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Abstract
The machine representation of floating point values has li

ited precision such that errors may be introduced during
execution. These errors may get propagated and magnifie

by the following operations, leading to instability proivis,

e.g., control flow path may be undesirably altered and faulty
output may be emitted. In this paper, we develop an on- 1.
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Introduction

the-fly efficient monitoring technique that can predict if an  The machine representation of floating point values has pre-
execution is stable. The technique does not explicitly com- qision limitations. When a value cannot be precisely rep-
pute errors as doing so incurs high overhead. Instead, it de-gsented, an error is implicitly introduced. For instance,
tects possible places where an error becomes substantiallyyhen reading an input number 0f9997 into a 32-bit
inflated regarding the corresponding value, and then t@gs th gingle precision variable, the best representable value is
value with one bit to denote that it has an inflated error. It § 999700009822... We hence have an initial error of

then tracks inflation bit propagation, taking care of opera- _ 000000009822.-. When we add a very small value to a

tions that may cut off such propagation. It reports instgpbil

very large value, the small value may be too small to make a

if any inflation bit reaches a critical execution point, such ifference in the represented result, leading to an erchS
as a predicate, where the inflated error may induce substanrors are propagated and accumulated, and eventually may

tial execution difference, such as different executiorhpat

lead to serious problems when they become comparable to

Our experiment shows that with appropriate thresholds, the e program values.

technique can correctly detect that over 99.999996% of the

During the Gulf War in 1991, the patriot missile’s failure

inputs of all the programs we studied are stable while atradi intercept an incoming missile, causing 28 casualties and

tional technique relying solely on inflation detection ralst

enly classifies majority of the inputs as unstable for some of
the programs. Compared to the state of the art technique th

around 100 injuries, was due to the loss of precision in com-

‘putation. As revealed in the U.S. Government Accountabil-
alty Office report ], ‘the range gate’s prediction of where

is based on high precision computation and causes severajhe Scud will next appear is a function of the Scud’s known
hundred times slowdown, our technique only causes 7.91ye|ocity and the time of the last radar detection. The con-
times slowdown on average and can report all the true un-yersion of time from an integer to a real number cannot be

stable executions with the appropriate thresholds.

Categories and Subject Descriptors F.3.2 |Logics and
Meanings of Progranis Semantics of Programming Lan-
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any more precise than 24 bits. This conversion results in a
loss of precision causing a less accurate time calculation.
Consequently the predicated position drifted away from the
target.

Due to its importance, researchers have developed vari-
ous techniques to address the problem. Traditionallyrerro
analysis is conducted on mathematical model$ [36]. How-
ever, modern data processing uses more complex models
and relies on computers and programs, rendering mathemat-
ical analysis difficult. Interval arithmeti€ [29, 31] andiag
arithmetic EbﬂﬂS] are program analysis that model
errors as ranges or affine formulas to reason about stabil-
ity. Program transformation was proposed to improve pre-
cision and stability[[1,]4]. Abstract interpretation an@ah



rem proving techniqueEl[EJ@Z?] were developed to reason
about stability statically.

Most existing techniques treat instability as bugs and fo-
cus on identifying buggy statements so that developers can
fix them. We observe that the input range in which a floating
point program is unstable is usually a very very small portio
of the input domain. In other words, even a naive implemen-
tation may work fine in most cases. While this explains why
many people are willing to stay with their unstable imple-

(a) original form (b) alternative type () alternative form

1 floatx, z; double x, z; double x, z;

2 x=input(); X = input(); x = input();

3z =xEXXFX — 4FxEXRX z = XFXFX*X — 4¥xFx*X z=(x-1*x-1)
+6¥x*x —4*x + 1; +6*x*x —4*x + 1; *x=D*(x-1);

4 if(z>0.5) if (z>0.5) if (z>0.5)

5 printf("hit"); printf("hit"); printf("hit");

6 else else else

7 printf("miss"); printf("miss"); printf("miss");

mentations, it also suggests that using high precision com-
putation I[}] or crafting a more stable implementati [35]
may not pay off. With a traditional view of debugging, one
may argue that we should nonetheless fix an instability bug
despite its low probability to occur. However, differendifn
traditional functional bugs, we observe that instabilibgb

are fundamentally inevitable with the limited precision of
the machine representation. Using high precision compu-
tation or more stable implementation coutdtigate them,

but unlikely fixesthem completely (we will further elabo-
rate this observation in Sectibh 2). Fortunately, compéwed
functional bugs, instability bugs are predictable. Eviden
can be collected during a floating point program execution
to predict if the execution is stable.

Moreover, many existing techniques are too expensive to
be used on-the-fly for real world tasks. For example, the stat
of the art technique using high precisidn [4] causes 167—
1016 times slowdown (i.e. the time-to-complete increased
by 167-1016 times).

Hence, we argue that to tackle instability problems, in-
stead of following the traditional way of finding and fix-
ing bugs, we shall develop efficient prediction technique
that runs together with the original program. Upon detect-
ing a potentially unstable execution, the execution should
be automatically restarted with a higher precision. This ap
proach avoids paying the substantial overhead of high preci
sion computation for most inputs, and saves the human ef-
forts in developing more stable implementation, which may
not be feasible in many cases.

In this paper, we develop a stability predictor that is prac-
tically conservative, sufficiently precise, and much more
cost-effective compared to using high precision libraries
(HPL) ﬂZ]. The technique does not explicitly compute errors
as doing so incurs high overhead. Instead, it detects gessib
places where an error becomes substantially inflated regard
ing the corresponding value, and then tags the value with
single bit to denote that it has an inflated error. It thenksac
inflation bit propagation, taking care of operations thayma
cut off such propagation. It reports instability if any irftan
bit reaches a critical execution point, such as a predicate,
where the inflated error may induce substantial execution
difference, such as following different execution paths.

Our contributions are highlighted as follows.

Figure 1. Various code snippets that compuate (x— 1)*.
¢ \We analyze the characteristics of floating point instapilit
bugs and disclose their differences from functional bugs.
Such differences serve as the basis of our work.

We propose a novel online prediction technique. The

technique approximates errors with single bits to al-

low efficient representation and propagation. Its low cost

compared to existing techniques allows us to screen out
stable executions, which are the most common cases,
while its conservativeness allows us to still capture all

the true instability problems in practice.

We study the completeness and the soundness of the
technique.

¢ \We have overcome a number of challenges when apply-

ing the technique to real-world programs, including han-
dling specific floating point programming patterns that
could introduce a lot of false warnings, e.g. convergence
tests in iterative methods.

Our evaluation shows that the predictor is very effec-
tive. With thresholdt.=48!, it can correctly determine
over 99.999996% of the input space is stable with 691%
overhead on average, which is 14 times cheaper than a
high-precision-always system such As [4]. Even with a
more conservative thresholt.£36), it can still correctly
detect over 99.9997% of the input space is stable. With
T.=48, our technique reports instability for 7.5-93 times
more inputs compared to the ground truth, due to its con-
servativeness, which however only counts as 1.5E-11% -
3.3E-6% of the input domain.

2. Motivation

Consider the example in Fig.1(a). Mathematically, the code
snippet computeg = (x — 1)* (in its expanded form) and
makes decision according to the result at line 4. Assume
that the input value ig = 1.84089642. In the ideal world, it
producesz = 0.5000000112886329660976, and thus prints
“hi t” at the end. However, when we execute it on a 32-bit
x86 machine, we getrti ss” instead as some of the inter-
mediate values cannot be precisely represented. The repre-
sentation errors get propagated and enlarged, and evigntual
falsify the branch outcome at line 4. A plausible solutiotois

1The meaning of the threshold will be defined in Sedfibn 5.



understanding of the program and a lot of human efforts.

problem for a very small input range. Consider [Hig.2.
Even the implementation with the lowest precision, i.e.

(x=1)*-05 In many cases, such more stable implementation may not
i If - —/— T -~ be easily achievable.
\ A] J . . . -
\ Dz > e 18 J' _— N ¢ A floating point program only suffers from the instability
\I | I A2 ©
\

I\ R & VG P — / ,,,,,,,,,,,,,,, T? case (a), only causes problems with the likelihood of
PN ' Pakil & 0.003% within the small input sub-rang84,1.85]. It

___________ J works properly for most inputs. This partially explains
why there are so many unstable programs being used in
reality. For example, we observe that four of the SPEC
Figure 2. Problematic ranges for versions in [Fig. 1. programs we analyzed are unstable. Detailed results are
presented in Sectidn 8.2.

e For a deterministic functional bug, a program must fail
given the same failure inducing input. In contrast, given a
particular input that leads to instability in a floating pin
program, we can evade the problémnthe particular in-
put using more precise data types and operations, which
can be done automatically.

use data types with higher precision as in[Hig.1 (b), in which
the previous single-precision variables are refined with th
double-precision type. The modified program produces the
expected result with the original input. However, it pro-
duces wrong outputs with two other slightly different input
x=1.840896415253F46andx = 1.840896415253148. In

fact, such unstable cases can always be found for any finite

precision. ¢ Instability problems are predictable. For example, a very
Another solution is to devise a numerically stable ver-  Straightforward sign of such problems is that some of the
sion of the underlying algorithm, as in Hi$.1 (c). It pro- internal computations have a value very close to zero,

duces correct output for some inputs that induce wrong such as the subtraction entailed by the comparison at line

outputs in Figll (a) and (b). For instance, it produces 4 inFig.[.

the correct result fox = 1.840896415253748 However, ) ) ] ] )

it remains problematic for some other inputs including Selution Overview. Hence, instead of testing/analyzing a

X — 1.840896415253146, program exhaustively to expose potential instability prob
To further study the effect of these improvements on |€MS caused by representation errors and fixing them like

precision, we execute the three versions with a large num-fiXing functional bugs, as advocated in existing W‘ﬂkm“j'

ber of input samples that are evenly distributed within the 10,35],we propose to develop an efficient runtime detection

range from Q0 to 20, with the interval of 1E-16. A sample technique to predict on-theffly if an execution is stable in
run is considered problematic if its output differs from the e presence of representation errors. If not, the userdoul
ideal one that is emulated using thigh precision library ~ Choose to restart the program execution with the high pre-
(HPL) [4]. We then count the number of problematic cases. CiSion .support.lt avmpis using hlgh precision all _the time,
These numbers represent the precision of the correspondingVhich is very expensive, leveraging the observation that lo
versions. Fii2 shows the results, with wave-lines repriese ~ Precision suffices most of the time.

ing the problematic cases. Observe that the majority of the 1 he basic idea is to monitor program execution and de-
problematic runs occur around the intersections of theecury (€€t instruction executions that lead to substantial gnavit
y = (x—1)*— 0.5, which is the mathematical function of the relative error, i.e. the ratio between an error and its corre-

predicate at line 4, and theaxis. We zoom-in one of the sponding value. Such detection is performed without explic
two intersections, namelii.84,1.85. Out of the 100,000 Ity computing errors because doing so is very expensive.
billion samples in this range, there are about 3 billion prob NStéad, itis approximated by observing the operand and re-
lematic samples for the single-precision version in[Fig)L ( sult values of an operation, especially their exponents- In

The number gets down to 8 for the double-precision version !tVelY. if the operands have large exponents but the result
in Fig[ (b). Two problematic cases are still observed with has a small one and the differences exceed a threshold, we

the stable approach in FI.1(c). consider the re!ative error has'encounteremﬂation. The
) ) ) ) subtraction at line 4 in Fid.]1 is an example for such oper-
Observations. Based on the previous discussion, we SUM- a4qns |n practice, these operations occur quite ofteriewhi
marize the characteristics of the instability problem ds fo only very few of them really cause problems. In most cases,
lows. the inflated relative errors are suppressed/masked duxing e
¢ The instability problem cannot be completely evaded by ecution such that they cannot cause any problems. For exam-
using more precise types or different implementations. ple, if a small value with an inflated relative error is added
Using more precise types implies higher overhead. De- to a large value, the relative error is suppressed, bechase t
veloping a more stable implementation requires in-depth relative error of the result returns to a very low level. Henc



;: ;Lf’ﬁ;ui‘ {3 Z 1. float x,z; continuous so that small input changes could also cause ar-
3. y=f(x); 2 if'moai‘;A[lO] ={1.0, 2.0, ...}.  pitrarily large output changes. For instande= tan(x) is
g o) 4. x=input (); discontinuous at=—1J, J,---. Whenx s around those val-
el se ' A A ues, representation errors could cause substantial adifput
?: out ,Z)ztx(lz)o 7. output (z); ferences. In practice, we observe that programmers usually
(@) (b) insert predicates to guard these functions against discont

uous inputs, to avoid uncontrollable output variations.aAs
result, the discontinuity manifests itself as discretdedif
ence of the predicate. Hence, our discussion will focus on
discrete differences.

The problem statement, however, implies expensive de-
Jection techniques as it requires detecting any changégin t
predicate, it may induce a different execution path, legdin discrete domain _of a program execution. Next we intrpduce
to undesirable outcome, as illustrated in the example. the concept of discrete factors so that we can simplify the

If our technique detects that an inflated relative error can Problem statement to make it more tractable.
reach any critical execution point, the execution is flagaed  Background: Discrete Factors.Discrete factors are intro-
unstable. The technique provides the capability of autemat duced in [2] to model output discontinuity caused by exter-
ically switching to executing a high precision version ath  nal input uncertaintyA discrete factor is an operation that
program, which is automatically generated at compile time. has floating point value$ as operands and produces a dis-

crete value as resulDiscrete factors are the interface be-
3. Problem Definition tween the continuous and the discrete domains. Since repre-
sentation errors originate from the continuous domairy the
can only cause discrete differences by inducing differésat d
crete values at discrete factors. As a result, we only need to
monitor execution of discrete factors instead of all progra

Figure 3. Discrete difference examples.

our technique not only detects error inflation, but alsoksac
propagation of inflated relative errors and checks if they ca
reach critical execution points, e.g. predicates, witHmext
ing suppressed. Note that when an inflated error reaches

Our goal is to develop a cost-effective technique to deter-
mine if an execution is stable in the presence of representa-
tion errors. According to the previous discussion, represe

tion errors are inevitable due to the limited precision imeo artifacts with discrete types.

putation. However, in most cases, they are not substantial ¢y figyy predicateshat are relational operations of

enqugh to cause any problems. Therefore, we first need toﬂoating point values are the dominant type of discrete facto
define the criterion when such errors become un-acceptableOther discrete factor examples inclugpe castshat cast a
In existing work B’Eb]’ this is usually determined by ob- floating point value to an integer, and discrete mathemlatica

serving' final output errors. quever, it remains difﬁcglt to library functions, e.gsi gn() . Most discrete factors can be
determine how much output difference should be Cons'dereddetermined by the compiler statically.

un-acceptable.

In this paper, we definan execution is unstable if the
actual execution (with limited precision) and the ideal-exe
cution (with infinite precision) have discrete differences

Discrete differences are differences of discrete types,
such as int and bool. Sample discrete differences include
control flow differences and array index differences. An ex-
ecution is unstable if its control flow in the actual world is
different from that in the ideal world; or an array index gen- . . .
erated by a type cast of a floating point valueyhas diffgerent 4. Floating Point Representation and Errors
values in the two worlds. The intuition is that if we con- Representation precision limitations are the root causiesof
sider the output of an execution as a mathematical function instability problem.
over inputs, the function becomes discontinuous, or has dif ~ According to the standard of the 32-bit single precision
ferent continuous forms in the input space, due to discretefloating point format representation defined in IEEE 754

Therefore, we have the following refined problem defini-
tion.

We consider an execution unstable if the errors of the
floating point operands at any discrete factor are large
enough to induce a different discrete value.

As such, we only need to detect discrete differences at
discrete factors.

differences. Consider the examples in Eib. 3. In (a); i$ [IE], a decimal valud is represented as follows.
very close to 10, the representation error may change the s o 17
branch outcome so that the mathematical form of the output f=(1-25x(1+mx27) x2

could be eithez = x+ 1.0 orz= x—1.0. In (b), if f(X) is
very close to 10, the representation error may cause 0
ori = 1. Consequently, the mathematical form of the output
could be eithez = 1.0xx0orz=2.0xx.

Besides places that may have discrete differences, there 1y simpiify discussion, we assume floating point a continugps equiv-
are some mathematical functions that are intrinsically dis alent to real type.

Variables is the sign bit (zero or onejn is the significand,
which is also called mantissa, ards the exponent. Fid.]4
shows this representation.




e o Significand (fraction, 23bits) may have a different sign. As such, the relational expressio
) O (x—y > 0) has a different boolean outcome. For a discrete

2 52 ’ factori = (int)x, if the relative error ofx — (float)i has a
larger than 1.0 relative error, the factor may have differen
Figure 4. Float Point Representation. discrete outcomes as well.

One can easily infer from the floating point format rep-
resentation (Fig[]4) that an initial relative error, i.eeth
relative error of a constant or an input is bounded by

format specification. 1/2(# of mantissa bits of v)-hacause the error is bounded by the
X:  the precise value of (with infinite precision). value repr_esente_d by the [east mantissa bit. AS.‘ we W'”. show
A o . later, floating point operations except subtractions (ali-ad
Ay the error ofx (with infinite precision). . . L
A the relative error of. tions of operands with opposne S|gns)_ lead _to no growth or
very slow growth of relative errors. It is unlikely that they
Table 1. Definitions. can grow so large (e.g. larger than 1) over time to induce
discrete differences. Instead, most unstable executiavs h
involved sudden inflation of relative errors caused by sub-
tractions (or additions of operands with opposite signs).

According to the IEEE 754 standard, the result of an sub-
traction/addition needs to be normalized by left-shiftitg
remove the leading zeros after the operation. The relative e
ror inherited from the operands thus get inflated during this
rocess. Assume a subtraction operatieny. After the op-
ration, the significand bits are left-shifted thypits, the rel-
ative error inherited from the operandﬁxfﬁy)/(xfy)

s e m

S

X, Y, Z 32-bit single precision floating point progra
variables so that their precision is limited by the

Observe that there are 8 exponent bits denoting the expo-
nent range [-127,128]. There are altogether 24 mantissa bit
including a hidden leading bit of “1”, so that any values that
require more significand bits to represent cannot be prgcise
represented.

During execution of a floating point program, errors are
generated and propagated as follows. Floating point con-
stants in the source code may not be precisely representetg
such that initial errors are introduced at compile time. At
runtime, whe_n floating point values are loaded from fi_les or may very likely become ®times larger than the relative er-
the standard input, they are usually converted from stisogs

that representation errors may also be introduced. As shownrors ofx andy, becausa —yis 2* times smaller tham or y,
. - C he left shifting. Thideft-shif [ |
in Table[1, we denote the value of a varialle the ideal suggested by the left shifting. Tludleft-shifted bits are also

world (with infinite precision) as.The symbol also de- called thecancelled blt@]. Note that cancelled bits can be

. . cost-effectively monitored by comparing the exponents of
Egig’(ﬂiiaélue in the actual world (with error). Hence, we the computation result and the larger operand, partigylarl
= "

The initial errors are further propagated to the internal d = maxe &) — &y, With & the exponent ok. An exam-

of program execution through operations. In particulae, th ple can be found in SeCt.I@ 5.' Lo ,
error of the result of an operation includés those inhe,rited Ther_efore, our techmque_ is based on d_etectmg inflation
. of relative errors by monitoring cancelled bits of each eper
from the operands, and the representation error of thetresul ation
value itself. '
For example, assume two variableandy with errors.

2=%+9=(x+8)+(y+4y) = (x+y) + (B+4y) (1) 5. Propagation of Relative Errors

The sub-expression+y denotes the addition in the ac- Detecting relative error inflation alone is not sufficient.
tual world andAy + A, denotes the inheritance of the operand A Simple approach that detects occurrences of cancella-
errors. Note that it is possible that the results of the twm su  tion [25] reports instability for any execution of a few SPEC
expressions themselves cannot be precisely represented s&FP programs according to our study. This is because can-
that further representation errors are introduced. cellation is common even in stable executions. We observe

Expiicmy monitoring errors requires representing and that a lot of inflated errors are not prOblematiC because they
computing errors that are usually in a very small scale, vhic are suppressed by other operations in the following execu-

is expensive. Therefore, we introduce the notiomeddtive ~ tion. For example, il83. equake, a lot of cancellations
error. originate from an expressioct+=a-b inside a loop when

a and b are very close. However, the errors frarb are
always suppressed by the large valuecpof.e. the inflated
relative error bya-b becomes trivially small after the ad-

Given a discrete factor > vy, if the relative error ok —y dition with the largec. Hence, a key step in our technique
is larger than 1.0, the factor may have different discrete is to monitor propagation of inflated errors to determine if
outcomes in the actual world and the ideal world. This is they can be propagated to a discrete factor and cause @iscret
because the error of —y is larger thanx —y itself and differences, without being suppressed.

Definition 1. The relative error of a variable x, denoted by
Ay, is computed af\y/X|.



Due to the efficiency concern, we cannot afford comput-
ing the true relative errors and monitoring their changes du
ing execution. Instead, we develop a cost-effective allyori
to abstract the process. In particular, we tag a value with a
inflation bit when we observe the relative error of the value
is inflated by cancellation. We develop a set of rules to prop
agate the inflation bits. These rules respect the semastics r
garding relative errors such that during an operation, altres

value inherits the bit from its operand(s) if and only if the o o,r:x S o)™ or:v3WF
eration does not suppress the error. In this case, thevelati| o,r:v] +v] 2 (vi+v2)T [ADD —TT]
error of the result is comparable to that of the operand. ol V[ +V5 S (vi+Vo)® whereb=—(e,, — &, >Ts) [ADD —TF]
o,l:VE+v] 2 (vi+v)° whereb=—(e, —&, >Ts) [ADD —FT]
Program P = s o,l Vi +v5 2 (vi+v2)? whereb= (maxey,,e,) — &y v, > Tc)
Stmt s = s1;% | skip | xi=e | x="12i(y) | x=yXO0 | [ADD — FF|
while xdoss | if xthen's; elses; | fail o, MV v2 & (vixvo)b wherebs = by[b, [MULTI |
Expr e = x|v]|eope |sin(e) o,l :sin(?) S V2 wherev; = sin(v), and
BinOpop = + | — | x|/ T |cogv)-v /sin(v)| > 2%
Value v =nlr|b bi=¢{ F |cogv)-v /sin(v)| <2 [SIN]
Var x € ldentifier neZ recReal beBoolean b otherwise
Figure 5. Language STATEMENT RULES
Language. To facilitate formal discussion, we introduce a | o, : x:=\" 3 o[x— V], F[;w bl, skip  o.F: skipis > o, T, s
kernel language. The syntax is presented in[Big. 5. We model or: Xi:f?!(vp 2o r fal
three kinds of discrete factors: the type cast from a float o,r: X_::Ffz'(s" )~ o failif (& — &gy > Te)
ing point value to an intege2i, relational operations that 0,1 x:=12(v") = ofxr (iNtM, Tlx—F], skip otherwise
. . . . o, x=vIx0 > o, fail
are normalized tgy X 0, with X denoting a relational oper- : F s )
d di h ical lib f . Wi o, x=v" X0 = o[x—vVvXO0], [x— F]|, skip
ator, and discrete mathematical library functions. We nori  ; r. ¢ 7 hens elses, = o, T fail
malize relational operations to study the reql values (NOL G 1. if TF thens elses, > o, T, s
the boolean values) involved in these expressions. Sueh val g r: if FF thens,elses, > o, T, s
ues are explicitly denoted by after normalization. For in- o,l : whilexdos> o, T, if xthen s;while x do s else skip

stance, a conditional statemeiftt'< 1.0 ...” is normalized

to “y:=t—1.0; x=y < 0; if X". It allows us to explicitly | G-OBAL RU'-ES

reason about the value pfand its error.
We model three kinds of values, i.e. integer, real, and
boolean, and the commonly used binary operators. W

%

DEFINITION:

NStore o : Var — Value
&, S: the exponent, and the signxfespectively.

\P: bindicates if a valuer carries an inflated relative error.

EXPRESSIONRULES

E = E;s| [|s | xi=[]e | if [Jethens; elses, | []eop e |
v op[le | x:=f2i([]e) | x:=[]e>a0 | sin([]e)

ErrStore I' : Var — Boolean

oreséd or:s>o,rd
o,l', Elee — o,,E[€]e o,l E[gs — o', E[S]s
[G-EXPR] [G-STMT]

model one mathematical functi@mn() to demonstrate how
we handle library functions.

Figure 6. Operational Semantics

Operational Semantics. The semantics is presented in

Fig.[8. The expression rules have the formaf : e S,
with storec and error storé. The error store indicates If a
variable is holding a value with an inflated relative error,
that is, the ratio between the actual error and the value is
large. The resulting value of an evaluation is tagged wi¢h th
inflation bit. The evaluation of a variable yields the value
from the store, tagged with the bit from the error store. The
evaluation of a value yields the value itself tagged vith
meaning its relative error is small.

The result of the addition of two values tagged with
(i.e., with inflated errors) is also tagged with Intuitively,
if both operands have significant errors, the resultingrerfo
the addition is also significant (Rul&PD-TT]). According
to Rule |ADD-TF], if one operandv; is tagged withT
and the othew, tagged withF, the exponents of the two
operands are compared. If the exponent,otlenoted asy,
is much smaller tham,,, particularly when their difference

is larger than a pre-defined thresholdthe tag of the result
value is set td-. Intuitively, this corresponds to when a value
with an inflated error is added to a much larger value with a
trivial error, the inflated error is suppressed. RABD-FT]

is similar.

If both operands are tagged with we test if the addition
causes any cancelled bits. If the number of cancelled bits is
larger than a pre-defined threshojdwe consider there is an
inflation of the relative error associated with the resuluga
and tag the result witfii. In later sections, we will study the
soundness and completeness of the semantic rules and the
effect of threshold selection. Subtractions are handleal in
way similar to additions and thus their rules are omitted.

For multiplications, the tag of the result is the disjunc-
tion of the tags of the operands (RUMULTI] ). Intuitively,
multiplying a valuev; with a significant error with another
valuev, enlarges both the value and its error with the same



Execution 1 Execution 2 |

{
’ ‘S‘a‘eme”ts [ opi&kA) | op2&kA) | TesuikA) | Rule | opI& B [ op2kA) [ Tesuiga) [ Rue |
inv.J (a):{
1 det=a[0]*c[0]; 0.00 inf —1.90 3E-17 —0.00 inf MULTI 2.92 0 7.58 4E-17 2211 6E-17 MULTI
2 | tI=all]*c[i]; 0.00 inf 0.00 inf 0.00 inf MULTI 2.92 0 758 | 4E-17 | —2211 | 5E-17 | MULTI
3 det=det+t1; —0.00 inf 0.00 inf 0.00 inf ADD-TT 2211 6E-17 —2211 5E-17 -1.4E-14 0.013 ADD-FF
4 t2=a[2]*c[2]; 1.46 0 1.90 2E-17 2.76 7E-17 MULTI 2.92 0 0.00 inf 0.00 inf MULTI
5 det=det+t2; 0.00 inf 2.76 TE-17 2.76 7E-17 ADD-TF -1.4E-14 0.013 0.00 inf -1.4E-14 0.013 ADD-TT
6
7 vol=det/6; 2.76 TE-17 6.00 0 0.46 TE-17 MULTI -1.4E-14 0.013 6.00 0 -2.4E-15 0.013 MULTI
8 [ bI=(voI0); 046 | 7E17 | 0.00 F 24E-15 | 0013 | 000 F
9 if(b1) report(); F F fail
}

Table 2. Two partial execution traces froB83. equake. Relative errors are detected and propagated accordihg taltes
in Fig.[8. Shaded cell indicates that the variable carrieimfiated relative error. In Execution 1, relative errors g@ppressed
at line 5; while in Execution 2 inflated errors are detectelthat3 then flow to the discrete factor at line 9.

factor and hence the relative error remains the same. Divi- tagged withT. The predicate in a conditional statement is

sions are similarly handled. similarly handled.
For the library functiorsin(), since the function behaves The global rules are standard.
differently with different inputs, i.e. sometimes smalput  Example. Tabld2 shows the propagation of relative errors in

errors induce Iargg output.c.hanges whgreas in other casesyart 0f183. equake. The code snippet computes the deter-
large input errors induce trivial output differences, wea  minantdetfor a given Jacobian matrix im Two separate ex-
to tag the result differently based on both the operand tag ecytions are presented. In Execution 1, some of the values in

and the operand value. arraya have been tagged with upon entering the function,
Asin(x) d s(,jinx(x> « A, COSX) X (B X X) denoted as shqded cells. .For examaﬂ@l, anda[l] at Iines_ 1
Asinx) = Sin(x) = an ® = Sin() and 2, respec_tlvely,. hold mf_lated relative errors from prev
ous computation. Since their values are very small, the rela
From the above equation, we can observe that the inflation oftive errorsA; are very largeinf in both cases (with double
the relative error idginx) /Ax = CcOYX) - X/sin(x). Accord- precision). As a result, the computation results at linez 1,
ing to Rule BIN], if the inflation factor is larger than™@ and 3 also carry inflated errors, and thus are tagged With

which corresponds to having more thancancelled bits,  as well according to RulesV[ULTI ] and [ADD-TT]. The

the tag is set td. Observe that in some cases, the inflation errors get suppressed at line 5 because of RAIRD-TF],

factor can be smaller than 1 and close to 0, in such a casewhere the operandet tagged withT is added to a large

it suppresses the operand error instead. Therefore, iithe f  valuet, tagged withF.

tor is smaller than 2%, with 15 the threshold for suppres- In Execution 2, initially values in arrag are all tagged

sion in Rules ADD-TF/FT], the tag is reset t&. For other with F. Cancelled bits are detected during the computation

cases, the operand tag is propagated to the result. We hanat line 3 by Rule ADD-FF]. The two operands and their

dle other mathematical library functions in a similar fashi relative errors are as follows

Note that the input ranges that cause the different behav- det= 221090526719999829, with Adet = 1.3E — 15.

ior can be pre-computed based on the thresholds so that we; = —22.109052671999997, with Atl =—-11E-15.

simply determine if the operand value falls in these ranges =~ When performingdet+t;, there are 50 cancelled bits.

at runtime, without performing the expensive trigononeetri  The result isdet = —0.0000000000000142, with Age; =

function evaluations. 1.8E — 16 andAget = Adet/det ~ 0.013, which is roughly
For an assignment statement, the value is saved in the2®C times of the relative errors of the operands. Note that

store and the corresponding tag is saved in the error store Age 250 ~ 0.068 andly, * 2%° ~ 0.056.

If the assignment is a type cast, depending on the tag and the The inflated error is propagated afterwards, which even-

value, the statement is evaluated differently. More specifi tually flows into the discrete factor at line 9. The execution

cally, if the floating point operand is tagged with meaning is hence considered unstable.

that the relative error is significant, discrete differennsy

be induced. Hence the execution is considered unstable. If§. Soundness and Completeness

the operand is tagged with, but the value is very close to

the boundary of a discrete value, which can be detected by

observing the cancelled bits af(int)v), discrete differences

may be induced and the execution is considered unstable. |

the right-hand-side (RHS) of an assignment is a relational 3 note that our technique does not compute actual errors divekarrors.

operationv X 0, the execution is considered unstablg i§ Here we present error values just for the illustration pggpo

In Section[8, we define the problem as detecting if errors
can induce discrete differences at discrete factors. I thi
1Lsection, we discuss the soundness and completeness of our




/+ first scan with grid spacing given by Step */
pos = (0, 0); simlarity = 0.0;
for (LLY = StartyY; LLY <= EndY; LLY += Step) {
for (LLX = StartX; LLX <= EndX; LLX += Step) {
current = GraphSi nfFct (LLX, LLY, ...);
if (current > simlarity) {
simlarity = current;

method regarding the problem definition. Recall that we use

inflation bits to approximate significant relative errors & 1
result of the approximation, the proposed technique is nei—g
ther sound nor complete. Next, we discuss the conditions 4

that affect completeness and soundness. Note that we will® pos = (LLX LLY);

show in Sectiof]8 that with appropriate threshold settings,

the technique does not miss detecting any unstable execu-

tions in practice, and the input subranges in which instsbil
is detected are trivial compared to the whole input ranges.
The discussion consists of two parts. The first one dis-

cusses the essence of cancelled bits and the second part dislé

cusses the propagation rules.

Py o

/* second scan around best position found previously */
StartY = pos(2)-((Step+1)/2); EndY = ...;
8 StartX = pos(1l)-((Step+1)/2); EndX = ...;
for (LLY = StartyY; LLY <= EndY; LLY += Scale) {
for (LLX = StartX; LLX <= EndX; LLX += Scale) {
current = GraphSinfFct (LLX, LLY, ...);
if (current > simlarity) {
simlarity = current; pos = (LLX LLY);
Poor o}
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6.1 The Essence of Cancelled Bits

Cancelled bits have been used as an indicator for instabilit
in existing works([4l_25], in which executions are considere
unstable if there is any operation causing a large number of
cancelled bits. However, this causes a lot of false warnings

Figure 7. Pseudocode snippet froh87. f acer ec.

During this process, it is likely that variablesirrent and
similarity have exactly the same value (and the same error)
in the predicate at line 12, wheposidentified in the first
round coincides with.LX andLLY at line 11. In this case,

because a lot of inflated errors are suppressed and thus dQ,,rent and similarity are semantically equivalent, as they

not cause any problems. Hence in our approach, we only
use them to detect inflation of relative errors, and we furthe
track the propagation and suppression of inflated errors. In
the following, we discuss a few issues critical to our method

I1: Cancelled Bits May not Mean Relative Error Infla-
tion. Consider a subtraction—y. The relative error of the
result is|(Ax — Ay)/(x—y)|. The occurrence af cancelled
bits during the subtraction means that y is around 2
times smaller than the maximum ofndy. If |A, ,Ay| has
an exponent close to that ﬁf( or Ay, the result’s relative er-
ror is around 2 times larger than that of the operand. How-
ever, observe that fiy — A, is close to 2 times smaller than
Ay andAy, which is similar to having close @cancelled bits

if A — Ay were performed with finite precision, the inflation
does not happen. In practice, the evenfipf- A, being 2
times smaller is independent of the evenixefy havingd
cancelled bits, aAy andAy are mainly caused by precision
limitations. It is hence unlikely these two events happen si
multaneously.

However, we do observe this becomes problematic in
some rare cases, particularly wheandy are semantically
equivalent. It meang andy are computed from the same
inputs, through the same/equivalent sequences of opesatio
even though they may be computed separately. In this case
x =y andAy = Ay. Our technique will detect a large number
of cancelled bits caused by—y. However, there is no
relative error inflation.

Fig.[d shows one example froh87. f acer ec. It scans
a large image to locate the part that is the most similar
to a small image. The best fit position with the highest
similarity is recorded irpos The algorithm has two rounds.
In the first round (lines 1-6) it iterates through each poniti
at a given stride and identifies the best fit position. Then
it performs the second scan (lines 9-14) around the best
position found in the first round, but at a smaller stride.

are from the same inputs and go through the same sequence
of operations. The cancellation does not lead to any relativ
error inflation.

Note that we cannot simply preclude all addition/subtrac-
tion operations that yield 0 because @ndy are not seman-
tically equivalentx —y = 0 means large inflation. In fact,
this is the common case.

[2: Only Addition and Subtraction Can Cause Inflation.
According to the operational semantics in [Elg. 6, we only de-
tect cancelled bits in addition and subtraction operatittns
is hence important to show that other binary operations can-
not cause inflation. In the following discussion, we assume
two variablesx andy with the same sign, anfly = Ay =1
for simplicity. Note that, = |Ax/x|.

For multiplicationx*y, we have the following.

Ao — )A(-)Alfx~y‘ _ |X'Ay+Y'Ax+Ax‘Ay|
Xy =1 xy |7 xy 1
~ ~ |
By yhy . beBy By A Dy By
<1 1 B = 1 1 5

Observe that normally the sub-expression [1] in the above
formula is orders of magnitude smaller than the other two

sub-expressions and hence can be ignored. Moreover, since
Ay A
|51 =4y =Tand|S| = Ay =T, we have

It shows that the growth of the relative error in multipli-
cation is normally bounded by a factor of 2. In practice, the
growth is usually much smaller than 2.

Consider divisiory/x, which can be rewritten as« (1/x).

s~ ¥
X-+Ay X
H

Ay
(X+Ax

X
(X+Dy)

< —
) 1-t1

1/x =

— =1 =



Note that since is a very small number, usually slightly | a=((1+2E54)-2E54)-1 | 1.1  1"+2E 54"=2E 54
larger than 0, the growth factor of the relative error is a 2 x=at0.5; 12 2E S:F -2E 54"=0"
number slightly larger than 1. 3 y=x>0; ;-3 01 ; '10 oo

; it ; ; 4 x=-1"+0.5"=-0.

Consider addition (of two operands with the same sign). 3 y=-0.5">0=F (stable)

[(x+ AX +Yy+ Ay) — (x+y)] |Ax + Ay| (a) program (b) execution in actual world
Dxyy = = <T

[x+yl x+Y] Figure 8. An example for missing unstable execution. In the ideal

world, a= 0,x= 0.5 and hencg = T, which is different from the
actual world result in (b). However, our approximation cannot catch
the instability problem. Symbol 1.2 means the second sub-step in
statement 1.

The relative error does not grow.

Therefore normally relative errors can only getinflated by
subtractions (or additions of operands with different sjgn
Note that even in subtractions, if the two operands are not
very close, inflation does not happen either. determines if an inflated error is suppressed when a smaller
I3: Unstable Executions Always Involve Inflation In operand withT tag is added to a much larger operand.
Practice. An important question is whether inflation (i.e. 1he two thresholds are currently configured based on our
evidenced by a large number of cancelled bits) is a neces-€xPerience. In Sectiohl 8, we study the effect of different
sary condition of unstable execution. In theory, itis naetr  threshold configurations empirically. Our experiment sfow
as errors can gradually aggregate through operations andhat when appropriate thresholds are set, our technique doe

eventually become comparable to the corresponding val- "0t MiSS any unstable executions. _
ues, leading to discrete differences. Such examples can be HOWever, since our technique only uses one bit to approx-
constructed. However, in the programs we have studied welmate error related information for a value, there are cases

haven't encountered any case in which an unstable execyWhich even conservative thresholds fail to catch unstable e

tion is caused by incremental growth of errors (i.e. without €cutions. Consider the example in Figlie 8. According to
the presence of inflatiof) The reasons are as follows. The Rule [ADD-TF], the propagation is cut off at step 1.3 when

growth of errors is usually very slow without inflation based the smaller value 0 with inflation is added to the large value
on our above discussion i&. Moreover, error aggregation 1 without inflation. As a result, the execution is considered

may enlarge or diminish errors. stable althougly has a different boolean value from that in
the ideal world. The root cause is that the single inflatidn bi

6.2 Soundness and Completeness of Propagation Rules is insufficient to model that the actual error is much larger

than the value 0 at step 1.3. A scheme that tags a value with

more bits and has more sophisticated propagation rules may

mitigate this problem. We will leave it to our future work. In

t our empirical study, we haven't encountered such cases.

The semantic rules in Fifj] 6 are unsound due to the approx-
imation. For instance, upon the addition of two operands
tagged withT , the result value is always tagged witi{Rule
[ADD-TT]). If the two operands are semantically equivalen
except that they have different signs, their errors will ke e . .
actly the same but with different signs. Consequently, they 7. Handling Practical Challenges
cancel each other out. However, this cannot be detected byA fundamental assumption of our technique is that an ex-
our approximation. Also, according to the rules for typetcas ecution is unstable if errors can cause discrete diffelence
and relational operations, we consider an execution ulestab The intuition is that discrete differences leads to diffeéere
if a T tag can reach a discrete factor. However, a significant forms of the output mathematical function such that output
relative error (as indicated bly) does not necessarily induce values have discontinuous differences. However, due to the
any discrete difference. It also depends on the signs of theflexibility of modern programming languages and the nature
actual error and the value. For instance, assume a vdalue  of certain computation, discrete differences may not agvay
the actual world is slightly larger than@® A type castto the  lead to discontinuous output differences.
integer domain gets 0. &, has a positive sign, even though
it is comparable to the value, it does not cause discrete di
ference between the actual world and the ideal world. Un- Continuous core was defined i [2] as a program region (usu-
fortunately, it is infeasible to track signs without comipgt ally a conditional statement and its branches) in which con-
explicit error values. trol flow variations do not cause output discontinuity. Irr ou

In practice, the completeness of our technique is largely context, we should not consider an execution unstable if er-
affected by the conservativeness of the two threshldsid rors cause (discrete) control flow differences inside canti
Ts. Recall thatt. decides the occurrence of inflation angd ous cores.
Z _ R— _ Fig.[ (a) shows a continuous core code snippet fiom [2].
fwe used the high precision library (HPL) to precisely compiigerror It returns the maximum value of an array. Note that while [2]
or each value encountered during execution. For eachalesdifference . .
observed by the HPL method, we could always backtrack to ancing focuses on studying the effect of continuous cores on exter-
inflation (with 1.=48). nal input uncertainty, we focus on their effect on execution

71 Continuous Cores




1 o=A[0 10 if (x<y)
2 fori:=1toc 11 o=x/y
3 ifo<Al] 12 else

4 0:=Alil; 13 o=y/x

C) (b)
Figure 9. Continuous core examples.

stability in the presence of internal representation srrir

; I+ F() is the iterative functionx/

if (i>bound) exit(non-convergent);
}ountil (|x-old|< t);

~No b wNE

Figure 10. Iterative algorithm example.
based iterative methods are also common. In the latter case,

the former case, input errors are usually large enough tothe methods may not converge. The implementation of an it-
be representable, sometimes comparable to the input val-erative algorithm must have a termination predicate that us
ues, whereas representation errors are introduced becausally compares a value representing the solution genergted b
they are not representable. In the example, assume an arrashe current iteration and the value by the previous itematio

A0— 2] = {1.0, 2.00000000001 2.0}. Observe the com-
parisonA[1l] < A2] at line 3 (in the second iteration of the
loop with o0 = A[1]) in the actual world. The subtraction
A[1] — A[2] causes a large number of cancelled bits. The rel-
ative error is hence considered inflated. It is propagated im
mediately to the predicate at line 3, which is a discreteofact

Hence, according to our semantics, the execution is consid-

If their difference is small enough, the procedure is consid
ered converged. If the algorithm is not provably convergent
a constant iteration bound is usually provided such that an
execution is considered not converging if the solutionediff
ence is still large when the iteration bound is reached. The
code snippet in Fid._10 abstracts such a template.

Since the termination threshold is usually a very small

ered unstable because a different branch outcome may bédloating point value, errors may induce different branch out

taken in the ideal world.

comes at the convergence test (e.g. line 7 in Eig. 10). If

However, the execution is stable. Because even if the the algorithm is provably convergent, which can be inferred
predicate has different branch outcomes in the two worlds, from the absence of an iteration bound from the program, we

A[1] andA[2] are so close to each other that selecting either
one has little effect on the rest of the execution. Partityla
The relative error of the output valads essentially(A[2] —
A[1])/A[1]] (assumingA[1] was selected in the actual world),

suppress any warnings generated at the convergence predi-
cate. Intuitively, assume the procedure terminates attthe
iteration in the actual world but at thé+ c)th iteration in

the ideal world, withc a positive or negative integer. The

which is a very small value. Therefore, we shall suppress solutions in the two worlds do not differ much due to the

warnings inside the continuous core.

Fig.[d (b) shows another example we have found in prac-
tice. Assumex = 2.0 andy = 2.00000000000001 and their
correspondences in the ideal world &re 2.0000000000001
andy'= 2.0. In the actual world, the subtraction in line 10
has a large number of cancelled bits and the result is imme-
diately used in the predicate. Hence, the execution is fhgge
unstable. In fact, the cancelled bits do correctly indi¢hte
control flow differences between the actual world and the
ideal world. However, the control flow differences are not
important for the rest of the execution. More particulairty,
both worlds, the output has a value slightly smaller than 1.

We use a profiling technique similar to thatlih [2] to iden-
tify potential continuous core candidates. We manually in-

spect these candidates, which are in a small number (less

than 20 in the largest program and only a few on average)

and have fixed coding patterns such as selecting the maxi-

mum/minimum value from a set. We annotate the true cores.
During execution, our runtime takes the annotations ane sup
presses warnings inside the annotated regions.

7.2 Predicates in Convergence Tests
In practice, a lot of computation tasks are iterative. An it-

erative method is supposed to generate a sequence of im-

proving approximate solutions that eventually converde- |
ally, an iterative algorithm must be supported by a mathe-
matically rigorous convergence analysis; however, haoris

iterative nature of the computation.
If the algorithm is not provably convergent, we have to

take special care. We handle the following two sub-cases dif
ferently. Our discussion is based on the template in[Eig. 10.

e If the (bound— 1)th instance of the convergence test is
flagged unstable, i.e. the result|af— old| —t is tagged
with T, we consider the execution unstable. Assume the
predicate at line 7 takes the true branch in the ideal world
(and hence the procedure terminates), the significant er-
ror may induce a different branch outcome in the actual
world (and hence the procedure gets to theundth
iteration and then fails to terminate at line 6). In other
words, the output has discrete difference (i.e. having a
convergent solution vs. no solution). It is similar when
line 7 takes the else branch in the ideal world.

¢ |f the convergence test is detected to be unstable atithe

instance withi < bound— 1, we consider the execution
stable and suppress the warning. This is because although
the significant error may cause different branch outcomes
at the particular instance of line 7, the difference only
leads to different iterations of computation, which only
cause continuous output differences.

While these are the prominent challenges we have en-

countered when applying the technique to a set of real world

programs, there may be others given the expressiveness of
modern programming languages.



8. Evaluation

We implement the predictor by performing source code in-
strumentation on subject programs. We modify GCC-4.7.2
to instrument programs on GIMPLE IR. C/C++ and Fortran
languages are naturally supported through the GCC fron-
tend. Instrumented binaries execute at their originaliprec
sion, with the add-on runtime system that monitors relative
error inflation and propagation. Upon detecting an insitgbil
issue, the tool allows automatically switching to high prec
sion. Particularly, programs are restarted with the higtipr
sion version which is statically generated by program trans
formation in the compiler.

We perform experiments to evaluate the efficiency and the

effectiveness of our technique. We compare our technique

with the state-of-the-art technique that relies on HBL [4],
in which high precision values are stored in addition to
original values, and side-by-side comparisons are pegdrm
to ensure execution stability. When implementing the HPL
technique, we choose 128-bit quad double types as the HPL
which are slightly faster than using the GNU MPFR library

asin [4].

Hence we used the larger training input for this program.
The results are shown in Talgle 3. Column 2 shows the native
execution time. Columns 3-4 present the results of HPL. Ob-
serve that the method is expensive, causing 109 times slow
down on average. Such overhead is lower than what was re-
ported in [4].

Columns 5-6 show the results of the approximate ap-
proach that monitors errors. The average slowdown is 34
times, which is about 3 times faster than the HPL approach.

The last two columns present the result by the proposed
predictor. We collect the data witly = 48. It incurs a slow-
down between 3.18 and 22.80, with an average of 7.91. It
is 14 times faster than HPL. One outlieri§2. ngri d,
which degrades the performance by over 20 times. Note
that172. ngri d also incurs large overhead in the HPL ap-
proach. The reason is that it is floating point computatien in
tensive. Any instrumentation to the program introducegdar
performance penalty. Excluding this program, the average

slowdown for the predictor is 6.84x. This offers more prac-

tical use than the HPL approach for on-the-fly detection of
instability.

In addition, we also implement another instability pre-

) g ) program native | HPL [ approximate | ours |
dictor that dynamically tracks the propagation of actual er time [ tme [ s/ | tme | s/ | time | sid |
rors (not relative error). It records the correspondingrerr | 168.wupwise | 146 | 106.69 | 73.08 | 41.69 | 28.55 | 950 | 6.51

: : . . - 171.swim 017 | 1127 | 6629 | 4.81 | 28.29 | 1.02 | 6.00

for each floating point variable, in the same precision as the 175 mgrid 1.96 | 855.14 | 436.30 | 88.38 | 45.09 | 44.69 | 22.80
variable. Note that separating an error from its correspond| 173.applu 0.06 832 | 13867 | 233 | 3883 | 052 | 867
. . i 177.mesa 0.36 16.25 31.86 10.44 29.00 1.40 3.89
ing value allows us to precisely represent the error as theif 178 gaigel 056 | 4673 | 8345 | 1892 | 3379 | 463 | 827
exponents are allowed to be substantially different. Fohea | 179.art 037 | 1597 | 4316 | 577 | 1559 297 | 803
. 183.equake 0.14 10.11 72.21 3.74 26.71 0.82 5.86
operation, we compute the result error from the operand err 1g7facerec | 1.09 | 109.58 | 10053 | 29.06 | 26.66 | 6.18 | 5.67
rors and the representation error of the result value itself| 188.ammp | 190 | 108.77 | 57.25 | 40.07 | 21.09 | 6.05 | 3.18
R ) - 189.lucas 072 | 8105 | 11257 | 2363 | 32.82 | 6.47 | 8.99

Such computation is much cheaper than high precision oper- 191 fmasd | 11.97 | 1187.68 | 99.22 | 510.35 | 42.64 | 85.08 | 7.11
ations. Consider equatiof (1) in Sectidn 4. Upon the adulitio | 200sixtrack | 141 | 24956 | 17699 | 7352 | 5214 | 1105 | 7.84
. . LA ~ 301.apsi 1.17 121.58 104.09 65.20 55.82 8.35 7.15
operation, the result error is the aggregatio\pfi- Ay and deisotope 0.02 0.50 3300 | 039 | 1950 | 013 | 867
the representation error &fy. However, the latter cannot | AVERAGE 109.46 34.07 7.91

be precisely computed asty is performed at normal pre-
cision. It is hence over-approximated by the value denoted
by the least significand bit of the result value for safetyisTh
approach is therefore more efficient but less precise thaan th
HPL technique. We call it thapproximatesolution. The rea-
son we implemented this method and compared it with oth-
ers is that it is the most straightforward optimization o th
expensive HPL solution.

Our experiments are performed on an Intel Core-i7
2.80GHz machine with 8GB RAM.

8.1 Performance

ttime is in seconds; s/d stands for slowdown.

Table 3. Performance.

Breakdown of Execution Time We further investigate the
distribution of execution time for our predictor to undeursd

the overhead of individual pieces. The breakdown is mea-
sured by computing the differences between enabling and
disabling each component in the predictor. The results are
shown in Fig[Ill. Tag propagation, colored in red, domi-
nates the execution time for the majority of the programs.

It contributes to 35% to 70% of the whole execution. For
each floating point operation, we have to compute the ad-
dresses of the operand tags and the result tag, load the tags,

We evaluate the runtime overhead for the aforementionedand perform tag operation. The purple portion in each bar
three approaches, HPL, approximate and the proposed prefepresents the time spent on detecting error inflation. The
dictor. We use SPEC CFP 2000, a biochemical data processgreen portions include costs for error suppressions and oth
ing programdeisotopefrom ﬂ], and poly from the moti- ers.

vating example in Fid.]2 (c), as the benchmark. We use the
test input data set for SPEC programs exdeqt. f na3d.

The execution time fot91. f ma3d was too short with the  In this experiment, we compare the effectiveness of the dif-
test input, leading to difficulties in overhead measurement ferent approaches. We only report results for the programs

8.2 Effectiveness



in most cases (over 99.999998p6our technique can cor-
rectly predict that an execution is stable, with low overhea
(3) Our detector has comparable effectiveness as the approx
imate approach with; = 48. Note that the proposed predic-
tor is 5 times faster. (4) The number of false positives of our
technigue grows wher, decreases because it admits more
inflations. However, even with the most conservative sgitin
the percentage of the unstable cases is still very smalke Not
that the maximum possibir is 53 because there are 53 bits
for the significand in the representation of a double preci-
sion variable. (5) There are false negatives whgmets
close to the maximum. When having= 52 it misses some
unstable cases fdr87. f acer ec andpol y. It also fails

M native misc M detection M propagation

to capture some unstable cases I318. gal gel with 1¢
greater than 48. Our detector does not miss any true posi-
tives witht; = 48. For programs other tharv8. gal gel ,

a more aggressive threshald= 50 does not cause any false
that have instability problems. For the other programs, all negatives. Observe tha78. gal gel has a lot of unstable
the three approaches correctly detect that they are stie.  executions, which may suggest that one should use a more
experiment is similar to that in Fif] 2. We take a large num- conservative setting when the number of warnings is high.
ber of samples in a small input sub-domain of each program.  continuous core and convergence test annotations are im-
For each sample, we run the three techniques to detect if itportant for our technique. For the first four programs in Ta-
is stable. In HPL, if any discrete differences are obserted a ple[3, it always reports unstable for every execution, if¢he
discrete factors between the regular precision versiottend  js no annotation of continuous cores. Convergence tests are
high precision version, the execution is considered utestab commonly used il 78. gal gel . Without the convergence

In the approximate approach, an execution is unstable if thetest annotations, we receive a lot of false warnings for this
floating point values at discrete factors could cause discre program. In both cases, all the false warnings are issued
differences when they are aggregated with the computed er-yjthin some continuous cores or right at some convergence
rors. test predicates.

For our predictor, we also present the results with differ- e have also evaluated a traditional technique that is
ent settings of threshold, which is the threshold for decid- solely based on cancelled bit detectibn [25]. The technique
ing inflation (Rule ADD-FF]). The other thresholds that issues a warning whenever a larger number of cancelled bits
detects suppressions (RulkOD-FT/TF]) is always setto  are detected. Our experiment shows that it always reports
4. The results are not sensitive toand thus we omit the  warnings for all the executions (including the stable orés)

Figure 11. Breakdown of the Overhead.

data regarding the different settingstef the first four programs in Tabl@ 4, even after we suppress the
The results are shown in Tadé 4. The second column warnings in continuous cores and convergence tests. This is
shows the different methods/configurations. Tinerall because bit cancellation is very common in programs. It may

rows indicate the total samples collected and the samplingnot be harmful unless the imprecise values are further used
domain. These samples are selected in a very small rangegn critical places.

around the original input. The third column shows the num-
ber of unstable samples. The fourth column shows the per-8.3 Tracing the Cause of Instability Issues

centage of unstable samples over the total number of SaMyye extend our predictor to trace the root cause of instgbilit
ples. The last column shows the unstable sample ranges

Some are not continuous. meaning the rande mav have StaIssues. The extension is straightforward. In addition ® th
' 9 9 y inflation bit, we also record and propagate the location that
ble and unstable sub-ranges.

. . an error inflation originates. For a binary operation witlthbo
We have the following ot?servatlons. (1) Even SPEC pro- operands tagged with, we propagate the location record of
grams are unstable. Considgal gel . In many samples,

the high orecision version prod results but th o the larger operand. In the future, we plan to develop a set
€ Nigh precision version produces resufts but the corre-, .4 implementation to propagate the records from both
sponding regular precision version fails to produce any re-

sults. or viceversa. Note that the unstable samples @bort operands. When an instability issue arises, the cause can be
' . o ples regh quickly identified from its location record. We discuss one
by HPL are essentially true positives. (2) Our detector re-

. . . .~ real-world example below.
ports 7.5-93 times more problematic cases with the setting
of 1o = 48, when compared with the ground truth (i.e. the re- 5This lower bound is frongal gel with 1. = 48. The problematic range

sults by HPL_)- However- the _percentage ofthe rep(_)rt_ed CaSeSs only 328E — 6% of the input range such that 99.999996% of the inputs
over the entire input range is very very small. This implies are correctly predicated as stable.
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program [ approach [ #of cases | % [ detected range |
equake HPL 3 3.00E-12%| [0.8690799016130847,0.869079901613084
approx 158 1.58E-10%| [0.869079901613079 0.869079901613B6
ours{:=36) 1155972 1.16E-6% [0.869079904974877 0.8690799016130848]
ours:=40) 72247 7.22E-8% [0.869079901658602 0.8690799016130848]
oursfc=44) 4516 4.52E-9% [0.869079901626333 0.8690799016130848]
ours{:=48) 279 2.79E-10%| [0.869079901613870, 0.8690799016130848]
oursf¢=50) 71 7.10E-11%| [0.869079901613078 0.8690799016130848]
oursfc=52) 20 2.00E-11%| [0.86907990161308, 0.8690799016130848]
overall 1E+14 [0.8650, 0.8750]
facerec HPL 849 8.49E-10% [0.596265750063108, 0.596265750064926]
approx 4217 4.22E-9% | [0.59626575006204 0.59626575006312
oursc=36) | 59457611 | 5.95E-5% [0.596265203358020.5962657979341]1
oursf:=40) 2716295 2.72E-6% [0.596265482048000.5962657%92265T
oursfc=44) | 232165 | 2.32E-7% | [0.596265499461100.5962657508151]
oursfc=48) 12613 1.26E-8% [0.59626575086901, 0.59626575001029
oursf¢=50) 2643 2.64E-9% [0.59626575008749 0.59626575006600
oursfc=52) 296 2.96E-10%| [0.59626575006357, 0.59626575008373 1
overall 1E+14 [0.5900, 0.6000]
galgel HPL 57695 5.77E-8% [0.8184459012000007, 0.818445901225335
approx 4797213 4.80E-6% [0.8184459027084790.818445902880854
oursfc=36) | 255406459| 2.55E-4% [0.8184488715218040.818445327084799
oursc=40) | 126738078| 1.27E-4% [0.8184489348973990.818445961871598
oursc=44) | 37972131 | 3.80E-5% [0.8184489982999980.818445989575860)
oursfc=48) 3278089 3.28E-6% [0.8184459021967920.8184459020723309
oursc=50) | 1801215 | 1.90E-6% | [0.8184459081785480.818445900723309 1
oursfc=52) 1233455 1.23E-6% | [0.8184459020849030.8184459Q20723309 1
overall 1E+14 [0.8184, 0.8185]
deisotope HPL 2 2.0E-12% [1.1156381266106556, 1.115638126610655
approx 18 1.8E-11% [1.1156381266106556, 1.11563812661085
ours{:=36) 167157 1.7E-7% [1.115638126939401 1.1156381266106557]
oursf:=40) 10447 1.0E-8% [1.115638126696111 1.1156381266106557]
oursfc=44) 653 6.5E-10% [1.115638126618905 1.1156381266106557]
oursfc=48) 40 4.0E-11% | [1.115638126610688, 1.1156381266106557]
oursf¢=50) 7 7.0E-12% [1.115638126610635 1.1156381266106557]
oursc=52) 5 5.0E-12% [1.115638126610655 1.1156381266106557]
overall 1E+14 [1.1100, 1.1200]
poly HPL 2 2.0E-12% [1.8408964152537146, 1.840896415253714
approx 211 2.1E-10% | [1.840896415253741, 1.8408964152526()
oursfc=36) 61177 6.1E-8% [1.840896415286552 1.840896415257738
ours(c=40) 3821 3.8E-9% [1.840896415253234 1.840896415258)65
oursfc=44) 235 2.4E-10% [1.840896415253128 1.84089641525369
oursf:=48) 15 1.5E-11% [1.840896415253732, 1.840896415253 8D
ours(c=50) 2 2.0E-12% [1.8408964152537146, 1.840896415253714
oursfc=52) 0 0.0% T
overall 1E+14 [1.8400, 1.8500]

Table 4. Comparisons of the detected problematic ranges with @iftgpredictorsy following a detected range indicates that
there are false negatives for the current setting. of



void svshtn(Y. . void nwin(){ programs we have considered, it is unknown if the config-

yshin(Y, .Y while (...){ T . )

double *H; 110 call Fname(Y, ..); uration is equally effective for other programs. Second, it
62 H(i)=..; requires the user to annotate continuous cores and conver-

! /* d=DOT_PRODUCT(Y,Y); */ . .
63 fO:(((-i-)-)_ v - Ho): 122 for (.){ gence test predicates. We argue that such annotationgishoul
T ’ gi if(dd jng)z){Yb(:La}k ) become an integral part of the programming language sup-
} 1y P ‘ port for applications that have high demand for reliahilkg

such, it will allow programmers to annotate their own code
during development. Advanced static analysis may also be
developed to determine continuous cores and convergence
Fig.[12 shows a pseudocode snippet frbfi8. gal gel . test predicates. Third, the current implementation has non
In one of the executions, the program produces a different trjyjal overhead even though it is much faster than the HPL
Output from the one by HPL. The observed difference lies solution and the approximate solution (Secmn 8) We no-
in the predicate outcome at line 124 in function nwtn(). The tjce that similar dynamic analyses that propagate bitsh suc
HPL version takes the true branch to jump out of the loop a5 dynamic information flow tracking, may be much more
and continues, whereas the regular version takes the fals&fficient than our technique (e.g. only 6.2% overhead for
branch. server applications and 3.6 times overhead for SPEC pro-
Our predictor successfully reports an unstable run due grams were reported ih [33]). However, when we try to ap-
to the predicate at line 124. It shows varialdlearries an ply similar optimizations, we encounter a number of unique
inflated error when comparing agairep=2. In addition, it challenges for floating point programs. For example, the in-
further indicates that the cause of the inflation is due to the stryction pipeline behaves differently for integer andtitog
cancellation at line 63 in function syshtn() which was adlle  point programs in the presence of instrumentation. We are

earlier from line 110. working on addressing these problems.
We verify the cause of the issue by investigating the com-

putations at line 63, where the elements of atYaget up-

dated. Before performing the subtractionvaf) — H(i), nei- ~ 10. Related Work

ther of them is tagged witfi. TakingY (7) andH (7) for ex- The instability problem has been studied for along time. The
ample,Y(7)=-15.84869578667144(7)=-15.8486957866  most prominent difference between our work and many ex-
7145 and the relative errors are both around 2.65%(9) isting works is that existing techniques treat it as a deimggg

is tagged withT after the subtraction, since 50 bits get can- problem. They try to locate the unstable statements using
celled. As a result, it has a value ¥{7)=2.88E-11, but the  various analysis, report them to the users, and hope théy wil
relative error ofY(7) grows up to 0.003. Most other ele- get fixed. However, our study shows that instability will not
ments inY are also tagged witl similarly. From this point happen for most parts of the input domain and they can be
on,Y carries the inflated errors in its following execution. suppressed by higher precision. Hence, we aim to develop
When getting back to the computation dft line 123, the an efficient on-the-fly predictor to assure stability for nos
inflated errors eventually propagate frof(i) to d. During executions, and only switch to using high precision compu-
this process, none of the produtti) Y (i) is large enough  tation when necessary. Also, a key advance of our work is to
and tagged withr to suppress the inflated errors. Upon fin- leverage the concept of discrete factors to have a more pre-
ishing the loopAq =0.015, which is correctly captured by cise error reporting criterion that is critical for a low $al
theT tag. Hence it triggers a warning at the predicate. With positive rate.

the help of the predictor, the cause of the instability islgas Interval arithmetic[[29],_31] uses an error range to repre-
located. However, the implementation around the cause is sosent a value. It updates ranges in a conservative way, lgadin
complex that a more stable version may be difficult to con- to over-sized ranges. Hence, people further propose affine
struct, which supports our argument that online prediction arithmetic5] to represent errors as affine forms to
plus on-demand precision hoisting is a more suitable solu- allow better precision. However, they are very expensigk an
tion. their goal is in-house testing and debugging. The stateeof th
L art [ﬂ] has 3-5 orders of magnitude slow down and only
9. Limitations supports small programs. Researchers have proposed using
We propose to address the floating point instability problem high precision library to precisely compute values andrsrro

in a way different from traditional techniques. We use run- during execution|] 4]. In particular, the state-of-thé{@]

time prediction to determine if an execution is stable. Rert  is a dynamic analysis that makes use of a binary instrumenta-
very few unstable executions, we allow the user to switch to tion engine to enhance a floating point program on the fly to
running high precision versions on demand. However, as anperform high precision computation. That is, upon exegutin
initial step along this direction, our technique has a numbe a single precision operation, the instrumentation exacute
of limitations. First of all, its requires setting two thiesds. the corresponding high precision operation. The results of
While we were able to find a uniform configuration for the the two precision levels are compared to detect possible in-

Figure 12. Pseudocode snippet frohv8. gal gel .



stability issues. However, high precision operations argv ~ 11. Conclusion

expensive (e.g.[[4] has 2 orders of magnitude slow down). In \y gevelop an online technique to monitor and predict float-
contrast, our predictor has only 7.91 times slowdown. And ing point program execution instability problems. We ob-

our precision loss is small in the picture of the whole input ge e that in practice, only a very small portion of inputs
domain. Monte Carlo Arithmetic (MCA) exploits random- .o, jead to unstable execution and hence the expensive high
Ness in f'?""“”g point arlthmetu?ﬂ. I_t exec.utes a program precision computation based approaches do not pay-off for
multiple times by randomizing floating point arithmetic 0p- ¢t inputs. We formally define an unstable execution as ex-
erators and operands. It studies roundoff errors St@ltic  o¢\ytion in which errors cause discrete differences. The def
from the rgsults. The CADNA libraryd] performs s.tochas- inition allows us avoid explicitly computing errors, which

tic estimations of errors also by randomly selecting round- ig \ery expensive. Instead, we abstract inflation of retativ
ing modes at each operation. With randomization approach, g o5 a5 one bit, monitor the propagation of such bits, and
it can miss instability problems in certain S|tu_at|oE| [28] ~ check if they can reach discrete factors. If so, the inflated
is also expensive (90x slowdown forﬁ—f ECwith CADNAi- o106 may induce discrete differences at these factors and
brary according to our experiment). [n [25], a dynamiC tech- pence the execution is flagged unstable. The key challenge
nique detects instability by monitoring bit cancellatiovss s 45 getect places where the inflation bit propagation is cut
pr099sed- Itis very expensive and has a large volume of falseoﬁ' indicating the error is no longer inflated compared $o it
positives. value. We discuss the soundness and completeness of the

There are also a large body of work on abstract interpre- v opnigue and the practical challenges that we have over-
tation, SMT solving, model checking, and code perturbation ;o our experiments show that the technique can cor-

%t%kle t representqtion error probl@nﬂﬁ,lﬂm, 16, rectly classify over 99.999996% inputs as stable with a spe-
: EBdES]. Particularly, robustness ana!ﬂ;lsr[é};t cific threshold settingt¢=48) while a traditional technique
Fo stat]gally prove that a.flo'at'lng PO"“ program 1S free frpm that solely detects error inflation mis-classifies majoaty
instability problems. While it is quite successful in handli inputs as unstable for some of the programs we studied.

simple programs, the mathematical complexity and the it- comnared to the state of the art high precision computa-
erative nature of many real world floating point programs i, pased approach, our technique is much more efficient

are difficult to address by the technique. Moreover, as in- it an average overhead reduction of 14 times) and can
stability problems are input dependent and rarely h""ppen’report all the unstable executions. Due to approximation,
dynamic analysis like ours have the advantage of allow run- ,, technique classifies 7.5-93 times more inputs as unsta-
ning the low precision program in most cases for efficiency 4 (tc=48), when compared to the ground truth. However,
and switching to high precision on demand. It is especially {hage inputs only count for 1.5E-11% - 3.3E-6% of the in-
prefereable when completely fixing instability problems is put domain. In other words, in majority cases, our technique

d'ﬁ'crl]"lt' . ks f , | has the same effect as the high precision approach. There-
There are some existing works focusing on external er- fore, users can use our technique to make prediction with a
rors. The error bounds for external errors are much larger o yer cost. For the very rare cases that are considered-unsta

compared to internal representation errors. Program behav . by our predictor, our technique provides the capability
ior may vary a lot within external input error bounds. Monte automatically switching to high precision.

Carlo (MC) approaches are widel used [19] in handling ex-
ternal errors. White-box samplinBy[Z] was recently proposed
to reduce the number of needed samples. It hashes discreteACknOWIedgmentS

values at discrete factors and uses the resulting hashsvalue This research is supported, in part, by the National Sci-
to guide the sampling process. However, sampling cannoténce Foundation (NSF) under grants 0845870, 0916874 and
be applied in our context as representation error bounds arel320444. Any opinions, findings, and conclusions or recom-
too small to be representable without using higher presisio mendations in this paper are those of the authors and do not
Static analysis has also been proposed to prove a prograniecessarily reflect the views of NSF.

is continuousf[]djﬂG] or robust 34] in the presence of
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