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Abstract

Sampling is a very important and low-cost approach to un-

certain data processing, in which output variations caused by

input errors are sampled. Traditional methods tend to treat a

program as a blackbox. In this paper, we show that through

program analysis, we can expose the internals of sample ex-

ecutions so that the process can become more selective and

focused. In particular, we develop a sampling runtime that

can selectively sample in input error bounds to expose dis-

continuity in output functions. It identifies all the program

factors that can potentially lead to discontinuity and hash the

values of such factors during execution in a cost-effective

way. The hash values are used to guide the sampling pro-

cess. Our results show that the technique is very effective for

real-world programs. It can achieve the precision of a high

sampling rate with the cost of a lower sampling rate.

1. Introduction

Uncertainty poses a prominent challenge to data process-

ing programs. Traditional data processing programs handle

scalar data values. However in the presence of uncertainty

originated from instrument errors and measurement preci-

sion limitations, input data have error bounds. It is very im-

portant to reason about if a program would behave differ-

ently with input errors.

Long term rainfall prediction is often realized by software

operating on Sea Surface Temperature (SST) data [24]. Due

to the difficulty and cost of deploying sensors, SST con-

tains a lot of interpolated data, which are uncertain. Such

uncertainty can lead to different prediction results. In [26],

it was shown that a program used to process data from a bi-

ology experiment cannot properly model the uncertainty in

a parameter provided by human scientists based on their ex-

perience such that a protein was mistakenly classified as a

cancer indicator. Such mistakes could be highly costly be-

cause follow-up wet-bench experiments are usually carried

out based on the data processing outcome. In bioinformat-

ics, one of the most widely used sources for protein data

is Uniprot [9], in which proteins are annotated with func-

tions. The annotations may come from real experiments (ac-

curate) or computation based on protein similarity (uncer-

tain). Software operating on these data has to be aware of

the uncertainty issue [16]. Software facilitating financial de-

cision making is often required to model uncertainty [18].

Traditionally, uncertainty analysis is conducted on the un-

derlying mathematical models [25]. However, modern data

processing uses more complex models and relies on com-

puters and programs, rendering mathematical analysis dif-

ficult. Recognizing the importance of uncertain data pro-

cessing, recently, researchers have proposed database tech-

niques to store, maintain and query uncertain data [15, 21].

However, more sophisticated data processing is often per-

formed outside a database by programs written in high level

languages. Addressing uncertainty from the program analy-

sis perspective becomes natural. Continuity analysis [6] is a

static analysis that proves a program always produces con-

tinuous output given a set of uncertain inputs. However, in

uncertain data processing, many properties of interest are dy-

namic. For instance, whether output is reliable in the pres-

ence of uncertainty is dependent on the concrete input error

bounds. It demands analyzing program execution instead of

the program. More importantly, while static continuity anal-

ysis has been shown to be effective on simple programs such

as sorting algorithms, real world programs are a lot more

complex, involving complex control flows, high order func-

tions, array and pointer manipulations. Automatic derivative

computation [3] uses compilers to instrument a program so

that output derivatives can be automatically computed. How-

ever, these techniques cannot directly reason about changes

within input error bounds; they also have difficulties in han-

dling certain language features, such as control flow related

statements.

Monte Carlo (MC) methods provide a simple and effec-

tive means of studying uncertainty [5, 15, 23]. They ran-

domly select input values from predefined distributions and

aggregate the computed outputs to yield statistical insights in

the output space. While continuous functions are relatively

easier to be approximated by MC methods, as data process-

ing is realized by complex programs, outputs are often no

longer continuous functions of the uncertain inputs. Discon-

tinuity poses significant challenges. Some of the problems

are illustrated in Fig 1. These figures show how the out-
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Figure 1. Three sample problems caused by discontinuity.

put changes according to the variation of an uncertain input.

Points represent samples. The first problem in (a) is that from

the samples, it is hard to determine if the output is continu-

ous (curve A) or discontinuous (B). The second problem in

(b) is that even though we know that the curve is discontin-

uous, it is yet difficult to determine where the discontinuity

occurs. In this case, it could occur at any locations such as

the three shown in the figure, resulting in curves aαb, aβb,

and aγb, respectively. The third problem in (c) is more prob-

lematic as the four samples appear to follow a simple mathe-

matical function (a straight line through a and b) but indeed

there is a discontinuous segment in between a and b. In many

cases, these segments are so small that they are prone to be-

ing omitted by random sampling. In fact, we observe that

a tiny discontinuous segment along a simple linear function

was the root cause for misclassifying an irrelevant protein as

a cancer biomarker in our experiment.

Traditional black-box MC approaches can be made adap-

tive by comparing the output values of two samples to de-

termine if additional samples are needed, that is, additional

samples will be acquired in between two samples if their cor-

responding outputs differ substantially. However, such meth-

ods are sub-optimal. They have difficulties in handling the

case in Fig. 1 (c). Also, unnecessary samples may be ac-

quired for a continuous function if its slope is large.

In this paper, we develop a white-box MC method, pow-

ered by program analysis. The technique aims to guide the

sampling process through a lightweight dynamic analysis

so that output discontinuity for given uncertain inputs can

be disclosed with a small number of samples. Discontinu-

ous points break an output curve (i.e the curve represent-

ing how output varies according to the uncertain input) into

a set of continuous segments, which can be easily approxi-

mated with a traditional MC process. Our observation is that

for many data processing tasks implemented by programs,

discontinuity is mainly caused by language artifacts such as

conditional statements and type casting, instead of the in-

trinsic mathematical functions. Hence, the idea is to moni-

tor MC sample execution, particularly, the value changes of

these artifacts, and use the monitored values to direct the MC

process to selectively collect more samples where disconti-

nuity is likely to happen.

At a high level, the technique works as follows. During

a sample execution, the technique generates a hash value

that aggregates the execution of the language artifacts that

could potentially lead to discontinuity. If two sample runs

have the same hash value, implying the same control flow

and identical discrete coefficients, the output functions in

the two runs have the same mathematical form, suggesting

continuity in the range delimited by the two samples. If

the hash values differ, indicating discontinuity, an additional

sample is taken in between the two original samples. The

process continues to inspect the two sub-ranges divided by

the new sample, until all sub-ranges become continuous or

the discontinuous points are sufficiently narrowed down.

Our contributions are highlighted as follows.

• We formally define the problem and identify the possible

sources of discontinuity in a program, called discrete

factors.

• We propose a novel dynamic analysis that hashes the val-

ues of discrete factors during an execution. The hash val-

ues can be leveraged by MC algorithms to achieve selec-

tive sampling. We also propose a more sophisticated ver-

sion of the analysis that hashes only the discrete factors

relevant to the selected output. It allows us to avoid con-

sidering changes in irrelevant discrete factors to prevent

unnecessary samples.

• We propose the basic selective MC algorithm and its two

extensions. One extension takes two sampling intervals

as configuration, and aims to achieve the precision of the

small interval with the cost of the large one. The other

extension aims to achieve optimal sampling given a fixed

budget (i.e. the number of samples allowed). We also

study the safety of the algorithms.

• We observe that in real world programs, there are small

code regions in which control flow differences do not

cause discontinuity. Such differences are mostly inten-

tional for purposes such as optimization. We develop a

profiler to identify such code regions and prove their con-

tinuities. Our algorithms can thus avoid hashing these re-

gions.

• We evaluate our technique on a set of SPEC2000 floating-

point programs and a biology data processing program.

The results show that the proposed white-box sampling

technique can identify discontinuity effectively and effi-

ciently.



2. Discontinuity and Discrete Factors

Given an execution that is derived from a concrete input, we

assume part of the input is uncertain. Our ultimate goal is to

understand how the program output changes within the input

error bound.

We use x1, x2, ... to denote multiple uncertain inputs. An

example for such uncertain input is a real number in the input

array received from a sensor. We only consider real number

inputs unless stated otherwise. Program execution is hence

denoted as a function over the uncertain input P(x1, ...xn).
In this paper, we aim to develop a white-box MC method

that can quickly and effectively determine the shape of the

output function, especially the discontinuity of the function,

as continuous portions can be easily approximated by a

regular MC process.

We first precisely define the term continuity. To simplify

the discussion, we assume there is only one uncertain input

in the definition, even though our technique supports multi-

ple uncertain inputs.

Definition 1. (Continuity) P(x) is said to be continuous at a

point x= c if the following holds: For a value ε> 0, however

small, there exists some value δ> 0 such that for any x within

the error bound and satisfying c− δ < x < c+ δ, we have

P(c)− ε < P(x)< P(c)+ ε.

P(x) is discontinuous at x = c if the above condition is

not satisfied. P(x) is said to be continuous if it is continuous

throughout the error bound of x.

Intuitively, if P is continuous regarding the uncertain in-

put x, then any small change to the value of x can only cause

a small change to the output value P(x).

Discrete Factors. Our goal is to identify the discontinu-

ity, which cannot be easily exposed by sampling the output.

Some of the problems are illustrated by Fig. 1 and discussed

in Section 1. Our observation is that the internals of a sam-

ple execution provide a lot of hints to the discontinuity of the

output function. We define the term discrete factor to repre-

sent such program artifacts.

Definition 2. A discrete factor is an operation that has real

values as operands and produces a discrete value as result.

In most cases, discrete factors are the root cause for out-

put discontinuity. We assume uncertain input values are con-

tinuous in their error bound. To induce discontinuity on out-

put, these continuous inputs have to go through some dis-

crete factors and result in different discrete values. The basic

idea of our technique is hence to monitor the execution of

discrete factors to detect discontinuity and guide the sam-

pling process. Next, we discuss the most common discrete

factors that we have observed over a set of real world pro-

grams.

Type cast. A continuous floating-point value can be casted

to a discrete type, such as integer, leading to the disconti-

nuity in the final output. Besides explicit casting, implicit

casting may also be automatically performed by a compiler

when necessary, such as when discrete operations (e.g. mod)

are applied to floating-point values.

Discrete mathematical library functions. Data processing

programs usually make heavy use of third-party mathemat-

ical library functions. Some of these functions are discrete,

such as SIGN(v), which returns 1 if v is positive, -1 if neg-

ative, and 0 otherwise. They may eventually lead to disrup-

tions along the output curve.

Control flow. Modern programming languages allow de-

velopers to manipulate control flow through constructs such

as if-then-else statements and loops. These constructs

are the key elements that allow data processing to go beyond

the traditional pure mathematical modeling. However, they

substantially increase the difficulty of uncertainty analysis

by introducing discontinuity. In particular, if a value com-

puted from uncertain inputs is used in a predicate and the

predicate guards the following computation leading to the

output, there is a good chance discontinuity is introduced.

The reason is that the branch outcome may vary depending

on the uncertain values, leading to different mathematical

forms of the output. In our experience, control flow is the

dominant discrete factor.

Consider the following example.

1. x=...; //the uncertain input

2. if (x>=2.0)

3. f=x+3.0;

4. else

5. f=3.0-x;

The predicate at line 2 makes x = 2.0 a discontinuous

point. On its left (x < 2.0), the curve takes on the shape

of f (x) = 3.0− x; on the right including the point x = 2.0,

f (x) = x+ 3.0.

Besides discrete factors, discontinuity may also arise

from the intrinsic mathematical model. For example, f =
1

x+1.0 is discontinuous at x = −1.0; f = tan(x) is discontin-

uous at x =− π
2
, π

2
, ....

We observe that in real world programs, such operations

are often guarded by predicates or the input domains are

specified in such a way that the discontinuous points are

excluded. For the above f = 1
x+1.0 example, a predicate

is often used to guard against x = −1.0 to avoid runtime

exceptions. As a result, the mathematical discontinuity also

manifests itself as a control flow discontinuity.

There are also other programming language artifacts that

do not have correspondence in the mathematical world, such

as arrays, pointers, and bit operations. However, these arti-

facts themselves cannot initiate discontinuity such that they

are not considered as discrete factors. For example, if the

computation of an output involves an array element A[i]
which is affected by the uncertain input. Assume the influ-

ence is through the array index i, which is of the (discrete)

integer type. There must be a preceding discrete factor, such

as an explicit or implicit type cast because the uncertain in-



put is of floating-point type. Therefore, as long as we track

the value change of that factor, we capture the discontinuity

propagated through the array element.

Given the definition of discrete factors, we have the fol-

lowing theorem that serves as the foundation of our tech-

nique. Given an execution, we denote the output as a math-

ematical function of the uncertain input o(x). Here o(x) is

limited to be an elementary function and it takes real number

inputs only. One can consider the function is constructed by

setting the uncertain input as a symbolic variable and then

performing symbolic execution concurrently with the con-

crete execution.

Theorem 1. Given two sample executions, if all of their

discrete factors produce the same discrete values, they must

have the same output function o(x).

Intuitively, if the two executions have the same discrete

values, they must have taken the same program paths and

all the pointers and array indices must be identical to ensure

the same data dependences. As a result, the symbolic output

functions must be identical. The formal proof is elided.

Infeasibility of Using Symbolic Analysis. Note that one

might formulate the challenge as a dynamic test generation

problem that generates uncertain input values to explore the

different values of the discrete factors. For example, explor-

ing all the possible program paths within the input error

bound may be able to expose the discontinuity caused by

control flow. However, we found that this is impractical for

real world data processing programs for the following two

reasons. (1) Path condition functions are often of high order.

We found that 10 out of 11 SPEC CFP 2000 programs we

have studied have high order (≥ 2) path conditions 1. More

importantly, they are mostly in a complex form, involving

functions such as square root, sin/cos, and fraction. These

path conditions go beyond the capability of existing solvers.

(2) The entailed symbolic execution is too expensive for our

target scenario. The reasoning is as follows: if a technique

causes X times slow down, one may choose to collect X MC

samples instead of using the technique.

3. An Illustrative Example

We use an example to illustrate the technique. Fig. 2 (a)

shows the program. Variable x is uncertain; its value is within

an error bound [a,b] around the original value 1.5. The

output function o(x) may take different forms, depending

on the value of x. If x < 1.0 (line 3), o(x) = 1 (line 4). If

x ≥ 1.0, depending on the comparison t(x)> 0.3 (line 6), it

may take the form o(x) = 0.3 (line 7) or o(x) = 0.75 (line

9). Function t(x) is of a high order, rendering techniques

relying on constraint solving in-applicable. The curves for

t(x) and o(x) are depicted in Fig. 2 (c). Our technique aims to

leverage program analysis to guide collecting a small set of

1 We acquire such numbers through profiling, without conducting any math-

ematical reduction.

samples that disclose the shape of the output function o(x),
particularly its discontinuity.

Our technique first identifies all the discrete factors in

the program. They are places that operate on real values

and produce discrete values, and thus the root causes of

the discontinuity. In this program, lines 3 and 6 are discrete

factors as they operate on real values and produce boolean

outputs, and the type cast at line 2 is also a discrete factor.

During a sample execution, we generate a hash value that

is the aggregation of the values of all the discrete factors

encountered. Two sample runs having the same hash value

suggests (likely) continuity. Note that the states of the two

executions are still largely different despite the identical

hash value. For example, the floating point computation that

is data dependent on the uncertain input may very likely

have different values. If the hash values differ, an additional

sample is taken in between the two original samples and the

technique continues to inspect the two sub-ranges divided by

the new sample, until a threshold is reached.

Assume we start with two samples a and b (step (1) in

Fig. 2 (b)). Readers can refer to Fig. 2 (c) for the samples

and their corresponding outputs. The order of sampling is

denoted by the alphabetical order of the samples. Line 3 has

different branch outcomes in the two sample runs, resulting

in different hashes. An additional sample c is then taken at

the mid-value of a and b, dividing the region into two sub-

regions [a,c] and [c,b]. The technique first considers [a, c]

(step (2)) and divides it with an additional sample d. Subre-

gion [a, d] is further divided by e (step (3)). The hash values

of a and e are identical. The process ceases to collect more

samples in [a, e]. Instead, it collects more in [e, d] until a

small sampling interval threshold is reached at B©, disclos-

ing the discontinuous point at x = 1.0. Note that the ranges

with the same hash value (and thus no samples needed in

between), such as [a, e], denote the savings brought by our

technique. A uniform sampling scheme with the threshold as

small as the interval of [e, f ] (at point B©) requires a lot more

samples.

Practical Challenges. In order to make the technique work

for real world programs, we need to further overcome the

following challenges.

• Discrete factors in two sample runs may behave differ-

ently. However, such differences may not be relevant to

the output variable, and hence they should not cause ad-

ditional samples. For example in Fig. 2 (a), the discrete

factor at line 2 has nothing to do with o(x) and should

be excluded from hashing. Similarly, if z is the output

variable instead of o, the control flow differences in lines

3-9 should be excluded. We develop a slice-based hash-

ing algorithm that hashes only the discrete factors in the

dynamic slice of the output variable on the fly.

• In reality, developers may write programs in such a way

that control flow variations do not lead to discontinuity. It

would lead to redundant samples if not properly handled.
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Figure 2. An illustrative example. The dots in (c) represent the samples. The highlighted statements in (a) represent discrete

factors. A node in (b) represents a sampling region with the hash values of the lower and upper bounds. The numbers denote

the steps. H(a) denotes the hash value of sample a and operator ‘·’ denotes hash aggregation (e.g. “0 ·T ” denotes the hash of

y = 0 and the predicate at line 3 having the true value).

We observe that such effects are usually present in small

code regions. We develop a profiler to identify regions

from the whole code base and prove that they must be

continuous. Thus, we can avoid hashing the control flows

in these regions.

• It may not be safe to skip sampling when two hashes

are identical. Consider the example in Fig. 2. The two

hashes of d and c are identical (point C© in Fig. 2 (b)).

If additional samples are not taken in between (e.g. g),

we will miss the two discontinuous points in that subre-

gion. Therefore, we need to study the safety of omitting

sampling.

The following sections describe the technique in details and

our study of the above practical problems.

4. Basic Hashing Semantics

In this section, we discuss the basic hashing semantics that

hashes the values of all the discrete factors encountered dur-

ing program execution. Recall that two identical hashes (of

two respective sample runs) indicate that the mathematical

forms of the two output functions are identical (Theorem 1),

assuming a perfect hashing scheme. The discussion is lim-

ited to one uncertain input for simplicity, while our tech-

nique supports multiple uncertain inputs.

Program P ::= s

Stmt s ::= s1; s2 | skip | xℓ := e | while x ✶ℓ 0 do s |
if x ✶ℓ 0 then s1 else s2 | exit

Expr e ::= x | v | sample(r1,r2)
ℓ | e1 binopℓ e2 |

discrete( f ,e) | x ✶ℓ 0

Value v ::= n | r | b

Var x, Function f ∈ Identi f ier n ∈ Z r ∈ Real

ℓ ∈ Label b ∈ Boolean

Figure 3. Language

Language. To facilitate formal discussion, we introduce a

kernel language. The syntax is presented in Fig. 3. Note

that relational operations are normalized to x ✶ 0, with ✶

denoting a relational operator. The reason is that we need to

E ::= E;s | [·]s | x := [·]e | if [·]e then s1 else s2 | [·]e binop e |
v binop [·]e | discrete( f , [·]e) | [·]e ⊲⊳ 0

DEFINITION:

Store σ : Var →Value Hash θ ∈ Z

getSample(ℓ,r1,r2) : sample a value at ℓ within error bound [r1,r2]

EXPRESSION RULES σ : e
e
−→ θ,e′

σ : x
e
−→ ⊥,σ(x) σ : sample(r1,r2)

ℓ e
−→ ⊥, getSample(ℓ,r1,r2)

σ : v ✶ℓ 0
e
−→ ℓT , T if v ✶ 0 σ : v ✶ℓ 0

e
−→ ℓF , F if ¬(v ✶ 0)

σ : v1 binop v2
e
−→ ⊥,v3 where v3 = v1 binop v2

σ : discrete( f ,r)
e
−→ n, n where n = f (r)

STATEMENT RULES σ : s
s
−→ σ′,s′

σ : x :=ℓ v
s
−→ σ[x 7→ v], skip σ : skip;s

s
−→ σ, s

σ : if T then s1 else s2
s
−→ σ, s1 σ : if F then s1 else s2

s
−→ σ, s2

σ : while e do s
s
−→ σ, if e then s;while e do s else skip

GLOBAL RULES σ,θ, s → σ′,θ′,s′

σ : e
e
−→ θe,e

′

σ,θ, E[e]e → σ,θ⊳θe,E[e′]e

σ : s
s
−→ σ′,s′

σ,θ, E[s]s → σ′,θ,E[s′]s
[H-EXPR] [H-STMT]

Figure 4. Hashing Semantics

study the real values (not the boolean values) of relational

expressions. Such values are explicitly denoted by x after

normalization. For instance, a conditional statement “if y <
1.0 ...” is normalized to “x := y−1.0; if x < 0”. It allows us

to reason about the value of y− 1.0.

We support three kinds of values: integers, real val-

ues, and boolean values. Real values could be uncertain.

A sample(r1,r2) expression represents a sample within the

error bound of [r1,r2]. We explicitly model discrete func-

tions as discrete( f ,e). The expression denotes the discrete

value generated by applying function f to a real value e.

Type casts and the sign(x) method are examples of such

discrete functions.



Operational Semantics. The semantics is presented in

Fig. 4. The expression rules have the form of σ : e
e
−→ θ,e′ .

Given the store σ, an expression e evaluates to a hash

value θ and a new expression e′. The variable expression

x, sample expression sample(r1,r2), and the binary opera-

tion v1 binop v2 are not discrete factors so that their eval-

uation generates a void hash value, denoted as ⊥. Observe

that we don’t hash uncertain input values despite the fact

that they are the origin of execution differences. In contrast,

the hash for a relational expression v ✶
ℓ 0 is a unique inte-

ger representing the label of the expression ℓ and the branch

outcome. Intuitively, if these relational operations are used

in conditional statements or loops, the hash values capture

the execution control flow. The hash for a discrete function

is the generated discrete value.

Statement rules are standard. The global rules are of the

form σ,θ, s → σ′,θ′,s′ , in which σ is the store and θ the

global hash. Rule [H-EXPR] specifies an evaluation step re-

garding expression e. It aggregates the hash value θe gener-

ated by the expression evaluation to the global hash θ. Op-

erator ⊳ denotes the hash operation. In our implementation,

we use addition as the hash operation 2. For the void hash ⊥,

we have θ⊳⊥= θ.

Rule [H-STMT] specifies one step in evaluating a state-

ment.

According to the hashing semantics, we essentially ag-

gregate the branch outcomes of all the predicate instances

encountered during execution and the values of all the dis-

crete functions, including those embedded in an expression.

It features low runtime overhead as it only entails additions

at selected places. This is critical for practicality of white-

box sampling because if the technique were heavy-weight,

one could simply collect many random samples.

5. Sampling Algorithms

In this section, we discuss a number of sampling algorithms

and their safety. The first one is a greedy but unsafe algo-

rithm that aggressively avoids collecting unnecessary sam-

ples. The second one is an improved algorithm that provides

certain guarantee. The third one works with a fixed sampling

budget (i.e. the number of samples is pre-defined). All these

algorithms assume single uncertain input for simplicity. Our

technique supports multiple uncertain inputs.

5.1 Greedy Algorithm

Algorithm 1 describes a greedy algorithm. It takes two sam-

ples as input and generates a sequence of samples, including

the two inputs. Ideally, the samples sufficiently expose dis-

continuity.

Function sampleDriver(χ1, χ2) represents the overall

process. It first executes the two input samples to produce

two hash values. It then calls function sampleInside(). The

2 Addition is not a perfect hash scheme. However, our experience shows

that such a simple scheme is sufficient.

Algorithm 1 Greedy Algorithm.

Input: a pair of sample points χ1 and χ2.

sampleDriver (χ1,χ2)

1: θ1 := P(χ1)
2: θ2 := P(χ2)
3: return χ1 · sampleInside(χ1,θ1,χ2,θ2) ·χ2

Input: two samples and their hashes;

Output: a sequence of sample points in (χ1, χ2);

Definition: τ denotes the termination threshold;

sampleInside (χ1, θ1, χ2, θ2)

4: if θ1 = θ2 ∨ |χ1 −χ2|< τ

5: return nil

6: else {
7: χm := (χ1 +χ2)/2

8: θm := P(χm)
9: return sampleInside(χ1,θ1,χm,θm) ·χm·

10: sampleInside(χm,θm,χ2,θ2)
11: }

function returns the needed samples inside the range (χ1,χ2),

excluding the two samples themselves. The final output is

the resulting sequence from sampleInside() prepended with

χ1 and appended with χ2.

In function sampleInside(), the algorithm tests if the two

provided hashes are the same. If so, it aggressively ceases

to collect more samples in between the two given samples

(line 4). Another termination condition is that even the two

hashes are different, if the distance of the two provided

samples is less than a pre-defined threshold τ (line 4), no

more samples are collected. Otherwise, it computes another

sample representing the mid value of the range (line 7), and

then recursively calls sampleInside() for the two subregions.

The resulting subsequences are concatenated with the mid-

sample (lines 9 and 10).

An example can be found in Fig. 2 (c). Given the initial

samples a and b, part of the sampling sequence is a ·e · f ·d ·
c · ....

Despite its simplicity, the greedy algorithm is not safe. It

misses the discontinuity in [d,c].

precision

cost

A

B

C

Figure 5. Design space. A is a uniform MC sampling pro-

cess with a small interval, B a process with a large interval,

and C our two-threshold algorithm.



5.2 Two-Threshold Algorithm with Guarantee

Given two sample runs with the same hash values, assuming

a perfect hashing scheme, it is unfortunately intractable to

determine if it is safe to avoid sampling in between. No mat-

ter how small the range delimited by the two samples is, it

is always possible to have a conditional statement predicat-

ing on an expression that is not monotonic in the region (e.g.

line 6 in Fig. 2) such that even though the predicate has the

same branch outcome at the two sample points (e.g. d and

c in Fig. 2), it may have a different branch outcome some-

where in between (e.g. g in Fig. 2), rendering a sampling de-

cision based on the hash values at the boundaries unsound.

Note that the mathematical form of the expression is likely a

high order function in practice such that reasoning about its

monotonicity analytically is infeasible. Next, we describe an

algorithm that provides certain guarantee while retaining the

advantage of white-box sampling.

Definition 3. We say a discontinuous point d (i.e. a value in

the range of the uncertain input that causes discontinuity in

the output) is detected if and only if there exist two samples

χi and χi+1 in sequence such that:

(1) d ∈ [χi,χi+1];

(2) there is not another discontinuous point d′ ∈ [χi,χi+1];

(3) their hashes θ(χi) 6= θ(χi+1).

Intuitively, a discontinuous point is detected if its pres-

ence is captured by two samples with different hash values

and there are no other discontinuous points in between the

two samples.

Theorem 2. A regular MC process that performs uniform

sampling with an interval τ guarantees to detect any dis-

continous point that has a distance ≥ τ to its neighboring

discontinous points.

Proof: Let d be such a discontinuous point and dp, ds be its

immediate preceding and succeeding discontinuous points,

respectively. There must be two neighboring samples χp and

χs such that χp ∈ [dp, d] and χs ∈[d, ds]. Assuming a perfect

hashing scheme and all mathematical library functions are

continuous, θ(χp) 6= θ(χs), d is detected. ✷

A uniform MC with a small interval τs has strong guaran-

tee but also a high cost, as denoted by point A in the design

space in Fig. 5. In contrast, a uniform MC with a large inter-

val τl has weak guarantee but a low cost (point B).

We develop a MC algorithm that can achieve the benefits

of both A and B (i.e. point C in Fig. 5). The algorithm

takes two sampling intervals τl and τs, denoting the large

and small intervals, respectively. It has a low cost close to B

and the practical precision close to A, that is, it can detect

a set of discontinuous points close to A in practice. In the

theoretically worst case, it provides the same guarantee as

B.

The idea is to continue taking additional samples in be-

tween two samples that have the same hash value, if the dis-

tance between the two samples is larger than τl (i.e. the larger

interval provided). It is described in Algorithm 2. It has the

same driver as the greedy algorithm. The only difference is

at line 4 in sampleInside (), which is the termination condi-

tion of sampling.

Algorithm 2 Two-Threshold Algorithm.

Definition: τl denotes the termination threshold for re-

gions with the same hash;

τs denotes the termination threshold for re-

gions with different hashes

sampleInside (χ1, θ1, χ2, θ2)

4: if (θ1 = θ2 ∧|χ1 −χ2|< τl) ∨ (θ1 6= θ2 ∧|χ1 −χ2|<
τs)

5: return nil

6: else {
7: /*the same as lines 7-10 in Algo. 1*/

8: }

In the example in Fig. 2, with τl = 0.5 and τs = 0.15, we

get the sequence of samples as described in (b), in which an

additional sample g is taken in [d,c] such that all discontin-

uous points are detected.

5.3 Safety In Practice

While in the worst case, the two-threshold algorithm with

thresholds τl and τs can only provide the same guarantee

as a standard uniform sampling algorithm with the large

threshold τl , in practice, we observe that the algorithm is

almost as precise as a standard algorithm with the small

threshold τs (see Section 8). In this section, we discuss the

reasons behind this.

Intuitively, we observe that the majority of the discrete

factors are monotonic. Recall that a discrete factor d turns

a real value to a discrete value. We denote the real value of

a discrete factor as a function dr(x) of the uncertain input

x. Assume through sampling, we observe that two sample

runs have the same hash. They must have the same discrete

values for all the discrete factors, including that of d. If dr(x)
is monotonic within the range delimited by the two samples,

it is easy to infer that the discrete value of d for each input

value within the range must be the same 3.

For example, if the value of z in the predicate of a condi-

tional statement “if z ✶ 0...” is monotonic in the range [χ1,

χ2] and it produces the true value in both sample runs, it must

consistently produce the same true value for any samples in

between. The aggregated effect of all such monotonic predi-

cates is that the same control flow must be taken for all sam-

ples inside the range; similarly, all the discrete co-efficients

in the output function must also have the same value, ensur-

ing the same mathematical form of the output function and

also the continuity within the range.

3 An implicit assumption is that discrete operations themselves are always

monotonic, which is true in practice. For instances, type casts and compar-

isons are monotonic operations.



//x in [1.0,3.0]

1. y=x-2.0;

2. if (y>=0)

3. f=x+3.0;

4. else

5. f=3.0-x;

6. z=f-5.0;

7. if (z>0)

8. o=...;

z

x

0

2.01.0 3.0

- 4.0

1.0

- 3.0

z=x-2.0

z=-x-2.0

(a) (b)

Figure 6. Function z(x) of the discrete factor at line 7 has

two live ranges: one corresponds to y>=0 being true and

the other being false. They represent two functions z(x) =
x− 2.0 and z(x) =−x− 2.0.

Formally, the real function of a discrete factor dr(x) does

not need to be monotonic within the entire error bound of

x to ensure safety. Instead, we introduce the notion of live

range of a discrete factor, which is essentially a sub-range in

the error bound of x. A discrete factor may have multiple live

ranges. As long as all discrete factors are monotonic in each

of their live ranges, not necessarily the entire error bound,

safety is ensured.

Definition 4. A sub-range [χ1,χ2] of the uncertain input

error bound is a live range of a discrete factor d if and only

if for any χt ∈[χ1,χ2], all the discrete factors encountered

during program execution P(χt) before d must have the same

discrete value.

A live range has the following property.

Property 1. The real function dr(x) of a discrete factor d

must have the same mathematical form in its live range.

The property can be easily derived from the definition of

live range.

Intuitively, within the entire input error bound, there may

be inputs that induce different control flow paths leading to a

discrete factor and different discrete co-efficients computed

along these paths, hence, the real function of the factor may

be of different forms. A live range represents an input sub-

range that has the same form.

Example. Consider the example in Fig. 6 (a). There are two

discrete factors: the comparisons at lines 2 and 7. For line 2,

there is only one live range, which is the entire error bound

[1.0, 3.0]. The real function has only one form y(x)= x−2.0.

For line 7, there are two live ranges, [1.0,2.0] and (2.0,3.0]

as the preceding discrete factor at line 2 has different values

for the two ranges. The factor hence has two mathematical

forms as shown in Fig. 6(b). ✷

With the above definitions, we have a sufficient condition

for safety.

Theorem 3. If the real functions of all discrete factors are

monotonic in their live ranges, it is safe to skip samplings

within two samples with the same hash value.

The theorem can be proved by contradiction. The proof is

elided for brevity. The theorem essentially demands that the

individual mathematical forms of a discrete factor be mono-

tonic. It substantially lowers the requirement on monotonic-

ity to ensure safety: a discrete factor does not need to be

monotonic in the whole sampling range, but rather its in-

dividual live ranges. In practice, live ranges could be very

small.

For example in Fig. 6, although z(x) is not monotonic in

the whole sampling region [1.0,3.0], it is monotonic in the

two live ranges. According to Theorem 3, even the greedy

algorithm is safe for this program.

Although we have reduced the safety problem to the prob-

lem of determining monotonicity of discrete factors in their

live ranges, solving the monotonicity problem analytically is

still very challenging given the mathematical complexity of

the real functions of discrete factors and the resource con-

straint imposed by the design goal of competing with ran-

dom sampling. We instead perform empirical study to ob-

serve the monotoniciy in practice. We make the following

observations. Empirical support can be found in Section 8.

1. The majority (94-100%) of the discrete factors are in-

deed monotonic in their live ranges. Live ranges could

be very small (<10% of the entire sampling region for

complex programs). This suggests that we may have very

few safety violations in practice. We make the following

speculation. Data processing algorithms are developed

by humans and humans are usually not good at reason-

ing and controlling fluctuating functions. Therefore, they

use many conditional statements to divide such complex

functions into monotonic regions that they can easily rea-

son about. We plan to conduct study of code patterns in

the future to deepen our understanding.

2. Some discrete factors have non-monotonic real functions

(0-6%), but most of them always produce the same dis-

crete value and thus don’t lead to any false negatives in

sampling. The majority of the cases are caused by a pat-

tern similar to the following: the non-monotonic function

is the addition of a slowly changing function with large

values and a fluctuating function with very small values.

Hence, despite the non-monotonicity, after discretization,

the same value is always yielded.

3. There are some very rare cases (2 in total in our study)

that are both non-monotonic and yielding different dis-

crete values. They are the real threats to safety. How-

ever, the corresponding program was written in such a

way that there exist correlated predicates that guard the

non-monotonicity.

Our observations are limited to the benchmarks and the

experimental setup. However, even in the worst scenario

that the real functions of discrete factors are not monotonic

in their live ranges and they yield different values after

discretization, the two-threshold algorithm is still able to

provide certain level of guarantee.



Ensuring the safety of avoiding sampling in between two

runs with the same hash represents only one aspect of the

overall soundness. The termination threshold τs also indi-

cates that we may not detect segments that are smaller than

τs. It may be feasible to design a more sophisticated termina-

tion condition: the process terminates only when the differ-

ence between the sequences of discrete factors of two sample

runs is minimal, for instance, their control flow paths differ

by only one predicate. The challenge lies in balancing com-

plexity and the entailed overhead as we are competing with

the very cheap uniform sampling. We will leave it to our fu-

ture work.

5.4 Fixed Budget Algorithm

We have also developed a best-effort algorithm that tries to

perform optimal sampling given a fixed budget (i.e. a fixed

number of samples allowed). The algorithm starts in the

same way as the greedy algorithm but employs a priority

queue to select the next sample point. When enqueued the

subregions are prioritized based on: (1) if they have different

hash values; (2) their sizes. At each step it dequeues one

subregion to further sample in between from the priority

queue, until the budget is used up.

Algorithm 3 Fixed-budget Algorithm.

Input: a pair of sample points χ1 and χ2 and a budget B.

sampleDriver (χ1,χ2, B)

1: θ1 := P(χ1)
2: θ2 := P(χ2)
3: Q.enqueue(< χ1,θ1,χ2,θ2 >)
4: return χ1 ·χ2 · sampleInside(Q,B)

Input: a priority queue Q and a budget B;

Output: a sequence of sample points in (χ1, χ2);

Definition: τ denotes the termination threshold;

sampleInside (Q,B)

5: < χ1, θ1, χ2, θ2 >:= Q.dequeue()
6: if θ1 = θ2 ∨ |χ1 −χ2|< τ ∨ B.overbudget()
7: return nil

8: else {
9: χm := (χ1 +χ2)/2

10: θm := P(χm)
11: Q.enqueue(< χ1,θ1,χm,θm >)
12: Q.enqueue(< χm,θm,χ2,θ2 >)
13: return χm · sampleInside(Q,B)
14: }

6. Hashing Slices

In the algorithms discussed in the previous section, a global

hash value is computed for an execution. However, this may

be too restrict in practice. In some cases, even though two

DEFINITION:

HashStore Γ : Var → Hash CDStack S ::= θ
Expr e ::= ... | 〈v,θ〉

EXPRESSION RULES σ,Γ : e
e
−→ e′

σ,Γ : x
e
−→ σ(x) if Γ(x) =⊥ σ,Γ : x

e
−→ 〈σ(x),Γ(x)〉 if Γ(x) 6=⊥

σ,Γ : sample(r1,r2)
ℓ e

−→ 〈getSample(ℓ,r1,r2),ℓ〉

σ,Γ : 〈v,θ〉✶ℓ 0
e
−→ 〈T,θ⊳ℓT 〉 if v ✶ 0

σ,Γ : v ✶ℓ 0
e
−→ T if v ✶ 0

σ,Γ : 〈v1,θ1〉 binop 〈v2,θ2〉
e
−→ 〈v3,θ1 ⊳θ2〉 where v3 = v1 binop v2

σ,Γ : 〈v1,θ1〉 binop v2
e
−→ 〈v3,θ1〉 where v3 = v1 binop v2

σ,Γ : v1 binop v2
e
−→ v3 where v3 = v1 binop v2

σ,Γ : discrete( f ,〈r,θ〉)
e
−→ 〈 f (r), θ⊳ f (r)〉

σ,Γ : discrete( f ,r)
e
−→ f (r)

STATEMENT RULES σ,Γ,S : s
s
−→ σ′,Γ′,S ′,s′

σ,Γ,S : x :=ℓ 〈v,θ〉
s
−→ σ[x 7→ v], Γ[x 7→ θ⊳ last(S)],S , skip

σ,Γ,S : x :=ℓ v
s
−→ σ[x 7→ v], Γ[x 7→ last(S)],S , skip if last(S) 6=⊥

σ,Γ,S : x :=ℓ v
s
−→ σ[x 7→ v], Γ,S , skip if last(S) =⊥

σ,Γ,S : if 〈T,θ〉 then s1 else s2
s
−→ σ, Γ,S · (last(S)⊳θ), s1;endif

σ,Γ,S : if T then s1 else s2
s
−→ σ, Γ,S , s1

σ,Γ,S ·θt : endif
s
−→ σ, Γ,S , skip

GLOBAL RULES σ,Γ,S ,s
s
−→ σ′,Γ′,S ′,s′

σ,Γ : e
e
−→ e′

σ,Γ,S ,E[e]e → σ,Γ,S ,E[e′ ]e

σ,Γ,S : s
s
−→ σ′,Γ′,S ′,s′

σ,Γ,S ,E[s]s → σ′,Γ′,S ′ ,E[s′]s
[S-EXPR] [S-STMT]

Figure 7. Slice Hashing Semantics

executions have different hash values, the difference may not

be relevant to the output.

In this section, we discuss a more sophisticated hashing

algorithm that hashes only the discrete factors relevant to

the output. It maintains a hash value for each variable on

the fly, denoting the set of discrete factors that have been

directly/indirectly used to compute the current value of the

variable (i.e. discrete factors in its dynamic slice [1]). When

we determine whether a mid-sample is needed, we com-

pare the hash values associated with the output variable. It

is worth mentioning that although conceptually we are hash-

ing the discrete factors in output dynamic slices, the com-

putation is peformed on the fly without explicitly computing

any dynamic slices.

The semantic rules are presented in Fig. 7. We introduce

a hash store Γ that maps a variable to its hash value. A stack

S is used to propagate hash values through control depen-

dences. Each stack entry is the hash value of a predicate. We

extend the syntax of expression in Fig. 3 to include a pair

consisting of a value and its hash, which is the hash aggrega-

tion of all discrete factor values in the slice of the value. This

special type of expressions is not part of the source code.

They only occur during evaluation.

The expression rules have the form of σ,Γ : e
e
−→ e′ . in

which Γ is the hash store. For a variable expression x, if its



hash value is void, it evaluates to a regular value; if not, it

evaluates to its value and the corresponding hash.

A sampling expression evaluates to a sample value ac-

quired from outside and its label ℓ as the hash. Note that it is

the only place that initiates a non-void hash. It is analogous

to the introduction of a taint in the taint analysis. In the sub-

sequent execution, a value is related to the uncertain input if

it has a non-void hash.

For a relational operation, if the lhs value is a pair, mean-

ing that it is relevant to the sample input, the evaluation re-

sult is a pair consisting of the comparison outcome and the

aggregation of the lhs hash and the operation’s hash. If the

lhs value is a singleton, the evaluation produces the single-

ton comparison outcome. Note that we omit the rules for the

false cases for brevity.

For a binary operation, if either value is a pair, the result-

ing value is also a pair, including the aggregated hash value.

For a discrete function application, if the parameter is a

pair, the generated discrete value is aggregated to the hash.

The statement rules have the form of σ,Γ,S : s
s
−→ σ′,Γ′,S ′,s′ ,

in which S is the stack to allow hash computation through

control dependence. For an assignment statement, if the rhs

value is a pair, the evaluation updates both the store and the

hash store. The hash of the lhs variable is the aggregation

of the rhs expression hash θ and the hash of its control de-

pendence, which is the last entry in S . If the rhs value is a

singleton and its control dependence hash is not void, the

hash stored is updated with the control dependence hash.

It means that although the assigned value is not computed

from the sample input, the execution of the assignment is

guarded by a predicate relevant to the sample input.

For a conditional statement, if the evaluation of the rela-

tional operation yields a pair, the stack is appended with the

aggregation of the predicate’s own control dependence hash,

i.e. the last entry of S , and the relational expression hash

θ. Since the aggregated hash becomes the new last entry in

S , future evaluations occur inside the branch will use it as

their control dependence hash, reflecting that evaluations in-

side a branch of a conditional are control dependent on the

predicate of the conditional. The evaluation also appends a

special statement endif to the end of the branch. Evaluation

of an endif statement leads to the removal of the last entry

in S , meaning evaluations beyond the end of a branch are

no longer control dependent on the predicate. Note that the

LIFO nature of the stack captures the nesting effect of the

control dependence.

If the evaluation of the relational operation yields a sin-

gleton, there is no need to append a new entry to the stack

or the endif statement to the end of the branch, denoting the

irrelevance of the predicate. Note that any statements evalu-

ated inside the branch nonetheless have their control depen-

dence hash inherited from the current last entry of S .

Example. Table 1 presents an example evaluation of the

program in Fig. 2(a) with a sample χ = 2.20. Observe that

trace val hash S

1. x=sample(1.5) 2.2 1 ⊥
2. y=(int) x 2 1⊳2 ⊥
3. if x-1.0<0 F 3F ⊳1 ⊥· (3F ⊳1)
6. if t(x)-0.3>0 T 6T ⊳1⊳ (3F ⊳1) ⊥· (3F ⊳1) · (6T ⊳1⊳3F ⊳1)
7. o=0.3 0.3 6T ⊳1⊳3F ⊳1 ⊥· (3F ⊳1) · (6T ⊳1⊳3F ⊳1)

endif ⊥· (3F ⊳1)
endif ⊥

10. z=1+y 3 1⊳2 ⊥

Table 1. Evaluation of the program in Fig. 2(a) with sample

2.20

1 x := sample(3.0);
2 y := 0.0;

/* f (2) = f (4) = 1, f (3) =−1*/

3 if f (x) < 0

4 y:=y+1.0;

5 o:=x− y;

1 x := sample(0.5);
2 A[5] := ...;

3 if x >= 0.5
4 i:=(int) x×10.0;

5 A[i] :=...;

6 o:=A[5];
(I) (II)

Figure 8. Examples for safety issues.

at line 1, the hash is 1, the label of the statement. At line

2, the hash is the aggregation of x’s hash and the generated

discrete value 2. At line 3, the hash is the aggregation of x’s

hash and the branch outcome 3F ; it is also appended to S .

The entry is removed from S at the second endif. At line 6,

the hash is the aggregation of x’s hash, the branch outcome

6T , and the control dependence hash. At line 7, the hash of o

is inherited through control dependence. At line 8, the hash

of z is inherited from y.

Safety. We have the following sufficient condition for safety.

Theorem 4 (Safety-Slice). Given two input samples χ1 and

χ2, assume the slice hashes of the output variable are iden-

tical in the two runs. For a discrete factor that generates a

discrete value from a real value, let the real value be denoted

as a function dr(x) over the uncertain input x. If

(1) all dr(x) are monotonic in their live ranges;

(2) all memory addresses remain unchanged within the

range,

then the output function must be continuous in [χ1, χ2].

Condition (1) requires all discrete factors in the execu-

tion, not only in the slice, to be monotonic. Consider the

example in Fig. 8 (I), function f is non-monotonic. In the

two initial sample runs with x = 2.0 and x = 4.0, the false

branch of line 3 is taken. As a result, statement 4 is not exe-

cuted. The dynamic slice of o at 5 contains lines 1 and 2 in

both runs, without including line 4. As a result, all discrete

factors in the slices are monotonic. However, we can easily

see that it is unsafe to skip sampling. Condition (1) precludes

such cases.

Condition (2) is to preclude array indices or pointers dif-

ferences (note that our discussion here goes beyond the lan-

guage in Fig. 3). They could cause output discontinuity. Con-

sider the example in Fig. 8 (II). Assume the two initial sam-

ples to be x = 0.4 and x = 0.6. The slice of o at 6 contains

only line 2 in both runs. The two discrete factors: the predi-

cate at line 3 and the cast at line 4 are both monotonic. How-



{y= f (c)}
1 for...
2 if x < c

3 o:= f (x);
4 else

5 o:=y;

1 o = A[0]
2 for i := 1 to c

3 if o < A[i]
4 o:=A[i];

(I) (II)

Figure 9. Real continuous core examples from

178.galgel. Variable o denotes the output; c denotes a

compiler time constant; f (x) is a continuous function. The

first line in (I) represents the precondition.

ever, the output function is not continuous, as its value is

defined at line 5 when x = 0.5. Condition (2) excludes such

cases by ensuring that memory addresses do not change with

different samples.

The proof is omitted. Intuitively, since all predicates are

monotonic and all memory addresses do not change, there

cannot be any new dependences in the output slice for any

sample in between. According to our experience, the two

conditions mostly hold in practice. Note it is currently not

affordable to analytically validate them on the fly.

Deciding Global Hashing or Slice Hashing. Slice based

hashing is more expensive due to the more complex instru-

mentation, although it can avoid redundant samples caused

by irrelevant discrete factors. Hence, it would only be benefi-

cial when there are enough irrelevant discrete factors to dis-

count its higher instrumentation cost. We use the following

method to predict the applicability of slicing based approach.

We run the program twice with the same sample input, one

with global hashing and the other with slice hashing. If the

number of the discrete factors in the global hash and that in

the slice hash differ substantially, we will proceed with the

slice based approach.

7. Identifying Continuous Cores

A basic assumption of our technique is that if two sample

runs produce different hash values, there must be disconti-

nuity between the two samples. However, it may not be the

case in practice. Developers can write programs in such a

way that the output function is continuous even though the

control flow varies. In this section, we discuss how to detect

program regions that have such characteristics and prove that

they are continuous despite control flow differences. Then

the hashing algorithms can avoid collecting predicate hashes

inside these regions.

Consider the example in Fig. 9 (I). It is a coding pattern

used a few times in 178.galgel. The output function is

f (x) when x < c. It becomes f (c) when x = c and remains

that value for x > c. The developer hoists the computation

of f (c) from the else branch to outside of the loop for bet-

ter performance. Observe the output function is continuous.

However, if the initial two sample runs are for x = c−1 and

x = c+ 1, they have different control flow.

We call such code regions continuous cores, which are

formally defined as follows.

Definition 5. A continuous core is a conditional statement

s (including its branches) that is modeled as o = s(I) with

input I the set of variables used in s and defined outside,

output o the variable computed by s and used later by other

statements, and s(I) is a continuous function in the domain

of I, despite control flow variations.

The definition also covers loop statements, which are a

special case of conditional statement.

We develop a profiling technique to detect candidates of

continuous cores. Basically, the profiler first detects predi-

cates that may evaluate to different branch outcomes in their

live ranges. For each predicate live range in which the pred-

icate evaluates to both true and false, at its immediate post-

dominator (i.e. the joint point of the two branches), the pro-

filer inspects the values of all the variables that are defined

inside the conditional and use by others outside the condi-

tional within the live range, to check if they appear continu-

ous. If so, they are continuous core candidates. We elide the

details of the profiler for brevity.

Given a continuous core candidate, we then prove the

continuity in the presence of control flow variation. The

technique in [6] tries to prove statically that a program is

continuous regarding a given set of variables. We adapt the

technique to handle the conditional statements identified by

our profiler. The key idea is to first prove the two branches of

the conditional statement to be continuous, and then ensure

that the two continuous functions have identical output value

at the boundary input value at which the branch outcome

changes. Intuitively, it means that the two branch functions

yield outputs infinitely close to the same value as the input

gets infinitely close to the boundary value.

Consider the example in Fig. 9 (I). The statements in the

true and false branches are both continuous on their own.

And observe that at the bounary point x = c, both branches

yield the same output value, ensuring continuity.

Other Patterns. There are a few other coding patterns that

give rise to continuous cores. Fig. 9 (II) shows another very

common core in 178.galgel. It returns the maximum

value of an array. Observe that the program is continuous,

i.e. the output changes continuously with the uncertain input.

For example, assume an array A[0−2] = {1.0,2.0,3.0}, and

A[1] is uncertain and it varies within range [2.0,4.0]. When

A[1] changes from 2.0 to 4.0. The output function over the

uncertain input o1(A[1]) = 3.0 when A[1] changes from 2.0
to 3.0 and then o2(A[1]) = A[1] when A[1] changes from 3.0
to 4.0. Observe that o1 and o2 have the same value at the

boundary A[1] = 3.0, hence they together denote a continous

function.

To prove the pattern is continuous. We completely unroll

the loop. Each unrolled iteration has the following form,

with oi the output defined at the ith iteration.



program LOC pred. non-poly # of

order funcs in pred. segments

168.wupwise 5K -2 ∼ 2 cos, log, sqrt 1

171.swim 466 0 1

172.mgrid 463 -1 ∼ 2 abs, sqrt 1

173.applu 4K -1 ∼ 17 abs, sqrt 1

178.galgel 27K 2 abs, sqrt 100+

183.equake 2K -1 ∼ 3 sin, cos, sqrt 6

187.facerec 3K 2 abs, sin, sqrt 5

188.ammp 14K 2 sin, cos, sqrt 1

191.fma3d 60K -3 ∼ 6 sin, abs, sqrt 1

200.sixtrack 47K -1 ∼ 2 sin, abs, sqrt 1

301.apsi 7K -1 ∼ 14 sin, abs, sqrt 2 - 4

deisotope 2K 2 4

Table 2. Program characteristics.

3 if oi−1 < A[i]
4 oi:=A[i];

else

oi:=oi−1;
Observe that the functions from both branches are contin-

uous by themselves, and they have the same value oi =A[i] at

the boundary oi−1 = A[i]. We have encountered a few more

core patterns. They can be proved similarly.

8. Empirical Evaluation

Our system consists of several components. A modified

compiler, to instrument programs to compute the hash val-

ues, is built on top of gcc. The sampling driver is written in

Python. Our system supports both C/C++ and Fortran. It is

publically available4.

Our experiments are performed on an Intel i7 2.70GHz

machine with 4GB RAM installed. We use SPEC CFP 2000

and one biochemical data processing program (deisotope)

as the benchmark set. Three programs from SPEC CFP

2000 are excluded. 189.lucas is a program that identi-

fies prime numbers and hence uncertainty analysis is not

applicable. 177.mesa and 179.art are excluded as they

take discrete inputs. We have totally 12 programs (3 C and

9 Fortran). We randomly select the uncertain inputs. For an

uncertain input value v, we assume its error bound to be

[50%*v, 150%*v].

Table. 2 shows the basic characteristics of the programs.

It includes the lines of code, the order of predicate functions

(regarding the uncertain input), the non-polynomial mathe-

matical primitives involved in these functions and the num-

ber of (continuous) segments in the output curve. We acquire

the predicate function orders and the non-polynomial primi-

tives through profiling.

As we can see from the table, a number of programs have

high order predicate functions. Note that, our profiler works

by computing the order of the lhs value from the orders of the

rhs values. Hence, it has to approximate in some situations.

Given h(x) = (1/ f (x))(g(x)) in which f (x) is a function of

4 http://www.cs.purdue.edu/homes/tbao/smartMC.tar.gz

order 1 and g(x) of order 2, we conservatively assume the

result h(x) will have the order of 1. Moreover, most of the

programs have non-polynomial primitive functions involved,

such as trigonometric functions or square root. This supports

our earlier discussion about the difficulty of applying sym-

bolic techniques to analyzing the path conditions.

Also observe that 7 out of the 12 benchmarks are contin-

uous. However, it does not mean our technique is not useful

for them. Black-box MC approaches will have difficulty in

determining if there are small discontinous segments along

the output curve (case (c) in Fig. 1).

8.1 Monotonicity of Discrete Factors

In the first experiment, we study the monotonicity of discrete

factors. We check the changes of the monotonicity for each

live range of every discrete factor. We collect 1000 samples

for each program using a regular MC algorithm to conduct

our study. Table3 shows the results. Column 2 contains the

number of discrete factors in each program. Some of the pro-

grams have continuous cores so that their numbers are after

excluding the predicates in the cores. The “mono.” column

shows the percentage of the discrete factors that are mono-

tonic in their live ranges. The “¬ mono. ∧ fixed-val”

column presents the percentage of the discrete factors that

are not monotonic but always yield the same value after dis-

cretization. The “¬ mono. ∧ diff-val” column presents

the number of those that are neither monotonic nor yielding

the same discrete value. These are the cases that could lead

to safety issues. The last column shows the length of live

ranges as the percentage of the entire error bound.

The discussion of the results can be found in Section 5.3.

The results imply that it is highly unlikely for our algo-

rithms to miss samples when they cease to collect sam-

ples due to identical hash values. There are only two poten-

tially harmful discrete factors being observed (one in each of

183.equake and 187.facerec), both predicates. How-

ever, they did not cause any problem because there exists

another predicate (after the problematic predicate) that hap-

pened to have different branch outcomes at the boundary of

the non-monotonic live range of the problematic predicate

functions, entailing different hashes and thus more samples

in between.

8.2 Runtime Overhead and the Greedy Sampling

Algorithm

The second experiment is to evaluate the runtime overhead

of the two hashing semantics. The results are shown in Ta-

ble 4. Columns 3-5 present the results for the basic (global)

hashing scheme. Observe that it is highly efficient (an aver-

age of 2.67% overhead for each sample run).

Columns 6-8 present the results for the slice-based hash-

ing scheme. Observe that it is more expensive, with an av-

erage overhead of 231%. This is due to its more heavy-

weight instrumentation. Another reason is that we haven’t

tried hard to optimize our implementation yet. Observe that



program # d- mono. ¬ mono. ∧ ¬ mono. ∧ avg. live

factor fixed-val diff-val range

168.wupwise 0* - - - -

171.swim 0* - - - -

172.mgrid 0 - - - -

173.applu 52 100% 0 0 100%

178.galgel 3219K* 98.68% 1.32% 0 4.37%

183.equake 23043K 99.97% 0.03% 1 9.96%

187.facerec 1891K 94.46% 5.54% 1 7.42%

188.ammp 8070K 100% 0 0 100%

191.fma3d 1521 100% 0 0 100%

200.sixtrack 40364K 100% 0 0 100%

301.apsi 301333K 100% 0 0 2.94%

deisotope 121K 99.99% 0.01% 0 29.25%

*The numbers are after precluding continuous cores.

Table 3. Monotonicity of discrete factors.

program native
basic slice

time overhead # of samples time overhead # of samples

168.wupwise 2.05 2.14 4% 2 6.56 220% 2

171.swim 0.15 0.15 1% 2 0.36 142% 2

172.mgrid 3.31 3.32 0% 2 11.13 236% 2

173.applu 0.06 0.07 6% 2 0.23 271% 2

178.galgel 0.69 0.70 10% 416 3.34 384% 416

183.equake 0.20 0.21 6% 66 0.36 81% 66

187.facerec 1.23 1.25 2% 117 4.12 235% 12

188.ammp 2.72 2.73 0% 2 3.51 29% 2

191.fma3d 0.02 0.02 0% 2 0.06 200% 2

200.sixtrack 2.22 2.27 2% 2 12.60 468% 2

301.apsi 1.75 1.77 1% 167 9.02 415% 24

deisotope 0.02 0.02 0% 55 0.04 90% 20

AVERAGE 2.67% 231%

Table 4. Efficiency of the basic (global) hashing and the slice based hashing. The results are based on the greedy algorithm

it makes differences on three programs: 187.facerec

, 301.apsiand deisotope. For 187.facerecand

deisotope, it reduces the number of samples from 117

to 12and from 55 to 20 respectively, while still precisely

exposes all the discontinuous points. For 301.apsi, the

reduction is much larger (from 167 to 24) and easily pays

off the extra overhead.

The reason for not observing more beneficial cases for the

slice-based approach is that most of the benchmarks have

very cohesive coding structure. They tend to have a very

small number of outputs, and most intermediate computa-

tion directly/indirectly contributes to these outputs. We spec-

ulate for larger scale scientific programs, when more func-

tionalities are integrated into a program, we will have a bet-

ter chance to observe the benefit. Note that here we present

the results of the two hashing schemes only for evaluation

and comparison purpose. As discussed earlier (Section 6),

we have an easy method to predict which hashing scheme

should be used and the user is supposed to just apply one

approach.

It is also worth mentioning that the overheads are not

affected by the sampling algorithms.

We observe that the greedy algorithm is very effective

for most programs. For those that are continuous in the en-

tire input error bound, the algorithm was able to identify

that the hashes of the initial two sample runs are identical,

it then stops collecting more samples right away. Except

178.galgel, the discontinuous points of all programs

are precisely detected by both the basic and slice hashing

schemes (i.e. each continous point is delimited by two sam-

ples with different hashes). This is not surprising because

according to the study of monotonicity and Theorem 3, we

almost never miss discontinuous points when we stop col-

lecting more samples due to identical hash values.

8.3 Effectiveness of the Sampling Algorithms

In the third experiment, we study the effectiveness of the

three proposed sampling algorithms. We first collect 10000

uniform samples using a regular MC to acquire a very pre-

cise output curve, called the ideal curve. Then we measure



Figure 10. The shaded area between the two curves repre-

sents the error.

program
Greedy 2-Threshold Fix-Budget

|χ| err |χ| err |χ| err

178.galgel 416 0.58 462 0.58 250 0.76

183.equake 66 0.11 101 0.07 50 0.35

187.facerec 71 0.50 102 0.54 50 0.45

301.apsi 24 0.80 76 0.26 40 0.40

deisotope 55 0.12 93 0.52 45 0.13

AVERAGE 0.42 0.39 0.42

Table 5. Effectiveness of the three sampling algorithms. |χ|
is the number of samples; err denotes the ratio between our

error and the error of the same number of uniform samples.

the error of the curves generated by the different algorithms

regarding the ideal curve as shown in Fig. 10. In this experi-

ment, we focus on the programs that have discontinuity.

Table 5 shows the number of samples needed for each

algorithm and the corresponding relative errors. A relative

error is the error of the curve acquired by our approach di-

vided by the error of the curve generated by the same num-

ber of uniform samples. For example, the relative error of

183.equake for the greedy algorithm is 0.11 means that

the error of the curve with the 66 greedy samples is only 11%

of the error of the curve with 66 uniform samples. For the

two-threshold algorithm, the two thresholds are τl = 2% and

τs = 0.1% of the error bound, equivalent to collecting 50 and

1000 samples, respectively. For the fixed budget algorithm,

because the curves of different programs are very different,

we use roughly half the number of the two-threshold sam-

ples as the budget.

From the results, we observe the following. All three

algorithms are effectively producing more precise curves

compared to those generated by uniform sampling. In some

cases, the error of our approach is only 7% of the error of

uniform sampling. The relative error of 178.galgel ap-

pears not so impressive as the others. But we will see from

our later case study that the regular MC misses many dis-

continuous points while we don’t. It is not reflected in the

relative error because the missing segments are so small that

their contributions to the error are also small. The relative

error of 301.apsi is larger than others because the con-

tinuous segments are curvy and our algorithms avoid col-

lecting samples inside continuous segments. Note that our

algorithms anyway capture all the discontinuous points.

Figure 12. Curves plotted from the samples identified by

different methods for program 178.galgel.

The greedy algorithm requires less number of samples

compared to the two-threshold algorithm and the relative er-

rors of these two approaches are comparable. Sometimes,

the greedy algorithm has a smaller number of samples but

larger relative error (183.equake) because it does not

collect samples in continuous segments such that its curve

has a worse fit. Sometimes, the two-threshold algorithm has

a larger relative error even though it collects more sam-

ples (deisotope). The reason is that the curve is simple

enough such that even uniform sampling has low absolute

errors.

To better understand the benefit of our algorithms, we

gradually increase the number of uniform samples from a

number smaller than the samples of our methods (say 50) to

10000 and depict the change of sampling precision (i.e. the

error between the approximate curve and the ideal curve)

with respect to the number of samples. We then project the

results from our algorithms to such figures. The results are

shown in Fig. 11. In the figures, the y axis represents the

precision with 0 denoting the highest precision (with 10000

samples) and 1 the lowest precision (with 50 samples). We

can clearly see our approaches can achieve the precision of

a high sampling rate with the cost of a low sampling rate.

For examples, in 178.galgel, with around 450 samples

(both greedy and 2-threshold), we can achieve the precision

of 1600 uniform samples. For 183.equake, with 60 sam-

ples (greedy), we can achieve the precision of 600 uniform

samples.

8.4 Effect of Different Uncertain Inputs

So far, our uncertain inputs are randomly selected. In this

experiment, we study the effect of selecting different uncer-

tain inputs and observe if our results still hold. We observe

that for most of our programs, inputs are uniform, e.g. they

are elements an array. Picking a different uncertain input has

little effect on the sampling results. For each program, we

randomly selected a few inputs and the results were more or

less the same. The only exception is 301.apsi. Its input is

not an array, but rather a set of parameters that have different
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Figure 11. The comparisons between our algorithms and uniform MC.

meanings. Since there are 39 different inputs in 301.apsi,

we randomly pick three of them, the samples generated by

our greedy algorithms are 24, 167, 76, and the corresponding

relative errors are 0.80, 0.49, 0.26, respectively. Observe that

our methods are consistently better than MC approaches. For

the majority of the cases, the benefits are substantial. There

is one case that the relative error is close to 1 indicating our

approach is not that better than regular MC. The reason is

that the output is a simple function of that particular uncer-

tain input such that even a regular MC provides good ap-

proximation.

8.5 Case Studies

In the last experiment, we present our experience with a few

cases.

Program178.galgel is an interesting case, with which

our algorithms generate over 400 samples. Fig 12 shows the

output functions computed by different approaches. Let us

first focus on the actual curve that is generated by 10000 uni-

form samples and supposed to be the oracle. The curve has

many small missing segments, but otherwise appears contin-

uous. Observe in the zoom-in view, at around 120%, those

overlapping dots are essentially a sequence of tiny continu-

ous segments separated by missing segments. By inspecting

the code, we observe that the program is not stable for the in-

puts falling in missing segments. It fails to converge and pro-

duces no result. Our algorithms are able to closely approx-

imate the real curve. We also collect 500 and 1000 random

samples in uniform distribution for comparison. From the

zoom-in view, one can observe that a number of points are

missing from the lower two curves. However, this is not the

worst scenario. When using the traditional MC, people may

tend to begin with a small number of samples. Due to the

fact that the curve has very large continuous segments and

the missing segments are often much smaller, it is very likely

that the missing segments are completely missed, leading to

wrong conclusions. These results clearly show the benefit

of white-box sampling. Observe from Tables 4 that it only

requires 416 samples (greedy) and has only 10% overhead

(basic).

Another example comes from the LC-MS (Liquid Chro-

matography Mass Spectrometry) process [27], which is an

effective technique used in real-world cancer biomarker dis-

covery. A biomarker is a protein which undergoes changes

in concentration in diseased samples. To detect biomarkers,

proteins from cancer patients and normal people are labeled

differently and digested into smaller pieces called peptides.

After the LC-MS process, each peptide would ideally lead

to two peaks, or a doublet. One of them corresponds to the

normal peptide marked with a light label and the other corre-

sponds to the cancer sample marked with a heavy label. The

intensity ratio of the doublet indicates the relative concentra-

tion of proteins from which the peptides were generated.

deisotope is a program carries out the data process-

ing in LC-MS process. It takes raw data from serum then

produces the matching doublets with their intensities.

However, this program is highly sensitive to data un-

certainty. A tiny variation in the input may lead to differ-

ent doublets being generated. Sample outputs are shown in

Fig. 13(a). The x-axis represents the variation of an input

provided by the scientist according to their experience (and

thus uncertain) from 50% to 150% of its original value, and



the y-axis shows the computed intensity of outputted peaks.

We can observe that the intensity of the peaks changes sub-

stantially, leading to the potential change of the biomarker.

Or it may even disappear, meaning a different set of doublets

is generated.
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Figure 13. Case study of deisotope.

Removing false positives caused by uncertainty is very

critical since the results determine the subsequent research

– typically involving significant effort and expense in wet-

bench experiments. Sampling provides a reasonably low-

cost method to inspect the effect of uncertainty.

Without loss of generality, we select one of the peaks in

the outputted doublets for a close study. Fig. 13(b) shows

the change of its intensity, by varying the uncertain input

from 100% to 150% of its original value. Observe with 20

samples, our technique is able to precisely model the curve

while a traditional MC with 30 samples cannot. Observe that

on the left, the traditional MC approach misses the small

segment. This corresponds to a missing duplet that causes

an irrelevant protein being misclassified as the biomarker.

9. Related Work

Uncertainty analysis and MC method. Sampling-based, or

Monte Carlo approaches to uncertainty and sensitivity analy-

sis are widely used [13, 17]. Several techniques are proposed

to improve the efficiency of MC methods by parallelizing

MC trials [2, 4]. In [22], an execution coalescing technique

was proposed to pack multiple MC trials in a single run, us-

ing vectors. These techniques do not aim at guiding the sam-

pling process to expose critical points using a small number

of samples. More importantly, they don’t focus on analyzing

program artifacts to achieve the goal.

Other approaches to uncertainty analysis include model

checking [12], automated differentiation [3], and controlled

perturbation [14]. They are either too heavy weight or have

difficulty handling heterogenous data (certain and uncertain)

and program artifacts such as control flow.

MC methods are also used in identifying critical input

and code regions [5], and detecting bugs in numerical pro-

grams [23]. Our work is complementary to these techniques

by reducing the number of needed MC trials.

Static analysis for program continuity and robustness.

The technique in [6] shares a similar scenario of analyzing

continuity for programs. It uses static analysis to soundly

reason about continuity, by proving whether a given program

encodes a continuous function. On top of [6], [7] further

analyzes and quantifies the robustness of a program to in-

put uncertainty. These techniques are static. In contrast, our

work is dynamic. For many real-world programs, continuity

and robustness cannot be statically proved as they depend

on the concrete inputs and input errors. These techniques

and ours are synergetic. In fact, we adapt their technique to

prove continuity of continuous cores identified by our dy-

namic analysis.

Others. Taint analysis [8, 20], information flow track-

ing [19], or lineage tracing [26] are dynamic analysis that

track or even quantify information flow during program ex-

ecution. They can be used to correlate inputs and outputs.

However, uncertain data processing requires direct reason-

ing about how input changes lead to output changes, which

demands reasoning across multiple executions.

White-box fuzzing [10, 11] is an effective technique for

dynamic test generation. It analyzes program executions also

in a white-box fashion, but based on symbolic execution and

constraint solving techniques. In theory, it can be applied to

explore the different values of the discrete factors for a given

program. However, due to the complexity of high order path

conditions and the huge overhead, it is impractical for real

world uncertain data processing.

10. Conclusion

We develop a white box sampling technique that allows sci-

entists to selectively and efficiently sample discontinuous

points in output functions, given input error bounds. It works

by analyzing program execution. In particular, it efficiently

hashes the values of certain program artifacts called discrete

factors during sample execution that are the root causes of

discontinuity in output. It then compares the hashes of mul-

tiple runs to determine if additional samples are needed. We

propose two hashing schemes and three sampling algorithms

with different tradeoffs in precision and cost. We also care-

fully study their safety. For programs in which control flow

differences (across multiple sample runs) are intentional and



hence do not affect continuity, we use a profiler to identify

such code regions and statically prove that they are contin-

uous so that we don’t need to hash their runtime values.

Our results show that the technique is very effective for real-

world programs.
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