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ABSTRACT
Traditional dynamic program slicing techniques are code-centric,
meaning dependences are introduced between executed statement
instances, which gives rise to various problems such as space re-
quirement is decided by execution length; dependence graphs are
highly redundant so that inspecting them is labor intensive. In
this paper, we propose a data-centric dynamic slicing technique,
in which dependences are introduced between memory locations.
Doing so, the space complexity is bounded by memory footprint
instead of execution length. Moreover, presenting dependences be-
tween memory locations is often more desirable for human inspec-
tion during debugging as redundant dependences are suppressed.
Our evaluation shows that the proposed technique supersedes tra-
ditional dynamic slicing techniques in terms of effectiveness and
efficiency.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Debug-
ging aids, Tracing; D.3.4 [Programming Languages]: Proces-
sors—Debuggers

General Terms
Algorithms, Measurement, Reliability

Keywords
dynamic program slicing, memory dependence graph, data-centric
slicing, fault localization.

1. INTRODUCTION
Dynamic slicing was introduced in [9] as a debugging aid. It

isolates executed statements that have contributed to a runtime fail-
ure through program dependences [7]. Despite its recent progress
[22], dynamic slicing still has limitations such as space requirement
is tied to execution length and slices contain too much information
for a human to explore. These issues arise because existing tech-
niques are code-centric, i.e., dependences are introduced between
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statement instances. In this paper, we propose a data-centric dy-
namic slicing technique, in which dependences are introduced be-
tween memory locations.
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int x, y; 

int A[…], B[…];

int main () {

   register int i, j, k;

   x=…;

   A[0]=…;

   A[1]=…;

   while (i<x) {   

       y = … ;

       j = A[i];

       k = … j … ;

       B[i]= … k …;

       i++; 

   }             

}  
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   x=…;

   A[0]=…;

   A[1]=…;

   while (i<x) {   

       y = … ;

       j = A[i] ;

       k = … j … ;

       B[i]= … k …;

       …

    while (i<x) {   

       y = … ;

       j = … A[i]... ;

       k = … j … ;

       B[i]= … k …;

       … 

Code Trace

Figure 1: Sample code and a sample execution.

The idea can be illustrated by an example. Fig. 1 shows a code
snippet and an execution trace. Variablesx andy are global vari-
ables and thus they reside in memory as arraysA[] and B[] do.
Variablesi, j andk reside in registers. Traditionally, the dynamic
program dependence graph for the sample trace is like the one pre-
sented in Fig. 2 (a), in which a node is created for each executed
statement, a data dependence edge is introduced between two ex-
ecuted statements if the head statement instance defined a variable
and the variable is later used by the tail instance (e.g., there is a
data dependence edge between61 and71). A control dependence
edge is introduced between a predicate instance and a statement
instance if the predicate instance decided the execution of the state-
ment instance (e.g., there is a control dependence edge between61

and41). One can observe that the size of the graph is proportional
to the execution length. Earlier study [22] shows that an execution
with one hundred million instructions could require 1.5GB space
to store the graph without any compression. Furthermore, such a
graph is often highly redundant. In the sample code snippet, state-
ment 4 may get executed multiple times so that the dependence
between 4 and 1 is exercised repeatedly, resulting in a large num-
ber of edges that reveal the same information. For instance, the two
data dependences from41 to 11 and from42 to 11 contain the same
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51 y=...

61 j=A[i]

71 k=...j

81 B[i]=...k

42 while

52 y=...

62 j=A[i]
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(a) Traditional Dynamic Dep. Graph (b) Statement Based (c) Memory Dep. Graph

Figure 2: Different types of dependence graphs for the sample trace in Fig. 1. For graphs (a) and (b), solid edges and dashed
edges represent data dependences and control dependences,respectively. A statement instance is represented assi with s being the
statement andi being the instance counter.

information. The compression techniques proposed in [22] reduce
the space requirement by orders of magnitude, but do not change
the space complexity. Besides, they entail heavy-weight program
analysis and instrumentation.

A simple idea to reduce space complexity is to discard instance
information. More particularly, a node is created for one statement
instead of one statement instance. An edge is introduced if there is
ever a dependence between instances of two statements. Applying
the idea to the sample run results in the graph in Fig. 2 (b). It
is easy to infer that the graph size is now decided by the number
of statements instead of the execution length. Unfortunately, the
graph quality also significantly degrades. For example, suppose it
is observed that a wrong value is defined toB[0] at81 due to a fault
at statement 2. Using graph (a), the dynamic slice of81, i.e., the
set of executed statements that are reachable from81, contains the
faulty statement 2. However, when graph (b) is used, the slice also
contains statement 3. If the loop iterates for 1000 times, statement
6 depends on the 1000 definition points of the arrayA elements
and the slice contains all those definitions. This bloat is caused by
discarding necessary instance information.

We observe that the root cause of these problems is that dynamic
dependences are defined between statement instances, i.e., they are
code-centric. We argue that it is more natural to define dynamic
dependences between variables in memory, i.e., making themdata-
centric. The intuition is that memory variables give a strong hint
about what information should be kept and what should be dis-
carded. For example, Fig. 2 (c) presents the dependences between
variables at the end of the execution. It shows thaty is dependent
on x because the definition ofy is control dependent on the predi-
cate onx at 4. B[0] depends on bothA[0] andx. Similarly, B[1]
depends on bothA[1] andx. Now, even though statement 5 is exe-
cuted multiple times, only one dependence edge is present between
x andy as the multiple instances of 5 operate on the same variable.
Furthermore, the memory dependence graph does not undesirably
coalesce the dependences caused byA[i] at statement 6 as various
instances operate on different memory locations. The first benefit
of constructing data-centric dependence graphs is that graph size is
no longer tied to the length of an execution but the memory foot-
print of the execution, which is a much better bound. The second
benefit is that it often presents a better view of failure causality
and reduces the workload in inspecting a slice. Statements that as-
sign values to registers, e.g., statements 6 and 7, will not be present

in a memory dependence graph. It fits the intuition that compu-
tation on registers is often temporary so that it is not necessary to
present them to the programmer. For instance, loop induction vari-
ables mostly reside in registers. They often give rise to very deep
dependence chains because of iterative updates. However, inspect-
ing these chains step by step is often fruitless. Such chains are
prevented in memory dependence graphs. In Fig. 2, the memory
graph (c) is much smaller than the traditional graph (a). Inspecting
it requires much less effort.

The proposed technique can be naturally applied to classic de-
bugging. For example, when a core dump occurs due to a segment
fault, the current memory graph reflects the dependences between
memory locations in the core dump. It is also very convenient,
during debugging, for the programmer to pause an execution and
investigate relations between memory variables. The technique
is also able to identify dependences between inputs and outputs,
which are nothing but memory regions. Such a capability is very
desirable in scientific computing in the presence of uncertain data.
More precisely, the confidence of an output value hinges on the un-
certainties of the set of inputs it depends on. Expensive wet-bench
experiments can be spared if a positive output unfortunately has a
low confidence.

The contributions of this paper are highlighted as follows:

• We propose the novel idea of data-centric slicing, in which
dependences are introduced between memory locations in-
stead of statement executions.

• We study a few possible designs of data-centric slicing and
identify the one that features effectiveness and efficiency. We
formally define the concept of memory dependence graphs
and study properties such as space complexity.

• We develop an online set-based graph construction algorithm
that is amenable to an efficient implementation usingbinary
decision diagrams(BDDs), which exploit the significant over-
lap among memory dependence graphs.

• We evaluate the technique on a set of medium-sized pro-
grams. The results indicate that the proposed data-centric
slicing technique supersedes traditional dynamic slicing tech-
niques in terms of effectiveness and scalability.



int x, y, z;

…

int main () {

   x = … ;

   … 

   y = … x … ;

   if (…x…) 

      z = … ;

   u = … y…       

   y =  … u … z ;

   … 

}
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Figure 3: Possible designs for memory dependence graph.

2. MEMORY DEPENDENCE GRAPH
A key concept in our data-centric slicing technique ismemory

dependence graph(mG). Given a program execution point, usually
the point where a failure happens, mG describes dependence rela-
tions between memory locations. It is constructed and maintained
online during program execution. Even though the idea is intuitive,
there exist various possible designs.

Design One. In this design, mG reflects dependences between
memory locations at thecurrentvirtual space snapshot. More specif-
ically, given a program execution pointsi, denoting theith execu-
tion instance of statements 1, a memory locationm is said to be
dependent on another locationn if and only if the current value at
m was affected by the current value atn without going through any
other memory locations.

Fig. 3 shows examples for different designs. An execution trace
is presented on the left. Here we assume that all variables are mem-
ory resident. Graphs (a) and (d) represent the mGs for design one
when the execution reaches points71 and81, respectively. Right

before71, variabley depends onx, denoted asy
md
−−→ x, because

the current value ofy was defined using the current value ofx at

31. Similarly, u
md
−−→ y. Variablez depends onx because the defi-

nition of the current value ofz was the result of the branch outcome
regarding the currentx. In other words,x controls the value ofz.

Such a design is less effective when memory locations are over-
written. Consider the same example, at statement71, the value of
y is overwritten, which implies now the current value ofu is no
longer dependent on the current value ofy, but rather the current
value ofx. More particularly, upony being overwritten, the de-
pendence betweenu andy has to be discarded and a dependence
betweenu andx, on which the obsoletey value is dependent, is
introduced. The resulting graph is shown in Fig. 3 (d). One can
infer that if u were to be overwritten, a variable that is dependent
onu, assuming it to bev, would be re-connected tox. As a result,
when such a graph is presented to a user, one has to figure out why
there is a dependence betweenv andx, which is often hard as the

corresponding chainv
md
−−→ u

md
−−→ y

md
−−→ x is no longer visible.

We call such a problem theover abstractionproblem.

Design Two. In order to avoid over abstraction, the second pos-
sible design is not to discard any dependences that ever occurred.

1A statement can execute multiple times during an execution.

More specifically, overwriting a variable does not induce any re-
connections and dependence edges can only be added to the graph
without being discarded. Fig. 3 (b) and (e) present the mGs for
the second design. The graph before71 is the same as that in the
first design. The difference lies in the graph after71. The over-

writing of y at 71 introduces two new dependence edgesy
md
−−→ u

andy
md
−−→ z without discarding the original dependenceu

md
−−→ y.

Therefore, at81, the computation of the current value ofu, i.e. the

chainu
md
−−→ y

md
−−→ x, is explicit in the graph. However, such

a chain is not distinguishable from other bogus dependence chains

starting fromu, e.g.,u
md
−−→ y

md
−−→ z

md
−−→ x. In other words, the

second design solves the over abstraction problem, but introduces
a new problem, which we call theover aggregationproblem. One
may suggest distinguishing different writes toy using an instance
counter or timestamps. Such a solution will make the space com-
plexity of the resulting graph to beO(execution length).

To overcome the problems in the previous designs, we propose to
maintain memory dependence graphsindependentlyfor each vari-
able. Informally, graphs for different variables are separated so that
writing to a variablex only updates the graph ofx without chang-
ing the graphs of other variables. Fig. 3 (c) and (f) demonstrate
such a design. Before71, each variable has its own dependence
graph, delimited by a box annotated with the variable. Aftery is
overwritten at71 usingu andz, the new graph ofy is constituted by
copying the graphs ofu andz and connectingu to y andz to y, re-
sulting in the graph (f) at81. Note that the graphs ofu andz remain
untouched. More particularly, overwritingy at71 does not change
the nodey in u’s graph. As a result, the dependence between the
old value ofy and the current value ofu is not obscured by depen-
dences introduced for the new value ofy.. Therefore, it overcomes
the over abstraction problem by not discarding dependence edges.
It also greatly mitigates the over aggregation problem by separat-
ing the graphs of individual variables. For example, the graph for
u precisely explains the computation of its current value, without
being obscured by bogus dependences caused by other variables as
discussed earlier.

Next, we formally define memory dependence graphs.

DEFINITION 1. Given an execution point and a memory loca-
tion, the memory dependence graph regarding the location at the
execution point is a pair(N, E) with N being a set of nodes andE
being a set of edges. A node is represented as a pair(vAddr, dAddr)
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Figure 4: A memory dependence graph construction example. The trace is on the left, and the four graphs represent the mG
snapshots after each step, with R representingmGR, M representing mGM .

with vAddr being a memory location and dAddr being the program
counter of the definition point of the memory location. There is a
dependence edge between two nodes if and only if there is a dy-
namic program dependence path (in terms of dynamic data and
control dependences) between them and along the path there is not
a definition to any memory locations.

A memory dependence graph is defined regarding a memory lo-
cation at an execution point and all the nodes in the graph are mem-
ory locations that have contributed to the current value of the given
location. In fact, the mG of a memory location is similar to the con-
cept of the dynamic slice of a variable. Note that according to the
definition, a node is created for a unique pair of a memory location
and the definition point to that location. The reason is that there
may be multiple definition points to the same memory location. It
is needed to distinguish these definition points because they have
distinct semantics.

PROPERTY 1. The space requirement for the mGs of an execu-
tion with the memory footprint ofM bytes andN unique statements
is O(M3 · N2).

The proof is straightforward. For each of theM bytes, the num-
ber of nodes of its graph isO(M · N) and thus the number of
edges isO(M2 · N2). As a result, the total space requirement
is O(M3 · N2). In fact, the practical bound is significantly bet-
ter because: (1). many programs consume memory at the scale of
megabytes and a particular byte often only depends on a number of
other bytes; (2). memory graphs have significant redundancy that
can be exploited to achieve space efficiency. We will discuss how to
usebinary decision diagrams(BDDs) to exploit such redundancy
in Section 4.

3. GRAPH CONSTRUCTION
In order to facilitate efficient graph construction, we change the

definition of memory dependence graph to an equivalent form.

DEFINITION 2. Given an execution point and a memory loca-
tion, the memory dependence graph regarding the location at the
execution point is a set of four-tuples〈vAddrh, dAddrh, vAddrt,
dAddrt〉. Each tuple represents a memory dependence edge with
(vAddrh, dAddrh) being the head node, including the memory lo-
cation and its definition, and(vAddrt, dAddrt) being the tail node.

This definition formulates memory graph as a set of tuples (rela-
tions). It is trivial to see that it is equivalent to the previous defini-
tion. The reason we use a set based definition is that, as it will be
illustrated in Section 4, sets can be represented as BDDs to suppress
redundancy and achieve efficiency. Given the modified definition,
graph construction can be defined with set operations. To better il-
lustrate graph construction, we first give a simplified trace grammar

that describes the forms of instructions executed at runtime. Note
that one should treat it as a grammar for execution traces instead of
a grammar for programs. The grammar is shown in Listing 1.

In this grammar,r denotes registers,constdenotes constants. To-
gether, registers and constants form atoms, denoted bya. Expres-
sions,e, can be atoms, memory loads, unary or binary expressions.
A value is loaded from memory locationa by ld(a). Due to the
characteristics of traces, we design a simple grammar that requires
addresses to be atoms (Similarly, we require the operands ofuop
andbopexpressions to be atoms). While in a high level language
or a high level IR, an address could be an expression, in a low level
IR like the one we encounter in our implementation, an expression
is flattened into multiple IR statements. In other words, the address
is computed and stored into a temporary register before being used
by a load/store statement.Uop and bop represent unary and bi-
nary operations, respectively. Statements,s, can be in the forms of
register assignments, memory assignments, conditionals, and un-
conditional jumps. One may notice that the conditional statement
does not have theelse branch, since the grammar is designed for
execution traces, and at runtime, only one branch is executed. For
simplicity of presentation, we omit the definition PCs of an depen-
dence edge in the rest of this section, that is to say, an edge is a pair
of memory locations instead of a four-tuple.

Listing 1: Simplified Trace Grammar
a = cons t | r
e = a | l d ( a ) | uop ( a ) | bop ( a , a )
s = r := e

| s t ( a ) := e
| i f ( a ) goto a
| jmp a

t = ǫ | s ; t

Although we are only interested in memory to memory edges
when constructing memory dependence graphs, we need to tem-
porarily maintain register to memory dependence edges. However
such dependences have very short life times, and they will be trans-
lated into real memory dependences once values in registers are
written to memories. For the purpose of presentation, we divide
the set of dependence edges into two parts:

mG = mG
M ∪ mG

R
,

with mGM subgraph containing memory to memory (m2m) depen-
dences, andmGR subgraph containing register to memory (r2m)
dependences. We usemGx denotes the dependence graph of an
entityx, which could be a memory location or a register.

Figure 4 gives an overall idea of how the two subgraphs are
constructed and propagated for a simple trace segment, assuming
that initially, the memory graphs for locationsmx andmy contain



edges:{〈mx, mb〉, 〈mb, ma〉} and{〈my, ma〉}, respectively. Af-
ter the first step, a r2m edge is added betweenr1 andmx, repre-
senting the dependence of the current value inr1. Similarly, an
edge is added betweenr2 andmy after step 2. After step 3, the
graphs ofr1 andr2 are first combined, and the temporary edges
betweenr1 andmx and betweenr2 andmy are replaced by the
two edges fromr3 to mx andmy, reflecting the dependences of
r3. The r2m edges fromr3 to mx andmy are replaced by two
m2m edges frommz to mx andmy after the final step. The im-
portant observation is that we only maintain sufficient r2m edges
to ensure the final m2m edges can be correctly identified, which
explains why the r2m edges ofr1 andr2 can be discarded.

We use the following helper functions to access these subgraphs
for atoms and expressions:

rm(atom) =

(

∅, atom
.
= const

mGR

r , atom
.
= r

mm(atom) =

(

∅, atom
.
= const

mGM

r , atom
.
= r

rm(e) =

8

>

<

>

:

rm(a), e
.
= a or uop(a)

rm(a1) ∪ rm(a2), e
.
= bop(a1, a2)

rm(a) ∪ {〈_, |a|〉}, e
.
= ld(a)

mm(e) =

8

>

<

>

:

mm(a), e
.
= a or uop(a)

mm(a1) ∪ mm(a2), e
.
= bop(a1, a2)

mm(a) ∪ mGM

|a|, e
.
= ld(a)

replace(GR
, x) = {〈x, m〉 | 〈_, m〉 ∈ G

R}

The functionrm() is used to extract the register-to-memory sub-
graph from the dependence graph of an atom or an expression. Sim-
ilarly, function mm() is used to extract the memory-to-memory
subgraph of an atom or an expression. For example,rm(r1) =
{〈r1, mx〉} andmm(r1) = {〈mx, mb〉, 〈mb, ma〉} for r1 in Fig-
ure 4. Functionreplace(GR, x) is used to replace the from node
(the register) in a register-to-memory graphGR with nodex. More
particularly, when an expressione is a binary operation,rm(e) and
mm(e) compute the union of the subgraphs of the two operands,
reflecting the newly computed value depends on whatever in the de-
pendence graphs of the two operands. Whene is a load instruction,
mm(e) is the union of the address’ dependence graphmm(a) and
the dependence graph of the value stored at the address, denoted
by mGM

|a|; rm(e) is the union of the region-to-memory graph ofa

and the new edge of〈_, |a|〉, which represents a temporary (don’t
care) register is associated withe and the register depends on the
address|a|. Note that such registers will be replaced eventually.

The following discussion of graph construction is driven by the
grammar.

Case I: r := e . These are register assignment statements. With
the helper functions defined above, the computation ofmGr can
be specified as:

mGr = mG
R

r ∪ mG
M

r (1)

mG
R

r = replace(rm(e), r) (2)

mG
M

r = mm(e) (3)

Intuitively, it replaces all the from nodes (temporary registers) in
rm(e) with r and then unions with the memory-to-memory depen-
dence graph.

Case II: st(a) := e. The computation of mG for the memory
location|a|, denoted bymG|a|, is defined as:

mG|a| = mG
R

|a| ∪ mG
M

|a| (4)

mG
R

|a| = ∅ (5)

mG
M

|a| = mm(a) ∪ mm(e) ∪ replace(rm(a) ∪ rm(e), |a|)

(6)

In particular, the last equation says that the memory-to-memory
graph is the union of the memory-to-memory graphs ofa ande,
and the new edges introduced between|a| and memory locations
that were loaded to computea ande.

Case III: if(a) goto label. Handling conditional statements is
key to including control dependence into memory dependence graphs.
Since a statement sequencet that follows thisif statement is con-
trol dependent on predicatea, the memory dependence graph of
the predicate should be propagated to each statement int. We use a
pseudo registercd to hold the value of the current branch condition.
The current control dependence graph is denoted asmGcd.

Before the execution oft, the oldmGcd is saved to a stack as
follows:

stack.push(mGcd)

Then, the newmGcd is defined as:

mG
R

cd = mG
R

cd ∪ replace(rm(a), cd) (7)

mG
M

cd = mG
M

cd ∪ mm(a) (8)

The two equations reflect the current control dependence is a
union of the previous control dependence and the dependence of
the predicatea. For instance, in the case that one if statement nests
in another if statement, a statements guarded by the inner predicate
should be transitively control dependent on the outer predicate. In
other words, the dependences of outer predicate need to be propa-
gated tos.

After the execution oft, mGcd is restored to its original state
through the following:

mGcd = stack.pop()

It means the execution after this point is no longer control de-
pendent on the predicatea. With mGcd, we can include control
dependence into the memory graphs of registers and memory loca-
tions incases IandII , by performing the following at the end:

mGr = mGr ∪ mG
M

cd ∪ replace(mG
R

cd, r) (9)

mG|a| = mG|a| ∪ mG
M

cd ∪ replace(mG
R

cd, |a|) (10)

In practice, program execution is often not well-structured because
of continue, break, orsetjmp/longjmp constructs. Due to
space limitations, handling such cases is omitted. The basic idea
is to rely on post-dominator computation instead of syntactic struc-
ture [20].

No special action is required for the remaining case of uncondi-
tional jumps.

4. IMPLEMENTATION
The system is implemented on Valgrind [12]. Control flow anal-

ysis on binaries is implemented on Diablo [6].Binary decision
diagrams(BDDs) [10] are used to represent graphs, which are in-
deed sets of dependence edges. As mentioned earlier, each memory
location has its own graph. The graphs of different memory loca-
tions have significant overlap. Such redundancy can be exploited
by BDDs. BDDs are data structures to represent Boolean functions



t5 = GET(20)

//See Equation 1: casee
.
= r20

mGt5 = mGM
r20

∪ replace(mGR
r20

, t5)
//See Equation 9
mGt5 = mGt5 ∪ mGM

cd
∪ replace(mGR

cd
, t5)

t5 = GET(20) t5 = GET(20)

t4 = Add32(t5,-8)

//See Equation 1: casee
.
= bop(t5, const)

mGt4 = mGM
t5

∪ replace(mGR
t5

, t4)
//See Equation 9
mGt4 = mGt4 ∪ mGM

cd
∪ replace(mGR

cd
, t4)

t4 = Add32(t5,-8)
//T4 depends only on %ebp, thus ignored.
t4 = Add32(t5,-8)

t6 = GET(0)

//See Equation 1: casee
.
= r0

mGt6 = mGM
r0

∪ replace(mGR
r0

, t6)
//See Equation 9
mGt6 = mGt6 ∪ mGM

cd
∪ replace(mGR

cd
, t6)

t6 = GET(0)
//Save the dependence of t6 to r0 at instrument time.
t6 = GET(0)

STle(t4) = t6

//See Equation 4: casea
.
= t4, e

.
= t6

mG|t4| = mGM
t4

∪ replace(mGR
t4

, |t4|)

mG|t4| = mG|t4| ∪mGM
t6

∪ replace(mGR
t6

, |t4|)
//See Equation 10
mG|t4| = mG|t4| ∪mGM

cd
∪ replace(mGR

cd
, |t4|)

STle(t4) = t6

//T6’s dependence on r0 forwarded here.
mG|t4| = mGM

r0
∪ replace(mGR

r0
, |t4|)

mG|t4| = mG|t4| ∪mGM

cd
∪ replace(mGR

cd
, |t4|)

STle(t4) = t6

(a) (b) (c)

Figure 5: Examples of the Valgrind IR for binary instruction mov %eax, -8(%ebp) (a), instrumentation for the graph construc-
tion algorithm (b), and the effect of optimizations (c).

(or truth tables) [4], and thus they can be used to represent rela-
tions (sets) with finite domains. For example, an mG is represented
with a 4-tuple relation in this paper. BDDs use a global data struc-
ture, which is a binary graph, to represent a very large number of
relations. A relation can be accessed through an index (an integer)
to the global data structure. Different relations have different in-
dices. Equality of two relations can be decided by comparing their
indices. Operations on relations can be translated to function calls
to the BDD package with relation indices as the parameters. Re-
lation operations used in this paper such as union and element re-
placing can be straightforwardly implemented with BDDs. Details
are elided due to space limitations.

Figure 5(a) shows some examples of Valgrind IR, on top of which
our algorithm is implemented. (For presentation purpose, some
non-essential parts of the IR are omitted, like the size annotations
on operands.) Here it uses 4 IR statements to translate the native in-
structionmov %eax, -8(%ebp). Native registers are assigned
indices. They are read/written with the IR primitivesGET/PUT,
for example, the index for %ebp is 20 and that for %eax is 0.
Valgrind IR also introduces its own class of temporary variables
(IR Temps), liket4, t5, andt6 in the example. The rest is self-
explained:Add32 constructs an address expression by adding two
32-bit integers, and theSTle statement stores a value to an address
in the memory.

Figure 5(b) shows the instrumentation of memory graph con-
struction for the IR in (a). The first IR instructiont5=GET(20)
belongs to case I as described in Section 3, i.e. ther:=e category
with r being t5 ande being a registerr20(%ebp). The first line
of instrumentation is to instantiate the memory graph oft5 with
that of r20 following Equation 1. More specifically, it first intro-
duces new edges fromt5 to the memory locations that were used
to compute the value ofr20 by calling replace(). It then further
unions the set of new edges with the memory-to-memory graph
of r20. The second line of instrumentation is to union the cur-
rent control dependence graph with the computedt5 graph, follow-
ing Equation 9. The instrumentation for the second IR statement
t4=Addr32(t5,-8) is similar. For the store statement, which
falls into case II, the first two lines of the instrumentation corre-

spond to Equation 4. They first compute the memory graph fort4
and then union it with the memory graph oft6. The third line is to
include control dependence according to Equation 10.

4.1 Optimization
Strictly applying the instrumentation rules in Section 3 unfor-

tunately leads to substantial runtime overhead. We develop two
optimizations that can significantly improve efficiency.

OPT-TEMP . One of the major sources of inefficiency comes
from our treatment of IR Temps such ast4 andt5 in Figure 5. The
frequency of definitions and references of IR Temps is much higher
than those of registers and memory values. In our base implemen-
tation, many function calls are used for manipulating the depen-
dences of IR Temps. However, two observations help us alleviate
this problem.

Firstly, IR Temps are often used to compute stack addresses.
Without compromising the important feature of supporting depen-
dence tracing for pointers, we can largely reduce the instrumenta-
tion by precluding dependence tracing for stack addresses. More
particularly, we can skip dependence tracking for all IR Temps that
only depend on values of register %ebp and %esp, or constants.
Thus, we do not need to instrument the assignments tot4 andt5,
as shown in Figure 5(c). The dependence ont4 in the store state-
ment can be removed too.

Secondly, Valgrind IR Temps have the SSA property, i.e. each
IR Temp is guaranteed to be defined only once. Also, IR Temps
are only visible in a super block (a translation unit in Valgrind).
These two properties allow us to move the handling of IR Temp de-
pendences from runtime to instrumentation time. Specifically, the
dependences and definitions of IR Temps are analyzed and iden-
tified at instrumentation time and merged directly into functions
handling dependences for register or memory values. Only when
the definition of an IR Temp depends on a register or memory that
is later rewritten in the same block, do we need to use separate
function calls for the IR Temp. Thus in Figure 5(c), we see that
for the store statement, no explicit calls are needed to propagate the
dependences fromt6. Its dependences are directly forwarded and
merged with the memory graph computation for|t4|.



OPT-CACHE . The second source of inefficiency comes from
the usage of BDDs. One of the basic operations in our algorithm
is to create an edge from two addresses. This involves six function
calls to various BDD library functions. Since we are building slices
for all live values as the program executes, the same dependence
edge might appear in the slices of more than one value. We found
that a caching mechanism that avoids repeated use of expensive
BDD operations to create the same edge can greatly reduce runtime
overhead. This also means that once an edge is created, it cannot
be reclaimed by the BDD kernel, suggesting a higher space over-
head. However, our experience shows that the increase in memory
consumption is insignificant.

5. EVALUATION
In this section, we study the characteristics of data-centric slices

and their effectiveness in debugging. We also show the runtime
cost of our algorithm. Table 1 shows an overview of the set of
benchmarks used in the experiments. They are collected from the
BugBench suite [11]. They all contain real known bugs that are
summarized in the last column.

5.1 Effectiveness
The first experiment is about the effectiveness of data-centric

slicing in debugging. As we discussed in Section 3, mGs are com-
puted and stored as BDDs for every register and memory values
as a program executes. When the program crashes, the memory
graph corresponding to the wrong observable output is dumped,
for example, a wrong address value that caused the SIGSEGV. The
effectiveness study involves how this memory graph (i.e. memory-
data-centric slice) can be used to find the root cause in the source
program. We assume that a breadth-first search strategy is adopted
in inspecting the graph, starting from the failure node. For compar-
ison, we also applied the conventional code-centric dynamic slic-
ing and constructed dependence graphs from instruction instances.
Similarly, a breath-first search is used to reach the root cause nodes.

Table 2 shows that for each benchmark, how many nodes in the
graph have been visited before reaching the root cause node. If we
assume that bugs are likely in the user code instead of library code,
then programmers may only want to inspect those nodes in the user
code. We also show the distinct number of source line locations of
these nodes, since they are better estimations of the amount of code
that programmers have to examine.

5.1.1 Bc-1.06
Bc is an arbitrary precision calculator utility tool commonly found

in Unix-based systems. Inbc-1.06, a coding mistake leads to a vari-
able being confused with another variable of a similar name. As a
result, an incorrect boundary condition is used when filling a buffer,
causing an overflow. Parts of the code for this benchmark are shown
in Fig. 6. The root cause is at line 4706: variablev_countshould
bea_count. In our experiment,bceventually crashes in a C library
function. This type of failure can be difficult to debug.

With the data-centric slice, 63 nodes have to be visited before the
root cause is identified. Among them, 20 nodes are in user code.
They correspond to 49 and 16 source line locations. With the con-
ventional code slice, 93 nodes have to be traversed before the root
cause is reached, with 41 of them in the user code, corresponding
to 37 and 13 source lines. The number of nodes visited in the data
slice is 32.3% smaller than that in the code slice, while the numbers
of user-level source code locations are comparable.

We know the direct cause for thisbcbug is the overflow at line 4707,
with the buffer and its size being defined at line 4699 and 4698.
Fig. 7 shows how the causing nodes are reached in the memory de-

4659vo id more_var iables ( vo id )
4660{

4669v_count += 4;
4670va r i a b l e s = ( bc_var ∗∗) bc_malloc ( . . .
4671v_count ∗ s i z e o f ( bc_var ∗ ) ) ) ;

4687}
4688vo id more_arrays ( vo id )
4689{

4698a_count += 4;
4699ar rays = ( bc_var_array ∗∗) bc_malloc ( . . .
4700a_count ∗ s i z e o f ( bc_var_array ∗ ) ) ) ;

4706whi le ( indx < v_count ) {
4707(∗ ( a r rays + indx ) ) = ( bc_var_array ∗ ) ( 0 ) ;
4708indx ++;
4709}

Figure 6: Parts of bc-1.06 code, from the source filebc_1.06-
noLn.c.

pendence graph (Note: for case study purpose, we have merged all
source files into a single filebc_1.06-noLn.c). The number on an
edge indicates how many edges are used in the code-centric slice to
establish the dependence that is represented by a single edge in our
memory graph, i.e., it indicates how many instruction instances are
along the data/control dependence path between two memory loca-
tions. It clearly demonstrates that memory dependence graph can
suppress less useful information and presents a better view for de-
bugging. This figure also explains why the size of a memory graph
can be much smaller than that of a code-centric slice.

806C10D
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804DC12
more_arrays

bc_1.06-noLn.c:4707

2

804DB89
more_arrays

bc_1.06-noLn.c:4698

4

804DBA0
more_arrays

bc_1.06-noLn.c 4699

2

Figure 7: Part of the mG for the bc crash point. The number
on an edge represents the length of the data/control dependence
path in the code-centric dependence graph that corresponds to
the edge in the mG. Highlighted nodes are memory locations
defined in user code.

5.1.2 Squid-2.3
Squid is an Internet object caching proxy, supporting common

Internet protocols like HTTP and FTP. It can be used to develop
web proxies and content serving applications.Squid-2.3has a bug
that causes it to crash when serving requested URLs that contain
escaped characters. Fig. 8 shows parts of the code fromSquid-2.3
that explain the bug. The buffer length is computed at line 1004,
which is used to allocate a buffer at line 1019. An overflow can
happen in the call tostrcat at line 1022. In our experiment,
squideventually crashes inside a C library function.

In the mG of the crashing point, the number of nodes to be exam-
ined before reaching the root cause is 245, compared to 29269 in



Benchmarks LOC Description Bug type
squid-2.3 93.5k Web proxy cache server Heap buffer overflow
bc-1.06 17.0k Arbitrary precision calculator Heap buffer overflow
man-1.5 4.7k Redhat documentation tools Global buffer overflow
gzip-1.2.4 8.2k File (de)compression Global buffer overflow
ncompress-4.2 1.9k File (de)compression Stack smash

Table 1: Benchmark overview.

Memory-data slice Code-centric slice
Benchmark All User-Level All User-Level
squid 245/78 145/50 29269/2207 9177/1141
man 182/107 75/48 149/57 139/54
bc 63/49 20/16 93/37 41/13
gzip 4/3 3/2 73/18 13/5
ncompress 2/2 1/1 1866/364 36/9

Table 2: The number of nodes/lines visited before reaching the root cause in both our data slices and conventional code slices.

999f t p B u i l d T i t l e U r l ( FtpStateData ∗ f t p S t a t e )
1000{
1001reques t_ t ∗ request = f t pS ta te −>request ;
1002s i z e _ t len ;
1003char ∗ t ;
1004len = 64 + . . . ;
1005. . .

1019t = f t pS ta te −>base_href = x c a l l o c ( len , 1 ) ;
1020s t r c a t ( t , " f t p : / / " ) ;
1021i f ( strcmp ( f t pS ta te −>user , " anonymous " ) ) {
1022s t r c a t ( t , r fc1738_escape_part ( f t pS ta te −>user ) ) ;
1023. . .

Figure 8: Parts of squid-2.3 code, from the source fileftp.c.

the code-centric slice. They correspond to 78 and 2207 source line
locations, respectively. The number of user-level source locations
is 50 in the memory data slice and 1141 in the code-centric slice,
representing a 95.7% reduction. The root cause of this bug is that
the buffer length at line 1019 is computed incorrectly at line 1004.
Fig. 9 (a) shows how the root cause node is reached in the memory
graph, and similar to Fig. 7, the numbers on the edges represent the
corresponding dependence chain lengths in the code-centric slice.

5.1.3 Man-1.5
Man is a common utility command for formatting and displaying

on-line manual pages on Unix-based systems. The version used in
this experiment,man-1.5, has a bug that leadsmanto a crash in a C
library function. Fig. 10 shows parts of the code fromman-1.5that
illustrate the bug. The buffer overflow happens at line 977.

For this benchmark, the number of nodes visited before reaching
the root cause node is 182 in the memory graph, compared with
149 in the code-centric slice. Similarly, if we only consider user-
level source locations, the number is 48 in data slice and 54 in code
slice, representing a reduction of 11.2%. The root cause of this
benchmark is at line 977. Fig. 9 (b) shows how it can be reached.

5.1.4 Other Benchmarks
For gzip-1.2.4, the root cause can be reached after visiting 4

nodes, compared to 73 in the code slice. The number of use level
source locations is 2 in the data slice and 5 in the code slice. For
ncompress-4.2, the root cause can be reached after traversing 2
nodes, whereas the number is 1866 in the code-centric slice. The

5
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Figure 9: Bug memory graph for: squid(a) and man(b). The
number on the edge represents the length of the corresponding
dependence path in the code slice.

number of user level source locations has been reduced from 9 in
code slice to 1 in data slice.

5.2 Efficiency
The second experiment is about the time and space cost of the

technique. Table 3 lists the runtime of our technique (columnSlic-
ing). For comparison purpose, we also list the time of running the
programs with the Valgrind engine (columnValgrind) to separate
the slow-down caused by Valgrind. We also collect the number of
dynamic instructions (column#Instr exec.) and the total numbers
of memory writes and the unique addresses that have been written
to (column#Writes/unique). From the table, we can see that the
average slowdown is about 26.18X.

Figure 13 shows the effectiveness of the optimizations that we
described in Section 4.1. It shows runtimes normalized to the base
implementation of our slicing algorithm. In theOPT-TEMPseries,
the OPT-TEMP optimization is turned on; In theBOTH OPTse-
ries, both OPT-TEMP and OPT-CACHE optimizations are turned
on. From the table, we can see that on average, with both optimiza-
tions, the runtimes have been reduced to 32.8% of those of the base
implementation.

To evaluate the scalability of our technique, we ranncompress



Runtime (s)
Benchmarks #Instr exec. #Writes/unique Valgrind Slicing Slowdown
squid 11,443K 2,713K/614K 6.5s 350.5 53.9X
man 6,374K 1,121K/49K 1.0s 56.4 56.4X
bc 194K 38K/3K 0.5s 4.4 8.8X
gzip 28K 5K/2K 0.4s 2.4 6.0X
ncompress 15K 8K/3K 0.4s 2.3 5.8X

Table 3: Time cost of data-centric slicing algorithm.

960g e t _ s e c t i o n _ l i s t ( vo id ) {

972i = 0 ;
973f o r ( p = co lon_sep_sec t i on_ l i s t ; ; p = end+1) {
974i f ( ( end = s t r c h r ( p , ’ : ’ ) ) != NULL)
975∗end = ’ \ 0 ’ ;
976
977t m p _ s e c t i o n _ l i s t [ i ++] = my_strdup ( p ) ;
978
979i f ( end == NULL | | i +1 == s i z e o f ( t m p _ s e c t i o n _ l i s t ) )
980break ;
981}

Figure 10: Parts of man-1.5 code, from the source fileman.c.

Figure 11: BDD nodes used for memory slicing asncompress
process a 30M file.

Figure 12: BDD nodes used for memory slicing assquidserves
5K requests.

Figure 13: The runtimes with OPT-TEMP turned on, and with
both OPT-TEMP and OPT-CACHE turned on, normalized to
the base implementation.

andsquidwith large inputs and observe the memory consumption
during the execution. The results are shown in Fig. 11 and Fig. 12.
The X axis represents the number of dynamic instructions. The Y
axis represents the memory consumption, denoted by the number
of BDD nodes created. Note that a BDD node is different from
an mG node. All the mGs are indeed represented in BDDs by a
unified large binary diagram. The space needed by the BDDs is
decided by the number of nodes in the binary diagram and multi-
ple mGs share many common BDD nodes to achieve compression.
One node takes 20 bytes memory. From the figures, we observe
that the memory consumption becomes stable as the execution pro-
ceeds. The deep drops in Fig. 12 correspond to BDD garbage col-
lections.

5.3 Checkpoint
In code-centric slices, a node is created for an instruction in-

stance. Therefore, if a memory address is written multiple times
during execution, multiple nodes will be created with each rep-
resenting a unique write instance. As a consequence, the depen-
dences exercised by various write instances can be represented sep-
arately. In contrast, our technique creates one node for each mem-
ory address in order to achieve a space complexity bounded by ac-
tive memory size. One side effect is that the dependences associ-
ated with the various write instances are aggregated on the node
representing the address. The implication is that if the user is fol-
lowing the breadth first search strategy, one may have to inspect
nodes that are distant from the failure point in the correspond-
ing code slice. To mitigate this effect, we propose to periodically
checkpoint all live memory cells’ slices. Once a memory address’s
slice is checkpointed, it is reset to empty. Doing so, less depen-
dences are aggregated. When debugging, we first examine the lat-
est slice of the wrong output, if the root cause is not found, we
continue to search into the checkpointed slices.

Table 4 shows some results on checkpointing the squid bench-
mark, with the checkpoint period set toNever, 50s, 10sand 5s.



Period Runtime Size All User
Never 350.5s 49030 245/78 145/50
50s 174.0s 20765 124/45 99/38
10s 179.4s 10840 82/32 68/28
5s 187.8s 2826 34/23 31/20

Table 4: The effect of checkpointing on the slice for the bug in
squid.

The table shows data of the last slices, which are the memory slices
computed on the failure points up to the last check points, i.e. we do
not need to chase into the checkpointed slices. The root cause node
can always be found in these slices. TheSizecolumn shows how
many edges the last slice contains; As is expected, the smaller the
checkpoint period, the smaller the slice size. TheRuntimecolumn
shows how long the benchmark runs including the checkpointing
time. The shorter runtime when checkpoint is enabled can be ex-
plained by that when the BDDs are smaller (having fewer internal
nodes), resulting in BDD operations being faster. TheAll andUser
columns, similar to Table 2, show how many nodes and source line
locations are examined before reaching the root cause node, and
how many of them are in user-level code. As we can see from
the table, the smaller the checkpoint period, the smaller number of
source code locations needing to be inspected due to the less aggre-
gation. In practice, choosing the checkpoint period should balance
the need to reduce the aggregation effect in our slices and the costs
of checkpoint operations.

6. RELATED WORK
Our work is closely related to traditional program slicing [18,

14], especially dynamic slicing [9, 1, 16, 22]. However, exist-
ing slicing techniques are code-centric, meaning that they iden-
tify dependences between statements or statement executions. The
dynamic versions of these techniques have undesirable effects be-
cause the space required to store dynamic dependences is propor-
tional to execution length. Existing techniques either resort to build-
ing approximate dependence graphs [1] or compression [22, 17].
However, approximate graphs are often too conservative. Compres-
sion does not change space complexity. Furthermore, traditional
code-centric dynamic slices are hard to inspect by humans because
of too many details are presented. The root cause of these limita-
tions is that traditional techniques are code-centric. The proposed
data-centric technique in this paper overcomes these limitations. It
is also worth mentioning the various techniques proposed in [22]
that improved efficiency and effectiveness of dynamic slicing are
orthogonal to our technique. There has been work on detecting
memory dependence [5]. However, their memory dependences are
dependences between load and store instructions. Beszedes et al.
proposed an offline algorithm to compute dynamic slices for C pro-
grams [3]. By using a D/U representation to represent static must-
dependences and a trace to disambiguate pointers, they claim that
the space requirement for dynamic slicing is smaller and is bounded
by the number of dynamic memory accesses that needs to be dis-
ambiguated, instead of the number of executed instructions. No
evaluation was presented in that work. In comparison, no trace is
used in our online algorithm and our space overhead is bounded by
the number of distinct addresses used.

We are not the first one to have observed that data-centric tech-
niques can be more efficient than the corresponding code-centric
techniques. In [15], Vaziri et al. observed that atomicity can be
more effectively represented as data properties rather than code
properties.

BDDs have been used in various static program analysis [2, 19,
8, 21] and dynamic program analysis [23] to deliver efficiency.
More particularly, dynamic slices are computed using BDDs in [23].
However, their slices are set of statements and our slices are graphs
between memory locations. Their algorithm is offline and ours is
online. The number of slices produced by their technique is a func-
tion of execution length as it is still a code-centric technique.

7. FUTURE WORK
From the discussion of Section 5.3, we can see that memory

graphs are amenable to online parallel construction. With the ad-
vancement of multicore platforms, we can exploit idle cores to fur-
ther reduce the runtime overhead. More specifically, graph con-
struction can be off-loaded from application program execution.
Traces of checkpoint intervals can be communicated to separate
graph construction processes, which build subgraphs independently.

8. CONCLUSION
We propose a data-centric dynamic slicing technique. Depen-

dences are introduced between memory locations instead of exe-
cuted instructions in traditional dynamic slicing techniques. The
technique is space-efficient as the required space to store a mem-
ory dependence graph is no longer bound to the execution length
but the memory footprint, which is often well bounded. The tech-
nique is very effective in debugging as it excludes redundant infor-
mation and is able to illustrate causality with much shorter chains
than traditional code-centric dynamic slicing. It incurs reasonable
overhead.
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