Toward Generating Reducible Replay Logs

Kyu Hyung Lee Yunhui Zheng Nick Sumner Xiangyu Zhang

Department of Computer Science, Purdue University, West Lafayhiitd7907, USA
{kyuhlee,zheng16,wnsumner,xyzhang}@cs.purdue.edu

Abstract also be problematic. Checkpoints [4] are often created to mitigate
the problem. However, as checkpointing often entails taking snap-
shots of the entire address space of the application, its frequent use
cannot be afforded. We aim to develop a practical technique that

consuming, especially when replay is further integrated with run- d tion by reducing it lav lod. Gi ducti
time techniques that require expensive instrumentation, such as deJ€9UCES an Execution by reducing Its repiay 1og. iven a reduction
criterion, such as a program failure, the technique removes events

pendence detection. In this paper, we propose a technique to re-f he log i hat the reduced | il v dri
duce a replay log while retaining its ability to reproduce a failure. oM the log in a way that the reduced log can still properly drive

While traditional logging records only system calls and signals, our thbel exer::ution tlo th? c_riterion. iuchhaée(k:)hniq_ue is p%rti_cularlyhdesir-
technique leverages the compiler to selectively collect additional 2°'€ When replay Is integrated with debugging techniques that re-

information on the fly. Upon a failure, the log can be reduced by AUiré €xpensive instrumentation easily causing an order of magni-
analyzing itself. The collection is highly optimized. The additionai tUde slow down [25]. There are also iterative debugging techniques
runtime overhead of our technique, compared to a plain logging that require repeated re_play_ [24]. In such a context, even a Iog for
tool, is trivial (2.61% average) and the size of additional log is a few minutes of execution is hardly affordable. Furthermore, if a

comparable to the original log. Substantial reduction can be cost- fallurg Oc‘f[‘;rs in re{not_? egef(:uth{l_, the I?Lge Iietpl?g I(()jg ca}n be re-
effectively achieved through a search based algorithm. The reduceddtced on the remote site before itis sent back to the developer.

log is guaranteed to reproduce the failure. Challenges of Replayable Log Reduction.
During replay, events from the log are retrieved in order to drive

.Catggorie;s and Subject Descriptors D.2.5 [Software Engineer- the execution.The first challenge is that reduction may induce
ing]: Testing and Debugging—Debugging aids, Tracing a different control flow path such that the reduced log cannot
General Terms Reliability, Performance properly align with the replayed executiohn eventin the redu(_:ed
log may no longer be encountered during replay due to the different
Keywords Software reliability, Log reduction, debugging, replay, path. Or, replay may take a new path such that an event is expected
instrumentation but not present in the log.
The second challenge is that reduction may change variable val-
ues, leading to inconsistendyor example, it may change the num-
1. Introduction ber of bytes that are supposed to be read at a system call. Thatis, the
. . . . log indicatesx bytes were read but the replayed execution expects
Logging and replays an important technique for software depend- , 1" ¢ hytes. Solving such inconsistency demands substantial effort.
ability [6, 11, 20]. Itrecords the interactions between a program and gyisting work tries to achieve replayable reduction by retaining the
its environment during execution by logging system calls and sig- gyents that are in the transitive closure of dependences for the cri-
nals. The execution can be replayed as many times as necessary fQfgion [19, 25]. However, it demands replaying the full execution
various purposes, such as diagnosis of software failures and state;; jeast once to detect dependences. Tracking all instruction level
recovery from failures. The state of tge art logging techniques have dependences often incurs 5-10 times slow down [19]. Since reduc-
low overhead, usually less than 10% [6, 18], support concurrent tion is mainly needed for long executions, the resulting cost could
programs [1, 5, 16], and are even provided as part of the operatingpe yery high. Furthermore, we observe that for complex programs,
system. These features make the techniques highly desirable whenyenendences between events are so pervasive that the transitive clo-

intensive on-the-fly hyman attention |s.|nfea5|ble.dur|ng execution, ¢ re may involve all events, so reduction can hardly be achieved.
such as in the emerging cloud computing scenario.

For long running programs such as server programs and user in-

Logging and replayis important to reproducing software failures
and recovering from failures. Replaying a long execution is time

teractive (Ul) programs, replay logs may correspond to executions read(&x); 1 [R(10) Figure 1. Struc-
as long as a few hours or even days. Large logs entail long replay , print(“x="-+x); 2 | Wix=10) tural constraintsk()
times. The programmer may have to wait for hours before a fail- 3 |eaq(&y); 3 | R@20) stands for an input
ure is reproduced. Sending such large log files over network could 4 print(“y="+y); 4 | Wy=20) event.W() stands for
5 read(&z); 5 |R@G0) an output event. The
6 print(“z="+z); 6 | W(z=30) numbers to the left
of the log are where
Permission to make digital or hard copies of all or part of this work for personal (a) Program (b) Sample log events happened.

classroom use is granted without fee provided that copies are not made outbstrib

for profit or commercial advantage and that copies bear this notice and the fubicitati D d h v f di id . .
on the first page. To copy otherwise, to republish, to post on servers or ttritedes ependences are not the only factor needing consideration in

to lists, requires prior specific permission and/or a fee. reduction. Events independent to the reduction criteria may need
PLDI'11, June 4-8, 2011, San Jose, California, USA. to be included due tetructural constraintsSpecifically,an event
Copyright© 2011 ACM 978-1-4503-0663-8/11/06. .. $10.00 is needed if the control flow structure demands its presence even

1 int adult=0, count=0; 3 [UNIT Uty
2 Node * list=null; 3 | R(Amy, 6)
3 [UNIT] while (read(10| y(count,1); Uamy
&name, &age)) { 10| (count); Usrian
4 if (age > 18) { 3 |UNIT
5 adult++; 3 |R(Brian, 5) 3 | R(Tom,21) ' Uamy
6 n=new Node(name); 3 [R(Amy, 6) 5 | y(adult,0); lis
7 n—next=list; 3 |R(Tom, 21) 5 | o(adult); Us
8 list=n; 9 | W(Tom) 7 | y(list); Utom o
9 rint(name); 3 |R(John, 15) 8 | w(list); -
prind) 3 | R(Betty, 30) 9 | W(Tom) list Ulohn Figure 2. An example of our
10 countt++; 9 | W(Betty) 10| y(count,2); design. Events not shaded in
} 3 | R(EOF) 10| o(count); Usery (© are those generated by our
11 print(“count="+count); 11| W(count=5) 3 |UNIT h(technique.y() and w() are
12 assert(list—next==null); 12| Assertion Fails U Un. memory accesses. For read-
12| Assertion Fails } Exit Exit ability, we use the name be-
. . ing read in the iteration as the
(a) Annotated Program (b) Original log (c) Enhanced log (d) Unit deps subscript of a unit.

though there is no (transitive) dependence between the criterion identical values at identical control flow point§hese properties
and the evenfThis is the third challenge. promise the reproduction of the criterion.

Consider the example in Fig. 1. Ideally, if we want to replay the - Qverview Example. Consider the example in Fig. 2 (a). The pro-
output ofz at 6, we only need to replay the read at 5. However, gram reads personal information and stores the adult information to
none of the events can be reduced because all of them are expectef |inked list. At the end, it asserts the linked list has precisely one
during replay due to the straight line structure. element. The user annotates the main request handling loop using
Our Design. Our goal is to address the above challenges and keyword ‘{UNIT] ", meaning each iteration of the loop is consid-
develop a practical log reduction technique. The basic idea of this ered a unit. Figure (b) shows the original replay log of an example
paper is taselectively record extra information such that reduction execution in which the information for two adults is provided. Calls
can be achieved by analyzing the Idthe approach isfficient it toread() andprint () are logged as input/output events.
introduces negligible overhead; the additional information needed The data structures that may cause inter-unit dependences are
to be logged is typically not substantial compared to the original then identified. They aradul t, count, andl i st. The state-
log size. It iseffectivein achieving reduction. ments relevant to these variables are instrumented. Part of the en-

In particular, our technique divides an execution into units such hanced log is presented in Fig. 2 (c). In particuldXl T events
that reduction is only carried out at the unit level. In this paper, delimit execution units. Reads and writes of the relevant data struc-
a unit is an iteration of an event processing loop. For a program tures are logged. Asount andadul t have primitive types, their
driven by external events, its execution is dominated by these iter- reads are logged with values. In comparison, the reads et
ations. To distinguish the term event from that used in a replay log, are logged without the pointer values. In Figure (d), the inter-unit
we call external eventequestsand an event loop is hence called a dependences regarding variablest are presented. Each node de-
request handling loop. There are many log entries generated insidenotes a unit. The variable causing a dependence is labeled on the de-
a unit. They are either reduced entirely or retained for awhile. Such pendence edge. Note that non-pointer dependences are usually not
a design allows us easily handle structural constraints. Moreover, considered. In order to replay the assertion failure, Ugii needs
there are few dependences crossing unit boundaries because a unio be replayed. TransitivelYJpettys Utom and Ueniry are included
is often supposed to carry out a relatively independent task. in the reduced log due to the pointer dependences. Replaying the

On the other hand, units are not completely independent, so re-four events faithfully reconstructs the linked list. When replaying
playing individual units is seldom possible. For example, in the a unit, the values ofount andadul t are retrieved from the log
apache server program, a unit receives a request from a user, instead of being recomputed. Note tlaiunt causes inter-unit
pushes the request to a queue, and then terminates. Another unitdependences between each pair of consecutive units. Hence, if we
pops the request, establishes the connection, and handles the resonsider its dependences, we have to replay all units.
quest. It is easy to tell that replaying either unit alone will not suc- The contributions of the paper are highlighted as follows.
ceed. Hence, we need to detect inter-unit dependences. We observe
that considering all dependences likely makes the log irreducible
as all units are inter-dependent in some way. We propose weaving
two kinds of replay. For variables or data structure fields of primi- ® We propose a novel logging technique that generates reducible
tive types, their values are restored at unit boundaries so thatwe can 10gs. It selectively logs memory access information with very
avoid replaying their dependences. For variables of pointer types or little runtime overhead. Reduction is achieved by analyzing the
other complex types, we replay their dependences (the units where 10g. In particular, we consider unit level reduction so that less
the variables were defined) because directly restoring their values ~ runtime information needs to be logged. We consider primitive
is either too expensive or problematic. Our compile time analysis ~ and pointer variables separately, which allows us to reach a
instruments the program to collect sufficient runtime information balance in the logging overhead and the achievable reduction.
to support such replay. Reduction is done offline by analyzing the e e formally introduce the logging semantics, the replay seman-
enhanced log. Driven by the reduced log, the replay ensures two tics and the reduction algorithm. The logging semantics is de-
properties: (1the replay control flow must be identical to the cor- signed such that it avoids redundancy. We develop an aggressive
responding part of the original executip(2) variables must have reduction algorithm that saves us from reconstructing the whole

memory state while still reproducing the criterion (failure).

e We prove that our reduction scheme can faithfully reproduce | ExpRESSIONRULES
the criterion. parameterized oa ando
e We evaluate our technique on a set of real world programs. [Ref] [Addr-Of]
Results show the runtime overhead is 2.6% on average and e 5 o(addrOf(e)) &x a(x)
the additional space consumption is comparable to traditional R R
techniques. We can reduce executions with tens of thousands of [Const] G-V @ —W [Binop]
units to just a few units, and still reproduce the bugs. Sc e1 binop & = v; binop w
STATEMENT RULES
2. Language (s,0,1) > (¢ ,0’ 1) | parameterized on
KERNEL-LANGUA _ e /_
! GE L addrOf(e) =a e=v o =olar— V] [Assign]
PecL:= s (& :="e0,1) > (skip,0',1)
xeVar = {xi, X2, ...}
ceConst:i= {true, false,.., -1, 0, 1, ...} XS true (- True]
acAddr = {0,1, 2 .. ol 5 -
d € Dev ;= }stdin,stgout,filel,filez,‘..} (1£X thens; else 2, 0,1) = (81, 0,1)
ecExpri= x'|c| &x| #x' | e/ binop & r=if x’ then skip else exit
seStmti= x:=fe| xx:=‘e| if X thens elses, | (assert!(x),0,1) = (1.0,1) [Asser]
[UNIT] while X’ {s} | while X' {s} | s} | Y Y
x:=read’(d) | write!(d,x) | x; :=alloc!(xp) [Skip] [Exit]
| skip | assert(X) | exit (skip;s, 0,1) > (s, 0,1) (exit;s, 0,1) > (exit, 0,1)
Figure 3. Language Syntax (d)=v-S a=a(x) o =cfarsv] I'=1[d g Read]
(x:=read!(d),0,1) > (skip,a’,l')
To facilitate discussion, we introduce a kernel language. The R
syntax of the language is presented in Fig. 3. We explicitly 1(d)=S x=v I'=1[d— S [Write]
model memory addresses. We allow thédress-ofand pointer- (writel(d,x),0,1) > (skip,0,1')
dereferenceoperations, pointer manipulation, and dynamic mem- e .)
ory allocation through thelloc() statement. We explicitly model Ye—size 0(a,...,a+size-1) =1
devices and I/O witlread() andwrite() statements. Failures are g =0fa..atsize 1 0,a0x)— 3 [Alloc]
modeled as assertion violations. Tiieile loop with the[UNIT] {x¢ 1= alloc!(xp),0,1) = (skip,0',1)
annotation denotes that it is a request handling loop. Supporting Figure 5. Operational Semantics
concurrent programs is discussed in Section 9.
vevVal i=a|c o< Store ::=Addr— Val
a €VarAddr :=Var— Addr 1< IOStore :=Dev— Val
& € RefExpr n=x| *X it does not mean our system cannot handle finite memory and deal-
addrOf(e) = { ggg)(x)) & fzx location. Such complexity is just not needed for our discussion.
&= The evaluation rule specifies that with an allocation request of a
Figure 4. Definitions certain size, a consecutive sequence of undefined addresses of the

size is allocated. These addresses are then associated with value 0.
Fig. 4 presents definitions for the semantics. In particular, the 1h€ base address is associated with variablélote that multiple
variable address mappirg maps a variable to its address. The Vvaluations ofa could satisfy the rule, which models the nondeter-
mapping is static. The device storalenotes the state of device, ~Minism of dynamic allocation. We do not explicitly model memory
which is a mapping from a device to a sequence of values. A refer- €10rs, which can be modeled by assertion failures if necessary.
ence expressiog is the shorthand for a variable or a dereference
of a pointer variable. MethodddrOf() identifies the address of
the given reference expression. ; ;
The semantics are presented in Fig. 5. We have two sets of rules.s' Logging Semantics
The first set evaluates an expression to a value, provided the stordn the logging phase, besides recording the I/O behavior of the
and the variable address mapping. The second set evaluates stat@xecution, our technique divides the execution into units and logs

ments. Statement evaluation has the configurggam 1) with sthe memory reads and writes. The goal of logging memory accesses is
statementg the store andthe device store (defined in Fig. 4). Most ~ twofold. First, itidentifies dependences between units. Particularly,
evaluations are standard. The evaluation of the annotatetle pointer dependences allow us to reconstruct relevant memory state.
statement is the same as the regulatle statement. Evaluation ~ Second, it allows restoring values when we choose not to replay
terminates normally afskip,o,1) or abnormally atexit,o,1). through dependences.

We model simple stream devices through rules [Read] and One néve way logs all accesses. To discover cross-unit depen-
[Write]. In particular, one value is read at a time from the head dences, given a read access in Wit from address, the post-
of a stream device; and a value can be written to the tail of the processing algorithm traverses backward in the log file to find the
stream. More 1/O complexity is omitted to simplify our formal dis- latest write tox that precedes the read. If the write is in a differ-
cussion. Our system supports most system calls and signals. Rulent unitUa, there is a cross-unit dependence betwegrandUg,
[Alloc] describes dynamic allocation behavior. Symhblmeans denoted atlg = Up.
undefined. Initially, the addresses of static variables are mapped to However, this simple logging strategy introduces a lot of redun-
value 0 in the store. The remaining addresses are not defined. Wedancy. In particular, if an address is written inside a unit, the values
assume infinite memory and do not model deallocation. Note that of the following reads from the address in the same unit are deter-

W& € ReadMask = Addr— Unitld

Hw € WriteMask = Addr— Unitld

Lelog = U id cUnitld = zZ*
U € LogUnit = UNIT(id,/)-E

E € LogEntry = R(id,d,Z,v) | w(id,d,¢,v) |

FAIL(id,) | y(id,¢,a,v) | w(id,¢,a)

enr € NoRefExpr
S € RegularStmt

c | &x | nil

skip | exit | while X’ {s} |
if X thens elses | x:=‘e
wx:="e | x 1= alloc!(x)

S1S2
\

e = x=le
ext s=sxx=le
expr(so) = X5 S= X :=alloc(x)
xt S = ifx’thensl else S
nil others
X %= x:=le
.l
f _ *X = X ="€
def(so) X1 So= X1 :=alloc!(x)
nil others
nee®@logwrite(s,) = letx=def(s) in Xx#nil
A pw(addrOf(x)) # uid
accesse(h) = (@) =uid Vv p(a) =uid

uid: the shorthand foo(a(unit_id));
uid 1: the shorthand foot (unit_id) — o(0(unit_id))+ 1.

Figure 6. Definitions for Logging Semantics

Execution Log Figure 7. The ac-
L x=.. . 0(&X) cesses at H(that is,
21 [UNIT] while { the 1st instance of
3 ..=X V(&X) line 5) and G are
4 x=x+1 W(&X) redundant and not
5; =X logged. Symbolsy()
61 X=... and () represent
2, [UNIT] while { memory read and
3B =X Y(&X) write logs.

ministic and such reads cannot cause any cross-unit depefidence

Hence, logging them is unnecessary. Similarly, the following writes

in the same unit do not need to be logged. When a cross-unit de-

pendence involves one of these writes, keeping the first write in

the log is sufficient for disclosing the same unit level dependence.

EXPRESSIONLOGGING RULES
(e, L) = (1, L') | parameterized o, o, andpy.

addrOf(e) =a -—accesseth) v=o0(a)

(& L) = (wlar uid], £ y(uid,,a,v)) [LE-Log]
e (ef):ae accesseld) [LE-NoLog]
(CRTHEN (T
€ [LE-NoRef]
(enrs b, L) = (Ur, L)
e £) S (L) (DS (L) o

(e1 binop e, L) = (W, L")

STATEMENT LOGGING RULES
(8,01, e s L) =2 (8,0 V1 W, £') | parameterized oa

st = s whilex’ {s} o =ofuid]] £'= L UNIT(uid,¢)
([UNIT] while X {S}, O,1, 1, b, L) =
(if x! then St else skip, 0,1, lr, by, £')

[LS-Unit-While]

(x=read’(d),0,1) > (skip,0’,l') a=a(x)

Wy = Hw[a—uid] L' = £-R(uid,d,?,0'(a))

<X = readé(d),cr, UM, lJW7L> :S> <Skip, 0-/7 l,v PnH/m L/)>

[LS-Input]

(urite!(d,x),0,1) > (Skip,0,I') XSV
e, £) 2 (W, £y £ = £/ -w(uid,d, £,v)
(write!(d,X),0,1, 1k, b, L) = (skip, 0,1, 1, b, L")
[LS-Output]
X, L) = (1, L) xS false L= L -FAIL(uid, /)

(assert(x(), 0,1, b, by, L) = (exit, 0,1, 1, by, L)
[LS-Assert-Fail]

o, £) 2 (1, L) xS true
(assert(X'), 0,1, , thy, L) = (skip, 0,1, 1., thy, L)
[LS-Assert-Pass]

(expr(so), i, £) = (1), L) neecRlogwrite(so)
(&,0,1) > (r,0’1) a=addrof(def(s))
(sh, O,1, e, thw, L) = (1,07 1,1, @ — uid], £/ - o(uid, £, a))

[LS-Log-Wrt]

(expi(so), b, L) = (., £') —needlogwrite(so)
(sh,0.1) > (r,a’ 1)
<%7 0.7I7PIr’IJVV7L>:S><r’cl7l7|J1l'7lev7Ll>

[LS-NoLog-Wrt]

Figure 8. Logging Semantics

Furthermore, if a read from an address has been logged, the fol

lowing reads in the same unit don’t need to be logged because they
must have the same value and they only reveal the same cross-unit

dependence that the first read reveals.

corresponds to an execution unit, containinghaT() event fol-

Consider the example in Fig. 7. It shows a trace of two iterations '0wed by a sequence of other events. THET() event contains

of an annotated loop. The read in ¥ not logged because of the
read at 3. The read at bis not logged because of the definition at
441. The write at @ is not logged because of the write at 4

the id of the unit and the program locatiérof the loop that gen-

erates the unit. Besides tiiéfiIT() event, we model other 5 kinds
of events, described by symbigl In particularR() andw() are the

The rules are presented in Fig. 8 and the relevant definitions caninPut and output events, in which we log the unit id, the device id,

be found in Fig. 6. We compute a few relations during evaluation. the program location of the event, and the input/output value. The

According to the definitions in Fig. 6, relatiqp maps an address

FAIL() event records an assertion failure. Everfysandw() repre-

to the id of a unit that most recently reads the address. It is used Sent memory reads and writes. The remaining definitions in Fig. 6

to avoid logging redundant reads. Similanly, identifies the most
recent unit that writes to an address. Symhotienotes the gen-
erated log. A log comprises a sequence of log units. A logWnit

1This assumes sequential semantics and Section 9 discussekngan
threads.

are auxiliary to the rules.

The expression rules are of the formatp,, £) = (W, £/),
provideda, o, andpy. Rules [LE-Log] and [LE-NoLog] evaluate
reference expressian, which is eithex or «x (Fig. 4). A reference

expression involves a memory read. It tests whether the address
being referred to has been accessed in the same unit (through

methodaccesse() defined in Fig. 6). If so, we don’t need to log

the read. Otherwise, we attachyaevent to the log and update ; [SEJ;NIT] vhile () UNIT(0,0)-... ‘.’UNIT(1‘2>.M ‘
the most recent read unit of the address. Note that we introduce 3 s - —
a program variablenit_id to denote the dynamic unit id. Symbol 4 s; WNIT(i,2)- H WIT(i+1,5)- ‘
uid is shorthand for its value. Rule [LE-NoRef] handles expressions 5 [UNIT] while (...) <oooo| UNTT(],5) - ...
not involving memory reads. 6 i

Statement evaluation has the configuratiofs, 1, i, phw, L). (a) Code (b) Original Log

Rule [LS-Unit-While] specifies thatid is incremented and a
UNIT() event is logged when an annotated while statement is eval- Figure 10. EXx. for reduction with structural constraints. Variables
uated. Note that theNIT() event leads the unit corresponding to i andj are ids and the 2nd numbersuNIT() are line numbers.
the iteration if the loop predicate evaluates true, otherwise, it leads
the unit corresponding to the execution from the end of the loop
to the beginning of the next annotated loop. Rules [LS-Input] and
[LS-Output] attactr() andW() entries, respectively, to the log. In
[LS-Input], the most recent write unit to the left hand side variable
x is updated. In [LS-Output], the read vfmay be logged by the
expression evaluation. When an assertion fails (rule [LS-Assertion-
Fail]), aFAIL() event is logged. It is then the last event in the log
as theexit statement leads to the termination of the evaluation.
Rules [LS-Log-Wrt] and [LS-NoLog-Wrt] describe evaluation
of the other statements, denoted sgs whose definitions are in . e . .
Fig. 6. Two auxiliary functionexpr(so) andde f(so) are used. The The reason for this design is that restoring pointer values from
former function returns the expressions that need to be evaluatediN® 109 is problematic due to dynamic allocation. Furthermore,
for as, statement. Such expressions lead to memory reads. For in-for erende.nces on buffers anq cgmplex fields, restoring values
stancepxpr(xx:=‘ €) = e x!, with e,x being the concatenation of :mpll_es Ioggl_n_g thelr_ vglue/?, ;’(\j'h'Ch is much more expensive than
the two expressions. When the concatenated expression is evaly:099ing primitive variables/fields.

sed under vl LE Einoplis evluated rstand honensurng | MO 1t our (e ponetieless glous ihe developer t
the reads are logged in the proper order. Funadief(sy) returns play p y dep)

the target of a memory write & involves one, onhil otherwise necessary ir_lformation is available_ in the '°9~.Of?e can imagine
In rules [LS-Log-Wrt] and [LS-NoLog-Wrt] the expressioa&are' cases in which the root cause resides in a unit different than the
first evaluated. If the write target has not been written previously in criterion and affects the criterion through primitive depende_ncg_s,
the same unit, a() event is logged (rule [LS-Log-Wrt]). Evalu- the deyeloper can .choose to repl.ay the .dgpendence of a primitive
ation starts wi’thL Z UNIT(0,0) such that the execution from the value if she/he decides the value is suspicious and wants to inspect

L - the computation leading to the value.
beginning to the start of the first annotated loop belongto Fig. 9 presents the log reduction algorithm. The evaluation starts

. . with the original log£ and an empty reduced lo§ = nil. The
4. Reduction Algorithm units in £ are evaluated in a backward fashion. The evaluation
terminates with all units processed, aXids the reduced log. Rule

the values from the log, avoiding replay of their dependence prece-
dence. We call thigeplay by valueFor example, if a pointex is
defined in uniUg and then used iba, we need to replayg if we
replayUa. Assumex has a primitive fieldf, andx — f is defined

in Uc and used itJa. We don’t need to replayyc when replaying

Ua as we acquire its value directly from the log.

[X-Crit] adds the unit containing the criterion eventXo In this
paper, we assume the criterion is a failure. Rule [X-PointerDep]
mandates that the last unit ihis added toX if some unit inX has
a pointer dependence on the unit. MethpminterdegU, X) tests if

pointerdegU,X) = 3Jw(id,/,a) € U andy(id’,',a,v) € X,st. ispointer(¢) A
Aw(id”, " a) € Swith w(id,?,a)-S-y(id’,¢',a,v) C L

isloopexifU) = U =UNIT(uid,¢)-S A U-U C L A U’ =UNIT(uid H

10)-S ALEL there is a memory write i and a read itX with the same address,
and there is not other writes to the address in-between. If so, the unit
X € ReducedLog= U is added toX.

Rule [X-LoopEXxit] tests whether a unit under consideration de-

! !
LOGREDUCTION | (£,X) ~ (£, X) notes a loop exit, meaning the unit encompasses the execution be-

FAIL(id, ¢) € Ug pointerdegU, X) tween the exit of an annotated loop and the beginning of the next
(Ln-Ug,nil) ~ (Zn,Uc) (Ln-U,X) ~ (Ln,U-X) annotated loop. If so, we need to add the uniXtéo respect the

[X-Crit] [X-PointerDep] structural constraint. If we did not, and the unit were not replayed,

isloopexi(U) the execution wouldn't be able to get out of the annotated loop.
(Zn-U.X) ~ (LnU-X) U,X) - (@iL,U-X) MethodisloopexitU) decides whethed is a loop exit by testing
[X-LoopExit] [X-FirstUnit] }Nhetrt]ﬁr tth? :z;bel oftthe _Ite:z?A(jlmgItIi() ea/ent é)f_ftrt]ﬁ unitis dlffere_ntt

; : . rom that of the next unit. A unit is reduced if there are no pointer

“pointerdeu, X) _—isloopexity) [X-Reduce] dependences between the unit and the previously compusedi

(U, X) ~ (£n X) it is not a loop exit (rule [X-Reduce]). Finally, the first unit, which

corresponds to the execution from the beginning to the first anno-

Figure 9. Log Reduction. tated loop, is always included (rule [X-FirstUnit]). This is for the

consideration of structural constraints.

Given a replay criterion, e.g. a failure, our reduction algorithm Consider the example in Fig. 10. There are two annotated loops.
identifies a small subset of units that are replayable and produceFigure (b) shows a sample log. Each box represents a unit. Assume
the criterion. The approach includes units that are relevant to the the replay criterion idJj, the shorthand for the unit starting with
criterion through cross-unit pointer dependences or other complexUNIT(j,5), and it has no cross-unit pointer dependences with any
dependences such as those through buffers and complex fields irother units. According to the rules, unity andU; are included
data structures. We call thisplay by dependencEor uses of vari- in the reduced logJg drives the execution to the loop at 2 add
able having primitive types and defined in other units, we retrieve forces the execution get out of loop 2 and reach loop 5.

EXPRESSIONREPLAY RULES
’ (&0, 1, X) = (', 14, X") ‘parameterized oa, g, andpy.

addrOf(e) =a —accesse(h)
]x —y(id, £,&,v) - X' ‘

—ispointer(()

o =afa—V]

@0 X) = (0. lars uid], X) [RE-ByValue]

addrOf(e) =a -—accesseth) ispointer(¢) |X =y(id,¢,a,v) X'
(€f,0, 1, X) >° (0, b [a— uid], X)

[RE-ByDep]
addrOf(e) =a accesseth)
RE-NoLo
(e, 0,1, X) = (0,1, X) [al
[RE-NoRef]

<9nr~07lir,x> —»° <07|Jf7x>
/ /

(01,0, X) —° (0, X') (2,01, X') —° (0" 1/, X")
(61 bIN0P @,0, k. X) —° (0", 1/ X"

[RE-Binop]
STATEMENT REPLAY RULES
(50 aX) =* (8.0 e X)

parameterized oo

X = UNIT(id,?) - X’

([UNIT] while X’ {S}, O, 1, iy, X) —°
(if X' then st else skip, 0', [, hy, X’
[RS-Unit-While]

o' =ofuid 1] sr=s whilex’ {s}

’X:R(id.,d,é.,v)x’ a=a(x) o =ala—V]
(x=read'(d), 0, b, b, X) —° (skip, ', h, pw[a — uid],X')
[RS-Input]

(K01, X) = (01, X) xS v | X =(id.d,Lv) X"

(write’(d,x),0, b, b, X) —° (skip, 0, 1y, by, X")
[RS-Output]

X" =FAIL(id, /)

(assert!(x),0, . Iy, X) —° (exit,0',|f . Ju,nil)
[RS-Assert-F]

Lo, X) =8 (0 X)) xSy false

0,1, X) =2 (0 1, X)) xS true
(assert!(X),0, l, ty, X) —° (skip, 0, 1, w, X)
[RS-Assert-T]
(expl(%v),0, kr, X) = (0,1, X") nee®logwrite(s)
(sh,0',ni1) > (r,0" nil) a=addrOf(def(s,))
= Wl vid] | X' = w(id, ¢,a) - X"
<S€)7 07 IJ(7l‘l\N7x> *»S <r7 0”7 IJ: ’ l‘k’N7x”>

[RS-Log-Wrt]
(expr(o), 0, b, X) =€ (0", by, X')
-neelogwrite(s,) (sh,0’,nil) = (r,0”,nil1)
<5éf O, b, b, X) -8 (r, O—/,vl'I!/’vl'l\vil>

[RS-NoLog-Wrt]

Figure 11. Replay Semantics.

Note that dividing an execution into units simplifies the struc-

ByValue]). The store is updated with the logged value. Note, the
rule dictates that the logged label and the current label match,
ensuring the read happens in the same program point as before.
During replay, the maskg, andpy, are maintained in the same
way as in the logging phase so that the replay algorithm can avoid
restoring values that were found to be redundant during logging.
This is important to the synchronization of the replay and the
reduced log. Hence, in rule [RE-ByValugi, is updated to reflect
that the address has been read in the current unit. If the memory
read is on a pointer value (rule [RE-ByDep]), we don't restore the
value. Instead, the value is presently available due to earlier replay
operations. Hence, the algorithm simply removes the current log
entry. The other expression rules are similar to the logging rules.

The statement rules are similar to those in the logging phase.
We summarize the key features of the replay rules as follows.

e In order for replay to progress, the reduced log has to perfectly
align with the evaluation, indicated by the label of the current
evaluation must be identical to that in the current log entry. This
is highlighted in the boxed premises.

e The rules do not require that the current unituid matches
the logged id (e.g. rule [RS-Unit-While]), because the current
id could be different due to reduction.

e Replay does not concern devices. The I/O rules only interact
with the log file.

e Many rules involve evaluating expressions to values. Such eval-
uation is conducted after the proper values are restored from
the log. For instance, in rule [RS-Output], evaluatjoﬁ»cr vis
parameterized on the updated store.

e In rule [RS-Output], the output valueis constrained. It serves
as a validation rule. Intuitively, we demand that the observable
outputs match those recorded in the reduced log.

6. Replayability

We say a reduced log ieplayableif it successfully drives the
replay to the criterion. It is equivalent to th@ogressproperty

for the rules in Fig. 11. Intuitively, the replay control flow has to
perfectly align with the reduced log such that proper events can
be retrieved. The replay outputs have to match the logged values.
Otherwise, the replay evaluation will get stuck.

T € Trace:=1 t € TraceEntry::= trace(s,V, p)
p € Pointer::= pnt(b,z, f)
b € BaseAddr:= Addr ze Sizex=2Z" f e Of fseti=2"

We leverage traces to formally discuss replayability. As pre-
sented above, a trace is a sequence of entries. A trace entry is a
triple that records the evaluated statemgnthe right hand side
valuev and the canonical pointer value if it is a pointer. Canon-
ical pointer values allow us to reason about pointer equivalence
between the original run and the replay. It is a triple tracking the
base address, the size of the allocated region, and the offset in the
region. A pointer obtains its canonical base address and region size
at the address-of operation or thgloc() statement, with initial
offset 0. The region size for an address-of operation is 1, indicating
it is pointing to a variable. Offsets are updated by pointer manipu-
lations. The semantics for tracing is omitted.

tural constraints. We do not support nested annotated loops. In suchygfinition 1. (REPLAYABILITY)

cases, the outer annotations are ignored.

5. Replay

Replay is driven by the reduced log. It can be considered a dual

Let X be a reduction of. for a given criterion. Let the subtrace
corresponding to X in the original run be T, the replay traceThe
We say X is a replayable reduction if=F7 T.

Note thafT corresponds to the executions of all the units that are

process of logging. The rules are presented in Fig. 11. Lets first in the reduced log. The trace equivalence operatpis defined in
consider the expression rules. If a memory read is not on a pointer Fig. 12. It demands the two traces have the same number of entries
value, we replay by restoring the value from the log (rule [RE- and the corresponding entries are equivalent. If the corresponding

l1=1{p ispointer{1) p1=pnt(b,z1,f1) p2=pnt(by,2,f)
I br=bp=ax) fi=f=0 zn=2=1

trace(gil,vl, p1) =t @é(s’é{vz, p2)

[TEQ-P1]

(1 =1y ispointer({1)

P2 = pnt(bz,Zg7 fz)

Ji, ti = trace(x{ := alloc(x), by, pnt(b1,2,0)) and
f = trace(x{ := alloc(xa), b, pnt(b2,22,0))

pnt(bg,z1, f1)
2

V) fl = f2

P
)

trace(S, V1, p1) = trace(S7,V2, Pa)

[TEQ-P2]
l1 =10y —ispointer({) vi=V,
L=z _“lopoted]) V=% [TEQ-Val]
trace(s;',v1, P1) =t trace(Sy, V2, P2)
T|=T| vo<i<|T|ti=f [TEQ)

T=rT

Figure 12. Trace Equivalence.

entries involve non-pointer values, their equivalence is determined
by the equivalence of the statements and the values (rule [TEQ-
Val]). If the entries involve pointers, the pointer values must be
identical if they point to some variable (rule [TEQ-PA])f they
point to dynamically allocated regions (rule [TEQ-P2]), the regions

must be allocated at corresponding execution points and have the

same size and the same offgetdi; are theith entries in the two
traces). Note that the base addresses ad; might be different
as less memory is allocated in the reduced replay.

Theorem 1. If the program only allows comparisons and subtrac-
tions between two pointers, the reduction scheme in Fig. 9 is re-
playable in the absence of overflow.

Overflow is defined as follows.
ispointe({) p=rpnt(b,z f)
overflowtrace(s',v, p))

f>z

For example, in the following program snippet§.“ b=&x;
2. p=b+1;”and“l. b=alloc(10); 2. p=b+12;”, over-
flows occur in statement 2s.

Proof Sketch of the Theorem 1To prove replayability, we
want to prove trace equivalence. According to rule [X-FirstUnit],
we always replay the first unit. As a result, the theorem holds for
the trace entries corresponding to the first unit.

Next, we prove by induction. We assume the theorem holds for
the firstk entries, and prove that it holds for thie+ 1)th entry, that
IS, tkr1 =t tkaa

First, the statement under evaluation for tket+ 1)th entry

log according to the replay semantics, ani equivalent across
runs.

Note that execution reduction caug@d oc() to return different
values during replay because many allocations may be reduced
away. An overflow pointer may cause different variables to be
overwritten. For instance, assume dynamically allocated buffers
A and B are next to each other in the original ruh,andC are
adjacent in the replay. Assume an overflow pointer based\ on
overwritesB, the equivalent pointer overwrit€sduring replay. In
other words, in the presence of overflows, writes though pointers
with equivalent values at equivalent points may write to different
variables (regions).

In case (2)xis a pointer. Assume it is definedtat Whent; and
tkr1 are in the same unit, the equivalence can be derived as in case
(2). If they are in different units, denotedldg andU,, respectively,

Un is replayed according to our reduction rules. In the absence of
overflow, it can be inferred thatis not redefined in-betwedpand
f, 1. Otherwise, the same redefinition must have occurred in the
original run. The value equivalence at tfle+ 1)th entries can be
derived from the equivalence at tljh entries.

Similarly, we can prove the equivalence when the reference is
through a pointer, i.exx.

Finally, it can be inferred that the same expression must yield
an equivalent value if all references in it have equivalent values,
assuming only the supported operatiors.

According to the theorem, replayability is not guaranteed in our
model in the presence of overflow. In real-world scenarios, how-
ever, if the overflow is a stack overflow, due to the determinism
of variable layouts, we can always replay. For heap overflows, al-
though we may not encounter the original failure, we very likely
encounter a memory failure in a different place due to the non-
determinism of heap allocations. We can attach the replay to a
memory error detection tool, such as valgrintiemchecko iden-
tify heap overflows.

Note that traces and canonical pointer values just facilitate our
definitions and proofs. The technique does not need to trace execu-
tions or compute canonical pointer values.

7. Aggressive Reduction

Although we divide executions into relatively independent units,
non-trivial pointer dependences may limit the possible reduction.
The reduction scheme in Fig. 9 is sometimes too rigid. Namely, the
scheme requires that pointers used in equivalent evaluation points
are defined at equivalent points with equivalent canonical values.
However, as long as the pointer is pointing to the same variable or
to the same offset of a region with the same size, the places they
are defined are irrelevant because the value stored at the pointed-to
address can be either restored from the log (if defined external to the

must be the same as the result of the equivalence of the previousunit) or recomputed (if defined internally). Moreover, we need to
entries. In particular, any predicate guarding the statement mustensure that pointers to the same variable or to the same region in the
have been evaluated previously in equivalent entries. Also, it must original run retain such aliasing relations during replay. Otherwise,
have been evaluated to the same result according to the assumptionyndesirable overwriting and different results in pointer comparison
leading to the execution of the same statement inktiel entry. may occur so that the replay fails to make progress.

Hence, we only need to prove all the uses (references) in the entry

have equivalent values. Without loss of generality, let's consider a P q
reference of variablg. 1] p=alloc(...); i/
In case (1)x has a non-pointer value. Assume in the original 2| q=p; U, 1]]

run, the value is defined by a previous evaluation, denoted by trace 5[n=alloc(: ' .
entry tj. If tj andtc; are within the same unit, an equivalent 1 p_}next;ﬁ,’ P q Figure 13. Acc_ordlng
evaluation must have occurred ﬁp In the absence of overflow, s| p=n; ’ Fo the reductlon. rules
there are no other assignments to the same address during replayj 9-p; U, (1] 2] | in Flg_. 9, the log is not
Hence x must have an equivalent valuefin 1 during replay. Ift; 7 [povals: P q re%uljlble. Howe\l/erugI
andt, are in different units, the value ofis retrieved from the I > andU» are a replayable

ot 8 | if(@-val<3)| [1] 4+{3] | reduction assur?ﬂné the

oL - LU criterion is inUs.

2We assume the variable-address mapypirig static.

Consider Fig. 13. Three units are presented on the left. The jockeyinfrastructure [18]. More discussion resides in Section 10.
execution maintains a linked list, the state of which is presented We leave supporting multiple cores to future work. Presently, we
on the right at the end of each unit. Pointgrsand q always discuss the extensions to support concurrent programs.

point to the tail of the list. Assume the criterion islh. Because Maintaining Unit Id. The rules in Fig. 8 assume sequential se-
U, pa, Up LA Up, we cannot achieve reduction by rules in Fig. 9. mantics. Since units do not interleave, we can use a unit id variable
However,Up andU, compose a replayable reduction because the across the entire program, which is not sufficient for concurrent
region pointed to byp at the end ofJg is compatible with that at programs. We consider two possible threading models. In the first
the end olJy, and the aliasing relation gfandq is the same atthe one, an annotated loop does not spawn any thread but rather resides
end of the two units. In other words, the state of the list at the end in a thread. We use a thread local unit id for the loop. In the other
of Uy is sufficient to drive the execution Ity. Note that if aftetdy model, threads may be spawned inside an annotated loop. We need
p andq were pointing to different regions, the predicate at line 8 to properly attribute thread execution with the unit id of the loop.
would take a different branch, making the reduction not replayable. We use a thread local unit id, which is inherited from the parent

In the following, we formally define compatibility. when a thread is spawned.
Definition 2. [COMPATIBILITY] Remote Definitions.With sequential semantics, we identify redun-
Let X be a reduction and T be the sub-trace corresponding to X in dant reads and writes by comparing the current unit id and that
the original run. X is compatible if and only if for each& X, the stored iny; andpy. In the presence of thread interleaving, the value
following conditions are satisfied. of a memory read may be defined remotely by a unit in a different
1. for each read to an address a logged in U (hence its definition thread. In such a case, the read should be logged even if it has a
must be external to the unit) for a pointer valget(b,z, f), local definition in the same unit. To handle such cases, we use a
there must be a closest preceding write to a in T with the pair comprising a thread id and a thread local unit id to denote a
canonical valuent (b, z, f). unit globally in the maskg; andpy. Upon a shared variable write,
2. for each pair of reads from addresses and & in U with both masks are updated. If the remotely defined value is read for the

pointer valuespnt(b,z, fj) and pnt(b,z fj), respectively, the first time, the difference between the global id in the masks and the
closest preceding writes tg @nd @ in T must have the values current id would entail logging the read. This allows us replay by
pnt(l,z fi) andpnt (b, z fj). value. Replay by dependence is supported by recovering the total
order of memory reads and writes for the same variable, which is
easily achievable by inspecting the log. Note that the logging rules
in Fig. 8 don't need to change except the above extensions.

In condition 1, the read would receive its value from the clos-
est preceding write iif instead of the original write during replay.
This dictates the two writes have the same size and offset. Condi-

tion 2 dictates the region level aliasing be retained. Note that the T T, WO ()
pointer offsetsf; and f; may be different. Consider the code snip-

pet within a unit “1.x=p+2; 2.*x=9; 3....=xq; ". Assumep 1.[UNIT] while{

andq are defined externally to the unit, pointing to the same region 2. [.=x] (T1,0)

and with offsets 0 and 2, respectively, so they do not alias. Variable 10.[UNIT] while { (T3,0)

x is defined internally. After line 1x andq point to the same ad- 1. b (2,0) (2,0
dress and hence the dereference atline 3 has the value 9. Toensure & : glvgi 238;
faithful replay, we must ensungandq point to the same region. ' 12, .= <T1:0> <T§.:0>

Theorem 2. A compatible reduction is replayable. Figure 14. The accesses toare interleaved in two threads. The

The proof is omitted for brevity. W (X) and pw(x) columns show the state of the masifter each

Search for Compatible Reduction.Given a criterion, there may statement execution.The boxed executions are logged.

be multiple compatible reductions. We use a BFS algorithm to find
a compatible reduction. In particular, given a criterion, the algo-
rithm first includes only the units dictated by structural constraints
(the first unit and all loop exit units) and tries to replay with such a
log. If replay fails (gets stuck), the algorithm further includes units
that are 1 pointer dependence edge away, then 2 dependence edg
away, and so on, until a compatible reduction is found.

Consider the example in Fig. 14. Two threads interleave. State-
ment 2 is logged according to rule [LE-Log]. Statement 11 is
logged according to rule [LS-Log-Wrt]. Note, it updates bpttx)
andpw(x). Statement 3 is logged according to rule [LE-Log] even
though there is a unit-local write earlier in the same thread. The re-
?ﬁotely defined value is hence logged. Statements 4 is not logged
becausey (x) is equivalent to the current id (by [LE-NoLog]).
L . Statement 12 is not logged becayggx) is equivalent to the cur-

8. Optimizing Instrumentation rent id (by [LE-NoLog]). Intuitively, the remote reads in-between
To reduce logging overhead, we limit instrumentation to the data 11 and 12 do not modify the value »fand there is no need to log.
structures and variables that may cause inter-unit dependences. We

further remove unnecessary instrumentation through static analy-10. Evaluation

sis. The analysis is similar in spirit efinite assignmerdnaly-

sis that decides if a local variable must have been initialized. The
analysis computes the set of data structure fields and variables tha{
must have been either read or written before a program point within
a unit. Such information can be used to discover redundancy. For
instance, instrumenting an object field read is not needed if the field
must have been read or written before. Details are elided.

Our system makes use of LLVNockey andpin. We use LLVM

0 analyze and instrument programs. The logging runtime works
hroughjockey an application level logging and replay tool [18].

It works directly on binaries by rewriting the instruction sequences
that make syscalls to intercept the calls. This design makes it very
efficient; HP used it for debugging distributed systems. Previously,
jockeylogged only syscalls and signals. We extend it to log mem-
. ory accesses, directed by instrumentation inserted by the LLVM
9. Handling Concurrent Programs pass.Jockeycurrently only supports one core. Thackeyreplay

Our technique supports concurrent programs. The system currentlycomponent is insufficient to support our technique as it cannot in-
supports only a single core due to limitations of the underlying tercept memory accesses. We implement our replay component in

pin, a dynamic instrumentation tool. Usipin provides flexibility Table 3 presents the runtime overhead. In this experiment and

for integrating reduction with future dynamic analysis. Reduction the next space overhead experiment, we use test inputs provided

is implemented in C++. The overall implementation is 10k LOC. with the programs if available or randomly generated inputs other-
wise. We will also show results on real world workloads later. The

Applications LOC | threads| Bug description 2nd column shows the native execution time. Columns 3-6 present
#1: Atomicity violation (21287) the overhead of our technique over the plain jockey logging with
Apache-2.0.48 | 157K | 16 | #2:Unprotected buffer different configurations: without any optimizations (i.e. log all ac-
#3: Cache size problem (21285) . SN .
7T Failure in leader election cesses of the relevant data structures), static optimization only, i.e.
BerkeleyDB-4.7.25| 172K 5 : ing i ; ; ; ;
#2:Panic caused by out-dated msgs removing instrumentation through static analysis (Section 8), dy-
Squid-2.3.4 62K 1 Buffer overflow (4148) namic optimization only, i.e. avoiding redundant logging during
MC-4.5.55 106K 1 BUﬁerfoveff'OW (8658) execution viay, andpy, and both optimizations. The 7th column
W3M-0.5.2 51K L Out of memory (492290) presents the accesses identified as redundant by the dynamic op-
VIM-7.0 230K 1 Hangs (100%CPU usage) L The | | k head (with
5C13 55K T Segmentation fault (135029) timization. The last column presents tjoekeyoverhead (without
VAEC-1.1.1 206K 1 Segmentation fault our technique) for reference. The overhead of our techniqueys ver
small after both static and dynamic optimizations, but dynamic op-
Table 1. Application and bug description timization is the more effective of the two. Its effectiveness is sup-
ported by the number of accesses that are found to be redundant. If
an access is redundant, we only pay the cost of a few (usually 2)
Applications | annotated] data func. | instrumen-. | instrmt. extra memory accesses and one comparison. Otherwise, we have
— 'OCZJPS S”UCZthe - tza“on afie;;JP‘- to updatey, and/orpy, store the access information into a buffer,
pacnhe 3 333 775 which will be flushed to the log file later. Note thaBMis a user-
BerkeleyDB 3 a7 1,371 24,338 15,319 . . S .
Squid 1 21 401 2,877 2,232 interactive application without a batch mode, thus we could not
MC 1 18 372 1,967 1,460 measure its run time.
W3M 1 12 408 5,506 3,609
VIM 1 25 1,319 12,040 8,375 A jockey Tog our log w/o opt. our log with opt.
DC 1 2 44 641 521 pp entry | size(MB) entry size(MB) | entry | size(MB)
YAFC 1 8 287 1,785 1,337 Apache | 29k 8.79 58,826k | 379.82 | 7,644k | 47.24
— - DB 539k 6.3 11,447k | 85.86 502k 3.43
Table 2. Static instrumentation. Squid 734k 22.18 44,838k | 265.46 | 5,101k | 30.35
MC 255k 12.9 10,499k | 67.94 715k 434
All experiments were conducted on an Intel L2400 1.66GHz V\\/IS\AM 11545(2-41“21 25498%1 1‘1223;3:8 sggzk 25310297
CPU ywth 3GB of RAM running Linux-2.6.11. We evaluate our b 1035K | 1245 | 24070k | 16055 | 846K oy
technique on a number of real world programs and real bugs from| yarc | 1324k | 4911 | 10428 | 63.95 295K 178
them as the reduction criteria. Table 1 presents the programs and th
bugs.Ber kel eyDB is a distributed databas8qui d is a proxy Table 4. Recording space overhead

server.MC is a user interactive file exploreBMis a text-based
web browserVi mis an advanced text editor abd is a calculator.
Yaf ¢ is a FTP client. Space overhead is presented in Table 4. We present both the
The instrumentation results are presented in Table 2. It presentsnumber of log entries and the log size. For comparison purposes,
the number of annotated loops, the data structures and functionswe separate a log file into theckeylog and our log. Observe that
that may cause inter-unit dependences, and the instrumentationur log size is comparable to theckeylog size for most cases
before and after the static optimization (Section 8). Observe that exceptapache andVl M which have a lot of memory accesses
only a few loops need to be annotated. These loops further call with effects crossing unit boundaries. Our log has more entries, but
other functions to carry out computation. Some of the functions each entry has a smaller size as it only records a memory access.
may cause interesting dependences. Although our technique only Table 5 presents reduction effectiveness. In the experiment, we
instruments access points of certain data structures in certain func-weave inputs used in the previous experiment with failure induc-
tions, the number of such points is large due to the program size. ing inputs. For Ul programs, the failures are induced by a sequence
The static optimization effectively reduces many of them (1/3 for of user actions. We interleave the sequence with the (much longer)
theBer kel eyDB andVI M. It is worth mentioning that the large original inputs. For example iNC, the bug is triggered by follow-
number of static instrumentation points do not induce high run- ing a directory path to a specific file and opening the file. We in-
time overhead because we also avoid redundant logging at runtime terleave the failing sequence with the original normal actions such
Figure 15 shows an annotation example from Apache web as browsing different directories and opening other files. For server
server. Apache is a multi-threaded application and two loops programs, failures are triggered by setting specific configurations at
were annotated. It is easy to figure out these loops because they ar¢he beginning and providing specific requests at the end. Note that
in the main body of each thread. playing the last few events in thjeckeylog does not work due to
dependences. More discussion can be found in the Vim case study.

App time. w/o opt stat dyn stat+ rednt. jockey . . .
(sec) dyn access Columns 2-4 present logs before reduction including the num-
Apache | 210.0 | 2.8% | 1.77% | 0.97% | 0.17% | 87.01% | 3.46% ; e ;
DB | 483 | 955% | 8.47% | 5.92% | 4.20% | 95.61% | 2.94% ge7r of unltst E?\Ot e\éentt_entrleq))lizl_(feyl?réd ouréog SIZES. CO'“m.gS q
Squid | 79.04 | 30.6% | 12.1% | 2.23% | 1.1% | 88.62% | 2.53% -7 present the reduction result if all dependences are considered.
MC 58.1 | 29.7% | 27.5% | 3.35% | 2.26% | 93.13% | 3.25% | Columns 8-10 present the result if only pointer dependences are
W3M N/A N/A N/A N/A N/A | 87.13% | N/A considered. Columns 11-15 present the result of compatible reduc-
VIM 55.26 | 42.15% | 34.0% | 5.3% | 3.93% | 92.05% | 0.94% | 1 ; ; ; i
DC | 35.63 | 85.32% | 43.93% | 13.62% | 4.8% | 96.8% | 7.11% gon. Thalt |si(yve cf:onduct brf.gldth f'(;St iearcch: alllong Fﬁ'mﬁr deptﬁn
YAFC | 63.03 | 23.75% | 17.25% | 4.02% | 1.82% | 97.17% | 3.48% denfﬁ&f tct)10 ;_:r,]gsor COT]F’% Ib ere :Jhc 'ton-_ to u&nn ds ows de
epth of the search. Observe that pointer dependence reduc-
Table 3. Logging overhead tion sometimes can achieve good reduction. The last column shows

the log reduction time including the replay time needed during re-

697 static void *listenethread(aptthreadt *thd, void * dummy){ 923 static void *workerthread(aprthreadt *thd, void * dummy) {

%29 [UNIT] while(1) { .9.46 [UNIT] while(!workers may_exit) {
730 if (requestghis_child <= 0) { 947 if(lis-idle) {
896 }//while end 1003} // while end
510 } Il listenerthread function end i015} /I worker_thread function end
[server /mpm/worker /worker.c| [server /mpm/worker /worker.c|

(a) Listener thread annotation (b) Worker thread annotation

Figure 15. Loop annotation example (Apache)

log b/f reduction reduced log w. all deps reduced log w/o search reduced log with search

Bugs units | jockey [ours units | jockey [ours units | jockey ours units | jockey ours BFS [Reduction

(MB) | (MB) (MB) | (MB) (MB) MB (MB) (MB) level | time(sec)
Apache#l | 14,989 8.55 47.1 14,989 8,55 47.1 14,975 8.53 47.1 16 0.14 0.51 1 5.9
Apache#2 | 14,991 8.54 47.4 14,991 8.54 47.4 | 14,989 8.53 47.4 40 0.29 1.34 1 6.4
Apache#3 | 15,005 | 8.54 47.3 | 15,005 | 8.54 47.3 | 15004 | 854 473 20 0.17 0.69 1 6.1
DB#1 2,033k | 1449 | 257 832 5.85 | 0.122 10 0.07 | 0.0015 2 0.06 | 0.0007 1 5.6
DB#2 459k 37.6 8.36 54 3.52 | 0.047 8 0.44 0.005 4 0.42 | 0.0018 1 5.2
Squid 8,000 22.2 30.4 8,000 22.2 30.4 8,000 22.2 30.4 91 0.34 0.35 6 24.8
MC 5,348 13.4 4.35 5,348 13.4 4.35 14 1.25 112 5 0.69 0.93 1 5.4
W3M 961 1.67 3.98 961 1.67 3.98 961 1.67 3.98 2 0.03 0.021 1 4.9
VIM 2,544 414 | 2327 | 2544 414 | 23.27 | 2,369 4.02 22.66 12 0.035 | 0.279 1 5.8
DC 6,580 12.45 5.04 6,580 12.45 5.04 6,580 12.45 5.04 14 0.94 0.65 1 14
YAFC 196 49.11 | 63.95 196 49.11 1.78 196 49.11 1.78 4 0.11 0.001 1 3.5

Table 5. Log reduction results

Unit 1: first unit, need to include

Unit 2 : turn on syntax highlights

Unit 3 : open filel

Unit 44 : open file2(bug triggering file)

Unit 508 : unnecessary unit

Unit 1066 : open file3

Unit 1187-1188: unnecessary units

. Unit 2489: open file4

Dayl Day?2 Day3 Day4 Day5 Day6 Day7 Unit 2541 : go back to file2 (from memory buffer)

: Unit 2542 : unnecessary unit
(@) Runtime overhead Unit 2544 : goto the bug triggering line in file Zailure!

Overhead(%)

500 Apache-Jockey
400 - Apache-Our s

Squid-Jockey m—
Squid-Our

Figure 17. Reduced log of Vim

Accumulated log size (MB)

300
200 based on structural constraints. More units (and their skeletons) are
100 added through search. Even the initial skeleton may contain units
0 distributed along the whole execution. Furthermore, traversing one
Dayl Day2 Day3 Day4 Day5 Day6 Day7 dependence edge can reach distant units. For instance, a unit close
(b) Space overhead to the end may likely depend on a unit near the beginning.

Practicality Study With Real Workload. In order to evaluate the
Figure 16. Runtime and space overhead with real-world workload. practicality of our technique, we study its efficiency and effective-
ness on the two server programpache andsqui d with real-
world workloads. Specifically, we acquired the high level web re-
duction. The replay time of the reduced log is similar to the re- quest log for our institution’s web-site for one week. We wrote a
duction time and elided. The dominant factor of replay time is the SCript to regenerate the workloads for 1-7 days and fed them to the
infrastructure overhead of Pin. The search algorithm (compatible tWo server programs. At the end of each workload, we also sup-
reduction) can always achieve good results. The reduced logs arePlied the failure inducing requests to trigger the failure. The aver-
very small, leading to very short replay times. Furthermore, we age runtime overhead and aggregated space overhead are gtesente
want to point out that by pay|ng ’[he one Ume reduction COSt, ’[he n Flgure 16. ObserVe that the I’l_m'[lme OVerhead IS more or |ESS
programmer has a much smaller run to analyze for arbitrary number consistent. The space overhead is reasonable for a few days’ exe-
of times. Hence, the benefit may go beyond the savings comparedcution. The replayable, reduced logs (not shown) are consistently
to the original run. Moreover, the level of search tends to be small. Small. These results show the practicality of our technique.
We suspect that many memory states are compatible, allowing usCase Study.We present th&| Mcase in detail. Fig. 17 shows the
to find one quickly. Note that small search depths do not mean our reduced version of a large log. The failure occurs as follows. Unit
technique only acquires units towards the end of execution. Re- 1 (U1) is the first unit, containing execution from the beginning to
call that our algorithm (Section 7) starts with a skeleton of units before the first request loop iteration. At U2, the user enables syntax

highlighting, a precondition of the bug. Next, four files are opened tial work on software based record and replay for parallel and dis-

with file editing actions in-between the openings (note that the unit tributed systems [2, 6, 11, 17, 18]. These systems only perform

ids of open units are not contiguousjl M allocates a memory coarse-grained logging at the level of system calls or control flow

buffer for each file, so after U2489, there are four buffers. Here and hence are not sufficient for reduction. Hardware based logging

the user switches back to file2, which is loaded from the buffer. At and replay [7, 8, 12, 14] can faithfully replay executions. While

U2544, the user scrolls down to a specific line. When the syntax such techniques are effective, they demand special hardware.

highlighter tries to parse the line, the bug is triggerédNihangs). In recent years, significant progress has been made in testing
The reduced log includes 12 units. The skeleton contains the and debugging concurrent programs [1, 9, 13, 16]. These tech-

failing unit U2544 and the first unit U1. The skeleton is not re- niques search for a failure inducing schedule given certain inputs.

playable. With one step pointer dependence edge traversal, the 12n the future, we plan to leverage these techniques to generate re-

units are included. In particular, the dependences between file openducible logs on multiple cores.

units are through the memory buffer data structxfé | emar k. Delta debugging [24] reduces a failure inducing input by repeat-

These units construct a compatible memory state for the executionedly running the program on subsets of the input. The process could

of U2544, and hence leads to successful failure replay. In particular be expensive for long execution.

the failure demands the four files be loaded otherwise the memory

buffer state would be different, leading to control flow difference 12. Conclusion

and hence mis-alignment between the control flow and the replay

log. Furthermore, it demands U2 to activate syntax highlighting. We propose a compiler based technique that generates a reducible

; ’ : replay log. The technique divides an execution into units, mainly
We also manually inspect the reduced log and find that 4 units are iterations of event processing loops. We instrument programs in-

unnecessary. In other words, the ideal minimal reduced log contains L o . A
strument to collect minimal additional information like memory

8 units. The 4 units are included because they are also reachable in . ; - .
one dependence edge and they do not change compatibility. accesses into the replay log. Given a criterion, reduction can be

From their ids, observe that the units are sparsely distributed 2611€ved through analyzing just the log. Our technique is auto-
along the entire execution. A naive idea of replaying the last a mated, only requiring annotating the event processing loops. It is

few units would not work. We further inspect all the reduced logs 2:ﬁggafgm;ig’c?fsﬁfrﬁgﬁ ir;rétcme g;’:glge%dlc')s 5? oAr)l ;?r(]jir:heoﬁ:j
and find that the second unit of the reduced log (the first unit is syscalls ;nd signals Oﬂr reduction gnd repla: sc?heme is alsg nov>ell
always included in the reduced log) is indeed in the early stage of Y 9 y play .

s : It seamlessly weaves value based replay and dependence based re-
g‘le original executions except ti@Mbug andBer kel ey DB bug play to achieve both great reduction and faithful reconstruction of

memory state. Our results show that we can reduce executions with
up to 2,033K units to less than 91 units.

11. Related Work P
Execution fast forwarding (EFF) [19, 25] also has the goal of re- 13. Acknowledgment

ducing logs. EFF does not instrument the program during the 109- \ye \youId like to thank the anonymous reviewers for their insight-

&8I comments. This research is supported in part by the National
Science Foundation (NSF) under grants 0917007, 0845870 and
Y¥08345209. Any opinions, findings, and conclusions or recommen-
dations in this paper are those of the authors and do not necessarily
reflect the views of NSF.

offline, either through static analysis or by replaying the whole exe-
cution once to detect dependences, which is too expensive (usuall
10X slowdown). EFF does not guarantee replayability. In this pa-
per, we show that with small cost, we can acquire a reducible log
on the fly. Reduction can be achieved by analyzing the log, with-
out static analysis or replaying the full execution. We also observe References

that EFF is too conservative in considering all dependences, often

leading to very little reduction. In contrast, we weave value and [1] G. Altekar and I. Stoica. Odr: output-deterministic r@plfor multi-

dependence based replay to a novel and highly effective scheme. core debugging. IISOSP'09
Language based replay [21] allows users to replay a program [2] A. Ayers, R. Schooler, C. Metcalf, A. Agarwal, J. Rhee,dan
component (module). It uses profiling to find a replay cut to min- E. Witchel. Traceback: first fault diagnosis by reconsinrcof dis-

imize logging efforts. Whereas the technique can be considered a tributed control flow. IrPLDI'0S.
reduction on the program dimension, our reduction is on the tem- [3] G. Bronevetsky, D. Marques, K. Pingali, and R. Rugina.npder-

poral dimension, and we believe the two dimensions are orthogo- ~ enhanced incremental checkpointing.Ll@PC'07.

nal. Moreover, to use their technique, the user has to know about [4] K. M. Chandy and L. Lamport. Distributed snapshots: Detier

where a bug might be to do selectively logging. In comparison, ing global states of distributed system&CM Trans. Comput. Syst.

our logging is general. We also handle failures that cross compo- 3(1):63-75, 1985.

nents. SCARPE [10] is a similar component based technique for [5] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. @he

Java. Subgroup replay [23] groups processes and records tery in Execution replay of multiprocessor virtual machinesVEE’'08

group messages. [6] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F. Kaashoeind
Checkpointing [4] is a standard approach to avoid replaying a Z. Zhang. R2: An application-level kernel for record andlagp In

whole execution. Incremental checkpointing [3, 15] avoids over- osbros

head from capturing memory snapshots. Language based check-[7] D. Hower, P. Montesinos, L. Ceze, M. D. Hill, and J. Tolasl Two

pointing [22] allows users to checkpoint at arbitrary program points hardware-based approaches for deterministic multiprocesgbay.

with contexts. Our technique is complementary to checkpointing, Communications of the ACN62(6):93-100, 2009.

e.g., our technigue can further reduce an execution between check- [8] D. R. Hower and M. D. Hill. Rerun: Exploiting episodes for

points. Furthermore, we allow fine-grained reduction at the unit lightweight memory race recording. ISCA'08

(loop iteration) level. [9] P. Joshi, C. S. Park, K. Sen, and M. Naik. A randomized dygami

There are software based replay systems that record individual program analysis technique for detecting real deadlockBLDI'09.

memory accesses and their happens-before relations [5]. Such sys[10] S. Joshi and A. Orso. Scarpe: A technique and tool foeciizle
tems induce substantial runtime overhead. There has been substan- capture and replay of program executionsIGSM’07.

[11] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging opatat
systems with time-traveling virtual machines.USENIX ATEC'05

[12] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas. pGaa
software-hardware interface for practical deterministidtiprocessor
replay. INASPLOS'09

[13] M. Musuvathiand S. Qadeer. Iterative context boundangystematic
testing of multithreaded programs. Ri.DI'07.

[14] S. Narayanasamy, C. Pereira, and B. Calder. Recordimgdmem-
ory dependencies using strata. ABPLOS’'06

[15] R. H. B. Netzer and M. H. Weaver. Optimal tracing and imeeatal
reexecution for debugging long-running programsPLDI'94.

[16] S. Park, W. Xiong, Z. Yin, R. Kaushik, K. Lee, S. Lu, and Zhou.
Pres: Probabilistic replay with execution sketching on iprdtes-
sors. INSOSP’09

[17] M. Ronsse, K. D. Bosschere, M. Christiaens, J. C. d. Bengieaux,
and D. Kranzlniilller. Record/replay for nondeterministic program
executions Communications of the ACM6(9):62—67, 2003.

[18] Y. Saito. Jockey: a user-space library for record-agmebugging. In
AADEBUG'05

[19] S. Tallam, C. Tian, X. Zhang, and R. Gupta. Enabling trg@f long-
running multithreaded programs via dynamic execution rednctin
ISSTA'07

[20] L. D. Wittie. Debugging distributed ¢ programs by reahd reply. In
PADD’88.

[21] M. Wu, F. Long, X. Wang, Z. Xu, H. Lin, X. Liu, Z. Guo, H. Gyo
L. Zhou, and Z. Zhang. Language-based replay via data flowlout
FSE’1Q

[22] G. Xu, A. Rountev, Y. Tang, and F. Qin. Efficient checkpig of
java software using context-sensitive capture and repralySE'07.

[23] R. Xue, X. Liu, M. Wu, Z. Guo, W. Chen, W. Zheng, Z. Zhang,
and G. M. Voelker. Mpiwiz: subgroup reproducible replay ofimp
applications. IPPOPP’09

[24] A. Zeller. Isolating cause-effect chains from compuyiesgrams. In
FSE'02

[25] X. Zhang, S. Tallam, and R. Gupta. Dynamic slicing longniag
programs through execution fast forwarding. H8E'06

