
Virtual DOM Coverage: Drive an Effective Testing for
Dynamic Web Applications

Yunxiao Zou+*, Zhenyu Chen+, Yunhui Zheng*, Xiangyu Zhang*, and Zebao Gao+-

+State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China

*Department of Computer Science, Purdue University, West Lafayette, Indiana 47907, USA

-Department of Computer Science, University of Maryland, College Park, Maryland 20742, USA

{mg1032016, zychen}@software.nju.edu.cn, {zheng41, xyzhang}@cs.purdue.edu, gaozebao@cs.umd.edu

ABSTRACT
Test adequacy criteria are fundamental in software testing.
Among them, code coverage criterion is widely used due to
its simplicity and effectiveness. However, in dynamic web
application testing, merely covering server-side script code
is inadequate because it neglects client-side execution, which
plays an important role in triggering client-server interac-
tions to reach important execution states. Similarly, a crite-
rion aiming at covering the UI elements on client-side pages
ignores the server-side execution, leading to insufficiency.

In this paper, we propose Virtual DOM (V-DOM) Cov-
erage, a novel criterion, to drive web application testing.
With static analysis, we first aggregate all the DOM objects
that may be produced by a piece of server script to con-
struct a V-DOM tree. The tree models execution on both
the client- and server-sides such that V-DOM coverage is
more effective than existing coverage criteria in web appli-
cation testing. We conduct an empirical study on five real
world dynamic web applications. We find that V-DOM tree
can model much more DOM objects than a web crawling
based technique. Test selection based on V-DOM tree cri-
terion substantially outperforms the existing code coverage
and UI element coverage, by detecting more faults.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Reliability ; D.2.5 [Software Engineering]: Test-
ing and Debugging—Testing tools

General Terms
Measurement, Verification, Reliability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’14, July 21-25, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2645-2/14/07 ...$15.00.

Keywords
Dynamic Web, PHP, Coverage Criteria, Virtual DOM

1. INTRODUCTION
Web applications are becoming increasingly important in

recent years as people more and more tend to interact with
Internet to carry out their everyday activities, e.g. brows-
ing, shopping, gaming, working and socializing. Compared
to traditional desktop applications, the bar of developing
and deploying web applications is relatively lower. To some
extent, anyone could rent some space from an Internet Ser-
vice Provider and post his/her own web applications. On
one hand, this substantially facilitates the prosperity of In-
ternet and web applications. On the other hand, it welcomes
many web applications that are not sufficiently validated or
tested. These applications may cause all sorts of problems,
with some of them having financial impact. Web application
testing is hence a very important challenge for the health of
web application engineering.

Despite its importance, testing web applications poses
many new challenges. First, web applications are often
highly dynamic. A server-side script could generate a large
number of client-side pages that may appear different and
carry out different functionalities, depending on the client-
side user inputs and the internal states on the server-side.
AJAX (Asynchronous JavaScript and XML), a popular client-
side technique, allows on-the-fly page updates by interacting
with server scripts. Such page updates do not require load-
ing a new page, but rather self-modify part of the current
page (e.g. resizing a frame, repositioning a button, replacing
part of the page with an image). Such updates also change
both the interface and the functionality of the current client
page. These dynamic features make web application testing
difficult.

Recently, researchers have developed various web applica-
tion testing techniques that aim to address the challenges.
Particularly, S. Artzi et al. proposed a test generation tech-
nique for dynamic web applications by combining concrete
and symbolic executions [8]. Their tool Apollo can automat-
ically generate test inputs to expose faults in web applica-
tions, guided by similarity of code artifacts. G. Wassermann
et al. developed a test generation technique to handle dy-
namic features in web applications [29]. Their technique
also leverages concolic execution to maximize test coverage

of certain code artifacts in server scripts, such as string val-
ues, objects, and arrays.

While the aforementioned techniques have substantially
advanced web application testing, they more or less evolve
from traditional software testing techniques and inherit some
solutions that may become sub-optimal in the context of
web application testing due to its dynamic nature. One of
such sub-optimal solutions is coverage criterion, which of-
ten serves as the stop condition for testing, answering the
question whether a test suite is sufficient for a subject pro-
gram. It is a critical cornerstone for test selection, test pri-
oritization, and test generation. The most popular tradi-
tional coverage criterion is code coverage, or more specif-
ically, statement coverage, which measures the percentage
of statements that are executed by a given test suite. It
is simple, effective and hence widely used in many test-
ing techniques, including many of the aforementioned web
application testing techniques. However, we observe that
statement coverage is sub-optimal for web application test-
ing. Web applications are usually heterogeneous systems, in-
cluding HTML pages, server-side scripts (e.g. PHP scripts),
client-side scripts (e.g. JavaScript) that may be embedded in
server scripts or HTML pages, and even SQL scripts some-
times. It is very difficult to measure code coverage of client-
side scripts or HTML pages as they are usually dynamically
generated by server scripts. As such, different user interac-
tions may induce different client-side pages and scripts. It is
unclear what would be the universal set of client-side code
artifacts that an ideal test suite should cover. In contrast,
computing code coverage for server scripts is a tractable
problem. In fact, many existing web application testing
techniques adopt such a criterion [8]. However, it is unfortu-
nately insufficient for web application testing. In particular,
one line of server-side script could induce many client-side
code artifacts that may exercise different functionalities. A
test case covering a server-side line could not guarantee that
the corresponding client-side logic is sufficiently tested. We
will show a number of such cases that we have found in
practice in Section 2.

Another popular coverage criterion is based on Graphic
User Interface (GUI) objects [33]. It measures test suffi-
ciency from the perspective of an end-user. It focuses on
covering the events that could be triggered by manipulating
the GUI elements presented in the front-end. The corre-
sponding testing methods often leverage crawlers to navigate
a subject application and automatically explore GUI objects
in the interface. This approach works best when the pages
are static such that the events to cover could be identified
before-hand. However, in web application testing, crawlers
usually fail to crawl all the possible interfaces due to the
need of having the right sequences of inputs. As such, the
universal set of artifacts to cover cannot be properly com-
puted, making measuring test sufficiency difficult.

In this paper, we propose a novel coverage criterion: Vir-
tual Document Object Model (V-DOM) coverage. Web pages
are represented as DOM trees internally by a browser. The
root of a tree represents the whole document (i.e. the page).
Other objects such as frames, text-boxes and buttons are or-
ganized as a tree based on their nesting structure. In some
sense, we could consider that each page displayed to the
client is essentially a DOM tree. A V-DOM tree is a logical
aggregation of all the possible DOM trees produced by a
server script. Each object in a V-DOM tree may appear in

a page in reality but multiple DOM objects in the tree may
not appear together in the same page.

To construct the V-DOM tree of a server script, we per-
form static analysis on the server-side code (e.g., PHP) to
identify all the possible DOM objects that could be emit-
ted by the server code to the page returned to the client,
and organize them in a tree just like a real DOM tree. It
hence denotes all the possible behaviors of the script and
can serve as a reasonable universal set of artifacts to cover
during testing.

The contributions of the paper are summarized as follows.

1. A novel coverage criterion, V-DOM coverage, is pro-
posed to facilitate effective testing of dynamic web ap-
plications.

2. We develop a static analysis technique on server scripts
to construct the V-DOM trees for a web application.

3. An empirical study is conducted to evaluate the ef-
fectiveness of V-DOM coverage on five real world web
applications.

The results show that our approach can model much
more DOM objects than using a crawler, and V-DOM
tree coverage is much more effective in driving test
selection for bug detection compared to the traditional
code coverage the UI element coverage.

The rest of paper is organized as follows. We motivate
our technique in Section 2. We define V-DOM tree and V-
DOM coverage in Section 3. We further explain the details
of our approach, including how to generate a V-DOM tree
and compute V-DOM coverage during execution, in Section
4. The experimental results are presented and analyzed in
Section 5. We discuss the related work in Section 6 and
conclude in Section 7.

2. MOTIVATION EXAMPLES
In this section, we use two simplified examples from real

world web applications to motivate our approach. These
two examples represent two kinds of faults residing in the
client-side and the server-side, respectively. We also explain
the reason why the code coverage criterion has problems in
testing and discovering these faults.

2.1 Faults in the Client-Side
During web application execution, server scripts assemble

small pieces of strings to produce the client pages (HTML
and JavaScript) on the fly. While these dynamically gen-
erated client-side artifacts have to comply with the corre-
sponding syntax and semantics rules, such syntax and se-
mantics constraints are invisible to the server scripts. From
their perspective, the client page snippets embedded in their
code bodies are just strings. Server scripts will not validate
the correctness of these strings.

Therefore, dynamically generated client pages are error-
prone. For example, hyper-links denoted by “
... ” may fail because the URLs presented or dynam-
ically generated are not correct. If the URL is static (i.e.
not changeable by JavaScript based on user inputs or ac-
tions), traditional web page crawlers can easily determine if
it is a broken link. In contrast, if the URL is dynamically
composed on the client-side through JavaScript and some

<?php
...

1 for($i = 1; $i <= $numpages; $i++)
{

2 if($i == $_POST["onpage"])
{

3 print("<a href=’JavaScript: ...
4 document.parents.page2.value = 3;
5 document.parents.submit();’
6 ... ");

}
}
...

?>

Figure 1: Simplified Server-side Script in Schoolmate

runtime inputs, it may be difficult to identify the problem
if the interactions inducing failure are not exercised during
testing.

When we inspect the origin of the hyper-link in the server
script, we probably find that it is from an echo or print state-
ment that emits a string to the output page that will be
returned to the client. Therefore, it’s possible that a test
run correctly executes this specific print on the server-side
but failed to notice that the hyper-link is broken until the
link is clicked in the client interface. In other words, a test
case that covers the statement on the server-side may still
miss the bug if it does not follow the link on the client-side.
The problem becomes prominent when the link could change
its form dynamically. The essence is that server-side code
coverage may not take into consideration execution on the
client-side so that client-side faults may be missed.

The server-side script snippet demonstrated in Fig. 1 shows
an example of this kind. It’s taken from Schoolmate 1, an
Management Information System (MIS) solution for schools.
In Schoolmate 1.5.4, there is a navigation bug caused by a
hyper-link with embedded JavaScript.

The for loop dynamically generates a table containing data
retrieved from databases. The print statement in lines 3-
6 adds a button with hyper-link in each row of the table.
The result of clicking the button is to execute a piece of
JavaScript specified in the href property of the <a> element,
which is supposed to send a deletion request and navigate
the user away to a web page belonging to the Parent module.
Such navigation can be achieved by assigning a unique ID
to document.parents.page2.value at line 4, which is “3” in the
snippet. However, its behavior is buggy because it redirects
the client to a page of the Teacher module. The reason is
that the developers use a wrong module ID “3” instead of
“22”.

As explained above, although the patch to the bug should
be applied to the constant string at line 4 in the server script,
the bug is actually a part of the JavaScript code that only
gets triggered on the client-side. Therefore, an ideal cov-
erage criterion should allow selecting a test case that exer-
cises the print statement on the server-side and triggers the
specific hyper-link on the client-side. However, server-side
code coverage can hardly meet the goal because it cannot
model the requirement on the client-side. Note that the
GUI coverage criterion [33] may not work either as the the
print statement is guarded by the conditional check at line
2, meaning that it may not get executed depending on the
client-side input. If so, the button is not even present on the
client-side interface to have any effect on the GUI coverage.

1 http://sourceforge.net/projects/schoolmate/

<?php
...

1 $tzo = $_COOKIE[’tzoffset’];
...

2 if (!empty($modified_when[$x])) {
3 $modified_when_time = date(..., $modified_when[$x]);
4 $modified_when_date = date(..., $modified_when[$x]);
5 }

...
?>

(a) Buggy Server-side Script in PHP Timeclock v1.02

<?php
...

1 $tzo = $_COOKIE[’tzoffset’];
...

2 if (!empty($modified_when[$x])) {
3 $modified_when[$x] = $modified_when[$x] + $tzo;
4 $modified_when_time = date(..., $modified_when[$x]);
5 $modified_when_date = date(..., $modified_when[$x]);
6 }

...
?>

(b) Fixed Server-side Script in PHP Timeclock v1.03

<script language="JavaScript">
...

1 var tzoffset = getthecookie("tzoffset") || timezone;
2 if (...)
3 tzoffset="0";
4 setthecookie("tzoffset", tzoffset);

...
</script>

(c) JavaScript Snippet Setting Timezone in the Client-side

Figure 2: A Bug in the Server-side of PHP Timeclock

2.2 Faults in the Server Side
Sometimes, even faults in server-side scripts can cause

problems with the server script code coverage criterion. We
use an example from PHP Timeclock 2 to demonstrate the
scenario. PHP Timeclock is a web-based schedule and event
tracking system.

The related client-side and server-side code snippets and
the fix on the server-side are presented in Fig. 2. Depending
on the configuration preferred by the client, PHP Timeclock
can display the client’s local time that may be different from
the server’s time. This functionality is achieved as follows.
Before sending a request, the client’s local timezone is saved
in the cookie by JavaScript at line 4 of Fig. 2(c). When
the server processes the request, it first reads the client’s
timezone from the cookie at lines 1 of Fig. 2(a) and Fig. 2(b)
so that the server is able to understand the time difference
and adjust the time to be displayed accordingly.

However, the buggy implementation in Fig. 2(a) forgets
to adjust the time although it does load the client’s time-
zone. The bug is fixed by adding the statement at line 3 in
Fig. 2(b).

Now consider a test case, in which the configuration is set
to display the server time instead of the client’s local time.
The test case will execute lines 1-5 in Fig. 2(a). However, it
fails to disclose the bug even it could achieve full coverage.
Note that this is a missing code bug, which is known to
be difficult for code coverage criteria. In contrast, a test
criterion that tries to cover the various configurations on
the client-side would expose the bug (on the server-side).
The essence is that server-side code coverage alone is not
sufficient for detecting missing code faults.

2 http://timeclock.sourceforge.net/

3. VIRTUAL DOM COVERAGE
Through the examples in the previous section, we observe

that server-side code coverage is sub-optimal in web appli-
cation testing. The root cause is that the criterion does not
model the execution on the client-side such that faults in
client-side pages cannot be sufficiently exposed (e.g., defec-
tive DOM objects and parameters as in the first example in
Section 2). Code coverage also has difficulty detecting miss-
ing code problems, whereas certain client-side inputs could
expose them. (e.g., the second example in Section 2).

To develop a test criterion that is capable of modeling
execution on both the server- and the client-side, we propose
the notation of Virtual DOM (V-DOM) tree. In this section,
we will define V-DOM tree and V-DOM coverage.

3.1 Virtual DOM Tree
On the client-side, a page is represented as a tree of DOM

(Document Object Model) objects. The interface artifacts
in the page, such as frames, text-boxes, and buttons, are
called the DOM objects. Note that the display of a client-
side HTML page is organized in layers such that the cor-
responding DOM objects form a tree to reflect such layers.
For example, a button DOM object is a child of a frame ob-
ject if the button resides in the frame. The root of a DOM
tree represents the entire page.

During web application execution, a piece of server script
may generate many different client pages (or DOM trees).
These pages are the results of both client-side and server-
side executions. We introduce Virtual DOM (V-DOM) tree
to denote the universal set of all such pages, which essen-
tially encodes the universe of possible executions on both
sides. Intuitively, V-DOM tree is similar to a real DOM
tree in that the DOM objects in the tree are concrete and
valid. The difference is that a V-DOM tree includes all the
possible DOM objects generated by a piece of server script
and these DOM objects retain the same relative positions to
their containers (e.g. <div>) as in a real DOM tree gener-
ated by some execution. In some sense, one can consider a
V-DOM tree the aggregation of all possible real DOM trees.
The declarative definition is as follows.

Definition 1. Given a server script P , its V-DOM tree
is a tree 〈N,E〉 satisfying the following conditions.

• A node n ∈ N if and only if in some execution of P ,
a DOM object n appears in the generated client page;

• An edge n→ m ∈ E if and only if in some execution
of P , the DOM object m directly resides in another
DOM object n in the generated client page.

Consider the server script in Fig. 3(a). The PHP script
enclosed has two execution paths. Depending on the value
of $p, the script may emit a button or a table including a
button to the result client page. The results of these two
concrete executions are shown in Fig. 3(b). It shows the
real DOM trees and their corresponding appearances. The
V-DOM tree and the corresponding web page are present
in Fig. 3(c). It integrates all the DOM objects appearing
in the concrete runs and retains their relative positions in
real executions. Please note that button1 and button2 can
never coexist in the outcome of any concrete execution. In
this paper, we also call the HTML page corresponding to
a V-DOM tree the virtual HTML page. A V-HTML page
could be rendered by a browser as a usual HTML page.

div

<div>
…
<?php

if ($p > 0) {
print(“<button ...>button1</button>”);

}
else {

print(“<table>…”);
print(“<button ...>button2</button>”);
print(“...</table>”);

}
?>
...
</div>

div
button1

(a) server script
(b) two concrete

executions

(c) V-DOM tree

and its page

html

...

div

button1

html

...

div

button2

table

table
button2

Execution 1 Execution 2

html

...

div

button2

tablebutton1

div

table
button2

button1

Figure 3: V-DOM Tree Example

Well-formedness of V-DOM Trees. Theoretically, a
DOM object n could be in different containers in different
concrete executions of a server script. For instance, in one
execution, a button may be emitted in a frame, while in
another execution, the same button may be in a table. Al-
though our V-DOM tree construction algorithm (Section 4)
could precisely catch such situations, the resulting structure
is no longer a tree, but rather a graph, which cannot be prop-
erly rendered. While we have not encountered such cases in
practice, our solution is to create a clone of the DOM ob-
ject in each container. We will rename each clone to avoid
conflict.

Another possible violation of well-formedness is that loops
may be formed. For example, in one execution, a DOM ob-
ject n may be in another DOM object m whereas in another
execution, m is in n. Again, we haven’t seen such cases
in practice. The solution is similar, cloning the objects to
retain a renderable tree shape.

3.2 V-DOM Coverage
Observe that a V-DOM tree essentially models executions

on both server- and client-sides. Usually, the purpose of hav-
ing different execution paths on the server-side is to compose
the client page in different manners. These different man-
ners are aggregated and denoted in a V-DOM tree. Hence,
covering the DOM objects in the tree implies covering paths
on the server-side. On the other hand, any DOM object
that a client user could interact with is represented in the
V-DOM tree 3, covering objects in a V-DOM tree also means
covering all the possible client-side interactions.
If a DOM object is rendered in a test run, it’s a displayed
object. We hence define the V-DOM display coverage as the
ratio of the displayed objects by a test suite to all the objects
in the V-DOM trees. On the client-side, a user can interact
with a web application by operating on user controls such as
buttons or typing in text-boxes. These actions can trigger
events that may potentially change the execution state. We
call a DOM object that has event listeners attached an in-
teractive object. If a specific event of an interactive object is
triggered in a test run, we say the event is covered. There-
fore, V-DOM event coverage is the ratio of the number of
the triggered events to all the trigger-able events in V-DOM
trees. It measures the completeness of a test suite in terms
of user interactions.

3We assume the V-DOM tree construction algorithm is com-
plete at this point. We will discuss factors that affect com-
pleteness in later section.

4. MODEL GENERATION AND COVERAGE
COMPUTATION

In this section, we explain how to statically construct V-
DOM trees and how to measure V-DOM tree coverage at
runtime. As shown in Fig. 4, the V-DOM tree construction
process consists of three main steps.

1. Preprocessing. In this step, the web application is
prepared for later static analysis. Particularly, script
inclusions are handled by including the contents of the
target scripts. The resulting server scripts are then
translated to C code.

2. Control-flow and Data-flow Analysis. In this step,
static control-flow and data-flow analyses are preformed
on the translated C code to identify and extract all
DOM objects that may be emitted by a script. The
output in this step is an analysis record file.

3. Model Generation and Coverage Computation.
In this step, the tool generates a V-DOM tree based
on the program analysis result in the previous step.
During test case execution, runtime data related to
the coverage criteria are collected.

4.1 Preprocessing
We should not construct V-DOM tree through dynamic

analysis as the resulting tree may not be complete. There-
fore, we resort to static analysis. However, to the best of our
knowledge, there is not a reliable static analysis framework
that can directly analyze PHP scripts. Therefore, similar to
other PHP static analysis projects [29], we first convert a
PHP script into a piece of C code using phc [1] in order to
leverage existing analysis engines.

The goal of using phc is to generate a piece of runnable C
code with the same functionality as the PHP script. During
the translation, it adds many auxiliary functions and data
structures to handle PHP runtime features that are not sup-
ported in C. For example, in PHP, the index of an array can
be of multiple types but in C it can only be integers. Hence,
in the translated C program, such features are supported
using hash tables. These additional libraries substantially
increase the complexity of the analysis. Fortunately, we are
only interested in the control-flow and data-flow of the script
and do not need to run the translated program. Therefore,
we modify phc to simplify the translations for those runtime
features for the goal of static analysis. As a result, the trans-
lated C program may not be executable but it retains the
control-flow and data-flow of the original PHP script.

During the translation, we unroll loops once. The intu-
ition is that unrolling a loop multiple times only introduces
multiple instances of a DOM object of the same nature (e.g.,
the same object type and the same event handlers). Cov-
ering these instances does not add much to fault detection
capabilities. As a result, the translated C code does not
have any loops.

4.2 Control-flow and Data-flow Analysis
In the second step, we leverage LLVM [2] to perform

control-flow and data-flow analysis on the translated pro-
grams. Control-flow analysis is needed to construct the
control flow graphs (CFGs) which will be used in V-DOM
tree construction. Data-flow analysis is needed to detect
data dependences, especially those that are related to the

Algorithm 1 Construct Virtual DOM Tree

Input: CFGs and data dependences of the translated
program
Output: V-DOM tree.

1: vhtml← Φ
2: outputFunction(the CFG of main(), φ)

3: procedure outputFunction(CFG: G, Context: C)
4: for each instruction i ∈ G in topological order do
5: if isPrint(i) then
6: for each value v in computeV ar(i.operand)) do
7: vhtml.append(v)
8: end for
9: end if

10: if isFunctionInvocation(i) then
11: Cf ← Φ
12: for each formal parameter p of i.callee do
13: Cf ← Cf ∪ {p 7→

computeV ar(the actual parameter, C)}
14: end for
15: outputFunction(the CFG of i.callee, Cf)
16: end if
17: end for
18: end procedure

strings emitted by print statements in server scripts. Note
that the essence of server script execution is to compose the
client page from strings that may come from user inputs or
databases. Data dependences would be helpful in figuring
out the possible string values at print statements and hence
the possible DOM objects.

4.3 Model Generation
Alg. 1 describes the V-DOM tree construction algorithm.

Its input is the program analysis results obtained in the pre-
vious step, including the CFGs and data dependences of the
translated program. Its output is a virtual HTML page,
which is essentially the V-DOM tree. In the algorithm, the
virtual page is initialized to empty at the beginning (line 1).
It then invokes the outputFunction() method on the main()
function of the translated program to generate the V-DOM
tree. The method takes the CFG of a function in the trans-
lated program and an evaluation context, which contains
the possible values for the parameters of the function. It
traverses each statement in the function in the topological
order. If a statement i is a print statement, the algorithm
calls computeVar() to compute the possible values of the
string operand of the print statement and emit such values
to the virtual page sequentially (lines 5-8). As such, the cor-
responding possible DOM objects are arranged next to each
other in the same container. Note that the topological order
is important, it ensures the emission of the elements in the
virtual page must follow the order of some real execution.
For example, it ensures an end HTML tag must be emit-
ted after the corresponding start tag. If the statement is a
function invocation, it recursively calls outputFunction() on
the callee function, with a context that contains the possi-
ble values for each formal parameter of the callee function
(lines 10-16). Particularly, line 13 computes the possible
values of a formal parameter, which are acquired through
computeVar() on the corresponding actual parameter. This
essentially makes our analysis context sensitive.

Alg. 2 defines the computeVar() method that computes
the set of possible values of a variable, given an evaluation
context. At line 3, the set of data dependences of the vari-

Model Generation &
Coverage Calculation

!!"#

Converted C
Source Code

Control / Data flow
 Analysis

$%#&#'()*+

LLVM ByteCode

#'(+*&
,+-+./0'.

Analysis Record

Preprocessing

#'(12+(
345

Processed Source
Code

61*+&
3.+7/./01'-

5'8+./9+&
5/*:)*/0'.

;+<0&&$/0/
5'**+:0'.

=+>&
?77*1:/01'-&
@').:+&5'(+

"1.0)/*&$%#&
3/9+

5'8+./9+&
A-B'.C/01'-

!"#$%&'$()*$+(,
-',$+)"

.,/+0(,)",$

Test Data

Figure 4: V-DOM Construction Overview. The gray boxes are the three main steps. The rounded white rectangles with a
smaller box inside are the tools we used. The white rectangles are the intermediate data or analysis results.

Algorithm 2 Static Variable Approximation

Input: A variable and the evaluation context
Output: A set of values.

1: function computeVar(Variable: x, Context: C)
2: vSet← Φ
3: dataDepSet← getDirectDependance(x)
4: for each dep ∈ dataDepSet do
5: if isConstant(dep) then
6: vSet← vSet ∪ {dep.constantV al}
7: end if
8: if isCopy(dep) then
9: vSet← vSet ∪ {computeV ar(dep.operand, C)}

10: end if
11: if isParameter(dep) then
12: vSet← vSet ∪ {C[dep]}
13: end if
14: if isBinOP (dep) then
15: vS1← compuateV ar(dep.operand 1)
16: vS2← compuateV ar(dep.operand 2)
17: if isApplicable(dep.opType) then
18: for each combination of values (v1, v2)

in vS1 and vS2 do
19: vSet← vSet ∪ {eval(dep.opType, v1, v2)}
20: end for
21: else
22: for each combination of values (v1, v2) in

vS1 and vS2 do
23: vSet← vSet ∪ {dep.opType.toString()+

v1.toString() + v2.toString()}
24: end for
25: end if
26: end if
27: if isOtherType(dep) then
28: vSet← vSet ∪ {”$” + var.Name}
29: end if
30: end for
31: return vSet

32: end function

able is acquired. Note that this was pre-computed using
LLVM. A variable used at a statement n may be defined
at multiple locations m1, m2, and so on, leading to multi-
ple data dependences. The loop in lines 4-30 traverses each
data dependence, which essentially denotes a definition of
the variable, to compute the possible values. If the definition

is an assignment of a constant value, the value is added to the
set (lines 5-7); If it is a copy from another variable, method
computeVar() is recursively invoked on the source variable
(lines 8-10); If the variable is a formal parameter, the pos-
sible values of the parameter are loaded from the context
and added to the value set; If it is defined through a binary
operation such as string concatenation and integer addition,
depending on if we could execute the operation offline, we
may evaluate the operation on each pair of possible operand
values (lines 17-20) or simply convert the operation to a
string and concatenate it with the operand values to get the
symbolic representations of the possible values (lines 22-24).
We currently support offline evaluation of arithmetic opera-
tions and string concatenation, string length and substring
operations if the concrete values of the string operands can
be computed. Other unary and ternary operations are simi-
larly supported and hence omitted from the algorithm. For
other types of operations, such as acquiring a value posted
by the client-side (e.g. POST[...]), the possible values are
represented by a symbolic variable.

Example. Fig. 5 shows an example of V-DOM construc-
tion. The PHP script is a simplified version of the snippet
in Timeclock 1.0.2 to output the footer of a page. It out-
puts the link to the official website of PHP language. And
an email address link is also provided right after the URL
link if the address is valid. The email address is retrieved
by a database’s query (line 1). If a non-null string value is
returned by the query, a user-defined function is called to
output the email information (lines 3-4). In the function, if
the email address is valid, it is printed (lines 7-9). A warning
message is emitted otherwise.

In the previous LLVM analysis phase, an analysis log
record is generated, which contains CFG and data depen-
dence information. The CFGs of the two functions are
showed in figure (b). According to Alg. 1, the CFG of the
main function is traversed in the topological order. As such,
in the resulting page in figure (c), the first two lines of the
client page are emitted as in a real execution. Upon reach-
ing the function invocation at line 4, the algorithm continues
to analyze the function emailFooter(). In the context, the

Function: emailFooter($e)

bb4

Main
<div>
…

<?php

…

1 $email = mysql_result(… , …);
2 Print(“<ahref='http://php.net'>PHP”);
3 if(!is_null($email))
{
4 emailFooter($email);
}
…

5 Function emailFooter($e)
{
6 If(isValid($e))
7 print("<a href='mailto:"
8 .$e.
9 "> email address ");
10 Else
11 print(“<p>Invalid Email Address !</
p>”);
}
…

?>
</div>

(a) server script
(b) LLVM analysis

record

(c) V-DOM tree

and its page

bb1
Call mysql_result
Para1: query_string1
Para2: query_string2
Para3: $email

print
Para1: “PHP”

if(!is_null($email))

bb2

Call emailFooter
Para1: $email

…… bb3

print

Para1: “<p>Invalid Email
Address !</p>”

stringConcatenate

Para1: “"<a href='mailto:"”
Para2: $e
storeVariable: $temp1

stringConcatenate
Para1: $temp1

Para2: "> email address "
storeVariable: $temp2

print
Para1: $temp2

If(isValid($e))

html

...

div

PHP official web link

email error
message

email link

1 <div>
…

2 PHP”);

3
4 email address
5 <p>Invalid Email Address !</p>
…

6 </div>

Figure 5: V-DOM Construction Example

formal parameter $e is determined to have a symbolic value
“$email”as we cannot determine the concrete value returned
from a database’s query. Inside the function, the true and
the false branches are traversed one after the other, leading
to the hyper-links at lines 3-5 in (c) being emitted next to
each other, both included in the same container. Note that
the algorithm evaluates the string concatenation at lines 7-9
in (a) to acquire lines 3-4 in (c).

4.4 Test Data Collection and Coverage Calcu-
lation

In this step, we collect DOM objects exercised in concrete
executions and compute the coverage of a test suite using
the V-DOM tree constructed in the previous step.

We run the test suite on the web application and collect
the concrete DOM trees. We remember the attributes and
text values (if any) of the events of any interactive DOM
objects. We also record all the displayed DOM objects.

Next, we match the DOM objects collected during testing
with those in the corresponding V-DOM trees by their IDs
and compute both the display coverage and event coverage.

In theory, if two DOM objects match, they should share
the same set of attributes. However, since we use static value
approximation in V-DOM tree construction, whole words
matching is not always possible. We solve this problem by
treating the symbolic variables introduced during V-DOM
tree construction as wildcard characters that can match with
any strings. Also, if there are multiple matches in the V-
DOM tree, the first one is used.

To compute event coverage, we need to identify the set
of DOM objects that are interactive and their events. It is
not trivial to automatically to achieve this goal [22]. In our
design, we detect interactive DOM objects from their tag
names. More specifically, DOM objects tagged as “<a>”,

“<button>” and “<input=submit>” are considered interac-
tive. In addition, objects with event handlers attached are
also treated as interactive. Currently, we only consider those
event handlers that are statically registered as an attribute
of a DOM object. We do not support runtime handler hook-
ing by JavaScript.

5. EXPERIMENT
In our empirical study, we focus on answering the follow-

ing research questions:
RQ1: Can V-DOM trees model more DOM objects than

a dynamic approach based on a state-of-the-art crawler crawl-
jax [22] with reasonable overhead?

RQ2: Does V-DOM tree coverage perform better than
server-side code coverage and UI coverage based on dynamic
models generated by crawljax in fault detection?

We chose five programs for our experiments. They are
collected from existing works in web application testing [8].

• aphpkb 0.95.5 is a knowledge base management sys-
tem.

• faqforge 1.3.2 is a web-based document creation and
management tool.

• newspro 1.4.0 is an advanced news management sys-
tem.

• schoolmate 1.5.4 is a PHP solution for elementary,
middle and high schools’ administration.

• timeclock 1.0.2 is an effective web-based time clock
system which replaces manual sign-in sheets.

Figure 6: Fault Detection Rate

Table 1: HTML Element Extraction Evaluation

aphpkb faqforge newspro schoolmate timeclock

Version 0.95.5 1.3.2 1.4.0 1.5.4 1.0.2
LOC 4283 734 6925 8181 20789
Files 46 19 30 63 62∣∣EV

∣∣ 869 439 1395 2191 11511∣∣EC
∣∣ 225 167 71 685 769∣∣EV ∩ EC
∣∣ 210 167 69 685 750∣∣EV \ EC
∣∣ 659 272 1326 1506 10761∣∣EC \ EV
∣∣ 15 0 2 0 19

V-DOM Size 227KB 52KB 1322KB 164KB 1212KB
Crawljax Size 745KB 33KB 59KB 439KB 222KB

5.1 V-DOM Tree Models vs. Dynamic Models
In the first experiment, we generate the V-DOM tree mod-

els of the subject programs, and compare them with the
dynamic UI models generated by a state-of-the-art crawler
crawljax [22]. To the best of our knowledge, crawljax is the
first and the only automatic UI model generator for web
applications that supports web 2.0 techniques. It works by
automatically following hyper-links and providing random
values as client inputs. We run crawljax on the subject pro-
grams with the default configuration. For some web applica-
tions, we manually provide some inputs to the tool to access
pages (e.g. username and password). The results are pre-
sented in Table 1. It shows the sizes of the V-DOM tree
model and the crawljax model (the last two rows), the num-
ber of DOM objects extracted from the V-DOM tree model
(row |EV |) and the crawljax model (row |EC |) , the number
of DOM objects in both models (row |EV ∩ EC |) and the
number of DOM objects that are present in one model but
not the other (rows |EV \ EC | and |EC \ EV |).

The results show that the proposed V-DOM tree approach
can model far more DOM objects than using a crawler. It
suggests that even an advanced crawler like crawljax can
only crawl a small portion of all the possible client pages
because these pages heavily depend on the client-side inputs,

the server-side state (e.g. database’s state) and the sequence
of user interactions. In practice, the search space for all
possible inputs and sequences is too large to explore through
dynamic executions.

We also observe that there are a small number of DOM
objects that are not obtained by the V-DOM tree model but
by the dynamic model. For example, in program aphpkb, 15
DOM objects are missed by the V-DOM tree model. How-
ever, the portion of missing objects is very little: 1.7% for
aphpkb, 0.14% for newspro, 0.16% for timeclock, and none
for the rest. Further inspection shows that 27 missing ob-
jects are due to the mis-transformation from PHP source
code to C source code, and from C code to LLVM interme-
diate byte-code; 9 missing objects are due to the symbolic
approximation of certain operations. Recall in Algorithm 2,
we convert an operation that is not supported by our current
system to its symbolic name and concatenate it to operands
to approximate the result of the operation.

5.2 Cost of V-DOM Tree Construction
In the second experiment, we evaluate the runtime perfor-

mance of V-DOM tree construction and compare it with the
cost of running crawljax. The results are shown in Table 2.
The experiment was performed on a machine with Intel Core
i3 3.07GHz CPU and 4GB RAM. Observe that V-DOM tree
construction is more expensive due to the various analysis
performed. The current implementation has not been op-
timized. We believe that efficiency could be substantially
improved by optimizing the computation of possible vari-
able values. Furthermore, we argue that the performance
overhead is only a one-time cost.

5.3 Fault Detection Effectiveness Comparison
In the third experiment, we compare the fault detection

capabilities of V-DOM tree coverage, server-side code cover-

Figure 7: APFD Analysis

Table 2: Runtime Performance (in seconds)

aphpkb faqforge newspro schoolmate timeclock

V-DOM

t1 26.3 32.4 35.2 59.7 66.2
t2 163.9 65.8 454.2 3512.6 2491.9
t3 5.3 2.3 10.6 24.1 96.7
tt 195.5 100.5 500.0 3596.4 2654.8

Crawljax tt 61.5 24.2 25.4 61.5 31.0

t1, t2, and t3 are the times of three steps of V-DOM
construction, respectively. tt is the total time.

age, and UI element coverage (based on the dynamic models
generated by crawljax). We perform test selection using the
three coverage criteria on five subject programs. Please note
that not all faults could be detected by a subset of tests in
test selection.

Seven graduate students and one senior undergraduate
student conducted manual testing of the subject programs
based on their specifications. The manual tests are then
recorded as test scripts using Selenium [3]. The information
of faults and tests used in our experiment is shown in Ta-
ble 3. Column 2 shows the number of faults identified by
the human testers. All of them are real faults. Columns
3-5 show the number of failing tests, passing tests, and total
tests, respectively.

Table 3: Faults and Tests

program faults tests
fail pass total

aphpkb 10 10 49 59
faqforge 11 45 125 170
newspro 7 7 43 50

schoolmate 23 44 151 195
timeclock 11 11 144 155

We then performed test selection on the test suite for each
program as follows. First, the coverage of each criterion is

computed for each Selenium test case. A greedy algorithm
is used to select test cases. The algorithm always tries to
select a test case from the remaining (unselected) test cases
to maximize the coverage of the selected subset for each cri-
terion. If there are multiple such candidates, one is chosen
randomly. After each step of selection, we compute and
compare the numbers of faults that are detected by the se-
lected suite for each criterion. The process ends when the
selected tests reach the maximum coverage points. That is,
the number of tests selected by different coverage criterion
may be different. To ensure the results are not biased due to
the non-determinism in the greedy algorithm, we repeated
the selection process 100 times for each subject program for
each coverage criterion.

Fig. 6 shows how the average number of detected faults
grows as the number of selected test cases grows. Tests
selected by V-DOM coverage can detect faults more fast
than tests selected by other two coverage criteria. For all
of five programs, V-DOM coverage outperforms UI coverage
(Crawljax) significantly. For faqforge, schoolmate and time-
clock, V-DOM coverage outperforms code coverage signifi-
cantly. For aphpkb and newspro, tests selected by V-DOM
can detect more faults, despite code coverage can use more
tests to achieve the same goal. The results indicate that the
fault detection rates of V-DOM are higher than the ones of
code coverage and UI coverage.

In order to further investigate the effectiveness of V-DOM
coverage, we introduce Average Percentage of Faults De-
tected (APFD) metric, which is commonly used in test case
prioritization [4]. APFD measures the rate of fault detec-
tion per percentage of test execution. The APFD scores are
calculated by taking the average of the percentage of faults
detected during the execution of tests. The APFD scores
range from 0 to 1, where higher APFD values imply faster
fault detection rates. For fair comparison, we prioritize tests
with three coverage criteria in the same test suite. That is,
the number of tests for each coverage criterion is the same.
We repeat 100 times and draw box-plots for each program,

as shown in Fig. 7. The experimental results show that the
APFD scores of V-DOM are much higher than the APFD
scores of other two coverage criteria. This indicates that
V-DOM is a promising coverage criterion for dynamic web
testing.

6. RELATED WORK
Our technique is most relevant to existing web applica-

tion modeling techniques. Ricca and Tonella [25] developed
a high level UML-based representation for web applications.
In [27] Tonella et al. extended the model to include server
pages. In their method, multiple entities are created for a
single server-side script, one for each possible client page
generated by the script. However, there may be too many
possible client pages to enumerate. In contrast, our ap-
proach generates a V-DOM tree for each server script. Liu
et al. [20] and Kung et al. [19] proposed multiple models,
each targeting on representing a single tier in web applica-
tions. They also suggested that data flow analysis could be
performed at multiple levels. Though the models are able to
represent the interactions between different components of a
web application, it is not clear if the models have been imple-
mented and experimentally evaluated. Di Lucca et al. [21]
developed a UML-based web applicaion model and a set of
tools for evaluation and automation of web application test-
ing. They consider individual pages of an application as
components to be tested at the unit level.

String analysis is a form of static program analysis which
is to infer the possible values of string expressions [26, 13,
16, 17, 18, 23, 28]. Christensen et al. [13] generate context-
free grammars with non-terminals representing string ex-
pressions in Java programs to approximate the possible val-
ues. Minamide et al. [23] presented an analysis that approx-
imates the string output of a program with a context-free
grammar, and used it for cross-site scripting vulnerability
detection and validation. Tateishi et al. [26] encoded pro-
grams in Monadic Second-Order Logic to check if a string
satisfies a given property. Compared to these techniques,
our analysis focuses on composing a whole (virtual) client
HTML page by concatenating the string values of all output
statements in a server script. The composition is driven by
a topological traversal of program statements. Furthermore,
our analysis is context sensitive and uses symbolic approxi-
mation for unsupported operations.

The structures of web pages and their contents can be ex-
tracted dynamically by web crawlers [10, 11, 14, 12, 9, 22].
Web 2.0 techniques such as JavaScript and dynamic DOM
manipulation post challenges to web crawling due to their
dynamic features [14, 22]. Even with advanced web crawlers
that support web 2.0 features, a large number of DOM ob-
jects are usually missing in the generated models due to
the difficulty in covering the whole dynamic input space, as
shown by our experience with crawljax. Alshahwan et al. [5]
presented crawlability metrics to quantify properties of web
applications that affect crawling.

Our technique is also related to various test coverage crite-
ria. Structure coverage, such as branch coverage and MC/DC,
is one of the most commonly used criteria to guide test gen-
eration and selection [7]. In some cases, it can also be used
to evaluate the quality of test sets. Data-flow coverage [15]
is another kind of popular coverage criterion that measures
the portion of variable definitions, uses, and definition-use

relations that are covered. Very thorough discussion about
coverage criteria could be found in [24, 30, 6].

7. CONCLUSIONS
In this paper, we present a novel coverage criterion for web

application testing based on DOM objects. The technique
statically analyzes a web application to generate Virtual
DOM trees that model all the possible DOM objects that
could be generated in some execution of the web application.
V-DOM trees model server-side execution by including all
the objects that could be generated by different execution
paths of server scripts. They model client-side execution by
including all the displayable DOM objects and their event
handlers. As such, a good coverage of V-DOM tree implies
a good coverage of executions on both client- and server-
sides. Our experimental results show that V-DOM trees
contain far more DOM objects than the dynamic “crawled”
models of web applications, and test selection driven by V-
DOM tree coverage is substantially more effective than the
existing code coverage and UI element coverage.

ACKNOWLEDGMENTS
This work was supported by National Basic Research Pro-
gram of China (973 Program 2014CB340702), National Nat-
ural Science Foundation of China (Grant No. 61170067,
61373013).

8. REFERENCES
[1] Phc: open source PHP compiler.

http://www.phpcompiler.org/.

[2] The LLVM Project: a collection of modular and
reusable compiler and toolchain technologies.
http://llvm.org/

[3] Selenium: web browser automation.
http://www.seleniumhq.org/.

[4] S. Elbaum, G. Rothermel, S. Kanduri, and A.
Malishevsky. Selecting a cost-effective test case
prioritization technique. Software Quality Journal,
12(3):185–210, 2004.

[5] N. Alshahwan, M. Harman, A. Marchetto, and
P. Tonella. Improving web application testing using
testability measures. In WSE’09, pages 49–58, 2009.

[6] C. Fang, Z. Chen, and B. Xu. Comparing logic
coverage criteria on test case prioritization. Science
China Information Sciences, 55(12):2826–2840, 2012.

[7] P. Ammann and J. Offutt. Introduction to Software
Testing. Cambridge University Press, 2008.

[8] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, and
A. Paradkar. Finding bugs in dynamic web
applications In ISSTA’08, pages 261–272, 2008.

[9] P. Boldi, B. Codenotti, M. Santini, and S. Vigna.
Ubicrawler: A scalable fully distributed web crawler.
Software: Practice and Experience, 34(8):711–726,
2004.

[10] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer Networks
and ISDN Systems, 30(1):107–117, 1998.

[11] M. Burner. Crawling towards eternity: Building an
archive of the World Wide Web. Web Techniques
Magazine, 2(5), 1997.

http://www.phpcompiler.org/
http://llvm.org/
http://www.seleniumhq.org/

[12] J. Cho and H. Garcia-Molina. Parallel crawlers.
Technical report, 2001.

[13] A. Christensen, A. Feldthaus, and A. Moller. Precise
analysis of string expressions. In SAS’03, pages 1–18,
2003.

[14] C. Duda, G. Frey, D. Kossmann, R. Matter, and
C. Zhou. Ajax crawl: making AJAX applications
searchable. In ICDE’09, pages 78–89, 2009.

[15] P. Frankl and E. Weyuker. An applicable family of
data flow testing criteria. IEEE Transactions on
Software Engineering, 14(10):1483–1498, 1988.

[16] E. Geay, M. Pistoia, B. Ryder, and J. Dolby. Modular
string-sensitive permission analysis with
demand-driven preciion. In ICSE’09, pages 177–187,
2009.

[17] P. Hooimeijier and W. Weimer. A decision procedure
for subset constraints over regular languages. In
PLDI’09, pages 188–198, 2009.

[18] A. Kiezun, V. Ganesh, P. Guo, P. Hooimeijier, and
M. Ernst. A solver for string constraints. In ISSTA’09,
pages 105–116, 2009.

[19] D. Kung, C. Liu, and P. Hsia. An object-oriented web
test model for testing web applications. In APAQS’00,
pages 111–120, 2000.

[20] C. Liu, D. Kung, and P. Hsia. Object-based data flow
testing of web applications. In APAQS’00, pages 7–16,
2000.

[21] G. Lucca, A. Fasolino, F. Faralli, and U. Carlini.
Testing web applications. In ICSM’2002, pages
310–319, 2002.

[22] A. Mesbah, E. Bozdag, and A. van Deursen. Crawling
AJAX by inferring user interface state changes. In
ICWE’08, pages 122–134, 2008.

[23] Y. Minamide. Static approximation of dynamically
generated web pages. In WWW’05, pages 432–441,
2005.

[24] A. Namin and J. Andrews. The influence of size and
coverage on test suite effectiveness. In ISSTA’09,
pages 57–68, 2009.

[25] F. Ricca and P. Tonella. Analysis and testing of web
applications. In ICSE’01, pages 25–34, 2010.

[26] T. Tateishi, M. Pistoia, and O. Tripp. Path- and
index-sensitive string analysis based on monadic
second-order logic. In ISSTA’11, pages 166–176, 2011.

[27] P. Tonella, F. Ricca, E. Pianta, and G. C. Evaluation
methods for web application clustering. In WSE’03,
pages 33–40, 2003.

[28] G. Wassermann and Z. Su. Sound and precise analysis
of web applications for injection vulnerabilities. In
PLDI’07, pages 32–41, 2007.

[29] G. Wassermann, D. Yu, A. Chander, D. Dhurjati,
H. Inamura and Z. Su. Dynamic test input generation
for web applications. In ISSTA’08, pages 249-260,
2008.

[30] Y. Wei, M. Oriol, and B. Meyer. Is coverage a good
measure of testing effectiveness? Technical report,
ETH Zurich, 2010.

[31] H. Samimi, M. Schäfer, S. Artzi, T. Millstein, F. Tip,
and L. Hendren. Automated repair of HTML
generation errors in PHP applications using string
constraint solving. in ICSE’12, pages 277-287, 2012.

[32] Y. Zou, C. Fang, Z. Chen, X. Zhang, and Z. Zhao. A
hybrid coverage criterion for dynamic web testing. in
SEKE’13, 2013.

[33] A. Memon, M. Soffa, and M. Pollack. Coverage criteria
for GUI testing. in FSE’01, pages 256–267, 2001.

	Introduction
	Motivation Examples
	Faults in the Client-Side
	Faults in the Server Side

	Virtual DOM Coverage
	Virtual DOM Tree
	V-DOM Coverage

	Model Generation and Coverage Computation
	Preprocessing
	Control-flow and Data-flow Analysis
	Model Generation
	Test Data Collection and Coverage Calculation

	Experiment
	V-DOM Tree Models vs. Dynamic Models
	Cost of V-DOM Tree Construction
	Fault Detection Effectiveness Comparison

	Related Work
	Conclusions
	References

