once Steps 1 and 2 are accomplished, we may ter-
minate the subject binary and search the log of exter-
nal function calls for one in which the forensically in-

2We assume that system call interfaces are known and thus we can
mark which parameters and memory ranges are read and which are
written to.



teresting data is seen as parameters. Once suitable func-
tions are chosen, DSCRETE only needs to identify which
bytes of the parameters for those function invocations are
of forensic value.

The chosen function invocations and set of parameter
bytes will be important for two reasons: First, the pa-
rameter bytes will serve as the source nodes in our data
dependence graph. Second, the function(s) will be used
as the termination point for our scanner and the corre-
sponding bytes will be the output of the scanner. For
brevity, these functions will be referred to as F and the
selected forensically interesting bytes of F’s parameters
as the set B. For our running gnome-paint example,
consider gdk_pixbuf_save as F and the image buffer
it prints to the output file as B.

Finally, a data dependence graph is generated using
the trace gathered during dynamic instrumentation. The
graph begins with the instructions responsible for com-
puting the bytes of B as source nodes. Then in an iter-
ative backwards fashion, any instruction which a graph
node depends on is also added to the graph. Eventually,
the graph will contain any instruction instance which led
to the final value of B’s bytes. This process is identical
to that of typical dynamic slicing [13], we just chose to
ignore control dependence as it is not required for iden-
tifying the functional closure (to be described next).

3.2 Identifying Functional Closure

Given F , B, and the data dependence graph, DSCRETE
must find a closure point for the rendering function P.
We define a closure point as an instruction in the data
dependence graph which satisfies: 1) It directly han-
dles a pointer to the forensically interesting data struc-
ture and 2) Any future instruction which reads a field
of the data structure must be dependent on the closure
point. This leads to the nice property that by changing
the pointer handled by the closure point, we can change
the data output by P. Returning to the gnome-paint ex-
ample, the closure point is the instruction which moves
a GdkPixbuf pointer into an argument register during
file_save.

However, without source code or the effort of reverse
engineering the subject binary, we cannot know the clo-
sure point for certain a priori. In fact, there may be mul-
tiple closure points in a program, any of which will sat-
isfy our criteria above. To find a valid, usable closure
point we use a combination of a graph closure algorithm
and heuristics to output a list of closure point candidates.
Each candidate is a tuple of the following: the address of
an instruction which may satisfy the above criteria, the
register or memory operand which it stores a pointer to,
and the value of that pointer from the data dependence
trace taken during tracing (Section 3.1).

Algorithm 1 Identifying Closure Point Candidates
Input: DataDepGraph(V , E), p
Output: Candidates[]

SubGraphs[]←∅
Previous Candidate←∅
for node n ∈V in Reverse Temporal Order do

G(V n, En)←∅ . Build subgraph rooted at n
V n←{n}
for (n, t) ∈ E do . Each t that depends on n (may be ∅)

Gt(Vt, Et)← SubGraphs[t] . SubGraph rooted at t
V n←V n∪Vt
En← En∪Et ∪ (n, t)

SubGraphs[n]← G
if Is Store Instruction(n) then . Apply heuristics to n

val← Stored Value(n)
loc← Store Location(n)
if Is Possible Pointer(val) then

if |SubGraph[n]|>|SubGraph[Previous Candidate]| then
Candidates← Candidates ∪ (n, loc,val)
Previous Candidate← n

if |SubGraphs|> p%×|DataDepGraph| then
break . Only consider p% of DataDepGraph

We call this phase “candidate identification.” The al-
gorithm to identify closure point candidates is given in
Algorithm 1. Starting from each byte in B, the algorithm
steps through the data dependence graph in reverse tem-
poral order (i.e., from the last instructions executed to
the first). For each node visited (n) the algorithm builds
a graph containing all previously visited nodes which de-
pend on n (G in Algorithm 1). Essentially, graph G will
resemble a subgraph rooted at n with its leaves accessing
some bytes of B.

For each node n added to these subgraphs, the algo-
rithm performs the following heuristic checks; any node
which passes these checks is considered a closure point
candidate. First, n must store a value (either to a regis-
ter or memory location) which could be a possible data
structure pointer (any integer value that falls within a
memory segment marked readable and writable). Sec-
ond, the size of the dependence subgraph rooted at n
must be larger than the previous candidate’s subgraph.
The intuition here is that a correct closure point will
take as input a pointer to a data structure instance, and
store this pointer to be reused by the rendering func-
tion P. Thus for the part of the data dependence graph
responsible for rendering a data structure instance, the
largest subgraph must have the closure point at its root.
Consider a data dependence graph for the file_save

function from gnome-paint: The largest subgraph of
this data dependence graph should be rooted at the input
GdkPixbuf pointer.

Another heuristic is to stop the algorithm after only a
small percent of the data dependence graph is analyzed.
Note that the data dependence graph contains instruc-
tions from F back to the application’s main function.
Further, P will be close to F in the graph and signif-



icantly smaller than the rest of the application’s code.
This percentage is taken as a configurable input (p in Al-
gorithm 1) and is set via a forward iterative approach. In
our evaluations in Section 4, we started with a p value
of 1 and incremented p until a valid closure point was
found. Even in the extreme case (top), p was never more
than 10 and was often less than 5.

In all of our evaluations, the number of candidates
never exceeded 102 and was often below 30. Addition-
ally, as will be explained in the next section, we never
need to verify (or even see) any of the candidates. The
testing of candidates is done mostly automatically.

3.3 Finding the Scanner’s Entry Point

To test each closure point candidate, DSCRETE will run
a modified version of the memory scanner described in
the next section. This modified scanner, named the can-
didate “tester,” takes as input: 1) the known end point of
the scanner (i.e., F), 2) the memory image taken when F
was executed, 3) the list of candidates, and 4) the subject
binary. The modified scanner will treat F’s memory im-
age as the “suspect” memory image to scan. We assume
that this memory image contains a valid instance of the
data structure which held the data seen in B because the
application was in the process of rendering/emitting this
data structure instance’s fields when the memory image
was captured.

The candidate tester will re-execute the subject binary
from the beginning, but before the process is started the
scanner maps the “suspect” memory image’s segments
into the address space. Each segment (a set of pages)
is mapped back to the address from which it was origi-
nally taken3. This ensures that pointers in these memory
segments will still be valid in the new process’s address
space. Note that ASLR is disabled during DSCRETE
operations. At this point, the new process is unaware of
the added memory segments and executes normally us-
ing only its new allocations. Later, we will intentionally
force the new process to use a small portion of the old
process’s data session to test closure point candidates,
a technique we call cross-state execution (discussed in
Section 3.5).

In the new execution, the forensically interesting data
seen in this run of the application should be altered (e.g.,
executing gnome-paint with a different image). This
will later allow the user to easily determine which can-
didate’s output is correct (from the data structure in the
memory image).

3We have not seen any cases where critical segments overlapped.
This is because the segments are being mapped into ranges usually re-
served for heap and stack space. Since these segments are almost uni-
versally relocatable the new process is simply allocated pages around
our memory image.

The application runs until a closure point candidate in-
struction is executed. Here, the tester forks an identi-
cal copy-on-write child of the subject application to per-
form the actual scan; the parent process will be paused
until the child has completed. The scanner looks up
which register or memory operand this candidate stores
its pointer value into and overwrites this location with
the pointer’s value stored in the candidate. Note that if
this candidate is a correct closure point, then the stored
pointer value is a valid pointer to a data structure instance
in the mapped memory image. This assumes that the data
structure instance is not corrupted from the beginning of
the rendering function P (for which this candidate may
be an entry point) to the invocation of F . Since all candi-
dates are reasonably close to the invocation of F (within
p% of the total trace size), we find that this is never a
problem in practice.

Further, if this candidate is a correct closure point,
the child process will now execute P, access the old
process’s memory segments (via the changed pointer
value), generate the same bytes for B, and invoke F
with these bytes. Imagine that, for our gnome-paint

example, this candidate is the instruction which moves
a GdkPixbuf pointer into a register during file_save

(P). Now file_save will execute in the child process
with the GdkPixbuf structure inside the memory image
and should call gdk_pixbuf_save (F) with an identical
image as was previously rendered (B). Also, recall that
the forensically interesting information seen in the new
run is altered. This is to easily partition between output
generated from the memory image and output from the
new execution of the application.

During testing, if the child process crashes after the
pointer replacement, then the candidate is assumed in-
correct and thrown out. When the F function(s) execute
to completion (recall that in our gnome-paint example
F is gdk_pixbuf_save) then the content given as input
to F is recorded as a result for this closure point candi-
date test. An example of this recorded output is given
later in Figure 6 (Section 4.3.1). The end of a scan is
determined as follows: When F is a single function in-
vocation, the child process is killed after F returns. If F
consists of multiple invocations, the scan continues until
the execution call stack returns to a point before the clo-
sure point. The parent process is then resumed, and this
is repeated until all candidates are tested. A candidate is
considered a valid closure point if it has accurately recre-
ated the bytes chosen for B.

3.4 Memory Image Scanning
Once the data structure rendering function P has
been identified, DSCRETE can build a memory scan-
ning+rendering tool out of the subject binary. In fact, the
production memory scanner is quite similar to the mod-



ified scanner used for testing candidates in the previous
section. The difference is that we do not know where in
a suspect memory image the data structures may be. The
input to the memory image scanner tool are: 1) the cho-
sen entry point and exit point of the printing function P,
2) the subject binary, and 3) the suspect memory image
(as described in Section 2.3).

Again the scanner will re-execute the subject binary
with the suspect memory segments mapped back into
their original placements. Like before, the suspect mem-
ory segments will not be used until scanning begins, and
until then the process executes using only its new allo-
cations. With the same application input from candidate
testing, the execution will reach P’s entry point, where
the scanner pauses the application. For each address in
the memory image, the scanner will fork an identical
copy-on-write child and assign P’s pointer to the next
address in the memory image. In essence, the scanner
is executing P with a pointer to each byte of the suspect
memory image. The scanning child process executes un-
til P’s end point (as defined in the previous section) and
then P’s output is recorded to a log or the child process
crashes.

The intuition behind re-executing the application from
the beginning is to automatically rebuild any dependen-
cies required by P. DSCRETE requires that P’s only in-
put be a pointer to a possible data structure. In reality,
P may depend on multiple parameters set up by the ap-
plication prior to the closure point. By re-executing the
application from the beginning, we ensure that any other
dependencies P has are taken care of before the scanner
injects a data structure pointer.

The execution of P is done in a child process to isolate
side effects. Not surprisingly, the vast majority of ad-
dresses will cause invalid memory accesses or other ex-
ceptions, and by scanning each byte in a separate process
the scanner ensures that side effects do not contaminate
future scans or global values. To speed up scanning, mul-
tiple child processes can be spawned to run in parallel.

In some rare cases, P is too simple (performs too lit-
tle input processing) to crash on invalid input. For such
cases, we allow for a user-defined post-processing phase.
We still assume no use of source code or reverse engi-
neering effort, but the user may perform sanity checks
based on the known format or value ranges for an ap-
plication’s output. For instance, in our top case-study
we had to remove any output which had a negative pro-
cess ID or blank user or process name field. In our
experiments, only three cases — CenterIM, top, and
Firefox VdbeOp — required any post-processing. Fur-
ther, this only occurs for very simple textual P functions
— complex cases such as those requiring content reverse
engineering naturally involve more strict parsing and in-
put sanitization.

3.5 Cross-State Execution

DSCRETE maps one process’s address space into the ad-
dress space of another. Further, when DSCRETE exe-
cutes the function P, this code will evaluate data in both
the old and new address spaces. Once DSCRETE re-
places a data structure pointer at the closure point, the
scanning process will then access fields from the data
structure in the old address space while still using stack
and other heap objects in the new address space.

Ideally, any sub-execution that depends on the closure
point would exclusively access the state from the old ad-
dress space. In other words, we expect the continua-
tion after the pointer replacement would consist of two
disjoint sub-executions, one corresponding to running P
on the old address space and the other corresponding to
the rest of the execution exclusively on the new address
space. However, due to the complex semantics of real
world programs, such separation may not be achievable.
There are two possible problems: 1) An instruction ex-
ecution may depend on state from both address spaces,
resulting in some state that is infeasible in either the orig-
inal or the new execution. We call such instructions con-
founded instructions. 2) Since the old memory snapshot
may not be complete, an instruction may access a loca-
tion in the old space that is not mapped in the new space.
Note that this location may now correspond to a valid ad-
dress in the new space such that the access becomes one
to the new space. We call this a trespassing instruction.
Both could cause crashes and hence false negatives.

Consider the example in Figure 3. Figure 3a shows
two functions4. The first function (lines 2 - 6) creates
a Color object and adds it to the color cache. The
other (lines 7 - 14) renders a window, including drawing
the Color to a frame and emitting the window title as
a string. Note that different executions may add differ-
ent Color objects to the cache. Specifically, the num-
ber of Color objects and their order vary across execu-
tions. Later, the window rendering function will look up
a Color object from the cache using its id.

Assume we (as forensics lab staff) mark the
EmitString() function at line 13 as F and s (the win-
dow title) as B. Following the candidate identification al-
gorithm, we compute the backward data-dependence of
B as those boxed statements. We further identify line 8
as the closure point candidate.

However, when we test this candidate, cross-state ex-
ecution leads to undesirable results if not properly han-
dled. Let us assume that two Color objects were cached
during the original execution, whereas only one Color is
added in the candidate test execution. Figure 3b shows
the trace of the candidate test execution on the left, and,

4Our discussion is at the source code level for readability, whereas
our design and implementation assume only the application binary.



int k=0; 

int AddColor (int R, int G, int B ) {

    Color * c = new Color (R,G,B);

    color_cache [k] = c;

    return k++;       

}

void Display (Window * w) { 

    String s = w→name;

    int i = w→colorId;

    Color * c = color_cache[i];

    DrawFrame (c,…);

    s = w→Type + s + user→name;   

    EmitString(s);

}
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    ...
    color_cache [k] = c;
    return k++;       
   …

    String s = w→name;
    int i = w→colorId;
    Color * c = color_cache[i];
    DrawFrame (c,…);
    s = w→Type + s + user→name;   
    EmitString(s);

                              

0x80...c0

0

color_cache:

c:   0

0x80...c0
0x80...f4

0

color_cache:

c:   0

i:   1

w→colorId:   1

k=0
k=1

i=1
c=0
error

Virtual space before line 11

old memory map

StateTrace

(b) Cross-state execution.

Figure 3: Example for cross-state execution.

on the right, it shows the state of the new address space
right before the execution of line 11. Note that the pages
of the old address space are mapped inside the new ad-
dress space. Each executed statement in the trace is col-
ored based on the address space it operates on. Partic-
ularly, lines 4 and 5 execute before the pointer w is re-
placed at line 8, and hence belong to the new space. In
contrast, lines 8 and 9 belong to the old space, as their
values are loaded from locations derived from the re-
placed w. Line 10 is a confounded instruction, as the
array color cache belongs to the new space while i

belongs to the old space. As a result, an invalid color is
loaded, leading to a crash. However, observe that lines
10 and 11 are not in the data dependence of B, as such
we could potentially skip them.

Therefore, given a closure point candidate C and its
termination point F , DSCRETE scans the original exe-
cution trace from C to F during the candidate identifi-
cation phase. For each address dereference it encoun-
ters, it tests if the address is exclusively dependent on
the pointer parameter at C. If not, it is a confounded
dereference. DSCRETE further tests if the dereference
is in the data-dependence graph of B, and if not, marks
the instruction as an irrelevant dereference to be skipped
during test execution and later scanning executions. In
practice, we observed confounded memory dereferences
in only one of the cases we studied.

Handling trespassing instructions is relatively easier.
Given a closure point candidate C and its termination
point F , DSCRETE scans the original execution trace
from C to F and marks each address dereference that it
encounters and is dependent on the pointer parameter at
C. At runtime, if a marked dereference accesses a loca-
tion in the new space, it is a trespassing access and can
be skipped.

4 Evaluation

DSCRETE leverages the PIN binary analysis platform
[19] to perform instrumentation. Since PIN executes be-
fore the subject binary is loaded, this allows us to map
the memory image into the new process’s address space
before the operating system’s loader can claim stack and
heap regions. DSCRETE relies on minimal OS-specific
knowledge (i.e., system call and application binary inter-
face definitions), thus DSCRETE can easily be ported to
any operating system that PIN supports. In the remain-
der of this section, we present results from evaluating
DSCRETE with a number of real-world applications and
focus on a subset which highlight the use of DSCRETE
and a few critical observations.

4.1 Experimental Setup

Our evaluation used a Ubuntu 12.10 Desktop system as
the “suspect” machine. Each application was installed
on the machine and interacted with by the authors to
generate sufficient allocations and deallocations of data
structures. We used gdb to capture memory images from
the application periodically during the system’s use. To
attain ground truth, we manually instrumented the ap-
plications to log allocations and deallocations for data
structures corresponding to the output of forensic inter-
est (i.e., B in Section 3.1). This log was later processed
to measure false positives (FP) and false negatives (FN).
For analysis, we employed a Ubuntu 12.10 virtual ma-
chine. To recreate the suspect machine’s running envi-
ronment, we copied the applications and needed config-
uration files from the suspect machine’s hard disk. We
then performed all forensic investigation within the vir-
tual machine.



Application F
Forensically Interesting
Data

Size B
(bytes) p% #C #O #P

CenterIM SSL_write Username & Password 336 5% 46 1 1
convert fwrite Output Image Content 81902 9% 18 7 2
gnome-paint gdk_pixbuf_save Image Content 670900 1% 18 2 2
gnome-screenshot gdk_pixbuf_save_to_stream Screenshot Content 1139791 1% 5 4 3

gThumb
gtk_window_set_title File Info Window Title 85 1% 102 4 2
gdk_pixbuf_save_to_bufferv Image File Content 20360 1% 10 3 3

Nginx write HTTP Access Log 181 5% 25 1 1
PDFedit fwrite, fputc Edited PDF Content 30416 1% 46 6 3

SQLite3 Shell
fputs Database Query Results 19 2% 4 1 1
fprintf Database Op. Log 38 2% 17 5 1

top putp Process Data 132 10% 1 1 1
Xfig fprintf Figure Content 1001 1% 9 3 3

Table 1: Results from identifying applications’ P functions (#C shows the number of identified candidates, #O shows
how many of those produced output, and #P shows the final subset which are valid closure points).

4.2 Function Identification Effectiveness

This section presents results of isolating the data ren-
dering function P in each tested application. From
the CenterIM instant messenger, we target the compo-
nent which emits the user’s login and password (still in
plain text) to an SSL socket. Also, given the impor-
tance of image content to investigations, we isolate im-
age rendering functions from three common image ed-
itors: convert, gnome-paint, gThumb, as well as the
gThumb GUI function which displays the current im-
age’s name to the window title. The output function
of gnome-screenshot can allow an investigator to see
what screen-shot a suspect was capturing. Addition-
ally, we reuse Xfig’s figure saving P function to re-
construct a vector figure that was being worked on. As
we introduced in Section 1, the PDF saving functional-
ity of PDFedit allows investigators to recover the edited
PDF file. For internal application data, we identified P
functions for SQLite’s query results and operations log
(more on how these scanner+render tools are used later
in this section). It is very common for attackers to tam-
per with server log files, so we isolated the Nginx web-
server’s connection logging function, thus an investigator
can compare with the uncovered in-memory connections.
Finally, for details on all running processes in a suspect
system, we identified the process data printing logic in
the top utility.

Table 1 shows a summary of the results from each of
these applications. The application name and F function
are shown in Columns 1 and 2 respectively. Column 3
details the forensically interesting data that were to be
emitted by F(B) and Column 4 shows the size of B in
bytes. The percentage of the data dependence graphs
used to generate candidates is shown in Column 5. Fi-

nally Columns 6 to 8 show the number of candidates
identified by our algorithm (#C), how many of those pro-
duced any output (#O), and the final subset which ac-
curately recreated B and could be used for valid closure
points (#P), respectively.

From Table 1 we make the following observations:
First, our algorithm/heuristics used to identify closure
point candidates are accurate enough to limit the num-
ber of candidates to a reasonable search space. Although
candidates are tested automatically during the candidate
tester’s execution, we aim to minimize the number of
candidates to test. From Table 1, we see that 11 out of the
12 applications have less than 50 candidates. The only
application with more than 50, gThumb, has 102, and as
we see in Row 5 of the table, they are drastically nar-
rowed down by the candidate tester. Manual investiga-
tion revealed that gThumb’s larger number of candidates
was due to extra data dependencies caused by another
parameter to its F function (gtk_window_set_title).

The second observation we make is that, of the total
number of candidates identified, very few will be true
closure points. This is intuitive since there is only one
true entry to the P function in the application. Third,
since the number of candidates which produced valid
output is so small, it is relatively simple for a DSCRETE
user to identify which candidate accurately reproduced
B.

On average, each candidate testing component ren-
dered application output for only three closure point can-
didates. The maximum, convert, rendered only seven
outputs during candidate testing. Further, more than
half of the applications produced ideal candidates — all
candidates that rendered output were valid candidates.
For the other five applications, about 45% of candidates



which produced output accurately recreated the expected
forensically interesting data (i.e., the new output matched
that seen before). This shows that: 1) Visually inspecting
candidate output is a reasonably quick and practical task
and 2) DSCRETE can identify and validate closure point
candidates with high accuracy.

Table 1 shows that it is not uncommon for multiple
correct closure points to exist for a P function. Manual
investigation revealed that this is caused by two program
features: nested data structure pointers and register-to-
stack spilling. In the nested data structure situation, if a
data structure A has a pointer to structure B and P uses
the B pointer within A, then either the A pointer or its
internal B pointer may be valid closure points for P. For
the register-to-stack spilling situation, a pointer to an in-
put data structure is initially stored in a register, but when
contention forces that register to be spilled onto the stack,
either the initial register or its later stack-saved location
may be used for closure points.
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Figure 4: Normalized size of P vs. entire binary code.

Table 1 also shows that a valid closure point is typi-
cally located in the bottom 5% of the data dependence
graph. Thus, the actual rendering function being reused
is often only a small percentage of the binary’s text. Fig-
ure 4 shows the normalized percentage of the host bi-
nary which we reuse for each scanning function. The
size of the reused code is measured as the total in-
memory size of all unique instructions observed during
all re-executions of P. Top, gnome-screenshot, and
gnome-paint are outliers due to the relatively small size
of the applications and the resulting dependence graphs.

SQLite P Functions. An interesting application
of DSCRETE can be seen in the experiments with
SQLite. For these experiments DSCRETE was used
with the SQLite3 command shell and a homemade
database file to find P functions for a database query’s
result (struct sqlite3_stmt) and operations log
(struct VdbeOp). These data structures are defined by
the SQLite3 library and exported to client applications.
The P functions DSCRETE identifies would be used to

build memory scanner+renderer tools which could dis-
cover those data structures and render their content in
the same format as the SQLite3 command shell.

These scanners could then be used on memory images
from any application which uses SQLite. Since these
data structures are defined by the SQLite library, any ap-
plication using SQLite should transitively allocate and
use these data structures. Further, we are reusing the
SQLite3 command shell’s P functions, so even if an ap-
plication never outputs the data held in these structures,
we can still discover and interpret them using the more
general SQLite memory scanners. In the next section, we
show results from applying these scanner+renderer tools
to memory images from Mozilla Firefox and darktable
image editor.

4.3 Memory Scanner Effectiveness
Table 2 reports the effectiveness of the DSCRETE-
generated scanner+renderer tools when scanning a
context-free memory image from each application. The
application name is shown in Column 1. The subject data
structure (input to P) and the structure’s size are shown
in Columns 2 and 35. The number of true instances in the
suspect memory image is shown in Column 46. Column
5 shows the total number of output generated by each
scanner+render tool. Columns 6 to 10 show the num-
ber of generated output which are: true positives (TP)
- backed by true data structure instances, false positives
(FP) and the percentage of FPs in the total output (FP%),
and false negatives (FN) and the corresponding FN per-
centage.

This table shows that the P function identified by
DSCRETE is almost always well defined. This allows
DSCRETE to uncover and render valid data structure in-
stances with 100% accuracy for most cases. Specifically,
Table 2 shows that DSCRETE’s scanner+renderer tools
are perfectly accurate (i.e., no FP and no FN) in 11 out
of the 13 cases. We analyze the two FP/FN cases in de-
tail later in this section. More importantly, DSCRETE
overcomes the data structure content reverse engineering
challenge by displaying the results in each application’s
original output format. The test cases covered in Table
2 span a wide range of application data: usernames and
passwords, images, PDF files, vector-based graphics, as
well as formatted and unformatted textual output. This
portrays the generality of DSCRETE and represents sev-
eral key types of evidence that would be very difficult

5Such information was obtained via manual instrumentation, in-
spection, and reverse engineering only for the purpose of evaluation.
DSCRETE does not need or have access to this information during op-
eration.

6This includes all the data structure instances which were allocated
and not yet released and overwritten when the memory image was cap-
tured.



Application Subject Data Structure Size
(bytes)

True
Instances

Total
Output TP FP FP% FN FN%

CenterIM yahoo_data 160 1 1 1 0 0.0% 0 0.0%
convert _Image 13208 1 1 1 0 0.0% 0 0.0%
darktable sqlite3_stmt 272 1 1 1 0 0.0% 0 0.0%

Firefox
sqlite3_stmt 272 1 1 1 0 0.0% 0 0.0%
VdbeOp 24 788 1384 753 502 40% 35 4%

gnome-paint GdkPixbuf 80 51 51 51 0 0.0% 0 0.0%
gnome-screenshot ScreenshotApplication 88 1 1 1 0 0.0% 0 0.0%

gThumb GFileInfo 48 382 381 381 0 0.0% 1 0.4%
GdkPixbuf 80 63 63 63 0 0.0% 0 0.0%

Nginx ngx_http_request_t 1312 6 6 6 0 0.0% 0 0.0%
PDFedit XRefWriter 344 1 1 1 0 0.0% 0 0.0%
top proc_t 720 382 382 382 0 0.0% 0 0.0%
Xfig f_compound 112 1 1 1 0 0.0% 0 0.0%

Table 2: Results from DSCRETE-generated scanner+renderer tools.

(if at all possible) to reconstruct from raw data structure
contents.

Table 2 shows that many of the subject data structures
are smaller than the resulting application output (B from
Table 1). Our manual analysis of these structures reveals
that 10 of the 12 data structures contain several point-
ers to other data structures used by P. This confirms our
intuition that, in order to recover usable evidence from a
memory image, numerous data structures must be uncov-
ered and interpreted. Note that an investigator never ac-
tually sees any of these structures, but rather is presented
only the application output rendered from the structures’
contents. Figure 1a in Section 1 is one such example.

Another metric to report is the time taken to scan,
which varies depending on: 1) the complexity of the ren-
dering function P and 2) the size of the memory image
being scanned. Figure 5 shows the scanning speed in
bytes-per-second for each scanner function in our eval-
uation. During our experiments, the size of the appli-
cations’ heaps ranged from 400KB to about 5MB, and
total heap scanning time ranged between 15 minutes to
just over 2 hours, with most taking about 30 to 45 min-
utes. Admittedly the scanning and rendering of evidence
is slower than typical signature-based memory scanners,
but still well within the typical time taken to process dig-
ital evidence, with the added benefit that evidence is pre-
sented in a human-understandable form. Ayers [1] points
out that it may take “several hours or even days when
processing average volumes of evidential data,” which is
confirmed by our collaborators in digital forensics prac-
tice.

False Positive and False Negative Analysis. We no-
tice that only the gThumb and Firefox VdbeOp experi-
ments experienced any negative results. Manual inves-
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Figure 5: Observed throughput of each scanner.

tigation into these two experiments’ false negative re-
sults (i.e., true data structure instances not discovered
by DSCRETE) revealed that those structures were allo-
cated, but did not contain enough data to be rendered by
P. They were either in the process of initialization or
deletion or being used as empty templates by the appli-
cation.

Interestingly, the Firefox VdbeOp case study (SQLite’s
operations log structure) represents a counter-example to
our hope that P be well defined. In this case, P performs
little parsing and no sanity checks on its input. A VdbeOp

structure is essentially a set of seven integer values, and
SQLite3 uses these integers as indices in a global string
table, without any sanity checks. Since this P function
performs such trivial parsing, a large number of false in-
puts produce typical SQLite3 Shell output. We consider
this a worst-case scenario for DSCRETE, and believe it is
also the case for many other memory forensic techniques
when facing such a trivial data structure.

In Section 1 we introduced one example of forensic



data which would be uninterpretable without data struc-
ture content reverse engineering. The complex multi-
level data structure representing a PDF file requires non-
trivial processing to locate the fields which contain any
usable PDF content. Further, many fields are encoded,
compressed, or computed only when outputting the PDF
file. In the remainder of this section, we present several
other application case studies with DSCRETE.

4.3.1 Case Study: convert

This case study highlights DSCRETE’s content reverse
engineering capability for image data structures. The
convert utility is used to apply various transformations
to an image file. The source image file is processed and
converted into internal data structures, (i.e., an _Image

and array of _PixelPacket structures). Various trans-
formations (such as scaling, blurring, etc.) are applied,
and the pixels are re-composed into an image and written
to a file. It would be considerably difficult to reconstruct
the image from its in-memory representation, even with
a deep understanding of these structures’ syntax and se-
mantics. However, DSCRETE is able to overcome this
challenge by identifying and reusing the image output
component (function WriteImage) which constructs an
output image file from an input _Image structure.

As shown in Row 2 of Table 1, B (the image’s con-
tent) was seen as an argument to the fwrite function.
Using this, DSCRETE identified 18 closure point candi-
dates in the bottom 9% of the data dependence graph.
Of these candidates, 16 clustered around the handling
of _PixelPacket structures in the image reconstruction
routine, and the remaining 2 candidates handled the input
_Image structure at the entry to the WriteImage func-
tion.

The DSCRETE candidate tester component elim-
inated 16 candidates which handled _PixelPacket

structures. For the remaining two candidates, DSCRETE
produced the log and application output shown in Fig-
ure 6. From Figure 6 we see that Candidates 1 and 2
successfully executed P (ending with fwrite). More
importantly, DSCRETE accurately rendered the _Image
data structure’s content – presenting proof that both can-
didates form valid P functions which can reconstruct the
image seen previously. As Table 2 shows, this P func-
tion was well-defined and the resulting scanner located
and rendered the “image of interest” in the memory im-
age with no false positives or false negatives.

4.3.2 Case Study: Xfig

The second case study is with Xfig, in which data con-
tent reverse engineering is essential to uncovering usable
evidence from data structure instances. Xfig is a Linux-

Candidate 1 ===== Scanning from 0x6a16c0:
  fwrite@libc ( 0x6ba360 ["<89>PNG<0d0a>"...], 1, 81902, 0x6b7320 [data] )
    Arg 1 written to file "c1_0x6ba360.out"
  
Candidate 2 ===== Scanning from 0x6a5c90:
  fwrite@libc ( 0x6ba360 ["<89>PNG<0d0a>"...], 1, 81902, 0x6b7320 [data] )
    Arg 1 written to file "c2_0x6ba360.out"

(a) Candidate test result log.

(b) Output image file for Candidate 1.

Figure 6: Candidate testing output. (a) Each P function
is shown, similar to the Linux strace utility, with parame-
ters seen during invocation. If the tester component is set
for file output, the file name is also printed. (b) Shows
the output file for Candidate 1.

based vector graphics editor which defines several types
of data structures for different drawable shapes (i.e., el-
lipse, spline, etc.). From Xfig, we intended to build
a scanner+renderer tool to reveal the figure a suspect
was drawing. Referring back to Table 1, DSCRETE lo-
cated 9 closure point candidates in the bottom 1% of the
data dependence graph. DSCRETE tested these 9 can-
didates and decided that 3 of them which rendered out-
put were valid closure points. One of those was chosen
(DSCRETE prefers the closure point highest in the de-
pendence graph) to build a scanner+renderer for Xfig’s
f_compound data structure.

An f_compound structure is a container for several
shape structures. Each shape structure stores its di-
mensions, coordinates, color, etc. In order to recon-
struct a figure, each of these shape structures must be
recovered from a memory image, interpreted, and shape-
specific rendering functions must be invoked. Existing
signature-based memory scanners could present an in-
vestigator with a list of shape data structures instances
from a memory image, but without the interpretation
logic and shape-specific rendering, the investigator can-
not see what the figure looks like. By comparison, the
DSCRETE-generated scanner+renderer can locate the
figure’s f_compound structure, traverse all the contained
shape structures (in the P function), and output Xfig’s
original figure content. Table 2 shows that this P function
is well-defined and recovered the figure’s content with
100% accuracy from the target memory image.



4.3.3 What You Get Is More Than What You See

We observe that some applications will construct more
data structures than they intend to display. Without
content reverse engineering, these extra data structures
would all need to be manually interpreted for investiga-
tion. DSCRETE intuitively renders such additional evi-
dence, allowing an investigator to quickly determine if it
is forensically valuable.

In our experiment with top, the true number of
proc_t instances is 382, whereas while executing top

only 31 processes were displayed at a time. Since all
382 proc_t structures were in top’s memory image,
DSCRETE was able to uncover and present each as they
would have been displayed by the original top process.

Another example is gThumb, which displays an im-
age being edited and other images in the same direc-
tory. gThumb’s memory contained valid data structures
for 63 images: 56 GUI icons and 7 suspect images,
and DSCRETE recovered them all, including the 7 sus-
pect images. More importantly, 3 of the 7 suspect im-
ages were not being displayed by the GUI. Without
DSCRETE, determining which raw data structures were
icons and which were evidence would require extensive
manual effort. With DSCRETE, an investigator can im-
mediately see the distinction. Note also, that those GUI
icons are not false positives. Instead, they are valid and
relevant image data structures, because the investigator
may use such GUI artifacts to infer which application
screen the suspect was focusing on.

5 Discussion and Future Work

Still at its early stage, DSCRETE represents a new ap-
proach for digital evidence collection. The prototype
presented here has several limitations that will be ad-
dressed in our future work.

As mentioned in Section 3.5, cross-state execution
may cause conflicting memory access patterns (i.e., con-
founded or trespassing instructions). DSCRETE selec-
tively skips unnecessary instructions which may cause
cross-state conflicts. However, this method is limited to
the instructions recorded during tracing, and cannot rea-
son about instructions that were not executed. Although
we did not encounter such complications in our exper-
iments, we do believe that they exist and will explore
using static dependence analysis in the future.

DSCRETE relies on each application’s own render-
ing logic to differentiate between valid and invalid in-
put (data structures to be rendered). As we see in Section
3.4, this can be problematic if the rendering function per-
forms very little input processing and validation. Our
experiment suggests that this problem exists for highly
simplified data structures, which may still be of foren-

sic value. Handling such data structures is our ongo-
ing work. Additionally, since DSCRETE reuses appli-
cation binary logic, an interesting problem is to handle
data which contains exploits against the rendering logic.

Another current limitation which we leave for future
work is replacing multiple input data dependencies for a
rendering function. Currently, DSCRETE identifies and
replaces only a single data structure pointer seen as in-
put to P. However, it is assumable that a single appli-
cation output be generated from multiple unrelated data
structures. Although we have not encountered such need,
the problem is realistic and requires enhancements to the
closure point identification and the scanning algorithms.

Like many binary analysis-based tools, DSCRETE is
not yet ready to handle self-modifying code or bina-
ries with highly obfuscated control flows, which may
cause problems in dependence detection or state cross-
ing. However, these problems are common in malware
programs and hence worth solving. One future direction
is to develop DSCRETE on an obfuscation-resistant bi-
nary analysis platform (e.g., [29]).

The methodology used in DSCRETE is designed to
operate directly on a target machine binary. As such, it
is not applicable to programs written in interpreted lan-
guages (e.g., Java). Such programming languages add
layers of indirection between the machine instructions
observed by DSCRETE and the application’s true syntax
and semantics (i.e., data structures and rendering func-
tions). Developing new techniques to handle programs
written in interpreted languages is an intriguing direction
for our future research.

6 Related Work

Memory Image Forensics. Previous research in mem-
ory forensics has mainly centered around uncovering
data structure instances using signature-based brute force
scanning. Such techniques can be roughly classified into
value-invariant based [2,3,9,21,23,26,27] and structural-
invariant based [5, 15, 16].

Value-invariant signatures seek to classify data struc-
tures by the expected value(s) of their fields. More re-
cently, DEC0DE [27] enhances value-based signatures
with probabilistic finite state machines to recover ev-
idence from smartphones. Structural-invariant based
signatures are derived by mapping interconnected data
structures. SigGraph [16] uses such signatures for brute-
force memory image scanning. Later, DIMSUM [15] at-
tempts to probabilistically locate data structure instances
in un-mappable memory. Further, numerous forensic
tools and reverse engineering systems [7, 14, 17, 20, 29]
make use of data structure traversal.

Compared with these techniques, DSCRETE does not
require data structure definitions or data structure field



value profiles as input. Moreover, DSCRETE can intu-
itively interpret data structure contents (e.g., rendering
an image in memory). To the best of our knowledge, no
existing memory forensic tool has similar capability.

Binary reverse engineering techniques [14,17,24] can
reverse engineer data structure definitions (e.g., field
types) from binaries. They can also reverse engineer se-
mantic information to a certain extent. As such, they can
be used in forensic analysis. However, these techniques
can only reverse engineer semantics of generic data such
as timestamps and IP addresses. Such approaches are
hardly applicable to interpreting contents of application-
specific and encoded data structure fields.

Binary Component Identification and Reuse. At the
heart of the DSCRETE technique is application logic
reuse. DSCRETE uses dynamic binary program trac-
ing to identify which functional component of a binary
application is responsible for generating forensically in-
teresting output. It hence shares some common under-
lying techniques with existing binary identification and
reuse techniques [4, 12, 18] and program feature identifi-
cation [11, 28].

Similar to how DSCRETE employs a data dependence
graph, Wong et. al. [28] use program slicing to identify
the code region for a program feature. To further under-
stand which application components contribute to an ob-
served runtime behavior, Greevy et al. [11] use feature-
driven dynamic analysis to isolate computational units
of an application. In contrast, DSCRETE uses only an
application’s data dependence to identify candidates for
later construction of a memory scanner+renderer.

Binary Code Reutilization (BCR) [4] involves using
a combination of dynamic and static binary analysis to
identify and extract malware encryption and decryption
functions. The goal of BCR was to reuse such extracted
logic as a functional component in a different program
developed by the user. Inspector Gadget [12] uses dy-
namic slicing to identify specific malware behavior for
extraction and later reuse/analysis. Lin et al. [18] sug-
gested using dynamic slicing to identify applications’
functional components to compose reuse-based trojan at-
tacks. DSCRETE does not aim to extract application
logic from a target binary, but rather re-execute it in-
place to scan a memory image and render subject data
structure contents.

Virtuoso [8] involves using dynamic slicing to identify
logic from in-guest applications which could be reused
for virtual machine introspection. However, Virtuoso
is not able to handle input that is not encountered dur-
ing off-line training. A DSCRETE-generated scanner
can handle any input that the original P function could
handle. Later, VMST [10] and Hybrid-Bridge [22] use
system-wide instruction monitoring to allow introspec-
tion of one VM’s kernel data from another. VMST redi-

rects memory accesses for every instruction of the reused
logic, whereas DSCRETE only needs to replace the data
structure pointer at the closure point. Further, VMST re-
lies on system call definitions to start logic reuse, while
DSCRETE must automatically identify such a starting
point (i.e., the closure point) in the subject binary.

7 Conclusion

We have presented DSCRETE, a data structure con-
tent reverse engineering technique which reuses appli-
cation logic from a subject binary program to uncover
and render forensically interesting data in a memory im-
age. DSCRETE is able to recreate intuitive, human-
observable application output from the memory image,
without the burden of reverse engineering data structure
definitions. Our experiments with DSCRETE show that
this technique is able to effectively identify interpreta-
tion/rendering functions in a variety of real-world ap-
plications, and DSCRETE-generated scanner+renderer
tools can uncover and render various types of data struc-
ture contents (e.g., images, figures, and formatted files
and messages) from memory images with high accuracy.

Acknowledgment

We would like to thank the anonymous reviewers for
their insightful comments. We are grateful for the sug-
gestions and guidance from Dr. Golden G. Richard III.
This research was supported, in part, by NSF under
Award 1049303 and DARPA under Contract 12011593.
Any opinions, findings, and conclusions in this paper are
those of the authors only and do not necessarily reflect
the views of our sponsors.

References
[1] AYERS, D. A second generation computer forensic analysis sys-

tem. Digital Investigation 6 (2009), 34–42.

[2] BETZ, C. Memparser forensics tool. http://www.dfrws.org/
2005/challenge/memparser.shtml, 2005.

[3] BUGCHECK, C. Grepexec: Grepping executive objects from pool
memory. In Proc. 6th Annual Digital Forensic Research Work-
shop (DFRWS) (2006).

[4] CABALLERO, J., JOHNSON, N. M., MCCAMANT, S., AND
SONG, D. Binary code extraction and interface identification
for security applications. In Proc. 17th Annual Network and Dis-
tributed System Security Symposium (2010).

[5] CARBONE, M., CUI, W., LU, L., LEE, W., PEINADO, M., AND
JIANG, X. Mapping kernel objects to enable systematic integrity
checking. In Proc. 16th ACM Conference on Computer and Com-
munications Security (2009).

[6] CARRIER, B. D., AND GRAND, J. A hardware-based memory
acquisition procedure for digital investigations. Digital Investi-
gation 1 (2004), 50–60.



[7] CASE, A., CRISTINA, A., MARZIALE, L., RICHARD, G. G.,
AND ROUSSEV, V. Face: Automated digital evidence discovery
and correlation. Digital Investigation 5 (2008), 65–75.

[8] DOLAN-GAVITT, B., LEEK, T., ZHIVICH, M., GIFFIN, J., AND
LEE, W. Virtuoso: Narrowing the semantic gap in virtual ma-
chine introspection. In Proc. 2011 IEEE Symposium on Security
and Privacy (2011).

[9] DOLAN-GAVITT, B., SRIVASTAVA, A., TRAYNOR, P., AND
GIFFIN, J. Robust signatures for kernel data structures. In Proc.
16th ACM Conference on Computer and Communications Secu-
rity (2009).

[10] FU, Y., AND LIN, Z. Space traveling across vm: Automatically
bridging the semantic gap in virtual machine introspection via
online kernel data redirection. In Proc. 2012 IEEE Symposium
on Security and Privacy (2012).

[11] GREEVY, O., AND DUCASSE, S. Correlating features and code
using a compact two-sided trace analysis approach. In Proc. 9th
European Conference on Software Maintenance and Reengineer-
ing (2005).

[12] KOLBITSCH, C., HOLZ, T., KRUEGEL, C., AND KIRDA, E.
Inspector gadget: Automated extraction of proprietary gadgets
from malware binaries. In Proc. 2010 IEEE Symposium on Secu-
rity and Privacy (2010).

[13] KOREL, B., AND LASKI, J. Dynamic program slicing. Informa-
tion Processing Letters 29, 3 (1988), 155–163.

[14] LEE, J., AVGERINOS, T., AND BRUMLEY, D. Tie: Princi-
pled reverse engineering of types in binary programs. In Proc.
18th Annual Network and Distributed System Security Sympo-
sium (2011).

[15] LIN, Z., RHEE, J., WU, C., ZHANG, X., AND XU, D. Dimsum:
Discovering semantic data of interest from un-mappable memory
with confidence. In Proc. 19th Annual Network and Distributed
System Security Symposium (2012).

[16] LIN, Z., RHEE, J., ZHANG, X., XU, D., AND JIANG, X. Sig-
graph: Brute force scanning of kernel data structure instances
using graph-based signatures. In Proc. 18th Annual Network and
Distributed System Security Symposium (2011).

[17] LIN, Z., ZHANG, X., AND XU, D. Automatic reverse engineer-
ing of data structures from binary execution. In Proc. 17th Annual
Network and Distributed System Security Symposium (2010).

[18] LIN, Z., ZHANG, X., AND XU, D. Reuse-oriented camouflag-
ing trojan: Vulnerability detection and attack construction. In
Proc. 2010 IEEE/IFIP International Conference on Dependable
Systems and Networks (2010).

[19] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER,
A., LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZEL-
WOOD, K. Pin: building customized program analysis tools with
dynamic instrumentation. In ACM SIGPLAN Notices (2005),
vol. 40.

[20] MOVALL, P., NELSON, W., AND WETZSTEIN, S. Linux phys-
ical memory analysis. In Proc. USENIX Annual Technical Con-
ference, FREENIX Track (2005).

[21] PETRONI JR, N. L., WALTERS, A., FRASER, T., AND AR-
BAUGH, W. A. Fatkit: A framework for the extraction and analy-
sis of digital forensic data from volatile system memory. Digital
Investigation 3 (2006), 197–210.

[22] SABERI, ALIREZA FU, Y., AND LIN, Z. Hybrid-bridge: Effi-
ciently bridging the semantic gap in virtual machine introspec-
tion via decoupled execution and training memoization. In Proc.
20th Annual Network and Distributed System Security Sympo-
sium (2013).

[23] SCHUSTER, A. Searching for processes and threads in microsoft
windows memory dumps. Digital Investigation 3 (2006), 10–16.

[24] SLOWINSKA, A., STANCESCU, T., AND BOS, H. Howard: A
dynamic excavator for reverse engineering data structures. In
Proc. 18th Annual Network and Distributed System Security Sym-
posium (2011).

[25] SYLVE, J., CASE, A., MARZIALE, L., AND RICHARD, G. G.
Acquisition and analysis of volatile memory from android de-
vices. Digital Investigation 8 (2012), 175–184.

[26] THE VOLATILITY FRAMEWORK. Volatile memory artifact ex-
traction utility framework. https://www.volatilesystems.
com/default/volatility.

[27] WALLS, R., LEVINE, B. N., AND LEARNED-MILLER, E. G.
Forensic triage for mobile phones with dec0de. In Proc. USENIX
Security Symposium (2011).

[28] WONG, W. E., GOKHALE, S. S., AND HORGAN, J. R. Quan-
tifying the closeness between program components and features.
Journal of Systems and Software 54, 2 (2000), 87–98.

[29] ZENG, J., FU, Y., MILLER, K. A., LIN, Z., ZHANG, X., AND
XU, D. Obfuscation resilient binary code reuse through trace-
oriented programming. In Proc. 20th ACM Conference on Com-
puter and Communications Security (2013).


