Selecting Peers for Execution Comparison

William N. Sumner, Tao Bao, Xiangyu Zhang
Dept. of Computer Science, Purdue University
West Lafayette, Indiana, USA
{wsumner,tbao,xyzhang}@cs.purdue.edu

ABSTRACT

Execution comparison is becoming more common as a means
of debugging faulty programs or simply explaining program
behavior. Oftentimes, such as when debugging, the goal is
to understand particular aspects of a single execution, and
it is not immediately clear against what we should compare
this execution. Prior work has led to approaches for acquir-
ing a second execution, or peer, with which to compare the
first. The earliest of these involved searching a test suite
for suitable candidates. More recently, the focus has been
on synthesizing a new execution, either by generating new
input for the program or by directly mutating the execution
itself. In spite of these proposals, it is not clear what ad-
vantages these different techniques for finding peers might
have over each other. In this paper, we implement five dif-
ferent existing techniques and examine their impact on 20
real bugs. These bugs represent the full set of reported bugs
for three programs during one year. We propose a metric to
evaluate the quality of the peers. It is based on the similar-
ity of the peers to the executions of the patched programs.
We also discuss in detail the different scenarios where these
techniques hold advantages.

1. INTRODUCTION

FEzecution comparison provides a means for developers to
better understand a program’s behavior. Given two execu-
tions of a program, a developer may compare and contrast
the control flow paths taken and the values operated upon
during these executions in order to better understand how
and why the program behaved differently for each. When
one of the executions fails and the other is correct, such
comparison forms a basis for automated techniques toward
fault localization and debugging [20,23,27,30]. These tech-
niques extract the behaviors and properties of the respective
executions that correspond with the correct and incorrect
program behaviors. The differences in behavior provide ev-
idence for what parts of a program might be incorrect and
why. This helps to reduce the developer burden in finding,
understanding, and fixing a bug.

The utility of such techniques depends on precisely which
executions they compare against each other [2,20, 23, 30].
When the correct execution does not follow the same path
as the failing one, automated analyses can derive little more
than the fact that the executions are different because there
are no fine-grained differences from which comparison can
derive more information. One might then try using an ex-
ecution that follows the exact same path as the failing one.
Unfortunately, the failing execution’s behavior is incorrect,

so executions that are similar to it may also behave as if
they were incorrect. As a result, the differences between the
executions don’t provide insight on why the failing execution
is buggy. Deciding which executions should be compared is
a significant problem when using execution comparison.

The difficulty in the problem arises because of a mismatch
between the respective objectives of execution comparison
and of debugging in general. Debugging involves comparing
the failing execution with the programmer’s model or spec-
ification of how the execution should have behaved. Differ-
ences between the model and the actual behavior of the ex-
ecution precisely capture an explanation where the program
is not behaving correctly, why it is not behaving correctly,
and ideally how the developer may change the underlying
program to remove the fault. In contrast, execution com-
parison finds the differences between two actual executions.
These differences explain how and why those particular ex-
ecutions behaved differently. For example, if one execution
receives an option ‘-a’ as input and the other receives an op-
tion ‘-b’ as input, execution comparison can explain how the
semantically different options lead to semantically different
program behavior.

The mismatch between debugging and execution compar-
ison lies in the fact that the semantic differences that debug-
ging strives to infer should explain the failure. This inher-
ently requires comparing the failing execution against the
correct, intended execution. Unfortunately, only the correct
version of the program can generate that correct execution,
and the correct program is exactly what automated debug-
ging should help the programmer create. Because this exe-
cution is unavailable, we must settle for an execution that
is instead similar to the correct one. In order for execu-
tion comparison to be useful, the execution against which
we compare the failing execution must approzrimate the cor-
rect execution without knowing a priori how the correct ex-
ecution should behave. We call this the peer selection prob-
lem. Given a particular failing execution, another execution,
called the peer, must be chosen for comparison against the
failing one. This peer must be as similar as possible to the
unknown correct execution.

For example, consider the program snippet in Figure[I]a.
The if statement on line 5 is incorrect; instead of x>1, it
should instead be x>2. As a result, if the input is 2, the
program prints ‘two’ when it should print ‘three’. If we use
execution comparison to debug the failing execution when
the input is 2, we must first find a suitable peer. Figure[llb
presents some possible correct executions along with the in-
put that yields each execution and the path, or the trace of

1 x = input() Executions

g if X?ﬁ?i N input | 2|6 4 1
1 elif x> 0 path | 1/ 1 1 1
5 6if x>1: 212 2 2
6 print ("two’) 413 4 4
7 else: 5 5 5
8 print ('three’) 6 6 8

(a) (b)

Figure 1: (a) A trivial faulty program. The x>1 on
line 5 should instead be x>2. This causes the pro-
gram to fail when the input is 2. (b) Example exe-
cutions of the program on different inputs. Input 2
yields a failing execution; the others are correct.

the statements in the execution.

First consider the execution with input 6. Of those listed,
this execution differs the most from the failing execution.
They are different enough that execution comparison doesn’t
provide much insight. We can see that they take different
paths at line 2 because they have different inputs and be-
cause 6>5 is true, but 2>5 is not. However, this doesn’t
imply anything about the correct behavior when the input
is 2. Similarly, if we consider input 4, the execution follows
the exact same path as the failing execution except the ex-
ecution is correct. This also yields no insights on why the
original execution failed. Finally, let us consider the input 1.
This execution follows the exact path that the failure induc-
ing input 2 would induce if the program were correct, and it
produces the output that the failing execution should have.
Comparing this execution with the failing execution tells us
that lines 2 and 4 are likely correct because they evaluate
the same in both executions. Line 5, however, evaluates
differently, so we should suspect it and examine it when de-
bugging the program. Because this execution behaved most
similarly to how the failing execution should have behaved,
it was able to provide useful insight on why the program was
faulty.

This paper considers 5 techniques that can select or cre-
ate a peer execution when provided with a failing one. The
approaches of techniques range widely from selecting test
inputs that are already known to synthesizing entirely new
executions that might not even be feasible with the faulty
version of the program. We objectively examine their fit-
ness for selecting peers by using these techniques to derive
peers for known bugs in real world programs. We use the
patched versions of the programs to generate the actual cor-
rect executions, the ideal peers, and compared the gener-
ated peers against them to discover which techniques created
peers most similar to the correct executions. Furthermore,
we examine the strengths and weaknesses of the techniques
with respect to different properties of the bug under consid-
eration, of the failure generated by the bug, and of the faulty
program as a whole. The developer can then use this infor-
mation to either automatically or interactively help choose
the most effective peer selection technique for understanding
a particular failure. In summary, the contributions of this
paper are as follows:

1. We survey and implement the existing techniques that
can select peers for execution comparison. We con-
sider the applicability of each technique with respect
to properties of the program and failure that the de-

veloper knows a priori.

2. We objectively examine the fitness of each technique
for peer selection on 20 real bugs in 3 real world pro-
grams. They represent the full set of reported bugs
for these programs during a roughly one year period.
Using the corrected versions of the programs as ex-
tracted from their source repositories, we generate the
expected correct execution and compare the peers from
the techniques against it.

3. We examine the real world bugs to infer when the given
techniques may or may not be applicable if more in-
formation about a bug is already known.

2. SELECTING EXECUTIONS

In this section, we review five existing techniques for se-
lecting execution peers. Not all of the techniques were orig-
inally designed with peer selection in mind, but those that
were not still generate peers either as a side effect or inter-
mediate step toward their respective intended purposes.

2.1 Input Isolation

The same input that causes an execution to behave unex-
pectedly, henceforth called a failing input, can sometimes be
reduced to produce a valid alternative input. This new and
simpler input might yield an execution that does not fail.
This insight was used by Zeller in [30] to produce a pair of
peer executions, one passing and the other failing, whose in-
ternal states were then compared against each other. Given
a failing input, Zeller used his previously developed delta-
debugging technique [31] to simplify the input and isolate a
single input element such that including this element caused
a program to crash, and excluding the element caused the
program to succeed. The two executions on these inputs,
one with the inducing element and one without, were used
as the execution peers in his technique. The underlying intu-
ition is that the less the inputs for the two executions differ,
the less the two executions should differ, as well.

The central idea of the technique is to use a modified
binary search over the possible inputs of the program. A
subset of the original input is extracted and tested on the
program. If the subset of the original failing input also yields
a failing execution, then that new input is used instead of
the original, effectively reducing the size of the failing input.
In contrast, if the new input yields a passing execution, then
this acts as a lower bound on the search. Any later input
that is tested must at least include this passing input. In
this way, the algorithm terminates when the failing input
and the passing input are minimally different’.

Figure [2 presents a brief example showing how to use
delta debugging to generate inputs for peer executions. Sup-
pose that a program crashes whenever the characters ‘b’ and
‘g’ are present in the input. The full input a. .p thus causes
a program to crash, as seen on the first line. We also assume
that an empty input yields a passing execution, as denoted
on the last line. The approach then tries to narrow down
exactly which portions of the input are responsible for the
crash by selectively removing portions of the input and re-
executing the program on the new input. In the first test,
the algorithm selects a..h. When the program executes this

!The differences between inputs are locally minimal as noted
in [31].

Stat: abcdefghijklImnop -
1 abcdefgh Decrease failing input
4. abcdef
3 abcdel g Minimal difference found
22 abecd -
Start Empty T Increase passing input

Figure 2: Delta debugging can produce two min-
imally different inputs, yielding two executions to
use as peers.

input, it fails, so the failing input reduces to a..h on step
1. On step 2, a..d is selected. Because this doesn’t include
‘g’, the execution passes, and the passing input increases to
a..d. Steps 3 and 4 continue the process until the failing
input contains a. .g and the passing input is a..f. Because
they differ by only ‘g’, the inputs are minimally different,
and the technique selects the executions on these two inputs
as peers.

2.2 Spectrum Techniques

Modern program development includes the creation of test
suites that can help to both guide the development process
and ensure the correctness of a program and the compo-
nents from which it is built. One straightforward approach
for finding a peer is to simply select an execution from this
already existing test suite. This allows the developer to reuse
the existing work of generating the tests, but the developer
must still select the specific execution from the test suite
to use. Execution profiles, or program spectra, are charac-
teristic summaries of a program’s behavior on a particular
input [10] and researchers have long used them as a means
of establishing test suite sufficiency and investigating pro-
gram failures [7, 10,16, 20, 21]. In particular, spectra have
been used to select a passing execution from a test suite
with the intent of comparing the execution to a different,
faulty one [20]. Thus, spectra provide an existing means of
selecting an execution peer.

We focus in particular on the spectrum based peer se-
lection in [20]. This paper introduces the nearest neighbor
model for selecting a passing peer. For every passing test in
the suite, as well as the failing execution itself, we compute
a frequency profile that records the number of times each
individual basic block of the program executes during the
test. Next, we evaluate a distance function with respect to
the failing profile against each of the passing profiles. This
allows us to determine which profile, and thus which test, is
most similar to the failing execution.

One key observation in [20] is that the nature of the dis-
tance function is critical to the utility of the overall tech-
nique. A Euclidean distance, where each element in the
frequency profile is a component in a vector, can lead to
illogical results. For example, if one execution has long run-
ning loops and another does not, FKuclidean distance may
ignore the similarity between the parts that are the same in
both executions. General inconsistancies with distance func-
tions influenced by the concrete number of times a program
executes a basic block led the authors to use the Ulam dis-
tance metric, or an edit distance between two sequences of
the same unique elements. Each profile is first transformed
into an ordered sequence of basic blocks of the program,
sorted by their execution frequencies. Note that the order

is the discriminating factor, the actual frequencies are not
even contained in the profile. The distance function between
profiles is then the edit distance [13], or the number of oper-
ations necessary to transform the sorted list of basic blocks
from the test into that from the failing execution. The lower
the distance, the fewer dissimilarities there were between the
two profiles, so the algorithm selects the test with the lowest
edit distance as the nearest neighbor, and peer.

Frequency Profiles

1 x = input() x=1: X =-2:
2 if x < 5:
3 for y in 1 to 10: 11 50
4 print(y / (y + x))
5 print(’done’) 12 11
15 21
Fails on: Tests: 104 32
X = -2 x =1 113 42

x=17
Ulam distance: 2

Figure 3: The nearest neighbor model’s approach
to finding peers. Basic blocks (represented by the
numbers inside the boxes) are sorted by frequency
(the tagged numbers), then the test profile with the
lowest edit distance to that of the failure belongs to
the peer.

Consider the example in Figure [3 . For simplicity, it
uses frequency profiles over the statements instead of ba-
sic blocks. The program listed here has 5 statements which
should all execute if the program behaves properly. Line 1
reads a number, x, from input. If x is less than 5, then enter
a loop that computes a new value and prints it. Finally, the
program prints ‘done’ when it is complete. Observe, how-
ever, that when x=-2, the program crashes on the second
execution of statement 4 due to integer division by 0. This
gives the failing execution the sorted frequency profile shown
on the far right. Basic block IDs are shown in the cells,
while their execution frequencies are shown in adjacent cir-
cles. Note that the failing execution omits statement 5 and
misses the final check of the loop guard. Thus, statements
5 and 3 are out of place. A correct input of x=1 instead
executes the full loop and statement 5, giving the leftmost
frequency profile. To compute the Ulam distance between
the two, we count the minimum number of blocks that need
to be moved. In this case, it is 2. Because the only other
test x=7, has a distance of 3, the technique chooses input
x=1 as the input of the peer execution in this example.

2.3 Symbolic Execution

Both input isolation and spectra based approaches derive
peers from existing input. It is not always possible for this
to succeed. For instance, if there are no passing test cases
then the spectrum based approach will fail. If there are
no similar passing cases, it may simply yield poor results.
One alternative is to instead generate new inputs for a pro-
gram with the goal of creating inputs that will inherently
yield executions similar to an original failing run. This goal
is achievable through recent work in test generation using
symbolic execution [2,4,5,9,22,28].

When a program is symbolically executed, it does not
merely execute any operation that might use or depend on

input data. Instead, it builds a formula that reflects what
the result of the operation could be for any possible input
value. When it executes a branching instruction like an if
statement, the symbolic execution takes all possible paths,
constraining the possible values along those paths appropri-
ately. For example, in Figure[4 , the variable x receives an
integer value from symbolic_input() on line 1. Because
the input is symbolic, x represents all possible numeric in-
puts at that point. On line 2, execution encounters an if
statement, and it must consider both branches. Thus, along
the path where the condition is true, the execution adds the
constraint x>5 to the formula for x. Along the other path,
it adds the constraint x<=5.

x = symbolic_input ()
if x > 5:
print (’greater)
elif x > 0:
if x % 2 == 0:
print (’even’)
else:
print (’even’)

00~ O Ul W

Figure 4: Buggy code snippet. The last print state-
ment should print “odd”.

The sequence of branch constraints along a path, or path
condition, determine what conditions on the input must hold
for the path to be followed. By solving these constraints at a
certain point in the symbolic execution, concrete inputs suf-
ficient to reach that program point can be discovered. This
is the common underlying approach to test generation us-
ing symbolic execution. Precise mechanisms may, however,
differ from approach to approach. Note, for instance, that
programs may have infinitely long or infinitely many dif-
ferent execution paths, so no approach can cover them all.
Thus, the way in which a particular test generation approach
chooses to explore program paths can alter. In the context
of peer selection, it is desirable to generate executions that
are similar to an already existing path. One example of such
a strategy is presented in [2].

The test generation approach in [2] creates new tests that
are similar to a failing execution in order to aid fault local-
ization in PHP programs. It first uses the failing execution
as a ‘seed’ to the process, collecting its symbolic path con-
dition. It then generates additional paths by negating the
conjuncts along the path and solving to generate inputs for
those paths as well. The process then continues, always pri-
oritizing the generation of tests along paths that measure as
‘similar’ to the original failing path condition.

A simplified version of the algorithm is reproduced in Fig-
ure[5 . In fact, this is a general test generation algorithm,
but as we shall discuss later, we can customize the function
select NextTest() to direct it toward executions similar to
the failing one. Line[2 initializes a set of candidate tests to
consider adding to the test suite. To start, this contains a
test for every branch encountered in the failing execution
such that the test takes the alternate path at that branch.
E.g., if the failing execution took the true path, the test
would take the false path for that branch. Lines[3l6/then it-
eratively select a candidate test to add to the test suite and
generate new candidates until either a time limit expires or
there are no more paths to explore. A more complete pre-
sentation of the algorithm also handles such optimizations
as not following the same path more than once and avoiding

GENERATENEWTESTS(seed)

Input: failing - a failing test

Output: a set of new tests

1: tests — O

: toExplore «— getNeighboringTests(failing)

while toExzplore #) and time hasn’t run out do
test «— select NextTest(toExplore)
tests < tests U test
toExplore «+ toExploreUgetNeighboringTests(test)

return tests

GETNEIGHBORINGTESTS(seed)
Input: seed - a previously selected test
Output: tests with paths branching from that of seed
1: neighbors «+ @
c1 ANea A ... A ep = getPathCondition(seed)
: forallie1,2,...,n do
path < ci1 ANca A ...\ —c;
neighbors «— neighbors U solve(path)
return neighbors

Figure 5: A test generation algorithm directed by
the objective function selectNextTest().

tests that are infeasible. We refer the reader to the original
papers for the details, which are not relevant to the discus-
sion here.

As previously mentioned, this is a general test genera-
tion algorithm. The way in which it selects tests to further
explore and add to the test suite is controlled by the ob-
jective function select NextTest(). This function guides the
test selection toward whatever goals a developer may have in
mind. In [2], the goal was similarity with a failing execution,
so they additionally developed a heuristic objective function
based on path conditions to select such tests. Specifically,
given a sequence of branch conditions, or path condition, en-
countered in a program, their similarity score is the number
of the same conditions that evaluated to the same values in
both executions.

For example, consider again the program in Figure [4 .
The program has a bug such that when line 1 assigns the
value 1 to x, the program executes the faulty print statement
on line 8. The path condition for this execution is (2 A
47 A 5p), meaning that the condition on line 1 evaluated
to false, the condition on line 4 evaluated to true, and the
last condition on line 5 evaluated to false. If the candidate
tests in toExplore are the inputs -1, 2, and 10, then their
respective path conditions are (2p A4dr), (2r Adr AST), and
(27). Observe, input -1 yields the same value for condition
1, so its similarity is 1. Input 2 has similarity 2, and 3 has
similarity O for the same reason. Because input 2 has the
highest similarity, it is the next test added to the test suite
and further explored.

We decide if the generated inputs lead to passing execu-
tions with an oracle. We further select from the pool the
one that is most similar to the failing run using the same
path condition based criterion.

2.4 Predicate Switching

Instead of generating input that will force a buggy pro-
gram to yield a strictly correct, passing execution, some ap-
proaches for selecting peers relax the notion of correctness.

This allows peers that may represent slightly incorrect exe-
cutions or normally infeasible executions. Instead of finding
some new input for the program, these techniques can patch
the program or even the execution itself at runtime to create
a new execution that behaves similarly to a failing one. Be-
cause incorrectness is undesirable in a peer, these approaches
must be careful in how they modify a program’s behavior.

One such dynamic patching technique is predicate switch-
ing [32]. While originally designed for fault localization, it
generates peers as a part of its core algorithm. The authors
of this paper noted through experiments that less than 10%
of an execution’s instructions relate to actual computation
of values produced as output. As a result, they inferred that
they could correct most faults fixing only the control flow
of an execution. That is, by forcing an execution to follow
the desired control flow, it would behave, to an observer, ex-
actly the same as a correct program. This insight was then
extended to a technique for constructing peers when given
a failing execution.

One simple way to alter the control flow of a program
is to switch the result of evaluating a branch condition, or
predicate. For example, if the tenth predicate of a program
originally evaluated to true, predicate switching would dy-
namically patch the execution and flip the outcome to false,
forcing the execution along the false path instead of the true
path. Predicate switching as a technique combines this op-
eration with various search strategies for such a dynamic
patch, considering each individual predicate instance as a
candidate. If the observable behavior of a patched execu-
tion matches the expected behavior of the failing execution,
then the search found a patch, and this patched execution
can be immediately returned as a peer.

1 x = [101, 102, 103]
2 for i in 0 to 3:

3 if x[i] % 2 == 0:
4 print (x[i])

5 print(’done’)

Figure 6: Buggy code snippet. Index 3 is invalid
when accessing the array x.

The code snippet in Figure [6] presents a small example
where predicate switching is of use. This program creates a
list with 3 elements, but its loop body executes for indices
0 through 3 inclusive. When the execution accesses index
3 of the list on line 3, it throws an exception, terminating
the program. The sequence of predicates encountered within
the failing execution is (2%, 3%, 2%, 37, 25, 3%, 27.), with su-
perscripts the timestamps, distinguishing the different in-
stances of the same static predicate. The program crashes
after it executes 27.. Predicate switching attempts to switch
each predicate in order starting with 2* until it finds a patch.
Note that the second iteration of the loop, when i = 1 should
print out ‘102’; so the algorithm won’t find a valid patch
until after that iteration. When the technique switches the
fifth predicate, 25, to false, the program prints ‘done’ and
successfully ends. This is the expected behavior of the cor-
rect program, so the search ends with the dynamic patch of
2° providing the peer.

Note that the result does not perfectly match the control
flow of the correct program. Namely, the correct program
also expects a third iteration of the loop to complete, even
though it doesn’t do anything. Because the last iteration
was not necessary for generating the expected observable

behavior of the execution, predicate switching considers that
loss an acceptable approximation for the peer.

2.5 Value Replacement

Value replacement [14,15] is a technique related to pred-
icate switching in that it also modifies the behavior of a
program dynamically in order to create an approximately
correct execution. Whereas predicate switching works over
the boolean domain of branch conditions, value replacement
instead replaces other values within a program as well, al-
lowing it to dynamically patch value based errors in addition
to control flow errors.

The underlying abstraction used by value replacement is
the value mapping for a statement, or the set of values used
by a particular dynamic instance of a statement during an
execution. By changing the value mapping for a statement,
value replacement can cause a failing execution to behave
observably correctly. Indeed, predicate switching is a spe-
cial case of value replacement, wherein it only considers the
values at branching statements. The difficulty of the tech-
nique lies in finding appropriate value mappings to use at
a given statement. Unlike predicate switching, which only
needs to consider the values true and false, replacing all val-
ues at a statement gives intractably many different options
for what the value mapping in a patch might be. It is not
generally knowable a priori which of these options might
correctly patch the execution. To make a solution feasible,
value replacement only considers the other values observed
in the test suite of a program, as these are at least known
to be valid alternatives. The first step of the technique con-
structs a wvalue profile that holds the value mappings for a
statement observed in any of the tests of a test suite. For
each dynamic statement in the failing execution, the pre-
viously observed value mappings are then used to generate
dynamic patches.

The value profile for a statement may still have many
different mappings. Instead of directly applying each of the
value mappings, the technique only looks at a subset of the
value mappings. For a statement, these mappings use the
values from the profile that are: the minimum less than the
original value, the maximum less than the original value, the
minimum greater than the original value, and the maximum
greater than the original value.

For example, consider the statement z = x + y where x
and y have the values 1 and 3 in the failing execution, re-
spectively. If the value profile contains x = 0,1,2,3 and
y = 0,1,2,3, then the potential value mappings of the state-

ment will consist of {x=0,y=0}, {x=0,y=2}, {x=2,y=0}, {x=2,y=2},

{x=3,y=0}, and {x=3,y=2}.

3. ANALYTICAL COMPARISON

In this section, we classify the techniques and discuss their
applicability. We empirically compare the techniques in Sec-
tion[4]. Table[llsummarizes these techniques. Column Class
classifies the techniques based on how they select peers. Col-
umn Oracle lists the power of the testing oracle that must
be available for applying the technique. Column Test Suite
notes whether or not a given technique requires a test suite.

Classification. The first three techniques either generate
new inputs or use existing inputs to select peer executions.
We call them input based techniques. These technique can
only generate executions that exercise feasible paths in the

Technique | Class [Oracle [Test Suite

Input input

Isolation synthesis complete no
pectra nput tost suit]
SBaqu}_ qele(‘tign est swite yes
ymbolic mpu
X . complete no
Execution synthesis P
Predicate execution 1 test o
Switching synthesis B
Value execution 1 test os
Replacement synthesis M

Table 1: Common features among peer selection ap-
proaches.

faulty program (recall that a feasible path is an execution
path driven by a valid input).

The remaining two techniques synthesize executions from
the failing execution. They may generate executions that
may not be feasible under the original faulty program.

Oracle. Both input isolation and symbolic execution re-
quire complete oracles in theory. These techniques check
whether or not arbitrary executions pass or fail, so the ora-
cle must theoretically work on any execution. In fact, input
isolation also needs to determine whether or not an execu-
tion fails in the same way as the original, e.g. crashing at
the same point from the same bug. In practice, implemen-
tations of techniques use approximate oracles instead. For
example, simple oracles can be composed for certain types
of failures (e.g. segfaults). Spectra based selection examines
the passing cases from an existing test suite, so an oracle
must be able to determine whether or not each individual
test passes or fails. Such an oracle is weaker than a perfect
oracle, because it is usually a part of the test suite. The
execution synthesis techniques only check that the patched
executions are able to observably mimic the expected be-
havior. This means that an oracle must be able to check
for the expected behavior of a single execution. This is the
weakest oracle.

Test Suite Both the spectra based and value replacement
approaches require a test suite to function. As noted earlier,
test suites are commonly used during development, but the
efficacy of these particular approaches will depend on how
the tests in the test suite relate to the passing and failing
executions. For example, if the test executions do not fol-
low control flows similar to those in the failing execution,
the spectra based approach will yield a poor peer. On the
other hand, if statements within tests never use the values
that the failing execution needs to patch and correct its own
behavior, then value replacement will fail entirely.

4. EXPERIMENT

We implemented all the techniques using the LLVM 2.8
infrastructure and an additional set of custom libraries, re-
quiring about 11,000 lines of C and C++ and 1500 lines
of python in addition to using the KLEE infrastructure for
symbolic execution [4]. We ran all tests on a 64-bit machine
with 6 GB RAM running Ubuntu 10.10.

For input isolation, we performed delta debugging both on
the command line arguments passed to the faulty program
and on the files that the program uses during the buggy ex-
ecution. For our spectrum based selector, we computed the
frequency profiles over the test suite for each program that
existed at the time the bug was not yet fixed. Each of our

analyzed programs contains a test directory in its repository
that contains regression tests for bugs that developers pre-
viously fixed. These suites range in size from 150 to 1000
tests.

We built our symbolic execution based selector using a
modified version of the Klee engine. Instead of generating
tests with a breadth first branch coverage policy, we modified
the search heuristics to initially follow the path of the fail-
ing execution as much as possible, then explore paths that
branch off from the original execution. If the constraints
along one path are too complex, the system gives up on
solving input for that path and continues test generation on
other paths. Once the system finishes (or the time limit ex-
pires), it selects the passing test with the a path condition
most similar to that of the failing run as the peer.

We performed an empirical study of how these techniques
behave for executions of a set of real bugs. The study ex-
amines (1) the overhead incurred by using each technique in
terms of time required, (2) how accurately the peers gener-
ated by each technique approximate the correct execution,
and (3) how the approximations from different techniques
compare to each other and in which cases one may be more
appropriate than another.

Evaluating the second objective is challenging. Given the
selected peer, an execution of the existing buggy program,
we must objectively measure how similar it is to the intended
correct execution. The more similar, the better the peer ap-
proximates the behavior of the correct execution. This ne-
cessitates both knowing what the correct execution should
be and having a way to compare it with the chosen peer. In
order to know what the correct execution should be, we limit
our study to bugs that maintainers have already patched in
each of the above programs. To reduce the possible bias
caused by bug selection, we extracted the bugs for each pro-
gram by searching through a one-year period of the source
repository logs for each program and extracting the correct
versions where the logs mentioned corrections and fixes for
bugs. We also extracted the immediately preceding version
of the program to capture the faulty program in each case.
Excluding those that were not reproducible or objectively
detectable, we have 10 versions for tar, 5 for make, and 5
for grep. By running the failing version of the program on
the input that expresses each bug, we generate the execu-
tion for which we desire a peer. By running the corrected
version, we generate the perfect peer against which we must
compare the selected peers. The precise mechanism for com-
paring the executions is discussed in Section [4.1 .

4.1 Measuring Execution Similarity

We need a way of objectively comparing the similarity of
these executions. We do this by measuring along two dif-
ferent axes. First, we measure the path similarity of the
two executions through execution indexing [29]. Indexing
builds the hierchical structure of an execution at the level of
each executed instruction. Executions can be very precisely
compared by comparing their structures. It has been used
in a number of applications that demand comparing execu-
tions [17,24]. For example, in Figure(7 a, the instructions 2,
3, and 5 correspond across the two executions as denoted by
the filled circles, but instruction 4 in the correct execution
does not correspond to anything in the failing execution, as
it only appears in one of the executions.

Note that execution indexing first requires that we know

Executions

1 def foo(): Failing Passing
2 print “one”
3 if guard: 2e o2
4 print”two” 3@ (B
5 print "three” 5@ 04
@5
(a) Matching dynamic instructions across executions
def baz (): def baz ():
@® print "one” @® print "one”
O if guard:

O print”’two”
@ print "three”

correct program

U W N =
Uk W N =

@® print ”"three”
failing program

(b) Matching static instructions across versions

Figure 7: Matching of instructions across executions
and program versions. Matches are denoted by @,
while mismatches are denoted by O.

which static instructions correspond between the two execu-
tions. Because the executions come from two different ver-
sions of a program, some functions may have changed, with
instructions being either added or removed between the two
versions. In order to determine which instructions corre-
spond, we extracted the static control dependence regions
into a tree and computed a recursive tree edit distance [3]
to find the largest possible correspondence between the two
programs. For example, Figure[7]b shows a program where
a developer inserted an if statement guarding a new in-
struction. An edit distance algorithm will uncover that the
fewest possible changes between the two functions require
that lines 2 and 5 correspond across the program versions,
and the if statement on line 3 along with the nested control
dependence region on line 4 are new additions to the correct
version of the program.
We score path similarity using the formula

21votn

100
x If+Ic

(1)

where Ipop, is the number of dynamic instructions that match
across the executions, Iy is the total number of instructions
in the failing execution, and I. is the number of instructions
in the correct execution. This scores the path similarity of
two executions from 0 to 100, where 0 means that the paths
are entirely different, and 100 means that the paths execute
exactly the same instructions.

Second, we measure the data similarity of the executions.
We compare the memory read and write instructions that
correspond across the two executions, examining both the
target location of the memory access and the value that
it reads or writes. If these are equivalent across the exe-
cutions, then the accesses match, otherwise they represent
a data difference between the programs. The similarity of
the accesses is then scored, again using formula[1] but only
considering the instructions that access memory. One diffi-
culty performing this comparison, as noted by others [19], is
that comparing pointers across two executions is difficult be-
cause equivalent allocation instructions may allocate mem-
ory at different positions in the heap. This makes it diffi-
cult to determine both (1) when the targets of memory ac-
cesses match, and (2) when values of read or written pointers
match. To enable this, we use memory indezing [24], a tech-
nique for identifying corresponding locations across different

executions, to provide canonical IDs for memory locations.
We also use shadow memory and compiler level instrumen-
tation to mark which words in memory hold pointer values.
Thus, when comparing the targets of accesses, we compare
their memory indices. When comparing the values of ac-
cesses, we use either memory index of that value if the value
is a pointer; otherwise we use the actual value in memory.

These two approaches allow us to objectively determine
both how similar the paths taken by the peers and correct
executions are as well as how similar the values they used
and created were along those matching paths.

4.2 Results

B;]lsg Program|Patch Date|Fault Type F;;}:ze
1 tar 23 Jun 2009 |missing guard behavior
2 tar 30 Jul 2009 |missing function call value
3 tar 30 Jul 2009 |weak guard behavior
4 tar 5 Aug 2009 |missing function call | behavior
5 tar 4 Oct 2009 |wrong formula value
6 tar 7 Oct 2009 |design error behavior
7 tar 17 Mar 2010 |design error behavior
8 tar 27 Mar 2010 |incorrect guard loop
9 tar 28 Jun 2010 |call at wrong place behavior
10 tar 23 Aug 2010 |incorrect guards behavior
11 make 3 Jul 2010 |design error behavior
12 make 6 Oct 2009 |design error behavior
13 make 30 Sep 2009 |design error behavior
14 make 23 Sep 2009 |design error behavior
15 make 1 Aug 2009 |[wrong function called| value
16 grep 14 Dec 2009 |design error behavior
17 grep 4 Mar 2010 [corner case behavior
18 grep 4 Mar 2010 |corner case behavior
19 grep 14 Mar 2010 |corner case behavior
20 grep 25 Mar 2010 |incorrect goto value

Table 2: Bugs used in the study along with their
failures and the faults that cause them.

Using these representatives of the peer selection techniques,
we considered the collected bugs. Table 2 summarizes some
details for the bugs. Column BugID uniquely identifies each
bug across our results. Program lists the program to which
each bug belongs, along with the date that a developer com-
mitted and documented a fix for the bug in the source repos-
itory in column Patch Date. The table classifies the fault
in the program that induces a failure in Fault Type. For
instance, in bug 15 on make, the program calls strcpy () in-
stead of memmove (), resulting in a corrupted value, so the
fault has the description ‘wrong function called’. Finally,
column Failure Type classifies what the user of a program
is able to directly observe about a failure. These observa-
tions primarily fall into two categories: the program either
computed an unexpected value (denoted value), or it per-
formed an unexpected action (behavior). For example, the
incorrect value in bug 5 is an integer representing Unix per-
missions that the program computes incorrectly, while the
incorrect behavior of bug 14 is that make doesn’t print out
errors that it should. Bug 8 caused tar to execute an infinite
loop, which is a specific type of incorrect behavior.

4.2.1 Overhead

First, let us consider the overhead of the different tech-
niques, as presented in Table[3. For each examined bug in
column BugID, we ran each of the five peer selection tech-

Bu Input Symbolic Predicate Value
IDg Isolel:tion Spectrum E)Zecution Switching Replacement
Tests | Time Préﬁle Sele,cmon Time Tests | Time Tests Pr,Oﬁle Sel,eCtlon
Time Time Time Time
1 51 0.7 144 1233 N/A 22412 178 637381 148 5883
2 44 0.2 144 1236 N/A - 65 - 143 2934
3 213 23.2 145 1257 N/A 25023 204 - 143 >4 hours
4 9 0.2 147 1299 N/A 26880 302 - 143 7032
5 14 10.1 226 1516 N/A - 74 - 212 3279
6 40 0.6 228 1517 N/A - 239 - 210 8592
7 208 3.1 262 1890 N/A 27252 228 836191 240 8054
8 27 50.4 251 1877 N/A 24132 | 12122 - 251 >4 hours
9 55 50.2 255 1866 N/A 31878 143 - 247 2691
10 6 0.1 315 2695 N/A - 230 - 306 3381
11 5 0.1 35 841 N/A 12581 33 - 1112 >4 hours
12 6 0.1 36 811 N/A 21228 66 819332 1021 13753
13 6 0.1 36 758 N/A 16504 48 674999 1092 11167
14 7 0.1 38 757 N/A - 230 - 1143 >4 hours
15 9 0.2 35 761 N/A 15599 50 - 648 >4 hours
16 20 0.1 1.1 248 N/A - 7.1 - 18.7 65
17 5 0.1 4.5 188 N/A 26 0.1 4232 35.2 16.4
18 7 0.1 4.5 197 N/A 252 3.4 8446 25 28.1
19 5 0.1 2.6 218 N/A 196 3.4 232 31.8 6
20 13 40 3.4 627 N/A 39 2.1 59 41.8 1.2
Average 38 9 116 1090 N/A 16000 | 711% | 432202 361 3386
StdDev 61 17 108 676 N/A 11545 | 2688* | 675610 401 4244

Table 3: Peer selection work for each bug. For each technique, Tests holds the number of reexecutions of
the program required by a technique before finding a peer. Time is the total time required to find a peer in
seconds. *Average and StdDev for Predicate Switching without the infinite loop outlier are 119 and 101.

niques and noted both the Time in seconds required to select
a peer and the number of Tests or reexeutions of the pro-
gram that the technique used. Note that symbolic execution
based approaches don’t necessarily terminate on their own,
as they explore as many of the infinite program paths as
possible within a given time bound. As a result, this metric
doesn’t apply to symbolic execution; we always stopped it
after 4 hours. Similarly, we stopped any other approaches
after 4 hours and considered that attempt to find a peer
unsuccessful. Furthermore, two of the approaches, the spec-
trum based approach and value replacement both have the
profiling cost.

The input isolation approach is consistently the fastest,
always finishing in under a minute, which is highly desirable.
Next, we note that the average time for predicate switching
includes an outlier. Bug 8 is an infinite loop in tar, and we
use a five second timeout to detect such failures. As a result,
every test costs one to two orders of magnitude more in that
test case. Discarding that outlier, predicate switching is the
next fastest with an average of 2 minutes to find a peer or
determine that it cannot find one. The next fastest is the
spectrum based approach, using over 18 minutes to find a
peer on average. Finally, value replacement is the slowest,
taking about an hour on average to find a peer.

These results are more intuitive when we consider what
bounds each approach. Input isolation uses delta debugging
over the execution input, so it has a running time polynomial
in the size of the input in the worst case and logarithmic in
normal cases. The spectrum based approache computes an
edit distance over metadata for every statement in a pro-
gram, so it is polynomially bounded by the program size.
In contrast, predicate switching and value replacement are
bounded by the length of the execution in either branch in-
structions or all instructions respectively, so they can take

longer in theory. Looking at the Tests columns, both ap-
proaches execute the buggy program several thousand times
when finding a peer, whereas input isolation executes it only
38 times on average.

4.2.2 Fitness

While the speed of finding a peer is important for pro-
viding convenience to the developer and scalability to client
analyses, we saw in Figure[l], that a peer is not useful for de-
bugging unless it forms a good approximation of the correct
execution. To that end, we collected the peers generated by
each of the techniques. We then traced the control flow and
data accesses of the executions and compared these traces
using the similarity metric outlined in Section[4.1]. Table[4
summarizes the results. For each technique, we present both
the path similarity (path) and the data similarity (data),
along with the average and standard deviation for each tech-
nique. We further discuss our observations, which will be
highlighted and tagged with symbol O;.

Predicate Switching.

We first note that (O1): predicate switching performs
best in terms of both path and data similarity, on
average scoring in the 60’s while having the lowest variance
in both similarity metrics.

Since predicate switching often generates infeasible paths
under the original faulty program, we observe in many cases,
(02): correct executions resemble infeasible paths
under the original faulty program. Consequently, in-
put based techniques are less effective because they only
generate feasible paths for the faulty program. For example,
consider bug 8 of tar, presented in Figure[8]. This function
tries to open a file at a given path location. If the call to
open fails, the execution enters the loop to attempt fixing

N O U W N

Bu Input Symbolic Predicate Value
IDg Isolfl:;tion Spectrum E)bclecution Switching Replacement
Path | Data | Path | Data | Path | Data | Path | Data | Path | Data
1 0.2 67.8 98.6 59.3 0.2 69 99.6 67.5 99.7 65.4
2 99.0 56.1 84.0 56.2 0.2 67 - - - -
3 0.2 69.7 87.6 59.4 0.2 68 87.6 56.3 - -
4 97.4 69.6 95.9 59.0 0.2 69 97.7 66.7 - -
5 99.3 60.0 98.7 59.7 0.5 69 - - - -
6 0.1 9.1 0.1 9.1 0.1 9.1 - - - -
7 0.1 37.5 0.1 37.5 0.1 9.1 0.1 37.5 0.1 37.5
8 0.2 66.8 95.9 54.4 0.2 67 99.5 67.2 - -
9 0.2 67.2 75.4 58.9 0.2 67 74.8 58.3 - -
10 0.1 21.9 0.1 21.9 0.1 22 - - - -
11 74.7 56.2 66.2 52.4 93 50 97.8 61.9 - -
12 67.1 52.4 0.1 13.9 15 55 66.9 59.2 66.8 59.2
13 78.4 63.3 43.2 63.3 75 65 38.6 61.2 78 61
14 0.1 13.8 0.1 13.9 0.1 14 - - - -
15 52.3 61.4 66.2 52.4 82 76 97.8 61.7 - -
16 0.1 0 0.1 0 0.1 0 - - - -
17 13.6 46.5 0.7 70 0.6 66 1.1 81 74 63
18 14.4 49.6 93 67 0.6 66 55.2 63 71 63
19 75.8 64.5 93 64 0.6 67 97 64 3.1 69
20 30.4 60.9 0.2 70 0.2 67 2.6 59 31 82
Average 33 49 50 47 13 83 65 62 49 63
StdDev 44 21 42 20 30 143 33 8.7 51 15

Table 4: Peer selection similarity scores for each bug. For each selection technique, Path denotes the path
similarity score for each bug. Data denotes the data similarity score for each bug.

int create_placeholder_file (char *file , int =xmade)
while ((fd = open (file)) < 0)
if (! maybe_recoverable (file ,
break;

made))

tar, extract.c: create_placeholder_file

Figure 8: Bug 8 requires unsound techniques to get
a strong peer.

the error with a call to maybe_recoverable. If this call re-
turns the constant RECOVER_OK, then the error was fixed and
the function calls open again. The failing execution enters
an infinite loop because the condition on line 4 should be
compared against the constant RECOVER_OK instead of being
negated. In this buggy form, maybe_recoverable returns a
nonzero errorcode every time, so the loop never terminates.
Techniques that rely on sound behavior cannot modify the
execution to escape the loop, so they must select execu-
tions that never enter it to begin with. In contrast, because
predicate switching can select peers from among unsound or
otherwise infeasible executions, it is able to iterate through
the loop the correct number of times and then break out of
it. Thus, it matches the correct path very closely with a
score of 99.5.

(O3) Predicate switching may fail to patch a failing
run even though it often leads to peers with good
quality if it manages to find one. In comparison, since
input based techniques are not constrained to patching the
failing run. They will eventually select a closest peer (even
with bad quality).

(04) Predicate switching may coincidently patch a
failing run, returning a peer with poor quality. For
example, in bug 17 for grep, predicate switching yields a
peer with a path similarity of only 1.1, even though it pro-
duced the correct output. This is because the path of the

{

0O U W=

void mb_icase_keys (char ssxkeys, size_t xlen) {
incorrectpatch:
for (i =j =0; i< 1i ;) {
/+* Convert each keys[i] to multibyte

}

lowercase

grep, grep.c: mb_icase_keys

Figure 9: Execution synthesis on bug 17 yields an
erroneous patch.

peer execution actually deviates from the correct path early
in the execution but the deviated path nonetheless produces
the expected output. Figurel9] presents the location of the
incorrectly patched predicate. When grep starts up, it con-
verts user requested search patterns into a multibyte format
when ignoring character case, but predicate switching tog-
gles the condition on line 4, preventing the pattern from
being converted. That grep still produced the correct out-
put is merely coincidental. The unconverted search patterns
happen to lead to a successful match when the converted
ones did not, even though the buggy portion of the program
is in an unrelated component of grep (see Figure[10]). As a
consequence, the comparison of the failing run with the gen-
erated peer does not isolate the faulty state but rather some
random state differences. Fortunately, this is an unlikely
enough coincidence that predicate switching still scores best
on average.

We also note that (Os) predicate switching is less
likely to provide a good peer when being used on
bugs that exhibit value based failures. In particular,
for three of the bugs that exhibit value based failures, where
the fault leads to the incorrect value through computation
instead of control flow, predicate switching either yields a
poor peer (bug 20) or no peer at all (bugs 2 and 5). Devel-
opers can use this insight to use a more general approach like
the spectrum techniques when dealing with value failures.

© 00Uk WN -

void parse_bracket_exp_mb (void) {
bugl9:
wt = get_character_class (str, case_fold);

bugl7:
if (case_fold)
remap_pattern_range (pattern);

bugl8:
if (case_fold)
canonicalize_case (buffer);

grep, dfa.c: parse_bracket_exp_mb

Figure 10: Bugs 17, 18, and 19 are related.

Value Replacement.

Value replacement shares a lot of common characteristics
with predicate switching. Hence, (Og) value replacement
scores high when it finds a peer, but it is less likely
to find a peer. This shortcoming is twofold: (1) it takes so
much longer that we had to cut its search short, and (2), it
can only mutate the values of an execution as guided by the
values observed in the test suite. Thus, if the desired value
is never seen in the test suite, value replacement cannot
generate a peer. Sometimes, this leads to peers with very
poor quality (e.g. bug 19) or even no peers (e.g. bugs 9 and
10).

Spectrum Techniques.

The next strongest technique is the spectrum based ap-
proach, which matched paths as well as value replacement,
but was not able to match data accesses as well. (Or)
The spectrum based approach works better with a
larger test suite, which on the other hand implies
the longer time spent on searching for the peer. This
is evidenced by its strongest scores for tar, which had the
largest test suite of the programs we tested and the high
computation cost. In other cases, as in make and tar, find-
ing a desirable peer may be difficult or impossible because
no similar test exists.

Of particular interest, however, are the similarity scores
in the 90’s for bugs 18 and 19 of grep. Both of these bugs
are related to the component that was patched to fix bug 17.
The peer selected for both of those bugs was actually the test
added to make sure bug 17 did not reappear as a regression.
As shown in Figure[10], the three bugs are within the same
function, dealing with the same set of variables. As a result,
the regression test closely resembles the correct executions
regarding bugs 18 and 19, making itself a good peer. Thus,
(Os) the spectrum based approach is able to adapt.
Once a test for a buggy component is added to the test suite
related bugs may have a stronger peer for comparison. This
is particularly useful in light of the fact that bugs tend to
appear clustered in related portions of code [18].

Input Isolation.

Input isolation is by far the fastest, but there does not
appear to be an indicator for when or if it will return a
useful peer. Its tendency to yield paths of low similarity
to the correct executions makes it generally less desirable
for debugging purposes. This happens because (Og) input
similarity and behavioral similarity don’t necessar-
ily correspond, so making small changes to input
will likely create large changes in the behavior of a
program. For example, consider bug 8 for tar. When ex-

tracting an archive with a symbolic link, using the -k option
causes tar to enter an infinite loop. This option, however,
significantly alters the behavior of the program, preventing
it from extracting some files. Input isolation selects a peer
by generating new input where the k has just simply been
removed. This avoids the error, but it also radically changes
the behavior of the program such that the peer is highly dis-
similar to the correct execution. This effect is undesirable
because the differences between the failing run and the peer
passing run may not be relevant to the fault, but rather just
semantic difference resulted from the input difference.

In spite of this, its ability to exploit coincidental similar-
ity between passing and failing inputs allows input isolation
to create better peers for some bugs than any of the other
approaches. For example, consider bug 5 of tar. Input iso-
lation produced the peer with the highest path and value
similarity for this bug. The original command line to pro-
duce the failure included the arguments -H oldgnu, telling
the program to create an archive in the ‘oldgnu’ format. In-
put Isolation determined that the most similar passing run
should instead use the arguments -H gnu. Coincidentally,
‘gnu’ is another valid file format, and creating an archive
in that format follows almost the same path as the oldgnu
format. Such behavior is difficult to predict, but interesting
nonetheless.

Symbolic Execution.

We observe (O10) the symbolic execution approach
performs poorly, generating only very short execu-
tions that divert substantially from the failing runs.
The main reason is that the approach tries to model path
conditions of the entire failing runs in order to search for
their neighbors. However, the original failing runs are too
complex for Klee to handle (averaging 300k bitvector con-
straints). According to the algorithm [5] the technique de-
generates to producing inputs for short executions, which
it can manage. Note that good performance was reported
for the same algorithm for web applications in [2]. But web
applications are usually smaller and have very short execu-
tions. We note that good code coverage can be achieved
for our subject programs if simply using Klee as a test gen-
eration engine. But we observe the generated executions
are nonetheless very short, attributing to the path explo-
ration stragety of the test generation algorithm. In contrast,
peer selection requires modeling relatively much longer exe-
cutions.

5. RELATED WORK

We have examined methods for selecting or synthesizing
executions for use in execution comparison. Many of the
techniques that are related to peer selection stem from ex-
isting areas of software engineering.

Execution comparison itself has a long history in software
engineering, from earlier approaches that enabled manually
debugging executions in parallel to more automated tech-
niques that locate or explain faults in programs [6,27, 30].
These systems require that a failing execution is compared
with an execution of the same program. This paper aug-
ments these approaches by suggesting that the desired ex-
ecution should approximate the correct one. This approxi-
mation aids the existing techniques in explaining failures.

Many of the peer selection techniques come from auto-
mated debugging analyses. Delta debugging, used for in-

put isolation, is well known for reducing the sizes of failing
test cases and a vast number of other uses [31]. Zeller’s
work on execution comparison also utilized delta debugging
to locate faulty program state [6], using either input isola-
tion or spectrum based selection techniques to select a peer
execution. Spectrum based approaches for fault localiza-
tion [7,10,16,20,21] have long exploited existing test suites in
order to identify program statements that are likely buggy.
Symbolic execution and constraint solving are popular ap-
proaches for automatically generating test suites [4,9,22,28].
By building formulae representing the input along paths in
an execution, they are able to solve for the input required
to take alternative paths. Some systems also use search
heuristics to guide the tests toward a particular path for
observation [2, 28|, appropriately generating a peer as we
did in our experiments. Execution synthesis techniques like
predicate switching and value replacement mutate an exist-
ing failing execution in unsound ways to see if small changes
can make the executions behave correctly [15,32]. The infor-
mation about how and where this dynamic patch occurred
can be used for fault localization. Some effort has been put
into finding corrections to executions that require multiple
predicate switches [26]. More recently, the observation that
unsound approximations of executions provide useful infor-
mation about real program behaviors has even been explored
for test generation [25].

Our system for comparing execution traces uses execution
and memory indexing to identify corresponding instructions
and variables across the different executions [24,29]. Other
trace comparisons exist, but they do not allow strictly align-
ing both data and control flow as necessary for examining
suitability for execution comparison [11,19,33]. Existing
work also looks at the static alignment and differencing of
static program, but these approaches emphasize efficiency
over precision or high level alignment over low level align-
ment in comparison to the edit distance approach used in
this paper [1,12]. Edit distances have been used to align the
abstract syntax trees of multiple programs [8], but not the
control flow, which is necessary for aligning traces.

6. CONCLUSIONS

This paper introduces peer selection as a subproblem of
using execution comparison for debugging. Given a failing
execution, that failing execution must be compared against
a peer that approximates the correct, intended execution
in order to yield useful results. We have surveyed and im-
plemented the existing five peer selection techniques, com-
paring how well the peers that they generate approximate
the correct execution and how quickly they can find theses
peers. The results provide insights into the advantages and
disadvantages of the different techniques.

7. REFERENCES

[1] T. Apiwattanapong, A. Orso, and M. J. Harrold. Jdiff: A
differencing technique and tool for object-oriented programs.
Autom. Softw. Eng., 14(1):3-36, 2007.

[2] S. Artzi, J. Dolby, F. Tip, and M. Pistoia. Directed test
generation for effective fault localization. In ISSTA, 2010.

[3] P. Bille. A survey on tree edit distance and related problems.
Theor. Comput. Sci., 337, 2005.

[4] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and
automatic generation of high-coverage tests for complex
systems programs. In OSDI, 2008.

[5] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.

Engler. Exe: Automatically generating inputs of death.
TISSEC, 12(2), 2008.

6]
[7]
8]

191
(10]
(11]
(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]
(23]
(24]
(25]
26]
(27]

(28]

(29]
(30]
(31]
(32]

(33]

H. Cleve and A. Zeller. Locating causes of program failures. In
ICSE, 2005.

W. Dickinson, D. Leon, and A. Podgurski. Pursuing failure: the
distribution of program failures in a profile space. In FSE, 2001.
B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change
distilling: Tree differencing for fine-grained source code change
extraction. IEEE Trans. Softw. Eng., 33:725-743, 2007.

P. Godefroid, N. Klarlund, and K. Sen. Dart: directed
automated random testing. In PLDI, 2005.

M. J. Harrold, G. Rothermel, R. Wu, and L. Yi. An empirical
investigation of program spectra. In PASTE, 1998.

K. J. Hoffman, P. Eugster, and S. Jagannathan.
Semantics-aware trace analysis. In PLDI, 2009.

S. Horwitz. Identifying the semantic and textual differences
between two versions of a program. In PLDI, 1990.

J. W. Hunt and T. G. Szymanski. A fast algorithm for
computing longest common subsequences. Commun. ACM,
20(5):350-353, 1977.

D. Jeffrey, N. Gupta, and R. Gupta. Fault localization using
value replacement. In ISSTA, 2008.

D. Jeffrey, N. Gupta, and R. Gupta. Effective and efficient
localization of multiple faults using value replacement. In
ICSM, 2009.

J. Jones and M. Harrold. Empirical evaluation of the tarantula
automatic fault-localization technique. In ASE, 2005.

P. Joshi, C. Park, K. Sen, and M. Naik. A randomized dynamic
program analysis technique for detecting real deadlocks. In
PLDI, 2009.

T. Kremenek, K. Ashcraft, J. Yang, and D. Engler. Correlation
exploitation in error ranking. In FSE, 2004.

M. K. Ramanathan, A. Grama, and S. Jagannathan. Sieve: A
tool for automatically detecting variations across program
versions. In ASE, 2006.

M. Renieres and S. P. Reiss. Fault localization with nearest
neighbor queries. In ASE, 2003.

T. Reps, T. Ball, M. Das, and J. Larus. The use of program
profiling for software maintenance with applications to the year
2000 problem. In FSE, 1997.

K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit testing
engine for c. In F'SE, 2005.

W. Sumner and X. Zhang. Algorithms for automatically
computing the causal paths of failures. In FASE, 2009.

W. Sumner and X. Zhang. Memory indexing: canonicalizing
addresses across executions. In FSE, 2010.

P. Tsankov, W. Jin, A. Orso, and S. Sinha. Execution hijacking:
Improving dynamic analysis by flying off course. In ICST, 2011.
T. Wang and A. Roychoudhury. Automated path generation for
software fault localization. In ASE, 2005.

D. Weeratunge, X. Zhang, W. Sumner, and S. Jagannathan.
Analyzing concurrency bugs using dual slicing. In ISSTA, 2010.
T. Xie, N. Tillmann, J. de Halleux, and W. Schulte.
Fitness-guided path exploration in dynamic symbolic execution.
In DSN, 2009.

B. Xin, W. Sumner, and X. Zhang. Efficient program execution
indexing. In PLDI, 2008.

A. Zeller. Isolating cause-effect chains from computer programs.
In FSE, 2002.

A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. T'SE, 28(2):183-200, 2002.

X. Zhang, N. Gupta, and R. Gupta. Locating faults through
automated predicate switching. In ICSE, 2006.

X. Zhang and R. Gupta. Matching execution histories of
program versions. In FSE, 2005.

	Introduction
	Selecting Executions
	Input Isolation
	Spectrum Techniques
	Symbolic Execution
	Predicate Switching
	Value Replacement

	Analytical Comparison
	Experiment
	Measuring Execution Similarity
	Results
	Overhead
	Fitness

	Related Work
	Conclusions
	References

