
Cost Effective Dynamic Program Slicing∗

Xiangyu Zhang Rajiv Gupta
Department of Computer Science

The University of Arizona
Tucson, Arizona 85721

{xyzhang,gupta}@cs.arizona.edu

ABSTRACT
Although dynamic program slicing was first introduced to aid in
user level debugging, applications aimed at improving software
quality, reliability, security, and performance have since been iden-
tified as candidates for using dynamic slicing. However, the dy-
namic dependence graph constructed to compute dynamic slices
can easily cause slicing algorithms to run out of memory for realis-
tic program runs. In this paper we present the design and evaluation
of a cost effective dynamic program slicing algorithm. This algo-
rithm is based upon a dynamic dependence graph representation
that is highly compact and rapidly traversable. Thus, the graph can
be held in memory and dynamic slices can be quickly computed.
A compact representation is derived by recognizing that all dy-
namic dependences (data and control) need not be individually rep-
resented. We identify sets of dynamic dependence edges between
a pair of statements that can share a single representative edge. We
further show that the dependence graph can be transformed in a
manner that increases sharing and sharing can be performed even
in the presence of aliasing. Experiments show that transformed
dynamic dependence graphs explicitly represent only 6% of the
dependence edges present in the full dynamic dependence graph.
When the full graph sizes range from 0.84 to 1.95 Gigabytes in
size, our compacted graphs range from 20 to 210 Megabytes in
size. Average slicing times for our algorithm range from 1.74 to
36.25 seconds across several benchmarks from SPECInt2000/95.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Debuggers;
D.2.5 [Software Engineering]: Testing and Debugging—Debug-
ging aids, Testing tools, Tracing

General Terms
Algorithms, Measurement, Performance

Keywords
dynamic dependence graph, debugging, testing
∗Supported by grants from Intel, IBM, Microsoft, and NSF grants
CCR-0324969, CCR-0220262, CCR-0208756, CCR-0105535, and
EIA-0080123 to the Univ. of Arizona.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’04, June 9–11, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-807-5/04/0006 ...$5.00.

1. INTRODUCTION
The notion of program slicing was first proposed by Mark Weiser

[25]. He introduced program slicing as a debugging aid and gave
the first static slicing algorithm. Since then a great deal of research
has been conducted on static slicing and a survey of many of the
proposed techniques and tools can be found in [23] and [12]. For
C programs that make extensive use of pointers, the highly con-
servative nature of static data dependency analysis leads to highly
imprecise and considerably larger program slices. Since the main
purpose of slicing is to identify the subset of program statements
that are of interest for a given application, conservatively computed
large slices are clearly undesirable. Recognizing the need for accu-
rate slicing, Korel and Laski proposed the idea of dynamic slicing
[14]. The dependences that are exercised during a program exe-
cution are identified and a precise dynamic dependence graph is
constructed. Dynamic program slices are constructed upon user’s
requests by traversing the dynamic dependence graph. It has been
shown that the dynamic slices can be considerably smaller than
static slices [24, 12].

The importance of dynamic slicing extends well beyond debug-
ging of programs [2, 15]. Increasingly applications aimed at im-
proving software quality, reliability, security, and performance are
being identified as candidates for making automated use of dy-
namic slicing. Examples of these applications include: detect-
ing spyware that has been installed on systems without the user’s
knowledge [13], carrying out dependence based software testing
[8, 16], measuring module cohesion for purpose of code restructur-
ing [11], and guiding the development of performance enhancing
transformations based upon estimation of criticality of instructions
[28] and identification of instruction isomorphism [22]. The benefit
of using dynamic slicing is shown in Table 1. Each dynamic slice
contains a subset of statements that are executed at least once. The
number of unique statements that are executed at least once (USE)
and average dynamic slice size (SS) are given. SS contains 2.46 to
56.08 times fewer statements than USE.

While the notion of dynamic slicing is very useful for the above
mentioned applications [2, 13, 8, 16, 11], an impediment to their
widespread use in practice has been the high cost of computing
them. Consider the cost data in Table 1. For program runs involv-
ing execution of 67 to 220 million statements, the sizes of dynamic
dependence graphs required to carry out dynamic slicing take 0.84
to 1.95 Gigabytes of storage. Given the large sizes of these graphs,
it is not possible to keep them in memory. While for small program
runs it may be possible to maintain dynamic dependences in mem-
ory and use them in dynamic slicing, for realistic program runs this
is not possible. To address this problem recently we proposed the
LP algorithm in [26] where the dynamic dependence graph is con-
structed on-demand in response to dynamic slicing requests from

Table 1: Cost of dynamic slicing.

Benchmark Suite Statements Benefit Costs
Executed Unique Stat. Av. Slice USE/ Full Graph LP’s Average

(Millions) Exec. (USE) Size (SS) SS Size (MBs) Slicing Times (Min.)

300.twolf SPECInt2000 140.63 15,955 5,789 2.75 1,568.44 13.98
256.bzip2 SPECInt2000 67.19 1,420 25 56.08 1,296.14 9.19
255.vortex SPECInt2000 108.37 70,920 18,587 3.82 1,442.66 10.17
197.parser SPECInt2000 123.00 2,942 583 5.04 1,816.95 9.91
181.mcf SPECInt2000 118.57 2,179 858 2.54 1,535.84 12.32
164.gzip SPECInt2000 71.05 4,474 336 13.32 834.74 4.69
134.perl SPECInt95 220.08 21,984 3,588 6.13 1,954.40 25.21
130.li SPECInt95 124.91 10,215 2,849 3.59 1,745.72 11.28
126.gcc SPECInt95 131.24 151,420 26,436 5.73 1,534.37 12.04
099.go SPECInt95 138.15 49,577 20,158 2.46 1,707.36 10.67

the execution trace that is saved on disk. While this approach
greatly reduces the size of dynamic dependence graph held in mem-
ory, the on-demand construction of the dynamic dependence graph
is quite slow since it requires repeated traversals of the trace stored
on disk. To enable faster traversal of the trace, we augmented the
trace with summary information which allowed us to skip irrelevant
parts of the trace during traversal. As shown by data in Table 1, we
found that even after enabling faster traversal, across the different
benchmarks, on an average it took 4.69 to 25.21 minutes to com-
pute a single dynamic slice.

A dynamic slicing algorithm would be cost effective if the dy-
namic dependence graphs could be compacted so that they are small
enough to hold in memory and the design of the compacted graphs
is such that they can be rapidly traversed to compute dynamic slices.
One approach proposed by researchers sacrifices the precision of
dynamic data dependences to construct a dynamic dependence graph
that is greatly reduced in size [1]. However, recent work has shown
that algorithms that sacrifice precision in order to limit the graph
size are ineffective as they can produce slices that are many times
larger than accurate slices [26, 19].

In this paper we present a practical dynamic slicing algorithm
which is based upon a novel representation of the dynamic depen-
dence graph that is highly compact and rapidly traversable. The
contributions of this paper include the following key ideas on which
the design of our algorithm is based and the experimental evalua-
tion of the algorithm.

Sharing a dependence edge across multiple dynamic instances
of a data dependence. In general, it is not merely sufficient to re-
member whether a pair of statements was involved in a dynamic
(data or control) dependence. For computing dynamic slices it is
also necessary to remember the specific execution instances of the
statements that are involved in a dynamic dependence. We identify
conditions under which we do not need to remember the execution
instances of statements involved in a dependence. Thus, a single
representative edge can be shared across all dynamic instances of
an exercised dependence. In particular, in these situations there is
an one-to-one correspondence between all execution instances of a
pair of statements involved in a dependence because the statements
involved are local to the same basic block. In presence of aliasing,
multiple definitions of a variable may reach a use even if the def-
initions and use are local to a basic block. We show that in such
situations partial sharing is possible.

Transformations for increasing sharing. It is possible to con-
struct a transformed dynamic dependence graph in a manner that
converts non-local dependence edges into local dependence edges

and therefore increases the amount of sharing. First we show that
in some situations non-local def-use dependence edges can be re-
placed by local use-use edges. Second we show that by performing
path specialization we can convert non-local def-use dependence
edges into local def-use dependence edges. To limit the increase in
static code size due to path specialization, we apply this transfor-
mation selectively in a profile guided fashion. Third we show that
in the presence of aliasing, through node specialization, full local
sharing can be achieved.

Experimental evaluation. Our experimental evaluation shows that
once sharing of edges is achieved, the number of dependence edges
is reduced to roughly 6% of total edges. When the full graph sizes
range from 0.84 to 1.95 Gigabytes in size, our corresponding com-
pacted graphs range from 20 to 210 Megabytes in size. Average
slicing times for our algorithm range from 1.74 to 36.25 seconds
across the benchmarks studied while average slicing times of the
LP algorithm range from 4.69 to 25.21 minutes.

The remainder of the paper is organized as follows. Section 2
presents the unoptimized dynamic slicing algorithm. In section 3
we identify the conditions that give rise to sharable dependence
edges, develop transformations for increasing sharing, and present
algorithm details. Experimental results are presented in section 4.
Related work and conclusions are given in sections 5 and 6.

2. DYNAMIC SLICING USING FULL DY-
NAMIC DEPENDENCE GRAPH

We first begin by describing the dynamic dependence graph rep-
resentation used to capture the dynamic data and control depen-
dences exercised during program execution. Once we have de-
scribed this representation we will present a series of optimizations
that lead to a compact representation whose edges can be rapidly
traversed during slicing.

When the program begins execution, the dynamic dependence
graph (dyDG) merely consists of a fixed number of nodes corre-
sponding to the basic blocks in the program. As the program ex-
ecutes, the graph is transformed by introducing edges for the dy-
namically exercised control and data dependences. Since the same
dependence may be exercised many times, the edge is labeled with
additional information to uniquely identify the execution instances
of the statements which are involved in the dependence. Execution
instances are identified by generating timestamps. A global times-
tamp value is maintained and each time a basic block is executed,
it is assigned a new timestamp value generated by incrementing the
current timestamp value. Each execution of a statement (also every
definition and use) in the basic block is uniquely identified by this

timestamp. Thus, dynamic dependences exercised can be captured
by introducing the following dependence edges:

Data dependence edge dmun(tm, tn) represents the use of a value
during execution of statement un with timestamp value tn

that was defined during the execution of statement dm with
timestamp value tm. We will refer to the subgraph of dyDG
showing dynamic data dependence edges as the dyDDG.

Control dependence edge cmdn(tm, tn) represents the execution
of statement dn with timestamp value tn that was control
dependent upon execution of conditional statement cm with
timestamp value of tm. We refer to the subgraph of dyDG
showing dynamic control dependences as the dyCDG.

Let us consider examples of dyDG’s. We present two examples,
one to illustrate dyDDG and the other to illustrate dyCDG. The
control flow graph in Fig. 1(a) represents a function that contains
static dependences due to definitions and uses of variable x. Let us
assume that this function is invoked three times during execution
and the paths taken in each of the executions and the timestamps
assigned to the basic block executions are as shown. The corre-
sponding dyDDG contains nodes for the basic blocks and edges for
data dependences where the labels on the edges uniquely identify
the dynamically exercised data dependences. Similarly the control
flow graph in Fig. 1(b) represents a function that is invoked three
times with execution histories as shown. The corresponding dy-
CDG containing labeled control dependence edges is shown.

(a) CFG; Sample execution history; and dyDDG.

X =

= X

1

= X

= X

2

X =

3

= X

4

(10,10)
(20,20)
(30,30)

X =

3

= X

= X

2

X =

= X

1

= X

4

(10,12)
(30,32)

(21,22)

(10,11)
(30,31)

(10,11)
(30,31)

1 − 2 − 4
1 − 3 − 4
1 − 2 − 4

10 − 11 − 12
20 − 21 − 22
30 − 31 − 32

TimestampsNodes Executed

(b) CFG; sample execution history; and dyCDG.

1

2

3

4

5

(11,12)

1

2

3

if P

if Q

4

5

(10,11)
(20,21)

(30,31)

(21,22)

Nodes Executed

1 − 2 − 3 − 5
1 − 2 − 4 − 5
1 − 3 − 5

10 − 11 − 12 − 13
20 − 21 − 22 − 23
30 − 31 − 32

Timestamps

if P

if Q

Figure 1: Examples of dyDDG and dyCDG.

For enabling program slicing, for each variable (data address) v,
we remember the statement s and its corresponding timestamp ts

that most recently assigned a value to v. The program slice for v

can be computed by starting at execution instance s(ts) and travers-
ing the dyDG backwards following the relevant dynamic data and
control dependence edges. Recall that if execution instance s(ts)
is dependent upon execution instance s′(ts′), an edge from s(ts)
to s′(ts′) denoted by s′s(ts′ , ts) is present in the dyDG. All state-
ments (including s) that are visited during this traversal are added
to the dynamic slice. This computation, denoted as Slice(s(ts)),
is expressed below:

Slice(s(ts)) = {s} ∪
[

∀s′s(t
s
′ ,ts)

Slice(s′(ts′)).

Let us consider the space and time costs of dynamic slicing briefly.
The space needed to hold dynamic dependence graph of a given
program in general cannot be statically bounded across all execu-
tions since as the program continues to execute, it continues to ex-
ercise dependences which must be captured by the graph. Thus,
it is clear that space is spent on labeling the edges and the lists of
labels continue to grow as the program executes. The time spent on
dynamic slicing is simply the time spent on traversing the graph. In
general it is clear that this time is not bounded across all executions
because it depends on the number of dynamic dependence edges
in the graph which cannot be bounded across all program execu-
tions. However, it is also clear that the time for traversing a single
edge can be significant as we must examine labels of all outgoing
edges to locate the relevant edge for traversal. Therefore in order to
limit the space and time costs of dynamic slicing we must develop
techniques for the following:

• To save space we must develop techniques that will lead to
the saving of fewer dynamic labels (i.e., timestamp pairs).

• To save time we must develop techniques that avoid search-
ing through large number of dynamic labels to locate the rel-
evant dynamic dependence edge to follow.

In the next section we present a series of optimizations that reduce
the number of labels that need to be stored in the dyDG. Once these
optimizations are presented, it will also become clear that after op-
timization, the traversal of edges can be carried out in a much more
time efficient manner.

3. OPTIMIZED DYNAMIC DEPENDENCE
GRAPH REPRESENTATION

While in general we need to remember all dynamic instances of
all dependences, next we show that all dynamic instances need not
be remembered explicitly. We develop optimizations that have the
effect of eliminating timestamp pairs. These optimizations can be
divided into the the following three categories:

Infer - Static edge is introduced for a dependence and the times-
tamp pairs corresponding to the dynamic instances of the de-
pendence are inferred and thus need not be explicitly remem-
bered.

Transform - While some timestamp pairs cannot be inferred from
the original static dependence graph, transformations can be
applied to the static graph so that the timestamp pairs can be
inferred from the transformed graph. Thus, these transfor-
mations enable inferring of timestamp pairs.

Redundant - There are situations in which different dependence
edges are guaranteed to have identical timestamp pairs. Re-
dundant copies of timestamp pairs can thus be discarded.

3.1 dyDDG Optimizations
Given an execution instance of a use u(tu), during dynamic slic-

ing, we need to find the corresponding execution instance of the
relevant definition d(td). There are two steps to this process: (find-
ing d) in general many different definitions may reach the use but
we need to find the relevant definition for u(tu); and (finding td)
even if the relevant definition d is known we need to find the ex-
ecution instance of d, i.e. d(td), that computes the value used by
u(tu). The following optimizations show how the above determi-
nations can be made even in the absence of some timestamp pairs.

3.1.1 (OPT-1) Infer

(OPT-1a) Infer Local Def-Use for Full Elimination.
Consider a definition d and a use u that are local to the same ba-
sic block, d appears before u, and there is no definition between
d and u that can ever prevent d from reaching u. In this case
there is one-to-one correspondence between execution instances of
d and u. Since d and u belong to the same basic block, the times-
tamps of corresponding instances are always the same, i.e. given
a dynamic data dependence du(td, tu) it is always the case that
td = tu. Therefore, given the use instance u(tu), the correspond-
ing d is known statically and the corresponding execution instance
is simply d(tu). Thus we do not need to remember dynamic in-
stances individually – it is enough to introduce a static edge from u

to d.
In the dynamic slicing algorithm based upon the full dependence

graph, we began with a set of nodes (basic blocks) and introduced
all dependence edges dynamically. To take advantage of the above
optimization we simply introduce the edge from u to d statically
prior to program execution. No new information will be collected
or added at runtime for the use u as the edge from u to d does not
need any timestamp labels. In other words all dynamic instances of
def-use edge from u to d are statically replaced by a single shared
representative edge.

The impact of this optimization is illustrated using the dyDDG
of Fig. 1(a). As shown in Fig. 2, basic block 1 contains a labeled
local def-use edge which is replaced by a static edge that need not
be labeled by this optimization. We draw static edges as dashed
edges to distinguish them from dynamic edges.

X =

3

= X

= X

2

X =

= X

1

= X

4

(10,12)
(30,32)

(21,22)

(10,11)
(30,31)

(10,11)
(30,31)

(10,10)
(20,20)
(30,30)

3

= X

= X

2

X =

= X

1

= X

4

(10,12)
(30,32)

(21,22)

(10,11)
(30,31)

(10,11)
(30,31)

X =

Figure 2: Effect of applying OPT-1a.

(OPT-1b) Infer Local Def-Use for Partial Elimination.
In the above optimization it was important that certain subpath was
free of definitions of the variable involved (say v) so that a de-
pendence edge involving v that is free of labels could be used. In
programs with pointers, the presence of a definition of a may alias
of v may prevent us from applying the optimization even though at
runtime this definition may rarely redefine v. To enable the appli-

cation of preceding optimization in presence of definitions of may
aliases of v we proceed as follows. We introduce a static unlabeled
edge from one definition to its potential use. If at runtime another
may alias turns out to truly refer to v, additional dynamic edges
labeled with timestamp pairs will be added. The effect of this opti-
mization is that the timestamp labels corresponding to the statically
introduced data dependence are eliminated while the labels for the
dynamically introduced data dependence edge are not, i.e. labels
have been partially eliminated.

During traversal, first the labels on dynamic edges are examined
to locate the relevant dependence. If the relevant dependence is not
found, then it must be the case that the dependence involved corre-
sponds to the static edge which can then be traversed. It should also
be clear that greater benefits will result from this optimization if the
edge being converted to an unlabeled edge is the more frequently
exercised dependence edge. Thus, if profile data is available we
can make use of it in applying this optimization.

In the example shown in Fig. 3 let us assume that ∗P is a may
alias of X and ∗Q is a may alias of Y . Further assume that the
code fragment is executed twice resulting in the introduction of the
following labeled dynamic edges: between the uses of X and defi-
nitions of X and ∗P ; and between the uses of Y and the definitions
of Y and ∗Q. We introduce the following static unlabeled edges:
from the use of X to the definition of X (as in OPT-1a); and later
the use of Y to the earlier use of Y (as in OPT-2b described later).
The dynamic edges introduced are: from the use of X to the def-
inition of ∗P ; and from the later use of Y to the definition of ∗Q.
Thus some, but not all, labels have been removed.

Y =

X =

= X

= Y

*P =

*Q =

= Y

Y =

X =

= X

= Y

*P =

*Q =

= Y

(10,11)
(20,21)

(21,21)

(21,21)
uu
edge

(10,11)
(20,21)

(21,21)

(21,21)

Y =

X =

= X

= Y

*P =

*Q =

= Y

(10,11)
(11,11)

Figure 3: Effect of applying OPT-1b.

3.1.2 (OPT-2) Transform

(OPT-2a) Transform Local Def-Use for Full Elimination.
While the above optimization was able to achieve partial elimina-
tion of labels, next we present an optimization that can eliminate
all of the labels present in situations with aliasing. Full elimina-
tion of labels is achieved through specialization. Given a use of
variable v in a node (basic block) that is reachable by two distinct
definitions (say d1 and d2) that may define v, we create two copies
of the node. One copy is used to exclusively represent dynamic
dependences between d1 and the use of v while the other copy is
used to represent only the dynamic dependences between d2 and
use of v. Since in each copy of the node the use of v is always data
dependent upon the same definition point of v, we do not need to
maintain the timestamp labels on these edges.

Consider the example shown in Fig. 4. One use of X is reached
by the definition of X in statement X = f(Y) while the second use
of X is reached by the definition of X in statement ∗P = g(Z). By
making two copies of the basic block that contains the two defini-
tions and the use, we are able to introduce static edges to represent
both of the above dependences and thus the labels corresponding
to these edges are eliminated. Note that the dependence edges cor-

Y =

= X

X = f(Y)

*P = g(Z)

Z =

Y =

= X

X = f(Y)

*P = g(Z)

Z =

(11,11) (21,21)

(10,11)
(20,21)

(10,11)
(20,21)

Y =

Z =

= X

X = f(Y)

*P = g(Z)

= X

X = f(Y)

*P = g(Z)

(10,11)

(20,21) (10,11) (20,21)

Figure 4: Effect of applying OPT-2a.

responding to the uses of Y and Z in the basic block must also be
replicated and appropriately labeled.

In the above example, two copies of the node were sufficient to
eliminate the local labels. In general, if uses of multiple variables
have multiple definitions due to aliasing, we will require greater
number of copies to be created to eliminate all of the local labels.
If the list of labels is very long, node replication may be justified.
However, if there are only few labels, partial elimination may be
preferable to full elimination.

Since the above optimizations show that timestamp labels on lo-
cal dependences edges can be eliminated, we further develop op-
timizations that convert non-local dependence edges into local de-
pendence edges. Once non-local dependence edges have been con-
verted to local dependence edges, their labels can be eliminated
using the above optimizations.

(OPT-2b) Transform Non-Local Def-Use to Local Use-Use.
Consider two uses u1 and u2 such that u1 and u2 are local to the
same basic block, u1 and u2 always refer to the same location dur-
ing any execution of the basic block, and there is no definition be-
tween u1 and u2 that can cause the uses to see different values.
Now let us assume that a non-local definition d reaches the uses u1

and u2. In this case each time u1 and u2 are executed, two non-
local def-use edges du1(td, tu1

) and du2(td, tu2
) are introduced.

Let u1 appear before u2. We can replace the non-local def-use edge
du2(td, tu2

) by a local use-use edge u1u2. The latter does not re-
quire a timestamp label because tu1

is always equal to tu2
. By re-

placing a non-local def-use edge by a local use-use edge, labels on
the edge are eliminated. During slicing an extra edge (the use-use
edge) will be traversed. Moreover, use-use edges are treated differ-
ently. In particular, a statement visited by traversing a use-use edge
is not included in the dynamic slice.

Using static analysis we can identify uses local to basic blocks
which always share the same reaching definition. Once having
identified these uses we statically introduce use-use edges from
later uses to the earliest use in the basic blocks. After having intro-
duced these edges, there will not be any need to collect or introduce
any dynamic information corresponding to the later uses.

The impact of this optimization is illustrated by further optimiz-
ing the dyDDG obtained by applying OPT-1a. As shown in Fig. 5,
basic block 2 contains a two uses of X each having the same reach-
ing definition from block 1. The labeled non-local def-use edge
from the second use to the definition is replaced by an unlabeled
static use-use edge by this optimization. We draw use-use edge us-
ing a dashed edge to indicate it is static and further indicate that it
is a use-use edge.

(OPT-2c) Transform Non-Local Def-Use to Local Def-Use.
Given non-local def-use edge du(td, tu) between basic blocks bd

and bu, by creating a specialized node for the path (say p) that
when executed always establishes the def-use edge du(td, tu) (i.e.,

X =

3

= X

= X

2

X =

= X

1

= X

4

(10,12)
(30,32)

(21,22)

(10,11)
(30,31)

(10,11)
(30,31)

edge

= X

= X

2

X =

= X

1

(10,12)
(30,32)

(10,11)
(30,31)

X =

3

= X

4

(21,22)

uu

Figure 5: Effect of applying OPT-2b.

d cannot be killed along p prior to reaching u), we can convert
this non-local dynamic edge into a local dynamic edge du(t′d, t′u)
for path p. While for the original edge du(td, tu) the values of td

and tu are not equal, for the modified edge du(t′d, t
′
u) the values

of t′d and t′u are equal. At runtime if the dependence between d

and u is established along path p, then that dependence would be
represented by an unlabeled edge local to node for path p. However,
if the dependence is established along some path other than p, it is
represented using a labeled non-local edge between bd and bu.

The consequence of earlier optimizations was that the initial graph
that we start out with contains some statically introduced data de-
pendence edges. The consequence of this optimization is that in-
stead of starting out with a graph that contains only basic block
nodes, we start out with a graph that contains additional nodes
corresponding to paths that have been specialized. During execu-
tion we must detect when specialized paths are executed (we will
present an algorithm to do so in section 3.3). This is necessary for
construction of the dyDG due to the following reasons. The value
of global timestamps must be incremented after the execution of
code corresponding to a node in the graph. Thus, we no longer will
increment the timestamp each time a basic block is executed be-
cause nodes representing specialized paths contain multiple basic
blocks. At runtime we must distinguish between executions of a
block that correspond to its appearance in a specialized path from
the rest of its executions so that when we introduce a dynamic data
dependence edge in the graph we know which copy of the block to
consider.

= X

= X

2

X =

= X

1

X =

3

= X

4

(21,22)

uu
edge

(10,11)
(30,31)

(10,12)
(30,32)

X =

= X

4

(21,22) X =

3

X =

= X

1.2.4

= X

= X
edge
uu

= X

Timestamps

1.2.4
1 − 3 − 4
1.2.4

30
20 − 21 − 22

10

Nodes Executed

1

= X

Figure 6: Effect of applying OPT-2c.

The impact of this optimization is illustrated by further optimiz-
ing the optimized dyDDG from Fig. 5. As shown in Fig. 6, if we
create a specialized node for path along basic blocks 1, 2 and 4,

many of the previously dynamic non-local def-use edges are con-
verted to dynamic local def-use edges within this path. The def-use
edges established along this path can now be statically introduced
within the statically created node representing this path. Thus, the
timestamp labels for these def-use edges are no longer required.
Since block 2 can only be executed when path 1-2-4 is executed,
we do not need to maintain a separate node for 2 once node for path
1-2-4 has been created. However, the same is not true for blocks 1
and 4. Therefore we continue to maintain nodes representing them
to capture dynamic dependences that are exercised when path 1-2-4
is not followed.

After applying multiple optimizations to the dyDDG of Fig. 1(a),
we have eliminated all but one of the labels in the dyDDG. In fact
this label can also be eliminated by creating another specialized
node for path containing blocks 3 and 4.

Finally it should be noted that the above optimization only elimi-
nates labels corresponding to dependence instances exercised along
the path for which a specialized node is created. Thus, greater ben-
efits will be derived if the path specialized is a frequently executed
path. As a result, selection of paths for specialization can be based
upon profile data.

3.1.3 (OPT-3) Redundancy

(OPT-3) Redundancy Across Non-Local Def-Use Edges.
In all the optimizations considered so far we have identified and
created situations in which the labels were guaranteed to have a pair
of identical timestamps. Now we present an optimization which
identifies pairs of dynamic edges between different statements that
are guaranteed to have identical labels in all executions. Thus, the
statements can be clustered so that they can share the same edge
and thus a single copy of the list of labels. Given basic blocks bd

and bu such that definitions d1 and d2 in bd have corresponding
uses u1 and u2 in bu. If it is guaranteed that along every path from
bd to bu either both d1 and d2 will reach u1 and u2 or neither d1

nor d2 will reach u1 and u2, then the labels on the def-use edges
d1u1 and d2u2 will always be identical. The example in Fig. 7
shows that the uses of Y and X always get their definitions from
the same block and thus dependence edges for Y and X can share
the labels. A shared edge between clusters of statements (shown by
dashed boxes) is introduced by this optimization.

(10,11)

X =

Y =

 = Y

 = X

X =
Y =

X =

Y =

 = Y

 = X

X =
Y =

X =

Y =

 = Y

 = X

X =
Y =

(1,2)

(1,2)
(1,2)

(10,11)

(10,11)

Figure 7: Effect of applying OPT-3.

3.2 dyCDG Optimizations
Control dependences are introduced at the granularity of basic

blocks. Next we present the optimizations that enable introduction
of static unlabeled control dependence edges.

3.2.1 (OPT-4) Infer

(OPT-4) Infer Fixed Distance Unique Control Ancestor.
Often basic blocks (nodes) in a control flow graph have a unique
control ancestor. Whenever a node is control dependent upon a

unique conditional predicate, the control dependence edge can be
introduced statically. In addition, sometimes the difference in the
timestamps corresponding to a dynamic control dependence is a
compile time constant. Thus, we can remember the difference
value and avoid labeling the edge with a timestamp pair each time
the dependence is exercised. In particular, for a dynamic control
dependence edge cd(tc, td) which satisfies the above conditions,
tc + δ = td because timestamp is incremented by δ whenever after
the execution of the predicate when control transfers to the depen-
dent basic block. When this optimization is applied to the example
from Fig. 1(b), the δ values of edges from node 2 to node 1 and
node 4 to node 2 are determined to be the value 1.

1

2

3

4

5

(11,12)
(30,31)

(10,11)
(20,21)

(21,22)

1

2

3

4

5

(11,12)
(30,31)

if P

if Q

δ=1

δ=1

Figure 8: Effect of applying OPT-4.

3.2.2 (OPT-5) Transform

(OPT-5a) Transform Multiple Control Ancestors.
If a node has multiple control ancestors, we can replicate the node
creating specialized copies for each of the control ancestors. Static
control dependence edges can now be introduced and their δ values
can be remembered. The dynamic timestamp labels are no longer
required. Continuing with the example from Fig. 8, the labeled
edges corresponding to the two control ancestors of node 3 can be
replaced by static edges after replicating 3 as shown in Fig. 9.

1

2

4

5

if P

if Q

3

δ=1

δ=1

(30,31)
(11,12)

1

2

3

4

5

1

3

5

if P

if Q

if P
δ=0

δ=1

δ=1

δ=1

Figure 9: Effect of applying OPT-5a.

Specialization also enables another optimization for control de-
pendences which is analogous to OPT-2b. Following specializa-
tion, a node representing a path may contain multiple basic blocks
that are control equivalent [9]. Instead of using separate non-local
edges for two control equivalent blocks, we can replace the non-
local edge for the second block by a local edge which points to the
first block.

(OPT-5b) Transform Varying Distance Unique Control Ances-
tor. In optimization OPT-4 we had shown how to handle the case
when a node had a unique control ancestor which was at a constant
distance from the node. It is possible that there are multiple paths
from the control ancestor to the control dependent node causing the
former to be at varying distances from the latter depending upon the
path taken. In this case we can apply specialization to create copies
of the dependent node such that each copy created is at a constant
distance from the control ancestor.

1

2

3

4

if Q

if P

1

2

3

4

if P

if Q

δ=1

δ=2

δ=1

1
if P

if Q
2

3

4δ=0

δ=0

δ=0

1

2

3

4

if P

if Q

δ=1

δ=1

(10,13)
(20,22)

Figure 10: Effect of applying OPT-5b.

In Fig. 10, node 4 is at distance 3 from node 1 along path 1.2.3.4
and at distance 2 from node 1 along path 1.2.4. By specializing path
1.2.3.4 as shown in the figure we are able to convert the control
dependence edge from 4 to 1 into a pair of control dependence
edges that are each at constant distances of 2 and 0.

3.2.3 (OPT-6) Redundant

(OPT-6) Redundancy Across Non-Local Def-Use and Control
Dependence Edges. In OPT-3 we showed how two non-local data
dependence edges can share common labels. The same approach
can be extended to allow a non-local control dependence edge to
share labels with a non-local data dependence edge as long as these
edges connect the same pair of blocks. An example illustrating this
optimization is shown in Fig. 11.

 = X

X =

if P

X =

if P

(1,2)

(1,2)

(1,2)
X =

if P

 = X = X

Figure 11: Effect of applying OPT-6.

3.3 Completeness of the Optimization Set
In an unoptimized dyDG any dependence edge may have a long

list of labels attached to it. To compact the graph we may wish to
apply transformations that can eliminate this list of labels. Given
this requirement, it is important that we have available to us an opti-
mization (or a series of optimizations) that can eliminate any list of
labels. We consider a set of optimizations to be complete if for any
given list of labels, we can find a sequence of optimizations in the
optimization set that can be used to eliminate the list of labels. The
completeness property of the optimization set is important because
it tells us that we have sufficient optimizations and do not need to
continue developing additional ones. In fact we can say that given
an optimization set that is complete, it is possible to convert any
labeled dyDG into one which has no timestamp pair labels.

[Theorem] (Completeness). The set of optimizations OPT-1
through OPT-6 is complete.
[Proof] There are two types of edges in the dyDG, data depen-
dence and control dependence. Lets us consider each of the edge
types and show that a list of labels associated with an edge can be
eliminated using the optimizations described.

Data dependence labels. (Local Edge) If the labels are associ-
ated with an edge that is local to a basic block the labels can be al-
ways removed because either they can be inferred and hence OPT-
1a is applicable or they can be entirely converted to labels that can
be inferred by carrying out specialization using OPT-2a. (Non-local
Edge) If the labels are associated with an edge that is non-local, i.e.
it connects two different basic blocks, then it can always be con-
verted into a local edge by applying path specialization using OPT-
2c. Once it has been converted to a local edge, its labels can always
be eliminated as described above. Thus, we conclude that labels as-
sociated with all data dependence edges can be eliminated by using
the optimizations we provide ...(1)

Control dependence labels. (Fixed Distance from Unique An-
cestor) If a node is at a fixed distance from its control ancestor, then
the labels can be inferred and hence optimization OPT-4 is applica-
ble. (Others) If the node has multiple control ancestors and/or it is
at a varying distance from its control ancestors, then path special-
ization using optimizations OPT-5a and OPT-5b can always be ap-
plied to convert the labels into ones that can be inferred. Thus, we
conclude that labels associated with all control dependence edges
can be eliminated using the optimizations we provide.................(2)

From (1) and (2) we conclude that the optimization set we have
developed is complete. 2

It is worth noting that in the above proof no reference was made
to optimizations OPT-1b, OPT-2b, OPT-3, and OPT-6. These opti-
mizations are not needed for completeness. They are provided as
cheaper alternatives to specialization in situation where they may
be found to be applicable.

3.4 dyDG Construction and Dynamic Slicing

Static Component of dyDG. To construct the static component of
dyDG we need to perform the following analyses: (i) reaching defi-
nitions analysis is carried out to compute def-use information. May
alias information is needed to carry out this analysis; (ii) reaching
uses analysis is carried out to compute use-use information; (iii)
simultaneous reachability analysis is carried out to identify situa-
tions in which a pair of non-local data dependence edges can share
labels; and (iv) postdominator analysis is carried out to compute
control dependences [9]; and (v) must reachability analysis is car-
ried out to identify situations in which a pair of non-local data and
control dependence edges can share labels.

Except for simultaneous reachability analysis all other analyses
are standard. Therefore next we describe the details of the simul-
taneous reachability analysis. Given a pair of definitions d1 and d2

in block s, with corresponding uses u1 and u2 in block d, the edges
d1u1 and d2u2 will share identical labels if and only if whenever s

and then d are executed either both data dependences are exercised
or neither of them are exercised. We consider the subgraph consist-
ing of s, d, and all nodes along paths from s to d – this is similar to
the way chops are computed [21]. We refer to set of nodes in this
subgraph excluding s as reach(sd). KILLn is a two bit value
where bits correspond to the two definitions; bit value of 1 indi-
cates that n does not kill the definition while 0 indicates that n kills
the definition. The following equations compute for each node in
reach(sd) a data flow value which is ⊆ {11, 10, 01, 00}.

∀n ∈ succ(s)
T

reach(sd), xn = {11}
∀n ∈ reach(sd) − succ(s),

xn =
S

p∈pred(n)∩reach(sd)

{KILLp ∧ x : x ∈ xp}

If the solution for node d is {11} (i.e., both definitions always reach
d) or {11, 00} (either both definitions reach d or neither reaches d),
then the two dependence edges will always have identical labels.
On the other hand, if the solution contains 10 (01), then there is a
path from s to d along which d1 (d2) reaches d but d2 (d1) does
not reach d. This analysis does not need to be carried out for every
pair of definitions but rather for those that appear in the same basic
block and have corresponding uses in the same basic block. More-
over, transitivity can be used to further reduce the pairs considered
(i.e, if (d1u1, d2u2) can share labels and (d2u2, d3u3) can share
labels, then so can (d1u1, d3u3)).

Given the results of the above analyses, we have enough informa-
tion available to construct the static component of dyDG. However,
we observe that the static component of dyDG must be constructed
once and then used repeatedly to capture dynamic dependence his-
tories of different program runs. In other words the optimizations
we have developed must be applied to construct the static compo-
nent. While many of the optimizations can be applied for every
opportunity that exists, there is a subset of optimizations that must
be applied selectively. In particular all of the specialization based
optimizations should be applied only if we expect that their ap-
plication will result in more compaction than the graph expansion
that is caused by specialization. Therefore we should apply these
optimizations in a profile guided fashion. We specialized all Ball
Larus paths [3] that were found to have a non-zero frequency dur-
ing a profiling run. This approach works well because nearly all of
the optimizations requiring specialization, are actually based upon
path specialization. There are two optimizations that require data
dependence profiles – OPT-1b and OPT-2a. Our implementation
does not make use of data dependence profiles yet. Instead we ap-
plied OPT-1b such that data dependence edges created due to must
aliases were given priority for partial elimination over edges due to
may aliases. We do not apply OPT-2a because we do not have an
effective static heuristic for applying OPT-2a.

Dynamic Component of dyDG. As the program executes, it sends
a trace of one basic block at a time to an online algorithm which
builds the dyDG. This online algorithm must carry out two tasks.
First it must buffer the basic block traces until it is determined
which node in the static dyDG must be augmented with additional
dynamic edges. This is necessary because there may be multiple
copies of a basic block due to specialization. Second it maintains
the timestamp value and uses it to create the labels corresponding
to the dynamic edges.

Consider the example shown in Fig. 12. Let us assume that for
the CFG shown the static graph constructed has nodes for each of
the basic blocks and another node for path 1245 is created due to
specialization. When the program executes and generates a trace
for block 1, we cannot at this time introduce dependence edges for
statements in 1 because we do not know where to introduce these
edges – in copy of statements of 1 in node 1 or node 1245. The
trace must be buffered till it is clear that either the program has
followed path 1245 or that it has taken some other path. To detect
when it is the right time to introduce edges we can construct the tree
shown in Fig. 12(c). The online algorithm is initially at the root of
the tree. Depending upon the basic block executed, the appropriate
edge labeled with that block is traversed and the trace is buffered.
When we reach a leaf, it is time to process the buffered trace. The

leaf is labeled with the list of nodes in the dyDG from which the
edges introduced will originate. For example if basic blocks 1, 2,
4, and 5 are executed the edges originate from node 1245 while if
blocks 1, 2, 4, and 6 are executed the edges originate from nodes 1,
2, 4, and 6.

2,4

1

2 3

4

5 6
5
6

1245
1
2
3
4

(a) CFG (b) Nodes (c) Find and update tree.

3 4
5

6

3

1

5 6

2

1245 1,2,4,6

1,3

2
3

4
5

6

Figure 12: Introducing dynamic edges.

Dynamic Slicing. During the computation of a dynamic slice, the
dyDG is traversed backwards to identify the statements that belong
to the slice. The set of dependence edges Es going backwards from
a statement s can be partitioned into subsets of edges Eus

corre-
sponding to each use us and subset of edges Ecs

corresponding to
all control ancestors of s. In other words, Es =

S

∀us

Eus

S

Ecs
.

Given an execution instance of s, say s(ts), for each subset of edges
corresponding to a dependence in Es (i.e., Eus

or Ecs
), we need to

locate the specific edge s′s in Es that must be followed. Moreover,
since the edge s′s may have been exercised many times, we must
identify the specific dynamic instance of this edge s′s(ts′ , ts) that
is involved in the dependence.

(b)

s’

s

l’’’l’’

s

s’’’s’’

s

s’ s’’ s’’’

l’’’l’’

(a) (c)

Figure 13: Traversing dependence edges.

There are three situations that arise as shown in Fig. 13. Let
us say we are considering a subset of edges Ed(s) from Es due
to a dependence d involving s (i.e., Ed(s) corresponds to some
Eus

or Ecs
). In the first case, Ed(s) contains a single static edge

s′s which is thus not labeled dynamically with timestamp pairs.
The traversal is straightforward as there is only one choice and the
timestamp ts′ in s′s(ts′ , ts) can be easily determined (ts′ = ts for
data dependences and ts′ = ts − δ for control dependences). In
the second case there are multiple dynamic and thus labeled edges
(say s′′s and s′′′s). The labels on these edges (l′′ and l′′′) must be
searched to locate the relevant edge and its instance – s′′s(ts′′ , ts)
or s′′′s(ts′′′ , ts). In the third case, there is a single unlabeled static
edge s′s as well as multiple labeled dynamic edges (say s′′s and
s′′′s). The labels on s′′s and s′′′s (i.e., l′′ and l′′′) are first searched.
If we find the relevant dependence s′′s(ts′′ , ts) or s′′′s(ts′′′ , ts),
we are done; otherwise we select the static edge s′s and compute
the value of timestamp ts′ in s′s(ts′ , ts) as discussed in the first
case.

It is worth noting that removal of explicit timestamps, as is car-
ried out by the series of optimizations we have developed, not only
makes the dependence graph more compact, it also speeds up the
traversal process as fewer timestamps are searched to locate the rel-
evant timestamp. The first and third cases contain a static unlabeled
edge and hence the search is reduced while the second case repre-
sents the situation in which no reduction in search is achieved as all
dynamic labels are saved and hence potentially searched.

We have described the key points of the traversal process. Now
we summarize our dynamic slicing algorithm. In order to enable
computation of slices, for each variable v we maintain the triple
< s, n, ts > such that v was last defined by statement s in node
n at time ts. The dynamic slice for v is computed as shown be-
low. Notice the manipulation of timestamps for unlabeled edges
and also note that if s′s is a uu-edge then s′ is not added to the
slice. The sharing of labels between different edges is not explicitly
reflected in the algorithm below since it is an implementation detail
which affects how the timestamp labels on edges are accessed. In
the algorithm below, sSlice(s(ts)) represents the set of statements
that belong to the dynamic slice of execution instance s(ts) and
eSlice(E, ts) represents the subset of statements in the dynamic
slice of execution instance s(ts) that are contributed by the traver-
sal of the subset of dynamic edges E from s(ts).

Slice(v) = {s}
[

sSlice(s(ts))

sSlice(s(ts)) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

if Es =
S

∀us

Eus

S

Ecs
6= φ then

S

∀us

eSlice(Eus
, ts)

S

eSlice(Ecs
, ts)

else

φ

endif

eSlice(E, ts) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

if ∃ labeled edge s′s(ts′ , ts) ∈ E then

sSlice(s′(t′s))
S

{s′}
elseif ∃ unlabeled edge s′s ∈ E then

case s′s is :
du edge : sSlice(s′(ts))

S

{s′}
uu edge : sSlice(s′(ts))
cd edge : sSlice(s′(ts − δs′s))

S

{s′}
endif

�
�
������	

�

������	

�
�
��������

��

������	

������	

��

�

Figure 14: Using shortcuts.

Using Shortcuts to Speed Up Traversal. Finally we present an
optimization that is used to speed up the traversal of the dyDG by
the above slicing algorithm. As we have shown, our optimized al-
gorithm introduces some dependence edges statically while others
are introduced dynamically. It is possible that at some points in the
dyDG multiple edges are traversed in sequence that are all static

edges. If this is the case, the contributions to the dynamic slice
when these edges are traversed is also known statically and always
the same. Therefore, to speed up traversal of these edges, we intro-
duce a shortcut edge that replaces the traversal of multiple static de-
pendence edges by the traversal of a single shortcut edge. The edge
is labeled with the set of statements that are skipped by the shortcut
edge so that the dynamic slice can be appropriately updated when
the shortcut edge is traversed. In the example shown in Fig. 14,
corresponding to the sequence of two static edges S3 → S2 → S1,
we introduce a shortcut edge S3 → S1 labeled with {S2}.

4. EXPERIMENTAL RESULTS
We have implemented the algorithm described using the Tri-

maran compiler infrastructure which handles programs written in
C. We make use of this infrastructure because we have implemented
several other dynamic slicing algorithms using this system [26, 27].
The programs we use in our experiments include 6 programs from
the SPECInt2000 suite (the first 6 programs in Table 1) and 4
programs from the SPECInt95 suite (the last 4 programs in Ta-
ble 1). The reason we could not run remaining SPECInt2000
programs is because they cannot be successfully compiled using the
version of Trimaran being used. All experiments were performed
on a workstation with 2.4 GHz Pentium IV and 2 GB RAM.

The goal of our experiments was to determine the space and time
costs of our dynamic slicing algorithm which we will refer to as
the optimized algorithm OPT. We also compare the performance of
OPT with the traditional slicing algorithm (FP) for short program
runs and the best overall algorithm (LP) for long program runs ac-
cording to [26].

4.1 Performance Evaluation of OPT

Graph sizes. We measured the size of the full dynamic depen-
dence graph and compared it against the size of the optimized graph
obtained after application of all the optimizations described in this
paper. These graph sizes are shown in Table 2. As we can see the
graphs sizes are reduced by factors ranging from 7.46 to 93.40. As
a result, while the full graph sizes range in size from 0.84 to 1.95
Gigabytes, the optimized graphs range from 20 to 210 Megabytes
in size.

Table 2: dyDG size reduction.
Program Graph Size (Megabytes) Ratio

Before After Before/After

300.twolf 1568.44 210.21 7.46
256.bzip2 1296.14 50.48 25.68
255.vortex 1442.66 64.81 22.26
197.parser 1816.95 69.81 26.03
181.mcf 1535.84 170.29 9.02
164.gzip 834.74 51.57 16.19
134.perl 1954.40 20.92 93.40
130.li 1745.72 96.50 18.09
126.gcc 1534.37 74.71 20.54
099.go 1707.36 131.24 13.01

The substantial reduction in the graph size is due to the fact that
roughly only 6% of the dynamic dependences are explicitly main-
tained after the proposed optimizations are applied. The contri-
butions of the various optimizations in reducing the graph size are
shown in Fig. 15. Here 100% corresponds to the full graph size and
dyn corresponds to the size of the graph after application of all the
optimizations. The other points in the bar graph show how the size
reduces as different categories of optimizations are applied one by
one. As we can see, OPT-1 is very effective as it reduces graph

sizes to roughly 35% of the full graph size. However, the other op-
timizations also contribute significantly as they together reduce the
graph size from 35% to 6% of the full graph size. It is important
to point out that the distribution obtained is dependent upon the or-
der in which the optimizations are applied since some cases can be
handled by multiple optimizations.

Effects of optimizations

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 3
00

.tw
olf

 2
56

.b
zip

2

 2
55

.vo
rte

x

 1
97

.p
ar

se
r

 1
81

.m
cf

 1
64

.g
zip

 1
34

.p
er

l

 1
30

.li

 1
26

.g
cc

 0
99

.g
o

Ave
ra

ge

OPT-1
OPT-2
OPT-3
OPT-4
OPT-5
OPT-6
DYN

Figure 15: Effect of various optimizations on dyDG size.

We also observe that the majority of the savings comes from ap-
plying optimizations for dynamic data dependence edges. This is
because the dynamic control dependences represent a small frac-
tion of information contained in dyDG (see the first graph in Fig. 16).
This is not surprising because in our implementation control depen-
dence edges are introduced at basic block granularity while data
dependence edges have to be introduced at statement granularity.
The second and third graphs in Fig. 16 separately show the reduc-
tions in the sizes of dyDDG and dyCDG due to the application of
optimizations. We further breakdown the contributions of the in-
dividual optimizations. Note that the second graph in Fig. 16 does
not include OPT-2a because it was never applied.

In recent work, the SEQUITUR algorithm [20] has been effec-
tively used to compress control flow traces [18] and address traces
[5]. We also used the same algorithm to compress the labeling in-
formation in dyDGs. On an average, SEQUITUR compressed the
dyDGs by a factor of 9.18 across the ten benchmarks we consid-
ered and our approach compressed the dyDGs by a factor of 23.4.
Therefore the approach we propose is much more effective than
SEQUITUR.

Execution times. The next step was to analyze the slicing times of
our algorithm. To carry out this study we computed multiple pro-
gram slices at various points during the execution of each program.
The reason why we computed multiple slices is because depend-
ing upon the memory address or variable chosen, the slicing times
can vary. The reason we carried out slicing at different points dur-
ing execution is because we wanted to study the change in slicing
times as the size of the dyDG grows. Moreover this scenario also
represents a realistic use of slicing – applications often compute
slices at different execution points.

The results of this study are presented in Fig. 17. In this graph
each point corresponds to average slicing time for 25 slices. For
each benchmark 25 new slices are computed after execution inter-
val of 15 million statements – these slices correspond to 25 distinct
memory references. Following each execution interval slices are
computed for memory addresses that had been defined since the
last execution interval – this was done to avoid repeated computa-
tion of same slices during the experiment. As we can see, the in-
crease in slicing times is linear with respect to number of statements

Relative sizes of dyCDG and dyDDG

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 3
00

.tw
olf

 2
56

.b
zip

2

 2
55

.vo
rte

x

 1
97

.p
ar

se
r

 1
81

.m
cf

 1
64

.g
zip

 1
34

.p
er

l

 1
30

.li

 1
26

.g
cc

 0
99

.g
o

Ave
ra

ge

dyCDG
dyDDG

Effects of dyDDG optimizations

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 3
00

.tw
olf

 2
56

.b
zip

2

 2
55

.vo
rte

x

 1
97

.p
ar

se
r

 1
81

.m
cf

 1
64

.g
zip

 1
34

.p
er

l

 1
30

.li

 1
26

.g
cc

 0
99

.g
o

Ave
ra

ge

OPT-1a
OPT-1b
OPT-2b
OPT-2c
OPT-3
DYN

Effects of dyCDG optimizations

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 3
00

.tw
olf

 2
56

.b
zip

2

 2
55

.vo
rte

x

 1
97

.p
ar

se
r

 1
81

.m
cf

 1
64

.g
zip

 1
34

.p
er

l

 1
30

.li

 1
26

.g
cc

 0
99

.g
o

Ave
ra

ge

OPT-4
OPT-5a
OPT-5b
OPT-6
DYN

Figure 16: dyDDG vs. dyCDG size reduction.

executed. More importantly the slicing times are very promising.
For 9 out of 10 benchmarks the average slicing time for 25 slices
computed at the end of the run is below 18 seconds. The only ex-
ception is 300.twolf for which average slicing time at the end
of the program run is roughly 36 seconds. It is worth noting that
our optimizations did not reduce the graph size for this program as
much as many of the other benchmarks. Finally, at earlier points
during program runs the slicing times are even lower.

We also performed the above experiment without making use of
the shortcut edges in the dyDG. The average slicing times at the
end of the program run with and without making use of shortcuts
are given in Table 3. In 8 out of 10 benchmarks, by making use of
shortcuts, the average slicing time is cut by more than half. Thus,
this is an important optimization.

Finally let us consider the cost of generating the dyDGs so that
dynamic slicing can be performed, Our implementation performs
dyDG construction in two steps. First instrumented programs are
run to collect execution traces (control flow and data address traces).
In the Trimaran environment, the execution of the program slows
down roughly by a factor of two when traces are generated. Second
execution traces are preprocessed to generate dyDGs. The prepro-
cessing times are shown in Table 4.

0

5

10

15

20

25

30

35

40

0 15 30 45 60 75 90 105 120 135

Statements executed (millions)

S
lic

in
g

 t
im

e
(s

ec
.)

099.go 126.gcc
130.li 134.perl
164.gzip 181.mcf
197.parser 255.vortex
256.bzip2 300.twolf

0 15 30 45 60 75 90 105 120 135 150

Figure 17: Dynamic slicing times of OPT.

Table 3: Benefit of providing shortcuts.

Program OPT slicing Times (seconds) Ratio
w/o shortcuts with shortcuts w/o / with

300.twolf 68.01 36.25 1.88
256.bzip2 6.14 2.10 2.92
255.vortex 5.57 1.92 2.90
197.parser 4.86 2.21 2.20
181.mcf 22.05 17.10 1.29
164.gzip 4.54 1.74 2.61
134.perl 12.59 4.05 3.11
130.li 15.65 6.09 2.57
126.gcc 9.76 3.80 2.57
099.go 26.85 11.36 2.36

Table 4: Preprocessing time for OPT.

Program Preprocessing Program Preprocessing
Time (Minutes) Time (Minutes)

300.twolf 65.29 256.bzip2 38.36
255.vortex 44.46 197.parser 44.06
181.mcf 53.64 164.gzip 23.52
134.perl 51.12 130.li 49.88
126.gcc 48.83 099.go 35.24

4.2 Comparison with Other Algorithms
We also compare the performance of OPT with the LP algorithm

and the traditional FP algorithm. The LP algorithm was found to
be the best overall in [26] as it does not run out of memory for
reasonably long program runs. The traditional FP algorithm runs
out of memory for long program runs. However, in order to be able
to successfully run FP, we used a machine with 2 Gigabyte RAM
which was sufficient to accommodate the original dyDGs for all but
one program run (134.perl).

LP versus OPT. The cumulative slicing times for computing up
to 25 slices at the end of the program run for the two algorithms
are plotted in Fig. 18. As we can see, the LP algorithm is much
slower than the proposed algorithm. Computing each new slice us-
ing LP on an average takes 4.69 to 25.21 minutes depending upon
the benchmark while computing the same slice using our optimized
algorithm OPT takes 1.74 to 36.35 seconds. The LP algorithm
spends a great deal of time traversing the execution trace stored on
disk during each slice computation. The point at which the curves
intersect the y-axis represents the preprocessing time – for the pro-
posed algorithm this is the time for building the dyDG while for the
LP algorithm this is the time for preprocessing the execution trace
to enable faster traversal of the trace as described in [26]. The ex-

300.twolf

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30

Slicing queries

C
u

m
u

la
ti

ve
 s

lic
in

g

ti
m

e
(m

in
.)

OPT
LP
FP

256.bzip2

0

50

100

150

200

250

0 5 10 15 20 25 30

Slicing queries

C
u

m
u

la
ti

ve
 s

lic
in

g

ti
m

e
(m

in
.)

OPT
LP
FP

255.vortex

0

50

100

150

200

250

300

0 5 10 15 20 25 30

Slicing queries

C
u

m
u

la
ti

ve
 s

lic
in

g

ti
m

e
(m

in
.)

OPT
LP
FP

197.parser

0

50

100

150

200

250

300

0 5 10 15 20 25 30

Slicing queries

C
u

m
u

la
ti

ve
 s

lic
in

g

ti
m

e
(m

in
.)

OPT
LP
FP

181.mcf

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30

Slicing queries

C
u

m
u

la
ti

ve
 s

lic
in

g

ti
m

e
(m

in
.)

OPT
LP
FP

164.gzip

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

Slicing queries

C
u

m
u

la
ti

ve
 s

lic
in

g

ti
m

e
(m

in
.)

OPT
LP
FP

134.perl

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30

Slicing queries

C
u

m
u

la
ti

ve
 s

lic
in

g

ti
m

e
(m

in
.)

OPT
LP
FP ** OoM

130.li

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30

Slicing queries

C
u

m
u

la
ti

ve
 s

lic
in

g

ti
m

e
(m

in
.)

OPT
LP
FP

126.gcc

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30

Slicing queries

C
u

m
u

la
ti

ve
 s

lic
in

g

ti
m

e
(m

in
.)

OPT
LP
FP

099.go

0

50

100

150

200

250

0 5 10 15 20 25 30

Slicing queries

C
u

m
u

la
ti

ve
 s

lic
in

g

ti
m

e
(m

in
.)

OPT
LP
FP

Figure 18: Comparison of OPT with LP and FP.

act preprocessing times are given in Table 5. As we can see, while
the preprocessing time of the proposed OPT algorithm is higher,
the difference is comparable to the time spent on computing a few
slices using the LP algorithm.

The memory needed by the OPT and LP algorithms is given in
Table 6. While the memory used by the OPT algorithm is the size
of reduced dyDG, the memory used by LP is the size of the dyDG
subgraph corresponding to a slicing request. Since the latter varies
with slicing requests, we report the largest dyDG subgraph size
constructed in response to 25 distinct slicing requests. We note that
in 5 out of 10 benchmarks the size of the largest dyDG subgraph
built by LP is greater than the full reduced dyDG built by OPT. It is
clear from this data that on average, the memory needs of LP and
OPT are comparable to each other.

Therefore, based upon the above results we can say that OPT is
superior to LP because it is much faster than LP and at the same
time it uses roughly the same amount of memory as LP.

FP versus OPT. As we know, FP runs out of memory for reason-
ably long program runs [26]. However, we wanted to see how the
slicing times of the OPT algorithm compared to that of the FP al-
gorithm in situations where the program run was short enough to
enable the entire (unoptimized) dynamic dependence graph to be
kept in memory. We were able to successfully run FP on a machine
with 2 Gigabyte RAM for all programs except 134.perl.

The slicing times of FP and OPT are compared in Table 7. We
observe that OPT is faster than FP. This is because of the use of
shortcut edges that speed up the traversal of the dyDG. The same
optimization cannot be applied to FP because the unoptimized dyDG

only contains dynamic edges. We know that the difference between
OPT slicing times and FP slicing times are caused by shortcuts be-
cause when we compare the slicing times of OPT without shortcuts
(given earlier in Table 3) with slicing time of FP given below, they
are quite close.

Table 5: Preprocessing time: LP vs. OPT.

Program Preprocessing Time (Minutes) Ratio
OPT LP LP/OPT

300.twolf 65.29 14.54 0.22
256.bzip2 38.36 9.38 0.25
255.vortex 44.46 16.35 0.37
197.parser 44.06 16.23 0.37
181.mcf 53.64 16.64 0.31
164.gzip 23.52 14.56 0.62
134.perl 51.12 17.18 0.34
130.li 49.88 19.23 0.39
126.gcc 48.83 26.65 0.55
099.go 35.24 17.06 0.48

Table 6: dyDG graph sizes: LP vs. OPT.

Program Graph Size (Megabytes)
OPT LP (Max. of 25 slices)

300.twolf 210.21 296.06
256.bzip2 50.48 80.66
255.vortex 64.81 33.60
197.parser 69.81 40.04
181.mcf 170.29 113.74
164.gzip 51.57 34.75
134.perl 20.92 53.62
130.li 96.50 105.45
126.gcc 74.71 57.70
099.go 131.24 162.28

Table 7: Slicing times: FP vs. OPT.

Program Slicing Times (seconds)
FP OPT

300.twolf 65.99 36.25
256.bzip2 5.92 2.10
255.vortex 6.17 1.92
197.parser 5.28 2.21
181.mcf 21.71 17.10
164.gzip 4.83 1.74
134.perl - 4.05
130.li 17.86 6.09
126.gcc 11.03 3.80
099.go 29.79 11.36

Finally we compare the preprocessing times of OPT and FP. We
had expected that the preprocessing times for OPT would be higher
than FP because the OPT algorithm must spend some extra time for
checking whether the timestamp pairs of all exercised dependences
should be added to the dyDG or not. However, our experiments
show otherwise. As the data in Table 8 shows, the preprocessing
times for the FP algorithm are consistently higher than those for
OPT. The reason for this behavior is that the list of timestamp pairs
that are associated with a dependence edge often grow very large
and thus resizing of the array in which these are stored must of-
ten be performed. These memory reallocation operations take up
significant amount of time in FP while in OPT this is not the case.
Thus, the overall effect of this behavior is that the preprocessing
times of OPT are lower than that of FP.

Table 8: Preprocessing time: FP vs. OPT.

Program Preprocessing Time (Minutes) Ratio
OPT FP FP/OPT

300.twolf 65.29 99.62 1.53
256.bzip2 38.36 80.78 2.11
255.vortex 44.46 55.47 1.25
197.parser 44.06 67.57 1.53
181.mcf 53.64 71.17 1.33
164.gzip 23.52 31.66 1.35
134.perl 51.12 - -
130.li 49.88 74.86 1.50
126.gcc 48.83 52.70 1.08
099.go 35.24 42.17 1.20

Therefore, based upon the above results we can say that OPT is
superior to FP not only because it scales to longer program runs,
but also because it has lower preprocessing and slicing times.

Combining idea behind LP with OPT. While the above results
indicate that OPT is superior to LP making the latter obsolete, the
idea of demand-driven processing behind LP can be integrated into
OPT to further increase the scalability of OPT as follows. We
continue to use the optimizations of OPT and build the optimized
dyDG in memory until the graph in memory reaches a predeter-
mined size. At that point the current block of dynamic dependence
information labeling the graph is saved on disk freeing up the mem-
ory used by these dynamic dependences. This process is applied
repeatedly as execution continues. In other words, the new algo-
rithm can be designed such that the graph in memory only contains
a single block of dynamic dependences while all other blocks are
held on disk. During slicing, a new block is loaded into memory on
demand while the old block is discarded to free up memory. Since
this algorithm will use disk space to store compacted graphs, it is
expected to scale to much longer runs than the OPT algorithm.

5. RELATED WORK
Precise dynamic slicing algorithms can be divided into two broad

categories: backward computation algorithms [14, 1, 26] that com-
pute slices on-demand through backward traversal of dynamic de-
pendence graph and forward computation algorithms [4, 17, 27]
that perform forward precomputation of dynamic slices without
constructing the dynamic dependence graph. In this section we
discuss the drawbacks of prior algorithms and show that the algo-
rithm proposed in this paper is a significant improvement that can
be used for a broad range of applications.

When a backward computation algorithm constructs the entire
dynamic dependence graph prior to slicing (e.g., Algorithm III in
[1]), as our prior experience in [26] shows, for realistic program
runs the graph is too big and thus we run out of memory while
building the graph. When graph is compacted by making it im-
precise (e.g., Algorithms I and II in [1]), as our prior experience
in [26] shows, the slices computed can be many times larger. An
alternative that we proposed in [26] is the LP algorithm which con-
structs the dynamic dependence graph on demand and thus only a
part of the graph is constructed reducing memory needs. However,
on demand construction of the dynamic dependence graph requires
repeated traversals of the execution trace which yields a slow slic-
ing algorithm. We believe the key difference in our approach and
the one used in [1] is the use of timestamps instead of node repli-
cation to represent dynamic instances of dependences. While we
were able to develop a series of optimizations to replace explicit
timestamps by implicit ones, it is unclear how similar fine-grained

optimizations can be developed for nodes. In [6] a technique for
compressing a dynamic execution trace is presented. Execution in-
stances of statements are classified as critical and non-critical. For
non-critical nodes, only the latest execution instances are saved in
the trace. The trace compression optimization is analogous to our
OPT-1a optimization at the dependence graph level.

In general, the problem with forward computation algorithms is
that exhaustive precomputation of all dynamic slices at all program
points produces large amounts of information which must be stored
on disk [4]. Exhaustively computing all slices, and then finding de-
sired slices from the extremely large number of precomputed slices,
also takes significant amount of time thus yielding slow algorithms
[27]. Algorithm IV in [1] is also a forward computation algorithm
in which slices are computed and annotated on the dyDG. The role
of the dyDG is to provide access to the slices and to avoid saving
of multiple identical slices sometimes generated during repeated
executions of the same statements. The forward computation algo-
rithm in [17] sacrifices precision to speedup dynamic slicing. We
have recently proposed an algorithm that goes well beyond Algo-
rithm IV [1] in reducing memory reads. It uses reduced ordered
binary decision diagrams to store the dynamic slices in compact
form [27].

Finally we would like to point out that backward computation
algorithms are more generally useful than forward computation al-
gorithms. This is because, when dynamic slices are computed from
dynamically constructed dependence graphs, not only can we com-
pute dynamic slices, we can also identify the exercised dynamic
dependences that contribute to the dynamic slices. The identifica-
tion of dynamically exercised dependences is essential for some ap-
plications such as carrying out dependence based software testing
[8, 16], measuring module cohesion for purpose of code restructur-
ing [11], and performance enhancement by identifying criticality
of instructions [28] and presence of instruction isomorphism [22].
For other applications such as debugging of programs [2, 15] and
detecting spyware that has been installed on systems without the
users’ knowledge [13], while it may useful to identify the depen-
dences, it is not necessary to do so. Thus the algorithm we present
in this paper is both cost effective and generally applicable.

6. CONCLUSION
In conclusion we can see that the OPT algorithm we have pro-

posed in this paper provides fast slicing times (1.74 to 36.25 sec-
onds) and compact dynamic dependence graph representation (20
to 210 Megabytes) leading to a space and time efficient algorithm
for dynamic slicing. In contrast, the prior algorithms are either
space inefficient (corresponding graph sizes for FP are 0.84 to 1.95
Gigabytes) or time inefficient (corresponding slicing times for LP
are 4.69 to 25.21 minutes) making them unattractive for use in prac-
tice. The development of a cost effective dynamic slicing algorithm
is an important contribution as a wide range of applications that re-
quire analysis of dynamic information are making use of dynamic
slicing [2, 15, 13, 8, 16, 11, 28, 22].

7. REFERENCES
[1] H. Agrawal and J. Horgan, “Dynamic Program Slicing,” ACM

SIGPLAN Conference on Programming Language Design and
Implementation, pages 246-256, 1990.

[2] H. Agrawal, R. DeMillo, and E. Spafford, “Debugging with Dynamic
Slicing and Backtracking,” Software Practice and Experience,
23(6):589-616, 1993.

[3] T. Ball and J.R. Larus, “Efficient Path Profiling,” IEEE/ACM
International Symposium on Microarchitecture, 1996.

[4] A. Beszedes, T. Gergely, Z.M. Szabo, J. Csirik, and T. Gyimothy,
“Dynamic Slicing Method for Maintenance of Large C Programs,” 5th
European Conference on Software Maintenance and Reengineering,
pages 105-113, March 2001.

[5] T.M. Chilimbi, “Efficient Representations and Abstractions for
Quantifying and Exploiting Data Reference Locality,” ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 191-202, 2001.

[6] D.M.D. Dhamdhere, K. Gururaja, and P.G. Ganu, “A Compact
Execution History for Dynamic Slicing,” Information Processing
Letters, 85:(145-152), 2003.

[7] E. Duesterwald, R. Gupta, and M.L. Soffa, “Distributed Slicing and
Partial Re-execution for Distributed Programs,” 5th LCPC Workshop,
LNCS 757 Springer, pages 497-511, August 1992.

[8] E. Duesterwald, R. Gupta, and M.L. Soffa, “Rigorous Data Flow
Testing through Output Influences,” 2nd Irvine Software Symposium,
pages 131-145, UC Irvine, CA, March 1992.

[9] J. Ferrante, K.J. Ottenstein, and J.D. Warren, “The Program
Dependence Graph and Its Use in Optimization,” ACM Transactions on
Programming Languages and Systems, 9(3):319-349, 1987.

[10] R. Gupta and M.L. Soffa, “Hybrid Slicing: An Approach for
Refining Static Slices using Dynamic Information,” ACM SIGSOFT
Symp. on the Foundations of Software Engineering, pages 29-40, 1995.

[11] N. Gupta and P. Rao, “Program Execution Based Module Cohesion
Measurement,” 16th IEEE International Conf. on Automated Software
Engineering, pages 144-153, San Diego, CA November 2001.

[12] T. Hoffner, “Evaluation and Comparison of Program Slicing Tools.”
Tech. Report, Dept. of Computer and Info. Science, Linkoping
University, Sweden, 1995.

[13] S. Jha, Private communication, University of Wisconsin at Madison,
Department of Computer Science, 2003.

[14] B. Korel and J. Laski, “Dynamic Program Slicing,” Information
Processing Letters, 29(3):155-163, 1988.

[15] B. Korel and J. Rilling, “Application of Dynamic Slicing in Program
Debugging,” Automated and Algorithmic Debugging, 1997.

[16] M. Kamkar, “Interprocedural Dynamic Slicing with Applications to
Debugging and Testing,” PhD Thesis, Linkoping University, 1993.

[17] B. Korel and S. Yalamanchili. “Forward Computation of Dynamic
Program Slices,” International Symposium on Software Testing and
Analysis, August 1994.

[18] J.R. Larus, “Whole Program Paths,” ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 259-269,
Atlanta, GA, May 1999.

[19] M. Mock, D.C. Atkinson, C. Chambers, and S.J. Eggers, “Improving
Program Slicing with Dynamic Points-to Data,” ACM SIGSOFT 10th
Symp. on the Foundations of Software Engineering, 2002.

[20] C.G. Nevil-Manning and I.H. Witten, “Linear-time, Incremental
Hierarchy Inference for Compression,” Data Compression Conference,
Snowbird, Utah, IEEE Computer Society, pages 3-11, 1997.

[21] T. Reps and G. Rosay, “Precise Interprocedural Chopping,” Third
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, Washington, DC, pages 41-52, October 1995.

[22] Y. Sazeides, “Instruction-Isomorphism in Program Execution,” Value
Prediction Workshop (held with ISCA), June 2003.

[23] F. Tip, “A Survey of Program Slicing Techniques,” Journal of
Programming Languages, 3(3):121-189, Sept. 1995.

[24] G. Venkatesh, “Experimental Results from Dynamic Slicing of C
Programs,” ACM Transactions on Programming Languages and
Systems, 17(2):197-216, 1995.

[25] M. Weiser, “Program Slicing,” IEEE Transactions on Software
Engineering, SE-10(4):352-357, 1982.

[26] X. Zhang, R. Gupta, and Y. Zhang, “Precise Dynamic Slicing
Algorithms,” IEEE/ACM International Conference on Software
Engineering, pages 319-329, Portland, Oregon, May 2003.

[27] X. Zhang, R. Gupta, and Y. Zhang, “Efficient Forward Computation
of Dynamic Slices Using Reduced Ordered Binary Decision
Diagrams,” IEEE/ACM International Conference on Software
Engineering, Edinburgh, UK, May 2004.

[28] C.B. Zilles and G. Sohi, “Understanding the Backward Slices of
Performance Degrading Instructions,” ACM/IEEE 27th International
Symposium on Computer Architecture, 2000.

