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Abstract
The machine representation of floating point values has lim-
ited precision such that errors may be introduced during
execution. These errors may get propagated and magnified
by the following operations, leading to instability problems,
e.g., control flow path may be undesirably altered and faulty
output may be emitted. In this paper, we develop an on-
the-fly efficient monitoring technique that can predict if an
execution is stable. The technique does not explicitly com-
pute errors as doing so incurs high overhead. Instead, it de-
tects possible places where an error becomes substantially
inflated regarding the corresponding value, and then tags the
value with one bit to denote that it has an inflated error. It
then tracks inflation bit propagation, taking care of opera-
tions that may cut off such propagation. It reports instability
if any inflation bit reaches a critical execution point, such
as a predicate, where the inflated error may induce substan-
tial execution difference, such as different execution paths.
Our experiment shows that with appropriate thresholds, the
technique can correctly detect that over 99.999996% of the
inputs of all the programs we studied are stable while a tradi-
tional technique relying solely on inflation detection mistak-
enly classifies majority of the inputs as unstable for some of
the programs. Compared to the state of the art technique that
is based on high precision computation and causes several
hundred times slowdown, our technique only causes 7.91
times slowdown on average and can report all the true un-
stable executions with the appropriate thresholds.

Categories and Subject Descriptors F.3.2 [Logics and
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1. Introduction
The machine representation of floating point values has pre-
cision limitations. When a value cannot be precisely rep-
resented, an error is implicitly introduced. For instance,
when reading an input number of 0.9997 into a 32-bit
single precision variable, the best representable value is
0.999700009822· ··. We hence have an initial error of
−0.000000009822· ··. When we add a very small value to a
very large value, the small value may be too small to make a
difference in the represented result, leading to an error. Such
errors are propagated and accumulated, and eventually may
lead to serious problems when they become comparable to
the program values.

During the Gulf War in 1991, the patriot missile’s failure
to intercept an incoming missile, causing 28 casualties and
around 100 injuries, was due to the loss of precision in com-
putation. As revealed in the U.S. Government Accountabil-
ity Office report [32], “the range gate’s prediction of where
the Scud will next appear is a function of the Scud’s known
velocity and the time of the last radar detection. The con-
version of time from an integer to a real number cannot be
any more precise than 24 bits. This conversion results in a
loss of precision causing a less accurate time calculation.”
Consequently the predicated position drifted away from the
target.

Due to its importance, researchers have developed vari-
ous techniques to address the problem. Traditionally, error
analysis is conducted on mathematical models [36]. How-
ever, modern data processing uses more complex models
and relies on computers and programs, rendering mathemat-
ical analysis difficult. Interval arithmetic [29, 31] and affine
arithmetic [10, 11, 13, 15] are program analysis that model
errors as ranges or affine formulas to reason about stabil-
ity. Program transformation was proposed to improve pre-
cision and stability [1, 4]. Abstract interpretation and theo-



rem proving techniques [9, 16, 27] were developed to reason
about stability statically.

Most existing techniques treat instability as bugs and fo-
cus on identifying buggy statements so that developers can
fix them. We observe that the input range in which a floating
point program is unstable is usually a very very small portion
of the input domain. In other words, even a naive implemen-
tation may work fine in most cases. While this explains why
many people are willing to stay with their unstable imple-
mentations, it also suggests that using high precision com-
putation [4] or crafting a more stable implementation [35]
may not pay off. With a traditional view of debugging, one
may argue that we should nonetheless fix an instability bug
despite its low probability to occur. However, different from
traditional functional bugs, we observe that instability bugs
are fundamentally inevitable with the limited precision of
the machine representation. Using high precision compu-
tation or more stable implementation couldmitigate them,
but unlikely fixes them completely (we will further elabo-
rate this observation in Section 2). Fortunately, comparedto
functional bugs, instability bugs are predictable. Evidence
can be collected during a floating point program execution
to predict if the execution is stable.

Moreover, many existing techniques are too expensive to
be used on-the-fly for real world tasks. For example, the state
of the art technique using high precision [4] causes 167–
1016 times slowdown (i.e. the time-to-complete increased
by 167–1016 times).

Hence, we argue that to tackle instability problems, in-
stead of following the traditional way of finding and fix-
ing bugs, we shall develop efficient prediction technique
that runs together with the original program. Upon detect-
ing a potentially unstable execution, the execution should
be automatically restarted with a higher precision. This ap-
proach avoids paying the substantial overhead of high preci-
sion computation for most inputs, and saves the human ef-
forts in developing more stable implementation, which may
not be feasible in many cases.

In this paper, we develop a stability predictor that is prac-
tically conservative, sufficiently precise, and much more
cost-effective compared to using high precision libraries
(HPL) [4]. The technique does not explicitly compute errors
as doing so incurs high overhead. Instead, it detects possible
places where an error becomes substantially inflated regard-
ing the corresponding value, and then tags the value with
single bit to denote that it has an inflated error. It then tracks
inflation bit propagation, taking care of operations that may
cut off such propagation. It reports instability if any inflation
bit reaches a critical execution point, such as a predicate,
where the inflated error may induce substantial execution
difference, such as following different execution paths.

Our contributions are highlighted as follows.
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Figure 1. Various code snippets that computez= (x−1)4.

• We analyze the characteristics of floating point instability
bugs and disclose their differences from functional bugs.
Such differences serve as the basis of our work.

• We propose a novel online prediction technique. The
technique approximates errors with single bits to al-
low efficient representation and propagation. Its low cost
compared to existing techniques allows us to screen out
stable executions, which are the most common cases,
while its conservativeness allows us to still capture all
the true instability problems in practice.

• We study the completeness and the soundness of the
technique.

• We have overcome a number of challenges when apply-
ing the technique to real-world programs, including han-
dling specific floating point programming patterns that
could introduce a lot of false warnings, e.g. convergence
tests in iterative methods.

• Our evaluation shows that the predictor is very effec-
tive. With thresholdτc=481, it can correctly determine
over 99.999996% of the input space is stable with 691%
overhead on average, which is 14 times cheaper than a
high-precision-always system such as [4]. Even with a
more conservative threshold (τc=36), it can still correctly
detect over 99.9997% of the input space is stable. With
τc=48, our technique reports instability for 7.5-93 times
more inputs compared to the ground truth, due to its con-
servativeness, which however only counts as 1.5E-11% -
3.3E-6% of the input domain.

2. Motivation
Consider the example in Fig.1(a). Mathematically, the code
snippet computesz= (x− 1)4 (in its expanded form) and
makes decision according to the result at line 4. Assume
that the input value isx= 1.84089642. In the ideal world, it
producesz= 0.5000000112886329660976, and thus prints
“hit” at the end. However, when we execute it on a 32-bit
x86 machine, we get “miss” instead as some of the inter-
mediate values cannot be precisely represented. The repre-
sentation errors get propagated and enlarged, and eventually
falsify the branch outcome at line 4. A plausible solution isto

1 The meaning of the threshold will be defined in Section 5.
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Figure 2. Problematic ranges for versions in Fig.1.

use data types with higher precision as in Fig.1 (b), in which
the previous single-precision variables are refined with the
double-precision type. The modified program produces the
expected result with the original input. However, it pro-
duces wrong outputs with two other slightly different inputs
x= 1.8408964152537146andx= 1.8408964152537148. In
fact, such unstable cases can always be found for any finite
precision.

Another solution is to devise a numerically stable ver-
sion of the underlying algorithm, as in Fig.1 (c). It pro-
duces correct output for some inputs that induce wrong
outputs in Fig.1 (a) and (b). For instance, it produces
the correct result forx = 1.8408964152537148. However,
it remains problematic for some other inputs including
x= 1.8408964152537146.

To further study the effect of these improvements on
precision, we execute the three versions with a large num-
ber of input samples that are evenly distributed within the
range from 0.0 to 2.0, with the interval of 1E-16. A sample
run is considered problematic if its output differs from the
ideal one that is emulated using thehigh precision library
(HPL) [4]. We then count the number of problematic cases.
These numbers represent the precision of the corresponding
versions. Fig.2 shows the results, with wave-lines represent-
ing the problematic cases. Observe that the majority of the
problematic runs occur around the intersections of the curve
y= (x−1)4−0.5, which is the mathematical function of the
predicate at line 4, and thex-axis. We zoom-in one of the
two intersections, namely[1.84,1.85]. Out of the 100,000
billion samples in this range, there are about 3 billion prob-
lematic samples for the single-precision version in Fig.1 (a).
The number gets down to 8 for the double-precision version
in Fig.1 (b). Two problematic cases are still observed with
the stable approach in Fig.1(c).

Observations.Based on the previous discussion, we sum-
marize the characteristics of the instability problem as fol-
lows.

• The instability problem cannot be completely evaded by
using more precise types or different implementations.
Using more precise types implies higher overhead. De-
veloping a more stable implementation requires in-depth

understanding of the program and a lot of human efforts.
In many cases, such more stable implementation may not
be easily achievable.

• A floating point program only suffers from the instability
problem for a very small input range. Consider Fig.2.
Even the implementation with the lowest precision, i.e.
case (a), only causes problems with the likelihood of
0.003% within the small input sub-range[1.84,1.85]. It
works properly for most inputs. This partially explains
why there are so many unstable programs being used in
reality. For example, we observe that four of the SPEC
programs we analyzed are unstable. Detailed results are
presented in Section 8.2.

• For a deterministic functional bug, a program must fail
given the same failure inducing input. In contrast, given a
particular input that leads to instability in a floating point
program, we can evade the problemfor the particular in-
put using more precise data types and operations, which
can be done automatically.

• Instability problems are predictable. For example, a very
straightforward sign of such problems is that some of the
internal computations have a value very close to zero,
such as the subtraction entailed by the comparison at line
4 in Fig. 1.

Solution Overview. Hence, instead of testing/analyzing a
program exhaustively to expose potential instability prob-
lems caused by representation errors and fixing them like
fixing functional bugs, as advocated in existing work [4, 7,
10, 35],we propose to develop an efficient runtime detection
technique to predict on-the-fly if an execution is stable in
the presence of representation errors. If not, the user could
choose to restart the program execution with the high pre-
cision support.It avoids using high precision all the time,
which is very expensive, leveraging the observation that low
precision suffices most of the time.

The basic idea is to monitor program execution and de-
tect instruction executions that lead to substantial growth of
relative error, i.e. the ratio between an error and its corre-
sponding value. Such detection is performed without explic-
itly computing errors because doing so is very expensive.
Instead, it is approximated by observing the operand and re-
sult values of an operation, especially their exponents. Intu-
itively, if the operands have large exponents but the result
has a small one and the differences exceed a threshold, we
consider the relative error has encountered aninflation. The
subtraction at line 4 in Fig. 1 is an example for such oper-
ations. In practice, these operations occur quite often while
only very few of them really cause problems. In most cases,
the inflated relative errors are suppressed/masked during ex-
ecution such that they cannot cause any problems. For exam-
ple, if a small value with an inflated relative error is added
to a large value, the relative error is suppressed, because the
relative error of the result returns to a very low level. Hence,



1. float x,y,z;
2. x=input ();
3. y=f(x);
4. if (y>1.0)
5. z=x+1.0;

else
6. z=x-1.0;
7. output (z);

1. float x,z;
2. float A[10]={1.0, 2.0, ...};
3. int i;
4. x=input ();
5. i=(int)f(x);
6. z=A[i]*x;
7. output (z);

(a) (b)

Figure 3. Discrete difference examples.

our technique not only detects error inflation, but also tracks
propagation of inflated relative errors and checks if they can
reach critical execution points, e.g. predicates, withoutbe-
ing suppressed. Note that when an inflated error reaches a
predicate, it may induce a different execution path, leading
to undesirable outcome, as illustrated in the example.

If our technique detects that an inflated relative error can
reach any critical execution point, the execution is flaggedas
unstable. The technique provides the capability of automat-
ically switching to executing a high precision version of the
program, which is automatically generated at compile time.

3. Problem Definition
Our goal is to develop a cost-effective technique to deter-
mine if an execution is stable in the presence of representa-
tion errors. According to the previous discussion, representa-
tion errors are inevitable due to the limited precision in com-
putation. However, in most cases, they are not substantial
enough to cause any problems. Therefore, we first need to
define the criterion when such errors become un-acceptable.
In existing work [4, 10], this is usually determined by ob-
serving final output errors. However, it remains difficult to
determine how much output difference should be considered
un-acceptable.

In this paper, we definean execution is unstable if the
actual execution (with limited precision) and the ideal exe-
cution (with infinite precision) have discrete differences.

Discrete differences are differences of discrete types,
such as int and bool. Sample discrete differences include
control flow differences and array index differences. An ex-
ecution is unstable if its control flow in the actual world is
different from that in the ideal world; or an array index gen-
erated by a type cast of a floating point value has different
values in the two worlds. The intuition is that if we con-
sider the output of an execution as a mathematical function
over inputs, the function becomes discontinuous, or has dif-
ferent continuous forms in the input space, due to discrete
differences. Consider the examples in Fig. 3. In (a), ify is
very close to 1.0, the representation error may change the
branch outcome so that the mathematical form of the output
could be eitherz= x+1.0 or z= x−1.0. In (b), if f (x) is
very close to 1.0, the representation error may causei = 0
or i = 1. Consequently, the mathematical form of the output
could be eitherz= 1.0∗x or z= 2.0∗x.

Besides places that may have discrete differences, there
are some mathematical functions that are intrinsically dis-

continuous so that small input changes could also cause ar-
bitrarily large output changes. For instance,f = tan(x) is
discontinuous atx=−π

2 ,
π
2 , · · ·. Whenx is around those val-

ues, representation errors could cause substantial outputdif-
ferences. In practice, we observe that programmers usually
insert predicates to guard these functions against discontin-
uous inputs, to avoid uncontrollable output variations. Asa
result, the discontinuity manifests itself as discrete differ-
ence of the predicate. Hence, our discussion will focus on
discrete differences.

The problem statement, however, implies expensive de-
tection techniques as it requires detecting any changes in the
discrete domain of a program execution. Next we introduce
the concept of discrete factors so that we can simplify the
problem statement to make it more tractable.

Background: Discrete Factors.Discrete factors are intro-
duced in [2] to model output discontinuity caused by exter-
nal input uncertainty.A discrete factor is an operation that
has floating point values2 as operands and produces a dis-
crete value as result.Discrete factors are the interface be-
tween the continuous and the discrete domains. Since repre-
sentation errors originate from the continuous domain, they
can only cause discrete differences by inducing different dis-
crete values at discrete factors. As a result, we only need to
monitor execution of discrete factors instead of all program
artifacts with discrete types.

Control flow predicatesthat are relational operations of
floating point values are the dominant type of discrete factor.
Other discrete factor examples includetype caststhat cast a
floating point value to an integer, and discrete mathematical
library functions, e.g.sign(). Most discrete factors can be
determined by the compiler statically.✷

Therefore, we have the following refined problem defini-
tion.

We consider an execution unstable if the errors of the
floating point operands at any discrete factor are large
enough to induce a different discrete value.

As such, we only need to detect discrete differences at
discrete factors.

4. Floating Point Representation and Errors
Representation precision limitations are the root cause ofthe
instability problem.

According to the standard of the 32-bit single precision
floating point format representation defined in IEEE 754
[20], a decimal valuef is represented as follows.

f = (1−2s)× (1+m×2−23)×2e−127

Variables is the sign bit (zero or one),m is the significand,
which is also called mantissa, ande is the exponent. Fig. 4
shows this representation.

2 To simplify discussion, we assume floating point a continuous type equiv-
alent to real type.
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Figure 4. Float Point Representation.

x, y, z: 32-bit single precision floating point program
variables so that their precision is limited by the
format specification.

x̂: the precise value ofx (with infinite precision).
∆̂x: the error ofx (with infinite precision).
∆x: the relative error ofx.

Table 1. Definitions.

Observe that there are 8 exponent bits denoting the expo-
nent range [-127,128]. There are altogether 24 mantissa bits,
including a hidden leading bit of “1”, so that any values that
require more significand bits to represent cannot be precisely
represented.

During execution of a floating point program, errors are
generated and propagated as follows. Floating point con-
stants in the source code may not be precisely represented
such that initial errors are introduced at compile time. At
runtime, when floating point values are loaded from files or
the standard input, they are usually converted from stringsso
that representation errors may also be introduced. As shown
in Table 1, we denote the value of a variablex in the ideal
world (with infinite precision) as ˆx. The symbolx also de-
notes the value in the actual world (with error). Hence, we
havex̂= x+ ∆̂x.

The initial errors are further propagated to the internal
of program execution through operations. In particular, the
error of the result of an operation includes those inherited
from the operands, and the representation error of the result
value itself.

For example, assume two variablesx andy with errors.

ẑ= x̂+ ŷ= (x+ ∆̂x)+(y+ ∆̂y) = (x+y)+(∆̂x+ ∆̂y) (1)

The sub-expressionx+ y denotes the addition in the ac-
tual world and∆̂x+ ∆̂y denotes the inheritance of the operand
errors. Note that it is possible that the results of the two sub-
expressions themselves cannot be precisely represented so
that further representation errors are introduced.

Explicitly monitoring errors requires representing and
computing errors that are usually in a very small scale, which
is expensive. Therefore, we introduce the notion ofrelative
error.

Definition 1. The relative error of a variable x, denoted by
∆x, is computed as|∆̂x/x|.

Given a discrete factorx> y, if the relative error ofx−y
is larger than 1.0, the factor may have different discrete
outcomes in the actual world and the ideal world. This is
because the error ofx− y is larger thanx− y itself and

may have a different sign. As such, the relational expression
(x− y > 0) has a different boolean outcome. For a discrete
factor i = (int)x, if the relative error ofx− ( f loat)i has a
larger than 1.0 relative error, the factor may have different
discrete outcomes as well.

One can easily infer from the floating point format rep-
resentation (Fig. 4) that an initial relative error, i.e. the
relative error of a constant or an inputv, is bounded by
1/2(# of mantissa bits of v)-1because the error is bounded by the
value represented by the least mantissa bit. As we will show
later, floating point operations except subtractions (or addi-
tions of operands with opposite signs) lead to no growth or
very slow growth of relative errors. It is unlikely that they
can grow so large (e.g. larger than 1) over time to induce
discrete differences. Instead, most unstable executions have
involved sudden inflation of relative errors caused by sub-
tractions (or additions of operands with opposite signs).

According to the IEEE 754 standard, the result of an sub-
traction/addition needs to be normalized by left-shifting, to
remove the leading zeros after the operation. The relative er-
ror inherited from the operands thus get inflated during this
process. Assume a subtraction operationx−y. After the op-
eration, the significand bits are left-shifted byd bits, the rel-
ative error inherited from the operands,(∆̂x − ∆̂y)/(x− y)
may very likely become 2d times larger than the relative er-
rors ofx andy, becausex−y is 2d times smaller thanx or y,
suggested by the left shifting. Thed left-shifted bits are also
called thecancelled bits[25]. Note that cancelled bits can be
cost-effectively monitored by comparing the exponents of
the computation result and the larger operand, particularly,
d = max(ex,ey)−ex−y, with ex the exponent ofx. An exam-
ple can be found in Section 5.

Therefore, our technique is based on detecting inflation
of relative errors by monitoring cancelled bits of each oper-
ation.

5. Propagation of Relative Errors
Detecting relative error inflation alone is not sufficient.
A simple approach that detects occurrences of cancella-
tion [25] reports instability for any execution of a few SPEC
CFP programs according to our study. This is because can-
cellation is common even in stable executions. We observe
that a lot of inflated errors are not problematic because they
are suppressed by other operations in the following execu-
tion. For example, in183.equake, a lot of cancellations
originate from an expressionc+=a-b inside a loop when
a and b are very close. However, the errors froma-b are
always suppressed by the large value ofc, i.e. the inflated
relative error bya-b becomes trivially small after the ad-
dition with the largec. Hence, a key step in our technique
is to monitor propagation of inflated errors to determine if
they can be propagated to a discrete factor and cause discrete
differences, without being suppressed.



Due to the efficiency concern, we cannot afford comput-
ing the true relative errors and monitoring their changes dur-
ing execution. Instead, we develop a cost-effective algorithm
to abstract the process. In particular, we tag a value with an
inflation bit when we observe the relative error of the value
is inflated by cancellation. We develop a set of rules to prop-
agate the inflation bits. These rules respect the semantics re-
garding relative errors such that during an operation, a result
value inherits the bit from its operand(s) if and only if the op-
eration does not suppress the error. In this case, the relative
error of the result is comparable to that of the operand.

Program P ::= s
Stmt s ::= s1; s2 | skip | x := e | x= f2i(y) | x= y✶ 0 |

while x do s | if x then s1 elses2 | fail
Expr e ::= x | v | e1 op e2 | sin(e)
BinOp op ::= + | − | ∗ | /
Value v ::= n | r | b

Var x ∈ Identi f ier n∈ Z r ∈ Real b∈ Boolean

Figure 5. Language

Language.To facilitate formal discussion, we introduce a
kernel language. The syntax is presented in Fig. 5. We model
three kinds of discrete factors: the type cast from a float-
ing point value to an integerf2i, relational operations that
are normalized toy ✶ 0, with ✶ denoting a relational oper-
ator, and discrete mathematical library functions. We nor-
malize relational operations to study the real values (not
the boolean values) involved in these expressions. Such val-
ues are explicitly denoted byy after normalization. For in-
stance, a conditional statement “if t < 1.0 ...” is normalized
to “y := t −1.0; x = y < 0; if x”. It allows us to explicitly
reason about the value ofy and its error.

We model three kinds of values, i.e. integer, real, and
boolean, and the commonly used binary operators. We
model one mathematical functionsin() to demonstrate how
we handle library functions.

Operational Semantics. The semantics is presented in

Fig. 6. The expression rules have the form ofσ,Γ : e
e
−→ e′ ,

with storeσ and error storeΓ. The error store indicates if a
variable is holding a value with an inflated relative error,
that is, the ratio between the actual error and the value is
large. The resulting value of an evaluation is tagged with the
inflation bit. The evaluation of a variable yields the value
from the store, tagged with the bit from the error store. The
evaluation of a value yields the value itself tagged withF ,
meaning its relative error is small.

The result of the addition of two values tagged withT
(i.e., with inflated errors) is also tagged withT. Intuitively,
if both operands have significant errors, the resulting error of
the addition is also significant (Rule [ADD-TT ]). According
to Rule [ADD-TF ], if one operandv1 is tagged withT
and the otherv2 tagged withF , the exponents of the two
operands are compared. If the exponent ofv1, denoted asev1

is much smaller thanev2, particularly when their difference

E ::= E;s | [·]s | x := [·]e | if [·]e then s1 elses2 | [·]e op e |
v op[·]e | x := f2i([·]e) | x := [·]e ⊲⊳ 0 | sin([·]e)

DEFINITION:
Store σ : Var→Value ErrStore Γ : Var→ Boolean
ex,sx: the exponent, and the sign ofx respectively.
vb: b indicates if a valuev carries an inflated relative error.

EXPRESSIONRULES σ,Γ : e
e
−→ e′

σ,Γ : x
e
−→ σ(x)Γ(x) σ,Γ : v

e
−→ vF

σ,Γ : vT
1 +vT

2
e
−→ (v1+v2)

T [ADD−TT ]

σ,Γ : vT
1 +vF

2
e
−→ (v1+v2)

b whereb= ¬(ev2 −ev1 > τs) [ADD−TF]
σ,Γ : vF

1 +vT
2

e
−→ (v1+v2)

b whereb= ¬(ev1 −ev2 > τs) [ADD−FT]
σ,Γ : vF

1 +vF
2

e
−→ (v1+v2)

b whereb= (max(ev1 ,ev2)−ev1+v2 > τc)
[ADD−FF]

σ,Γ : vb1
1 ∗vb2

2
e
−→ (v1 ∗v2)

b3 whereb3 = b1|b2 [MULTI ]
σ,Γ : sin(vb)

e
−→ vb1

1 wherev1 = sin(v), and

b1 =







T |cos(v) ·v /sin(v)|> 2τc

F |cos(v) ·v /sin(v)|< 2−τs

b otherwise
[SIN]

STATEMENT RULES σ,Γ : s
s
−→ σ′,Γ′,s′

σ,Γ : x := vb s
−→ σ[x 7→ v], Γ[x 7→ b], skip σ,Γ : skip;s

s
−→ σ, Γ, s

σ,Γ : x := f2i(vT )
s
−→ σ, Γ, fail

σ,Γ : x := f2i(vF )
s
−→ σ, Γ, fail if (ev−ev−(int)v > τc)

σ,Γ : x := f2i(vF )
s
−→ σ[x 7→ (int)v], Γ[x 7→ F ], skip otherwise

σ,Γ : x= vT
✶ 0

s
−→ σ, Γ, fail

σ,Γ : x= vF
✶ 0

s
−→ σ[x 7→ v✶ 0], Γ[x 7→ F ], skip

σ,Γ : if bT then s1 elses2
s
−→ σ, Γ, fail

σ,Γ : if TF then s1 elses2
s
−→ σ, Γ, s1

σ,Γ : if FF then s1 elses2
s
−→ σ, Γ, s2

σ,Γ : while x do s
s
−→ σ, Γ, if x then s;while x do s else skip

GLOBAL RULES σ,Γ, s → σ′,Γ′,s′

σ,Γ : e
e
−→ e′

σ,Γ, E[e]e → σ,Γ,E[e′]e
σ,Γ : s

s
−→ σ′,Γ′,s′

σ,Γ E[s]s → σ′,Γ′,E[s′]s
[G-EXPR] [G-STMT]

Figure 6. Operational Semantics

is larger than a pre-defined thresholdτs, the tag of the result
value is set toF . Intuitively, this corresponds to when a value
with an inflated error is added to a much larger value with a
trivial error, the inflated error is suppressed. Rule [ADD-FT ]
is similar.

If both operands are tagged withF , we test if the addition
causes any cancelled bits. If the number of cancelled bits is
larger than a pre-defined thresholdτc, we consider there is an
inflation of the relative error associated with the result value
and tag the result withT. In later sections, we will study the
soundness and completeness of the semantic rules and the
effect of threshold selection. Subtractions are handled ina
way similar to additions and thus their rules are omitted.

For multiplications, the tag of the result is the disjunc-
tion of the tags of the operands (Rule[MULTI] ). Intuitively,
multiplying a valuev1 with a significant error with another
valuev2 enlarges both the value and its error with the same



statements
Execution 1 Execution 2

op1(x, ∆x) op2(x, ∆x) result(x, ∆x) Rule op1(x, ∆x) op2(x, ∆x) result(x, ∆x) Rule

inv J (a):{
...

1 det=a[0]*c[0]; 0.00 inf −1.90 3E-17 −0.00 inf MULTI 2.92 0 7.58 4E-17 22.11 6E-17 MULTI
2 t1=a[1]*c[1]; 0.00 inf 0.00 inf 0.00 inf MULTI 2.92 0 −7.58 4E-17 −22.11 5E-17 MULTI
3 det=det+t1; −0.00 inf 0.00 inf 0.00 inf ADD-TT 22.11 6E-17 −22.11 5E-17 -1.4E-14 0.013 ADD-FF
4 t2=a[2]*c[2]; 1.46 0 1.90 2E-17 2.76 7E-17 MULTI 2.92 0 0.00 inf 0.00 inf MULTI
5 det=det+t2; 0.00 inf 2.76 7E-17 2.76 7E-17 ADD-TF -1.4E-14 0.013 0.00 inf -1.4E-14 0.013 ADD-TT
6 ...
7 vol=det/6; 2.76 7E-17 6.00 0 0.46 7E-17 MULTI -1.4E-14 0.013 6.00 0 -2.4E-15 0.013 MULTI
8 b1=(vol60); 0.46 7E-17 0.00 F -2.4E-15 0.013 0.00 F
9 if(b1) report(); F F fail

}

Table 2. Two partial execution traces from183.equake. Relative errors are detected and propagated according to the rules
in Fig. 6. Shaded cell indicates that the variable carries aninflated relative error. In Execution 1, relative errors getsuppressed
at line 5; while in Execution 2 inflated errors are detected atline 3 then flow to the discrete factor at line 9.

factor and hence the relative error remains the same. Divi-
sions are similarly handled.

For the library functionsin(), since the function behaves
differently with different inputs, i.e. sometimes small input
errors induce large output changes whereas in other cases,
large input errors induce trivial output differences, we have
to tag the result differently based on both the operand tag
and the operand value.

∆sin(x) =
∆̂sin(x)

sin(x)
=

d sin(x)
d x × ∆̂x

sin(x)
=

cos(x)× (∆x×x)
sin(x)

From the above equation, we can observe that the inflation of
the relative error is∆sin(x)/∆x = cos(x) ·x/sin(x). Accord-
ing to Rule [SIN], if the inflation factor is larger than 2τc,
which corresponds to having more thanτc cancelled bits,
the tag is set toT. Observe that in some cases, the inflation
factor can be smaller than 1 and close to 0, in such a case,
it suppresses the operand error instead. Therefore, if the fac-
tor is smaller than 2−τs, with τs the threshold for suppres-
sion in Rules [ADD-TF/FT ], the tag is reset toF . For other
cases, the operand tag is propagated to the result. We han-
dle other mathematical library functions in a similar fashion.
Note that the input ranges that cause the different behav-
ior can be pre-computed based on the thresholds so that we
simply determine if the operand value falls in these ranges
at runtime, without performing the expensive trigonometric
function evaluations.

For an assignment statement, the value is saved in the
store and the corresponding tag is saved in the error store.
If the assignment is a type cast, depending on the tag and the
value, the statement is evaluated differently. More specifi-
cally, if the floating point operand is tagged withT, meaning
that the relative error is significant, discrete differences may
be induced. Hence the execution is considered unstable. If
the operand is tagged withF , but the value is very close to
the boundary of a discrete value, which can be detected by
observing the cancelled bits of (v-(int)v), discrete differences
may be induced and the execution is considered unstable. If
the right-hand-side (RHS) of an assignment is a relational
operationv✶ 0, the execution is considered unstable ifv is

tagged withT. The predicate in a conditional statement is
similarly handled.

The global rules are standard.

Example.Table 2 shows the propagation of relative errors in
part of183.equake. The code snippet computes the deter-
minantdet for a given Jacobian matrix ina. Two separate ex-
ecutions are presented. In Execution 1, some of the values in
arraya have been tagged withT upon entering the function,
denoted as shaded cells. For example,a[0] anda[1] at lines 1
and 2, respectively, hold inflated relative errors from previ-
ous computation. Since their values are very small, the rela-
tive errors∆a[i] are very large,in f in both cases (with double
precision). As a result, the computation results at lines 1,2,
and 3 also carry inflated errors, and thus are tagged withT
as well according to Rules [MULTI ] and [ADD-TT ]. The
errors get suppressed at line 5 because of Rule [ADD-TF ],
where the operanddet tagged withT is added to a large
valuet2 tagged withF .

In Execution 2, initially values in arraya are all tagged
with F . Cancelled bits are detected during the computation
at line 3 by Rule [ADD-FF]. The two operands and their
relative errors are as follows3.

det= 22.1090526719999829..., with ∆̂det = 1.3E− 15.
t1 =−22.109052671999997..., with ∆̂t1 =−1.1E−15.

When performingdet+ t1, there are 50 cancelled bits.
The result isdet= −0.0000000000000142..., with ∆̂det =
1.8E − 16 and∆det = ∆̂det/det≈ 0.013, which is roughly
250 times of the relative errors of the operands. Note that
∆det∗250 ≈ 0.068 and∆t1 ∗250 ≈ 0.056.

The inflated error is propagated afterwards, which even-
tually flows into the discrete factor at line 9. The execution
is hence considered unstable.

6. Soundness and Completeness
In Section 3, we define the problem as detecting if errors
can induce discrete differences at discrete factors. In this
section, we discuss the soundness and completeness of our

3 Note that our technique does not compute actual errors or relative errors.
Here we present error values just for the illustration purpose.



method regarding the problem definition. Recall that we use
inflation bits to approximate significant relative errors. As a
result of the approximation, the proposed technique is nei-
ther sound nor complete. Next, we discuss the conditions
that affect completeness and soundness. Note that we will
show in Section 8 that with appropriate threshold settings,
the technique does not miss detecting any unstable execu-
tions in practice, and the input subranges in which instability
is detected are trivial compared to the whole input ranges.

The discussion consists of two parts. The first one dis-
cusses the essence of cancelled bits and the second part dis-
cusses the propagation rules.

6.1 The Essence of Cancelled Bits

Cancelled bits have been used as an indicator for instability
in existing works [4, 25], in which executions are considered
unstable if there is any operation causing a large number of
cancelled bits. However, this causes a lot of false warnings
because a lot of inflated errors are suppressed and thus do
not cause any problems. Hence in our approach, we only
use them to detect inflation of relative errors, and we further
track the propagation and suppression of inflated errors. In
the following, we discuss a few issues critical to our method.

I1: Cancelled Bits May not Mean Relative Error Infla-
tion. Consider a subtractionx− y. The relative error of the
result is|(∆̂x− ∆̂y)/(x− y)|. The occurrence ofd cancelled
bits during the subtraction means thatx− y is around 2d

times smaller than the maximum ofx andy. If |∆̂x− ∆̂y| has
an exponent close to that of∆̂x or ∆̂y, the result’s relative er-
ror is around 2d times larger than that of the operand. How-
ever, observe that if̂∆x− ∆̂y is close to 2d times smaller than
∆̂x and∆̂y, which is similar to having close tod cancelled bits
if ∆̂x− ∆̂y were performed with finite precision, the inflation
does not happen. In practice, the event of∆̂x− ∆̂y being 2d

times smaller is independent of the event ofx− y havingd
cancelled bits, aŝ∆x and∆̂y are mainly caused by precision
limitations. It is hence unlikely these two events happen si-
multaneously.

However, we do observe this becomes problematic in
some rare cases, particularly whenx andy are semantically
equivalent. It meansx and y are computed from the same
inputs, through the same/equivalent sequences of operations,
even though they may be computed separately. In this case,
x= y and∆̂x = ∆̂y. Our technique will detect a large number
of cancelled bits caused byx− y. However, there is no
relative error inflation.

Fig. 7 shows one example from187.facerec. It scans
a large image to locate the part that is the most similar
to a small image. The best fit position with the highest
similarity is recorded inpos. The algorithm has two rounds.
In the first round (lines 1-6) it iterates through each position
at a given stride and identifies the best fit position. Then
it performs the second scan (lines 9-14) around the best
position found in the first round, but at a smaller stride.

/* first scan with grid spacing given by Step */
pos = (0, 0); similarity = 0.0;

1 for (LLY = StartY; LLY <= EndY; LLY += Step) {
2 for (LLX = StartX; LLX <= EndX; LLX += Step) {
3 current = GraphSimFct (LLX, LLY, ...);
4 if (current > similarity) {
5 similarity = current; pos = (LLX, LLY);
6 } } }

/* second scan around best position found previously */
7 StartY = pos(2)-((Step+1)/2); EndY = ...;
8 StartX = pos(1)-((Step+1)/2); EndX = ...;

9 for (LLY = StartY; LLY <= EndY; LLY += Scale) {
10 for (LLX = StartX; LLX <= EndX; LLX += Scale) {
11 current = GraphSimFct (LLX, LLY, ...);
12 if (current > similarity) {
13 similarity = current; pos = (LLX, LLY);
14 } } }

Figure 7. Pseudocode snippet from187.facerec.

During this process, it is likely that variablescurrent and
similarity have exactly the same value (and the same error)
in the predicate at line 12, whenpos identified in the first
round coincides withLLX andLLY at line 11. In this case,
current andsimilarity are semantically equivalent, as they
are from the same inputs and go through the same sequence
of operations. The cancellation does not lead to any relative
error inflation.

Note that we cannot simply preclude all addition/subtrac-
tion operations that yield 0 because ifx andy are not seman-
tically equivalent,x− y = 0 means large inflation. In fact,
this is the common case.

I2: Only Addition and Subtraction Can Cause Inflation.
According to the operational semantics in Fig. 6, we only de-
tect cancelled bits in addition and subtraction operations. It
is hence important to show that other binary operations can-
not cause inflation. In the following discussion, we assume
two variablesx andy with the same sign, and∆x = ∆y = τ
for simplicity. Note that∆x = |∆̂x/x|.

For multiplicationx∗y, we have the following.

x̂ · ŷ= (x+ ∆̂x) · (y+ ∆̂y) = x ·y+x · ∆̂y+y· ∆̂x+ ∆̂x · ∆̂y

∆x·y = | x̂·ŷ−x·y
x·y |= |

x·∆̂y+y·∆̂x+∆̂x·∆̂y
x·y |

6 |
x·∆̂y
x·y |+ | y·∆̂x

x·y |+ |
∆̂x·∆̂y

x·y |= |
∆̂y
y |+ | ∆̂x

x |+ |
∆̂y

y
·

∆̂x

x
|

[1]

Observe that normally the sub-expression [1] in the above
formula is orders of magnitude smaller than the other two
sub-expressions and hence can be ignored. Moreover, since

|
∆̂y
y |= ∆y = τ and| ∆̂x

x |= ∆y = τ, we have

∆x·y 6 ∆x+∆y = 2τ
It shows that the growth of the relative error in multipli-

cation is normally bounded by a factor of 2. In practice, the
growth is usually much smaller than 2.

Consider divisiony/x, which can be rewritten asy∗(1/x).

∆1/x =
| 1
x+∆̂x

− 1
x |

|1
x |

= |
x

(x+ ∆̂x)
−1|= |

∆̂x

(x+ ∆̂x)
|6

τ
1− τ



Note that sinceτ is a very small number, usually slightly
larger than 0, the growth factor of the relative error is a
number slightly larger than 1.

Consider addition (of two operands with the same sign).

∆x+y =
|(x+ ∆̂x+y+ ∆̂y)− (x+y)|

|x+y|
=

|∆̂x+ ∆̂y|

|x+y|
≤ τ

The relative error does not grow.
Therefore normally relative errors can only get inflated by

subtractions (or additions of operands with different signs).
Note that even in subtractions, if the two operands are not
very close, inflation does not happen either.

I3: Unstable Executions Always Involve Inflation In
Practice. An important question is whether inflation (i.e.
evidenced by a large number of cancelled bits) is a neces-
sary condition of unstable execution. In theory, it is not true
as errors can gradually aggregate through operations and
eventually become comparable to the corresponding val-
ues, leading to discrete differences. Such examples can be
constructed. However, in the programs we have studied, we
haven’t encountered any case in which an unstable execu-
tion is caused by incremental growth of errors (i.e. without
the presence of inflation)4. The reasons are as follows. The
growth of errors is usually very slow without inflation based
on our above discussion inI2. Moreover, error aggregation
may enlarge or diminish errors.

6.2 Soundness and Completeness of Propagation Rules

The semantic rules in Fig. 6 are unsound due to the approx-
imation. For instance, upon the addition of two operands
tagged withT, the result value is always tagged withT (Rule
[ADD-TT ]). If the two operands are semantically equivalent
except that they have different signs, their errors will be ex-
actly the same but with different signs. Consequently, they
cancel each other out. However, this cannot be detected by
our approximation. Also, according to the rules for type cast
and relational operations, we consider an execution unstable
if a T tag can reach a discrete factor. However, a significant
relative error (as indicated byT) does not necessarily induce
any discrete difference. It also depends on the signs of the
actual error and the value. For instance, assume a valuev in
the actual world is slightly larger than 0.0. A type cast to the
integer domain gets 0. If̂∆v has a positive sign, even though
it is comparable to the value, it does not cause discrete dif-
ference between the actual world and the ideal world. Un-
fortunately, it is infeasible to track signs without computing
explicit error values.

In practice, the completeness of our technique is largely
affected by the conservativeness of the two thresholdsτc and
τs. Recall thatτc decides the occurrence of inflation andτs

4 We used the high precision library (HPL) to precisely computethe error
for each value encountered during execution. For each discrete difference
observed by the HPL method, we could always backtrack to an inducing
inflation (with τc=48).

Figure 8. An example for missing unstable execution. In the ideal
world, a= 0, x= 0.5 and hencey= T, which is different from the
actual world result in (b). However, our approximation cannot catch
the instability problem. Symbol 1.2 means the second sub-step in
statement 1.

determines if an inflated error is suppressed when a smaller
operand withT tag is added to a much larger operand.
The two thresholds are currently configured based on our
experience. In Section 8, we study the effect of different
threshold configurations empirically. Our experiment shows
that when appropriate thresholds are set, our technique does
not miss any unstable executions.

However, since our technique only uses one bit to approx-
imate error related information for a value, there are casesin
which even conservative thresholds fail to catch unstable ex-
ecutions. Consider the example in Figure 8. According to
Rule [ADD-TF ], the propagation is cut off at step 1.3 when
the smaller value 0 with inflation is added to the large value
1 without inflation. As a result, the execution is considered
stable althoughy has a different boolean value from that in
the ideal world. The root cause is that the single inflation bit
is insufficient to model that the actual error is much larger
than the value 0 at step 1.3. A scheme that tags a value with
more bits and has more sophisticated propagation rules may
mitigate this problem. We will leave it to our future work. In
our empirical study, we haven’t encountered such cases.

7. Handling Practical Challenges
A fundamental assumption of our technique is that an ex-
ecution is unstable if errors can cause discrete differences.
The intuition is that discrete differences leads to different
forms of the output mathematical function such that output
values have discontinuous differences. However, due to the
flexibility of modern programming languages and the nature
of certain computation, discrete differences may not always
lead to discontinuous output differences.

7.1 Continuous Cores

Continuous core was defined in [2] as a program region (usu-
ally a conditional statement and its branches) in which con-
trol flow variations do not cause output discontinuity. In our
context, we should not consider an execution unstable if er-
rors cause (discrete) control flow differences inside continu-
ous cores.

Fig. 9 (a) shows a continuous core code snippet from [2].
It returns the maximum value of an array. Note that while [2]
focuses on studying the effect of continuous cores on exter-
nal input uncertainty, we focus on their effect on execution



1 o= A[0]
2 for i := 1 to c
3 if o< A[i]
4 o:=A[i];

10 if (x< y)
11 o:=x/y
12 else
13 o:=y/x

(a) (b)

Figure 9. Continuous core examples.

stability in the presence of internal representation errors. In
the former case, input errors are usually large enough to
be representable, sometimes comparable to the input val-
ues, whereas representation errors are introduced because
they are not representable. In the example, assume an array
A[0− 2] = {1.0, 2.00000000001, 2.0}. Observe the com-
parisonA[1] < A[2] at line 3 (in the second iteration of the
loop with o ≡ A[1]) in the actual world. The subtraction
A[1]−A[2] causes a large number of cancelled bits. The rel-
ative error is hence considered inflated. It is propagated im-
mediately to the predicate at line 3, which is a discrete factor.
Hence, according to our semantics, the execution is consid-
ered unstable because a different branch outcome may be
taken in the ideal world.

However, the execution is stable. Because even if the
predicate has different branch outcomes in the two worlds,
A[1] andA[2] are so close to each other that selecting either
one has little effect on the rest of the execution. Particularly,
The relative error of the output valueo is essentially|(Â[2]−
A[1])/A[1]| (assumingA[1] was selected in the actual world),
which is a very small value. Therefore, we shall suppress
warnings inside the continuous core.

Fig. 9 (b) shows another example we have found in prac-
tice. Assumex = 2.0 andy = 2.00000000000001 and their
correspondences in the ideal world are ˆx= 2.0000000000001
and ŷ = 2.0. In the actual world, the subtraction in line 10
has a large number of cancelled bits and the result is imme-
diately used in the predicate. Hence, the execution is flagged
unstable. In fact, the cancelled bits do correctly indicatethe
control flow differences between the actual world and the
ideal world. However, the control flow differences are not
important for the rest of the execution. More particularly,in
both worlds, the outputo has a value slightly smaller than 1.

We use a profiling technique similar to that in [2] to iden-
tify potential continuous core candidates. We manually in-
spect these candidates, which are in a small number (less
than 20 in the largest program and only a few on average)
and have fixed coding patterns such as selecting the maxi-
mum/minimum value from a set. We annotate the true cores.
During execution, our runtime takes the annotations and sup-
presses warnings inside the annotated regions.

7.2 Predicates in Convergence Tests

In practice, a lot of computation tasks are iterative. An it-
erative method is supposed to generate a sequence of im-
proving approximate solutions that eventually converge. Ide-
ally, an iterative algorithm must be supported by a mathe-
matically rigorous convergence analysis; however, heuristic-

1 x=...;
2 repeat {
3 old=x;
4 x=F(x); /* F() is the iterative function*/
5 i++;
6 if (i>bound) exit(non-convergent);
7 } until (|x-old|< t);

Figure 10. Iterative algorithm example.

based iterative methods are also common. In the latter case,
the methods may not converge. The implementation of an it-
erative algorithm must have a termination predicate that usu-
ally compares a value representing the solution generated by
the current iteration and the value by the previous iteration.
If their difference is small enough, the procedure is consid-
ered converged. If the algorithm is not provably convergent,
a constant iteration bound is usually provided such that an
execution is considered not converging if the solution differ-
ence is still large when the iteration bound is reached. The
code snippet in Fig. 10 abstracts such a template.

Since the termination threshold is usually a very small
floating point value, errors may induce different branch out-
comes at the convergence test (e.g. line 7 in Fig. 10). If
the algorithm is provably convergent, which can be inferred
from the absence of an iteration bound from the program, we
suppress any warnings generated at the convergence predi-
cate. Intuitively, assume the procedure terminates at theith
iteration in the actual world but at the(i + c)th iteration in
the ideal world, withc a positive or negative integer. The
solutions in the two worlds do not differ much due to the
iterative nature of the computation.

If the algorithm is not provably convergent, we have to
take special care. We handle the following two sub-cases dif-
ferently. Our discussion is based on the template in Fig. 10.

• If the (bound− 1)th instance of the convergence test is
flagged unstable, i.e. the result of|x−old| − t is tagged
with T, we consider the execution unstable. Assume the
predicate at line 7 takes the true branch in the ideal world
(and hence the procedure terminates), the significant er-
ror may induce a different branch outcome in the actual
world (and hence the procedure gets to the(bound)th
iteration and then fails to terminate at line 6). In other
words, the output has discrete difference (i.e. having a
convergent solution vs. no solution). It is similar when
line 7 takes the else branch in the ideal world.

• If the convergence test is detected to be unstable at theith
instance withi < bound− 1, we consider the execution
stable and suppress the warning. This is because although
the significant error may cause different branch outcomes
at the particular instance of line 7, the difference only
leads to different iterations of computation, which only
cause continuous output differences.

While these are the prominent challenges we have en-
countered when applying the technique to a set of real world
programs, there may be others given the expressiveness of
modern programming languages.



8. Evaluation
We implement the predictor by performing source code in-
strumentation on subject programs. We modify GCC-4.7.2
to instrument programs on GIMPLE IR. C/C++ and Fortran
languages are naturally supported through the GCC fron-
tend. Instrumented binaries execute at their original preci-
sion, with the add-on runtime system that monitors relative
error inflation and propagation. Upon detecting an instability
issue, the tool allows automatically switching to high preci-
sion. Particularly, programs are restarted with the high preci-
sion version which is statically generated by program trans-
formation in the compiler.

We perform experiments to evaluate the efficiency and the
effectiveness of our technique. We compare our technique
with the state-of-the-art technique that relies on HPL [4],
in which high precision values are stored in addition to
original values, and side-by-side comparisons are performed
to ensure execution stability. When implementing the HPL
technique, we choose 128-bit quad double types as the HPL,
which are slightly faster than using the GNU MPFR library
as in [4].

In addition, we also implement another instability pre-
dictor that dynamically tracks the propagation of actual er-
rors (not relative error). It records the corresponding error
for each floating point variable, in the same precision as the
variable. Note that separating an error from its correspond-
ing value allows us to precisely represent the error as their
exponents are allowed to be substantially different. For each
operation, we compute the result error from the operand er-
rors and the representation error of the result value itself.
Such computation is much cheaper than high precision oper-
ations. Consider equation (1) in Section 4. Upon the addition
operation, the result error is the aggregation of∆̂x+ ∆̂y and
the representation error ofx+ y. However, the latter cannot
be precisely computed asx+ y is performed at normal pre-
cision. It is hence over-approximated by the value denoted
by the least significand bit of the result value for safety. This
approach is therefore more efficient but less precise than the
HPL technique. We call it theapproximatesolution. The rea-
son we implemented this method and compared it with oth-
ers is that it is the most straightforward optimization of the
expensive HPL solution.

Our experiments are performed on an Intel Core-i7
2.80GHz machine with 8GB RAM.

8.1 Performance

We evaluate the runtime overhead for the aforementioned
three approaches, HPL, approximate and the proposed pre-
dictor. We use SPEC CFP 2000, a biochemical data process-
ing programdeisotopefrom [2], and poly from the moti-
vating example in Fig. 2 (c), as the benchmark. We use the
test input data set for SPEC programs except191.fma3d.
The execution time for191.fma3d was too short with the
test input, leading to difficulties in overhead measurement.

Hence we used the larger training input for this program.
The results are shown in Table 3. Column 2 shows the native
execution time. Columns 3-4 present the results of HPL. Ob-
serve that the method is expensive, causing 109 times slow
down on average. Such overhead is lower than what was re-
ported in [4].

Columns 5-6 show the results of the approximate ap-
proach that monitors errors. The average slowdown is 34
times, which is about 3 times faster than the HPL approach.

The last two columns present the result by the proposed
predictor. We collect the data withτc = 48. It incurs a slow-
down between 3.18 and 22.80, with an average of 7.91. It
is 14 times faster than HPL. One outlier is172.mgrid,
which degrades the performance by over 20 times. Note
that172.mgrid also incurs large overhead in the HPL ap-
proach. The reason is that it is floating point computation in-
tensive. Any instrumentation to the program introduces large
performance penalty. Excluding this program, the average
slowdown for the predictor is 6.84x. This offers more prac-
tical use than the HPL approach for on-the-fly detection of
instability.

program
native HPL approximate ours
time time s/d time s/d time s/d

168.wupwise 1.46 106.69 73.08 41.69 28.55 9.50 6.51
171.swim 0.17 11.27 66.29 4.81 28.29 1.02 6.00
172.mgrid 1.96 855.14 436.30 88.38 45.09 44.69 22.80
173.applu 0.06 8.32 138.67 2.33 38.83 0.52 8.67
177.mesa 0.36 16.25 31.86 10.44 29.00 1.40 3.89
178.galgel 0.56 46.73 83.45 18.92 33.79 4.63 8.27
179.art 0.37 15.97 43.16 5.77 15.59 2.97 8.03
183.equake 0.14 10.11 72.21 3.74 26.71 0.82 5.86
187.facerec 1.09 109.58 100.53 29.06 26.66 6.18 5.67
188.ammp 1.90 108.77 57.25 40.07 21.09 6.05 3.18
189.lucas 0.72 81.05 112.57 23.63 32.82 6.47 8.99
191.fma3d 11.97 1187.68 99.22 510.35 42.64 85.08 7.11
200.sixtrack 1.41 249.56 176.99 73.52 52.14 11.05 7.84
301.apsi 1.17 121.58 104.09 65.20 55.82 8.35 7.15
deisotope 0.02 0.50 33.00 0.39 19.50 0.13 8.67
AVERAGE 109.46 34.07 7.91

†time is in seconds; s/d stands for slowdown.

Table 3. Performance.

Breakdown of Execution Time We further investigate the
distribution of execution time for our predictor to understand
the overhead of individual pieces. The breakdown is mea-
sured by computing the differences between enabling and
disabling each component in the predictor. The results are
shown in Fig. 11. Tag propagation, colored in red, domi-
nates the execution time for the majority of the programs.
It contributes to 35% to 70% of the whole execution. For
each floating point operation, we have to compute the ad-
dresses of the operand tags and the result tag, load the tags,
and perform tag operation. The purple portion in each bar
represents the time spent on detecting error inflation. The
green portions include costs for error suppressions and oth-
ers.

8.2 Effectiveness

In this experiment, we compare the effectiveness of the dif-
ferent approaches. We only report results for the programs
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Figure 11. Breakdown of the Overhead.

that have instability problems. For the other programs, all
the three approaches correctly detect that they are stable.The
experiment is similar to that in Fig. 2. We take a large num-
ber of samples in a small input sub-domain of each program.
For each sample, we run the three techniques to detect if it
is stable. In HPL, if any discrete differences are observed at
discrete factors between the regular precision version andthe
high precision version, the execution is considered unstable.
In the approximate approach, an execution is unstable if the
floating point values at discrete factors could cause discrete
differences when they are aggregated with the computed er-
rors.

For our predictor, we also present the results with differ-
ent settings of thresholdτc, which is the threshold for decid-
ing inflation (Rule [ADD-FF]). The other thresholdτs that
detects suppressions (Rule [ADD-FT/TF ]) is always set to
4. The results are not sensitive toτs and thus we omit the
data regarding the different settings ofτs.

The results are shown in Table 4. The second column
shows the different methods/configurations. Theoverall
rows indicate the total samples collected and the sampling
domain. These samples are selected in a very small range
around the original input. The third column shows the num-
ber of unstable samples. The fourth column shows the per-
centage of unstable samples over the total number of sam-
ples. The last column shows the unstable sample ranges.
Some are not continuous, meaning the range may have sta-
ble and unstable sub-ranges.

We have the following observations. (1) Even SPEC pro-
grams are unstable. Considergalgel. In many samples,
the high precision version produces results but the corre-
sponding regular precision version fails to produce any re-
sults, or vice-versa. Note that the unstable samples reported
by HPL are essentially true positives. (2) Our detector re-
ports 7.5-93 times more problematic cases with the setting
of τc = 48, when compared with the ground truth (i.e. the re-
sults by HPL). However, the percentage of the reported cases
over the entire input range is very very small. This implies

in most cases (over 99.999996%5), our technique can cor-
rectly predict that an execution is stable, with low overhead.
(3) Our detector has comparable effectiveness as the approx-
imate approach withτc = 48. Note that the proposed predic-
tor is 5 times faster. (4) The number of false positives of our
technique grows whenτc decreases because it admits more
inflations. However, even with the most conservative setting,
the percentage of the unstable cases is still very small. Note
that the maximum possibleτc is 53 because there are 53 bits
for the significand in the representation of a double preci-
sion variable. (5) There are false negatives whenτc gets
close to the maximum. When havingτc = 52 it misses some
unstable cases for187.facerec andpoly. It also fails
to capture some unstable cases for178.galgel with τc

greater than 48. Our detector does not miss any true posi-
tives withτc = 48. For programs other than178.galgel,
a more aggressive thresholdτc = 50 does not cause any false
negatives. Observe that178.galgel has a lot of unstable
executions, which may suggest that one should use a more
conservative setting when the number of warnings is high.

Continuous core and convergence test annotations are im-
portant for our technique. For the first four programs in Ta-
ble 4, it always reports unstable for every execution, if there
is no annotation of continuous cores. Convergence tests are
commonly used in178.galgel. Without the convergence
test annotations, we receive a lot of false warnings for this
program. In both cases, all the false warnings are issued
within some continuous cores or right at some convergence
test predicates.

We have also evaluated a traditional technique that is
solely based on cancelled bit detection [25]. The technique
issues a warning whenever a larger number of cancelled bits
are detected. Our experiment shows that it always reports
warnings for all the executions (including the stable ones)of
the first four programs in Table 4, even after we suppress the
warnings in continuous cores and convergence tests. This is
because bit cancellation is very common in programs. It may
not be harmful unless the imprecise values are further used
in critical places.

8.3 Tracing the Cause of Instability Issues

We extend our predictor to trace the root cause of instability
issues. The extension is straightforward. In addition to the
inflation bit, we also record and propagate the location that
an error inflation originates. For a binary operation with both
operands tagged withT, we propagate the location record of
the larger operand. In the future, we plan to develop a set
based implementation to propagate the records from both
operands. When an instability issue arises, the cause can be
quickly identified from its location record. We discuss one
real-world example below.

5 This lower bound is fromgalgel with τc = 48. The problematic range
is only 3.28E−6% of the input range such that 99.999996% of the inputs
are correctly predicated as stable.



program approach # of cases % detected range

equake HPL 3 3.00E-12% [0.8690799016130847, 0.8690799016130848]
approx 158 1.58E-10% [0.8690799016130779, 0.8690799016130936]

ours(τc=36) 1155972 1.16E-6% [0.8690799014974877, 0.8690799016130848]
ours(τc=40) 72247 7.22E-8% [0.8690799016058602, 0.8690799016130848]
ours(τc=44) 4516 4.52E-9% [0.8690799016026333, 0.8690799016130848]
ours(τc=48) 279 2.79E-10% [0.8690799016130570, 0.8690799016130848]
ours(τc=50) 71 7.10E-11% [0.8690799016130778, 0.8690799016130848]
ours(τc=52) 20 2.00E-11% [0.8690799016130829, 0.8690799016130848]

overall 1E+14 [0.8650, 0.8750]
facerec HPL 849 8.49E-10% [0.596265750063108, 0.596265750064926]

approx 4217 4.22E-9% [0.596265750061204, 0.596265750066312]
ours(τc=36) 59457611 5.95E-5% [0.596265720335802, 0.596265779793411]
ours(τc=40) 2716295 2.72E-6% [0.596265748204800, 0.596265751922657]
ours(τc=44) 232165 2.32E-7% [0.596265749946110, 0.596265750181511]
ours(τc=48) 12613 1.26E-8% [0.596265750056901, 0.596265750071028]
ours(τc=50) 2643 2.64E-9% [0.596265750062749, 0.596265750066600]
ours(τc=52) 296 2.96E-10% [0.596265750063257, 0.596265750065373] †

overall 1E+14 [0.5900, 0.6000]
galgel HPL 57695 5.77E-8% [0.8184459012000007, 0.8184459012253359]

approx 4797213 4.80E-6% [0.8184459002708479, 0.8184459022880854]
ours(τc=36) 255406459 2.55E-4% [0.8184458871521804, 0.8184459127084799]
ours(τc=40) 126738078 1.27E-4% [0.8184458934897399, 0.8184459061871598]
ours(τc=44) 37972131 3.80E-5% [0.8184458998299998, 0.8184459039575860]
ours(τc=48) 3278089 3.28E-6% [0.8184459002196792, 0.8184459020723309]
ours(τc=50) 1801215 1.90E-6% [0.8184459013178548, 0.8184459020723309] †
ours(τc=52) 1233455 1.23E-6% [0.8184459019084903, 0.8184459020723309] †

overall 1E+14 [0.8184, 0.8185]
deisotope HPL 2 2.0E-12% [1.1156381266106556, 1.1156381266106557]

approx 18 1.8E-11% [1.1156381266106556, 1.1156381266106573]
ours(τc=36) 167157 1.7E-7% [1.1156381265939401, 1.1156381266106557]
ours(τc=40) 10447 1.0E-8% [1.1156381266096111, 1.1156381266106557]
ours(τc=44) 653 6.5E-10% [1.1156381266105905, 1.1156381266106557]
ours(τc=48) 40 4.0E-11% [1.1156381266106518, 1.1156381266106557]
ours(τc=50) 7 7.0E-12% [1.1156381266106551, 1.1156381266106557]
ours(τc=52) 5 5.0E-12% [1.1156381266106553, 1.1156381266106557]

overall 1E+14 [1.1100, 1.1200]
poly HPL 2 2.0E-12% [1.8408964152537146, 1.8408964152537147]

approx 211 2.1E-10% [1.8408964152537041, 1.8408964152537260]
ours(τc=36) 61177 6.1E-8% [1.8408964152506552, 1.8408964152567738]
ours(τc=40) 3821 3.8E-9% [1.8408964152535234, 1.8408964152539065]
ours(τc=44) 235 2.4E-10% [1.8408964152537028, 1.8408964152537269]
ours(τc=48) 15 1.5E-11% [1.8408964152537132, 1.8408964152537162]
ours(τc=50) 2 2.0E-12% [1.8408964152537146, 1.8408964152537147]
ours(τc=52) 0 0.0% †

overall 1E+14 [1.8400, 1.8500]

Table 4. Comparisons of the detected problematic ranges with different predictors.† following a detected range indicates that
there are false negatives for the current setting ofτc.



void syshtn(Y, ...){
double *H;
...

62 H(i) = ...;
63 for (...)

Y(i) = Y(i) - H(i);
...

}

void nwtn(){
while (...){

110 call Fname(Y, ...);
...

/* d=DOT PRODUCT(Y,Y); */
122 for (...){
123 d += Y(i) * Y(i); }
124 if (d<eps2){ break;}

} }

Figure 12. Pseudocode snippet from178.galgel.

Fig. 12 shows a pseudocode snippet from178.galgel.
In one of the executions, the program produces a different
output from the one by HPL. The observed difference lies
in the predicate outcome at line 124 in function nwtn(). The
HPL version takes the true branch to jump out of the loop
and continues, whereas the regular version takes the false
branch.

Our predictor successfully reports an unstable run due
to the predicate at line 124. It shows variabled carries an
inflated error when comparing againsteps2. In addition, it
further indicates that the cause of the inflation is due to the
cancellation at line 63 in function syshtn() which was called
earlier from line 110.

We verify the cause of the issue by investigating the com-
putations at line 63, where the elements of arrayY get up-
dated. Before performing the subtraction ofY(i)−H(i), nei-
ther of them is tagged withT. TakingY(7) andH(7) for ex-
ample,Y(7)=-15.84869578667144,H(7)=-15.8486957866
7145 and the relative errors are both around 2.65E-9.Y(7)
is tagged withT after the subtraction, since 50 bits get can-
celled. As a result, it has a value ofY(7)=2.88E-11, but the
relative error ofY(7) grows up to 0.003. Most other ele-
ments inY are also tagged withT similarly. From this point
on, Y carries the inflated errors in its following execution.
When getting back to the computation ofd at line 123, the
inflated errors eventually propagate fromY(i) to d. During
this process, none of the productY(i)∗Y(i) is large enough
and tagged withF to suppress the inflated errors. Upon fin-
ishing the loop,∆d =0.015, which is correctly captured by
theT tag. Hence it triggers a warning at the predicate. With
the help of the predictor, the cause of the instability is easily
located. However, the implementation around the cause is so
complex that a more stable version may be difficult to con-
struct, which supports our argument that online prediction
plus on-demand precision hoisting is a more suitable solu-
tion.

9. Limitations
We propose to address the floating point instability problem
in a way different from traditional techniques. We use run-
time prediction to determine if an execution is stable. For the
very few unstable executions, we allow the user to switch to
running high precision versions on demand. However, as an
initial step along this direction, our technique has a number
of limitations. First of all, its requires setting two thresholds.
While we were able to find a uniform configuration for the

programs we have considered, it is unknown if the config-
uration is equally effective for other programs. Second, it
requires the user to annotate continuous cores and conver-
gence test predicates. We argue that such annotations should
become an integral part of the programming language sup-
port for applications that have high demand for reliability. As
such, it will allow programmers to annotate their own code
during development. Advanced static analysis may also be
developed to determine continuous cores and convergence
test predicates. Third, the current implementation has non-
trivial overhead even though it is much faster than the HPL
solution and the approximate solution (Section 8). We no-
tice that similar dynamic analyses that propagate bits, such
as dynamic information flow tracking, may be much more
efficient than our technique (e.g. only 6.2% overhead for
server applications and 3.6 times overhead for SPEC pro-
grams were reported in [33]). However, when we try to ap-
ply similar optimizations, we encounter a number of unique
challenges for floating point programs. For example, the in-
struction pipeline behaves differently for integer and floating
point programs in the presence of instrumentation. We are
working on addressing these problems.

10. Related Work
The instability problem has been studied for a long time. The
most prominent difference between our work and many ex-
isting works is that existing techniques treat it as a debugging
problem. They try to locate the unstable statements using
various analysis, report them to the users, and hope they will
get fixed. However, our study shows that instability will not
happen for most parts of the input domain and they can be
suppressed by higher precision. Hence, we aim to develop
an efficient on-the-fly predictor to assure stability for most
executions, and only switch to using high precision compu-
tation when necessary. Also, a key advance of our work is to
leverage the concept of discrete factors to have a more pre-
cise error reporting criterion that is critical for a low false
positive rate.

Interval arithmetic [29, 31] uses an error range to repre-
sent a value. It updates ranges in a conservative way, leading
to over-sized ranges. Hence, people further propose affine
arithmetic [11, 13, 15] to represent errors as affine forms to
allow better precision. However, they are very expensive and
their goal is in-house testing and debugging. The state of the
art [10] has 3-5 orders of magnitude slow down and only
supports small programs. Researchers have proposed using
high precision library to precisely compute values and errors
during execution [1, 4]. In particular, the state-of-the-art [4]
is a dynamic analysis that makes use of a binary instrumenta-
tion engine to enhance a floating point program on the fly to
perform high precision computation. That is, upon executing
a single precision operation, the instrumentation executes
the corresponding high precision operation. The results of
the two precision levels are compared to detect possible in-



stability issues. However, high precision operations are very
expensive (e.g. [4] has 2 orders of magnitude slow down). In
contrast, our predictor has only 7.91 times slowdown. And
our precision loss is small in the picture of the whole input
domain. Monte Carlo Arithmetic (MCA) exploits random-
ness in floating point arithmetic [? ]. It executes a program
multiple times by randomizing floating point arithmetic op-
erators and operands. It studies roundoff errors statistically
from the results. The CADNA library [? ] performs stochas-
tic estimations of errors also by randomly selecting round-
ing modes at each operation. With randomization approach,
it can miss instability problems in certain situations [23]. It
is also expensive (90x slowdown for SPEC with CADNA li-
brary according to our experiment). In [25], a dynamic tech-
nique detects instability by monitoring bit cancellationswas
proposed. It is very expensive and has a large volume of false
positives.

There are also a large body of work on abstract interpre-
tation, SMT solving, model checking, and code perturbation
to tackle the representation error problem [5, 9, 12, 14, 16,
21, 27, 28, 30, 35]. Particularly, robustness analysis [7] tries
to statically prove that a floating point program is free from
instability problems. While it is quite successful in handling
simple programs, the mathematical complexity and the it-
erative nature of many real world floating point programs
are difficult to address by the technique. Moreover, as in-
stability problems are input dependent and rarely happen,
dynamic analysis like ours have the advantage of allow run-
ning the low precision program in most cases for efficiency
and switching to high precision on demand. It is especially
prefereable when completely fixing instability problems is
difficult.

There are some existing works focusing on external er-
rors. The error bounds for external errors are much larger
compared to internal representation errors. Program behav-
ior may vary a lot within external input error bounds. Monte
Carlo (MC) approaches are widely used [19] in handling ex-
ternal errors. White-box sampling [2] was recently proposed
to reduce the number of needed samples. It hashes discrete
values at discrete factors and uses the resulting hash values
to guide the sampling process. However, sampling cannot
be applied in our context as representation error bounds are
too small to be representable without using higher precision.
Static analysis has also been proposed to prove a program
is continuous [6, 17, 26] or robust [7, 34] in the presence of
input errors.

There are static analysis, symbolic execution, theorem
proving, and model checking techniques that focus on de-
tecting or proving the absence of logical floating point bugs
(e.g. divided-by-zero, overflow, and underflow) [3, 8, 18,
24]. Particularly, [3] features solving floating point con-
straints. They are usually heavy-weight analysis and they
focus on bug finding in programs. These bugs are different
from instability problems by nature.

11. Conclusion
We develop an online technique to monitor and predict float-
ing point program execution instability problems. We ob-
serve that in practice, only a very small portion of inputs
can lead to unstable execution and hence the expensive high
precision computation based approaches do not pay-off for
most inputs. We formally define an unstable execution as ex-
ecution in which errors cause discrete differences. The def-
inition allows us avoid explicitly computing errors, which
is very expensive. Instead, we abstract inflation of relative
errors as one bit, monitor the propagation of such bits, and
check if they can reach discrete factors. If so, the inflated
errors may induce discrete differences at these factors and
hence the execution is flagged unstable. The key challenge
is to detect places where the inflation bit propagation is cut
off, indicating the error is no longer inflated compared to its
value. We discuss the soundness and completeness of the
technique and the practical challenges that we have over-
come. Our experiments show that the technique can cor-
rectly classify over 99.999996% inputs as stable with a spe-
cific threshold setting (τc=48) while a traditional technique
that solely detects error inflation mis-classifies majorityof
inputs as unstable for some of the programs we studied.
Compared to the state of the art high precision computa-
tion based approach, our technique is much more efficient
(with an average overhead reduction of 14 times) and can
report all the unstable executions. Due to approximation,
our technique classifies 7.5-93 times more inputs as unsta-
ble (τc=48), when compared to the ground truth. However,
these inputs only count for 1.5E-11% - 3.3E-6% of the in-
put domain. In other words, in majority cases, our technique
has the same effect as the high precision approach. There-
fore, users can use our technique to make prediction with a
lower cost. For the very rare cases that are considered unsta-
ble by our predictor, our technique provides the capabilityof
automatically switching to high precision.
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merical abstract domains for static analysis. InProceedings
of the 21st International Conference on Computer Aided Ver-
ification, CAV ’09, pages 661–667, Berlin, Heidelberg, 2009.
Springer-Verlag.

[22] Fabienne Jzquel and Jean-Marie Chesneaux. Cadna: a library
for estimating round-off error propagation.Computer Physics
Communications, 178(12):933 – 955, 2008.

[23] William Kahan. How futile are mindless assessments of
roundoff in floating-point computation? 2006.
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