
Efficient Online Detection of Dynamic Control Dependence

Bin Xin Xiangyu Zhang
Purdue University

Department of Computer Science
West Lafayette, Indiana 47906

ABSTRACT
Capturing dynamic control dependence is critical for many dynamic
program analysis such as dynamic slicing, dynamic information
flow, and data lineage computation. Existing algorithms aremostly
a simple runtime translation of the static definition, whichfails to
capture certain dynamic properties by its nature, leading to ineffi-
ciency. In this paper, we propose a novel online detection technique
for dynamic control dependence. The technique is based upona
new definition, which is equivalent to the existing one in thein-
traprocedural case but it enables an efficient detection algorithm.
The new algorithm naturally and efficiently handles interprocedu-
ral dynamic control dependence even in presence of irregular con-
trol flow. Our evaluation shows that the detection algorithmslows
down program execution by a factor of 2.57, which is 2.54 times
faster than the existing algorithm that was used in prior work.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Debug-
ging aids, Testing tools, Tracing; D.3.4 [Programming Languages]:
Processors—Debuggers

General Terms
Algorithms, Measurement, Reliability

Keywords
dynamic control dependence, dynamic post-dominance, dynamic
program slicing, dynamic information flow, and irregular control
flow.

1. INTRODUCTION
Control dependence, an important concept in many program anal-

ysis, captures the effects of predicate statements on path selection
and thus program behavior. Informally, a statements statically
control depends on a predicate statementp if p directly decides
whethers gets executed. Control dependence is widely used in a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’07,July 9–12, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-734-6/07/0007 ...$5.00.

lot of applications such as program slicing [18], program under-
standing [13], information flow analysis[10], compiler optimiza-
tions [6], and so on. Over years, researchers have been steadily
pursuing the goal of improving the definition and computation of
control dependence from well structured programs [6] to programs
with arbitrary control flow [4, 15, 3, 14], and from intraprocedural
to interprocedural [7, 16].

While the aforementioned concept is known asstaticcontrol de-
pendence,dynamic control dependence, introduced with the notion
of dynamic slicing [8, 2], reveals the runtime effects of executed
predicate instances on the program behaviorwithin a single exe-
cution. According to a recent study [20] of the fault localization
effectiveness of dynamic slicing, dynamic control dependence is
critical in containing the root causes of many program failures.
Besides dynamic slicing, dynamic control dependence is increas-
ingly drawing attention in many other applications. For instance,
dynamic information flow [12, 11] is a very effective technique
to track information leak and prevent zero-day attacks. Handling
dynamic control dependence has been known as a great challenge
in dynamic information flow. Data lineage [19] captures the set
of relevant input elements given a specific output element. It is
invaluable in facilitating scientists in verifying computational re-
sults. The acquisition of precise lineage, in many cases, hinges on
accurately handling dynamic control dependence. In [21], Zhang et
al. propose a technique that can handle execution omission errors.
The key component of the technique is about aligning two highly
similar executions: one is the original execution and the other is
generated by flipping one predicate instance in the originalexecu-
tion. With the technique proposed in this paper, a very efficient
online alignment algorithm can be developed. Furthermore,execu-
tion alignment has applications in debugging [22], de-obfuscation,
preventing time-channel attacks, etc.

Despite the importance of efficiently capturing dynamic control
dependence, existing algorithms fall short in various aspects. Cur-
rently, there are two types of algorithms:onlineandoffline. Offline
algorithms have been popular in the past, for example, in thepre-
vious research of dynamic slicing [2, 23, 17]. These algorithms
require collecting control flow traces, which becomes infeasible as
the execution exceeds a certain length of time, usually a fewsec-
onds. Given a statement executionsi, representing theith instance
of statements, offline algorithms backward traverse the execution
trace and identify the latestpj such thats statically control depends

on p, denoted bys
scd
−−→ p. This procedure makes handling recur-

sive functions intrinsically difficult.
The difficulty can be demonstrated by the example in Figure 1.

The code is presented on the left while an execution trace is pre-
sented in the middle with different indents representing different

call stack frames. As we can see,2
scd
−−→ 1 and3

scd
−−→ 1. Offline

code trace
f(n) { 11

1: if (n>0) { 21

2: f(n-1); 12

3: s1; 22

} 13

4: s2; 41

} 31

42

32

43

�� �� �����	
�� �� ���� ��	��� �� ���������� ����
Figure 1: The Limitation of Offline Algorithms.

algorithms can easily recognize that21
dcd
−−→ 11, denoting21 dy-

namically control depends on11, and22

dcd
−−→ 12. Now assume we

want to identify the controlling predicate of32, backward traversal
finds13 while the correct answer is11. The root cause is that the al-
gorithm does not look for the latest execution of a static controlling
predicatein the same call stack frame. Furthermore, simulating a
call stack when traversing backward is difficult especiallywith the
existence of irregular control flow such assetjmp andlongjmp.

The second category is online algorithms. An online detection
algorithm was presented in [20]. The algorithm couples control de-
pendence detection with call stack maintenance on the fly, which
solves the problem caused by recursive functions. However,it in-
troduces new problems. First, the coupling causes a lot of problems
for library functions which are compiled by various compilers or
even hand written. Secondly, it is not efficient in handling inter-
procedural dynamic control dependence. It may violate the desired
semantics of dynamic control dependence in presence of irregular
interprocedural function calls. Finally, it is suboptimalin terms of
runtime overhead.

The limitations of the existing algorithms, both online andof-
fline, are rooted at the fact that computation of dynamic control de-
pendence has been taken for granted as a straightforward runtime
rendering of the static concept. There exists evidence showing that
such a simple rendering is not efficient due to the different goals
and properties between static and dynamic control dependences.
For example, in program slicing, the static notion ofcorrectness
dictates that a slice preserves the original semantics of the program
[14, 18, 3, 4], which is a major concern in defining static con-
trol dependence. In contrast, many applications of dynamiccon-
trol dependence such as fault localization and dynamic informa-
tion flow pay more attention to the cause effect relation between a
predicate execution and its dependents. Moreover, while statically
a statement may have multiple controlling predicates, a statement
instance always dynamically control depends on one predicate in-
stance.

In this paper, we present a refined definition of dynamic con-
trol dependence. Based on the refined definition, an efficienton-
line detection algorithm is developed. The key observationis that
the nested structure of the language constructs that causesdynamic
control dependence to occur is very analogous to the nested struc-
ture of calling contexts. Thereby, a stack based technique is devel-
oped to efficiently handle dynamic control dependence.

The rest of this paper is organized as follows. In Section 2, an ex-
isting algorithm is discussed. The proposed technique is described
in Section 3. In Section 4, the technique is extended to handle inter-
procedural dynamic control dependence. Experimental results are
presented in Section 5. Related work is discussed in Section6 and
conclusions are made in Section 7.

2. EXISTING ONLINE DETECTION
Existing online detection algorithms are discussed in thissec-

tion. For simplicity, only intraprocedural execution is considered.
In other words, we assume the entire run is the execution of one
function. Dependence caused by interprocedural executionwill be
discussed in later sections.

To the best of our knowledge, dynamic control dependence has
not been explicitly defined. However, researchers [17, 20, 5] have
been following the below informal definition to compute dynamic
control dependence.

Note that an execution defines a total order for all the executed
statement instances assuming only sequential execution isconsid-
ered. Theith instance of a statementx is represented byxi, xi <

yj if and only if xi is executed beforeyj .

DEFINITION 1 (Dynamic Control Dependence).
An execution instancexi dynamically control depends on another
instanceyj if and only if

(1) yj < xi;

(2) x
scd
−−→ y;

(3) 6 ∃zk s.t. yj < zk < xi ∧ x
scd
−−→ z.

Algorithm 1 presents the detection algorithm used in [20], which
is based on Definition 1.

Algorithm 1 Dynamic Control Dependence Detection Based On
Definition 1
1: Predicate(pi)
2: {
3: SHADOW(p) = <get currenttimestamp(),pi >;
4: }
5:
6: GetControlDep(sj)
7: {
8: max= 0;
9: inst=NULL;

10: for (eachp such thats
scd
−−→ p) {

11: if (max < SHADOW(p).first){
12: max= SHADOW(p).first;
13: inst= SHADOW(p).second;
14: }
15: }
16: return (inst)
17: }

If a predicate statement is executed, functionPredicate()is called.
A shadowvariable is allocated for each predicate statement, which
can be accessed by calling functionSHADOW(), which allocates
two words for each static predicate, referenced by fieldsfirst and
second. Inside functionPredicate(), the current timestamp and the
current predicate instance are stored in these fields.

In order to detect dynamic control dependence, functionGet-
ControlDep()is called upon the entry of each basic block. Inside
the function call, the algorithm scans through the shadow variables
of all the predicates that the instruction statically control depends
on and identifies the one with the largest timestamp. The corre-
sponding predicate instance is returned as the dynamic controlling
predicate ofsi.

The inefficiency of the algorithm partly lies in the search for the
predicate instance with the largest timestamp, especiallywhen the
instruction has multiple static controlling predicates. More limita-
tions are imposed by interprocedural dependence detection.

An example of this algorithm will be given and explained in a
later section.

3. EFFICIENT DETECTION OF INTRAPRO-
CEDURAL DYNAMIC CONTROL DEPEN-
DENCE

While static control dependence is computed by static control
flow analysis which considers all possible program paths, atrun-
time, only one program path is taken, the executed one. The key
observation is that dynamic control dependence contexts take on a
stack-like structure that is analogous to calling contexts.

3.1 Definitions
In order to better present the idea, we consider only intraproce-

dural control dependence in this section. The discussion inthis sec-
tion is general to both structural and unstructural controlflow. The
unstructural control flow can be caused bybreak, return, and
goto statements. Interprocedural dynamic control dependence
will be discussed in Section 5.

DEFINITION 2 (Dynamic Post Dominance).
A statement instancexi dynamically post-dominatesyj , denoted

by xi
dpd
−−→ yj if and only ifyj < xi and x statically strict post-

dominatesy, denoted byx
spd
−−→ y, and there does not existxk such

thatyj < xk < xi.

Based on Definition 2, a new definition of dynamic control de-
pendence is given as follows. The definition is equivalent toDefi-
nition 1 if only intraprocedural execution is considered, but it leads
to a more efficient detection algorithm.

DEFINITION 3 (Dynamic Control Dependence (NEW)).
An execution instancexi dynamically control depends on the largest
yj < xi if and only ifxi dynamically post-dominates anyzk in be-
tweenyj andxi but notyj .

THEOREM 1 (Equivalence).
Definitions 3 and 1 are equivalent.

PROOF. Assumexi
dcd
−−→ yj based on Definition 1. Letzl be

the largest statement instance satisfyingyj < zl < xi and xi

does not dynamically post-dominatezl. In other words,x stati-
cally post-dominates all the statements in betweenzl andxi but

notz. Therefore,x
scd
−−→ z according to the definition of static con-

trol dependence. This contradictsxi
dcd
−−→ yj based on condition

(3) in Definition 1.
The other way of the equivalence can be proved similarly.

In order to develop a detection algorithm, next we introducethe
concept ofregion. A statements is said to be abranching point
(BP), denoted bŷs, if and only ifs has more than one successors in
the CFG. Predicate statements andswitch statements are exam-
ples ofBPs. LetIPD(ŝ) be theimmediate static post dominator
of ŝ, and thus an immediate dynamic post-dominator ofŝ has the
form of IPD(ŝ)m, in whichm is just a place holder, indicating it
is a dynamic instance ofIPD(ŝ).

A region is defined as follows.

DEFINITION 4 (Region).
Given an executed instance of a BPŝi, let IPD(ŝi)m be the im-
mediate dynamic post-dominator ofŝi, the region directed bŷsi,
represented byR(ŝi), is defined as:
R(ŝi) = 〈xj | ŝi < xj < IPD(ŝ)m〉
ŝi is called the director of the region.

In other words,R(ŝi) is an ordered set that is comprised of the
executed statement instances in betweenŝi and the first instance of
the immediate post-dominator ofŝ that is executed since.

PROPERTY1 (Region).
Given anyxj ∈ R(ŝi), the upper bound of the region,IPD(ŝ)m,
dynamically post-dominatesxj .

PROOF. AssumeIPD(ŝ)m does not dynamically post-dominate
xj , then
(i). IPD(ŝ) does not statically post-dominatex,
or (ii). there is aIPD(ŝ)n such thatxj ≤ IPD(ŝ)n < IPD(ŝ)m.

Assume(i) is true, there must be a program path fromx to
EXIT , which does not includeIPD(ŝ). Therefore,̂s x

EXIT is a path from̂s to EXIT and it does not containIPD(ŝ).
This is contradictory to the precondition ofIPD(ŝ) post-dominating
ŝ —- (1).

Assume(ii) is true, thenIPD(ŝ)n should be the immediate
dynamic post-dominator of̂si, which contradicts the condition of
IPD(ŝ)m being the upper bound ofR(ŝi) —- (2).

The combination of (1) and (2) completes the proof.

According to Definition 4, each branching point instance dur-
ing an execution directs a region and thus there are usually many
regions in an execution.

THEOREM 2 (Region).
Regions in an execution are either disjoint or nested.

PROOF. Assume there arêsi < t̂j , and they direct the regions
of R(ŝi) = (ŝi, IPD(ŝ)m) andR(t̂j) = (t̂j , IPD(t̂)n). Let us
further assume these two regions overlap but they are not nested,
such that,
t̂j ∈ R(ŝi); (i)
IPD(ŝ)m ∈ R(t̂j); (ii)

According to Property 1,IPD(ŝ)m

dynamically post-dominateŝtj .
Therefore,R(t̂j) = (t̂j , x ≤ IPD(ŝ)m), which is a contradic-

tion.

THEOREM 3 (Dynamic Control Dependence).
A statement instancexi is dynamically control dependent on the
director of the smallest enclosing region.

PROOF. Let xi
dcd
−−→ yj based on Definition 3 andR(r̂k) =

(r̂k, IPD(r̂)m) be the smallest enclosing region ofxi, now we
proveyj ≡ r̂k.

Assumeyj < r̂k, xi
dpd
−−→ r̂k according to Definition 3. There

must be aIPD(r̂)n ≤ xi < IPD(r̂)m such thatR(r̂k) =
(r̂k, IPD(r̂)n), which is a contradiction. Thereforêrk ≤ yj —
- (1).

Assumer̂k < yj . Apparently,y must be a branching point.
Besides,IPD(r̂)m dynamically post-dominatesyj according to
Property 1. As a consequence, region(ŷj , IPD(ŷ)n ≤ IPD(r̂)m)
is a smaller region than(r̂k, IPD(r̂)m). This region must con-
tainxi. Otherwise, according to Definition 3,xi dynamically post-

dominatesIPD(ŷ)n sincexi
dcd
−−→ ŷj , and thusxi dynamically

post-dominateŝyj . This leads to a contradiction to Definition 3.
Therefore,yj ≤ r̂k —– (2).

Combine (1) and (2),yj ≡ r̂k.

The merit of region is that it induces a very efficient online detec-
tion algorithm. Moreover, it provides better solutions forinterpro-
cedural dynamic control dependence and easily handles unstruc-
tural interprocedural control flow caused bylongjmp, exit, and

so on. Another benefit of the new definition is that it can be easily
extended to accommodate indirect control dependence introduced
in [13].

3.2 Online Detection Algorithm
Theorem 2 discloses that regions are either disjoint or nested,

which is critical for devising the detection algorithm. A stack struc-
ture akin to call stack can be applied to maintaining nested regions
and consequently dynamic control dependences. We call thisstack
thecontrol dependence stack(CDS).

Algorithm 2 Detecting Intraprocedural Dynamic Control Depen-
dence
1: Branching (ŝi, IPD(ŝ))
2: {
3: if (CDS.top().second≡ IPD(ŝ) {
4: CDS.top().first=̂si;
5: } else{
6: CDS.push(< ŝi, IPD(ŝ) >);
7: }
8: }
9: Merging (tj)

10: {
11: if (CDS.top().second≡ t)
12: CDS.pop();
13: }

Detecting region-based dynamic control dependence involves in-
strumentation at two kinds of statements –branching points(BPs)
and immediate post-dominators(IPDs). Static control flow analy-
sis is first applied to identify all the BPs and IPDs. As a BP is met
during an execution, functionBranching()is called as illustrated
in Algorithm 2. The first parameter is the current executed instance
of the BP, the second parameter is the the IPD of the BP, the first
instance of the IPD encountered serves as the termination point of
the region directed by the BP.

Lines 3 and 4 present an important optimization of the algorithm.
If two BP instances in the CDS share the same terminating static
IPD, the two corresponding regions will be ended by the same IPD
instance. Therefore, there is no need to maintain two entries in the
CDS for the purpose of detecting dependence. Consequently,given
a BP instance, the algorithm checks if it has the same terminating
IPD as the top entry. If so, the top entry is simply replaced with the
incoming BP instance. If it is not the case, at line 6, the algorithm
simply pushes the current BP instance and the expected terminating
IPD onto the CDS.

As an IPD is met, functionMerging () is called. The function
first checks if the IPD is the terminating IPD of the current region.
As will be shown by an example, the first IPD met since the last
BP may not be the IPD of the BP even though regions are always
nested at a particular execution point. If it is the expectedIPD,
the top entry is popped from the CDS, which means the current
region is left and the parent region is entered. The pop operation
is implemented by simply substracting the stack pointer of CDS,
which is very cheap.

Next, we use an example to demonstrate the algorithm. The pro-
gram and its control flow graph are presented in Figure 2. State-
mentss1 ands2 have two controlling predicates –p1 andp2. Sim-
ilarly, s4 has two controlling predicates,p3 andp5, because of the
return at line 11. As shown by the figure, all the BPs are instru-
mented with calls toBranching()and the IPDs are instrumented
with calls toMerging() . In contrast, if Algorithm 1 is used, BPs
are instrumented by calls toPredicate ()and the statements which

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

if (p1 || p2) {

 s1;

 s2;

}

if (p3) {

 while (p4) {

 s3;

 }

} else {

 if (p5) {

 return;

 }

}

s4;

1. p1

2. s1

1. p2

3. s2

5. p3

6. p4 10. p5

7. s3

14. s4

EXIT

control flow edge

Branching ()

Merging ()

Figure 2: An Example For Intraprocedural Dependence.

have more than one static controlling predicates are instrumented
by calls toGetControlDep ().

Table 1 shows an execution trace of the example program and the
instrumented executions for the two algorithms. For Algorithm 1,
one extra assignment to the shadow variable is needed upon the
execution of a predicate such aŝp1@11, p̂2@11, and 5̂1. Since
there are two predicates at statement 1, we usep1@1 andp2@1
to represent them. Comparisons of shadow variables are required
on the execution of a statement which has more than one static
controlling predicates such as21, 31, 141.

For the region based Algorithm 2, a push onto the CDS or a re-
placement of the top entry is executed on the execution of a BP
depending on whether the current executed BP instance having the
same terminating IPD with the instance on top of the CDS. For in-
stance, botĥp1@11 and p̂2@11 expect the same terminating IPD
of 5, therefore at the second step of the execution, the top entry
< p̂1@11, 5 > is replaced with< p̂2@11, 5 >. This optimiza-
tion is extremely important for the case of loops. At runtime, a
loop creates as many nested regions as the number of executedit-
erations. For example, if the loop consisted of statements 6and 7
gets executed forX times before it exits, it createsX entries on the
CDS without the optimization. The CDS will overflow if theX is
large enough. One important observation is that these regions will
be terminated by the same IPD instance, and thus we only need to
maintain the latest region. In other words, even though the loop
may be executed forX times, there is always only one entry on the
CDS.

Upon the execution of an IPD, Algorithm 2 first checks if the ex-
ecuted IPD is the expected terminating point of the current region.
If it is, the top entry is popped. Popping the top entry in the case of
a loop, such as the one in our example, has the effect of popping X

nested regions at a time. Note that it is possible the executed IPD is
not the terminating IPD of the current region. For instance,assume
the execution takes the path51 → 101 → 141, Statement14 is an
IPD, which post-dominates BP6. However, the current region is
directed by101, which will be terminated byEXIT . Therefore,
the execution of141 has no effect on the CDS.

In comparison with Algorithm 1, the cost of pushing an entry
is similar to that of setting the shadow variables and the cost of

Table 1: Instrumented Runs for Algorithms 1 and 2
Trace Algo 1 instrumentation Algo 2

instrumentation CDS

p1@11 ∗ ∗ S(p1) =< 1, p1@11 > push(< p̂1@11, 5 >) [< p̂1@11, 5 >]

p2@11 S(p2) =< 2, p2@11 > replace top with (< p̂2@11, 5 >) [< p̂2@11, 5 >]
21 (S(p1).first > S(p2).first) ? p1@11 : p2@11 - same as above
31 (S(p1).first > S(p2).first) ? p1@11 : p2@11 - same as above
51 S(p3) =< 5, 51 > pop()

push(< 5̂1, EXIT >) [< 5̂1, EXIT >]
61 S(p4) =< 6, 61 > push(< 6̂1, 14 >) [< 5̂1, EXIT > | < 6̂1, 14 >]
71 - - as above
62 S(p4) =< 8, 62 > replace top with (< 6̂2, 14 >) [< 5̂1, EXIT > | < 6̂2, 14 >]
141 (S(p3).first > S(p5).first) ? 51 : NULL pop() [< 5̂1, EXIT >]
EXIT1 - pop() []
** S(x) denotes the shadow variable of predicatex; p1@1 denotes thep1 sub-statement of1 .

the pop operation is trivial. Algorithm 1 incurs extra overhead of
accessing and comparing of timestamps in the case of a statement
control depending on multiple predicates. In contrast, thenested
structure of regions in Algorithm 2 efficiently handles the problem
and thus requires no additional operations.

The acquisition of dynamic control dependence for each exe-
cuted statement is omitted from the computation Table 1. ForAlgo-
rithm 1, the dynamic depended predicate instance can be retrieved
by looking at the shadow variable of the predicate if there isonly
one such predicate. Otherwise, it is the winner of the timestamp
comparison. For Algorithm 2, the dynamic depended predicate is
the director of the current region, which can be easily retrieved
by looking at the top entry of the CDS. For example in Table 1,

6̂2
dcd
−−→ 6̂1 because< 6̂1, 14 > is the top entry at the moment that

6̂2 gets executed.

4. DYNAMIC CONTROL DEPENDENCE IN
INTERPROCEDURAL EXECUTION

In previous sections, we assume the whole execution is within
a function. In practice, interprocedural control flow givesrise to
interprocedural dynamic control dependence at runtime. Itis not
clear from previous work [17, 5] how interprocedural dynamic con-
trol dependence is handled. Part of the reason is that interprocedu-
ral dynamic control dependence is not as important as other type
of dependences such as interprocedural data dependence in the ap-
plication of dynamic slicing. However, it is no longer the case in
the applications of dynamic information flow, data lineage,and dy-
namic data race detection. For example, missing a dynamic in-
terprocedural control dependence may lead to leak of confidential
information. In this section, we discuss computation of dynamic
control dependence.

4.1 Detecting Dependence For Regular Inter-
procedural Control Flow

There exist two types of interprocedural control flow –regular
andirregular flow. Regular interprocedural control flow is stemmed
by normalcall and return instructions, which maintain the
LIFO property of the call stack. Irregular interproceduralflow,
which is also referred to asarbitrary interprocedural control flow,
is usually caused byexit, longjmp, exception handling, etc. It
is often manifested as a callee not returning to the call site.

Interprocedural control flow has different properties thanintrapro-
cedural control flow, which make it hard to deal with. The firstkey

difference is that interprocedural flow makes a statement always
execute in certain context. Executions of the same statement in
different contexts should be treated as executions of different state-
ments, in other words, they should be context-sensitive.

code execution (1) execution (2)
f() { 11 11

1: if (P) 21 41

2: g(); 61 61

3: else 51 51

4: g(); 62 62

5: g();
}

g() {
6: s1;
}

Figure 3: Context-sensitivity
For example in Figure 3,11 taking either theTRUE branch or the

FALSE branch eventually results in61 being executed. However, it
is wrong if one conclude that61 does not control depend on11. In-
stance61 in execution (1) should be considered different from that
in execution (2) because they have different contexts. In contrast,
62s have identical contexts.

The second key difference lies in that interprocedural flow has
different semantics than intraprocedural flow. For example, call
andreturn are often corresponding to each other. In other words,
certain interprocedural flow is mandated by previous occurred flow.
Therefore, turning interprocedural flow into intraprocedural by do-
ing simple function inlining might lose some important semantics
and eventually the accuracy in computing dynamic control depen-
dence.

Our definition of interprocedural dynamic control dependence
needs to accommodate these differences. First of all, we define the
calling context of a statement instance.

DEFINITION 5 (Calling Context).
Given a statement instancesi, its calling context, denoted byCC(si),
is an ordered list of call sites with the form< c1, c2, ..., cj−1, cj , ..., cn >,
in whichsi is executed in the function called atcn and anycj is in
the function called at its predecessorcj−1.

Here superscripts are used to create unique symbolic variables.

DEFINITION 6 (Dynamic Post Dominance (REFINED)).

yj
dpd
−−→ xi, if and only if associatingx with CC(xi), all the possi-

ble program paths, including both intraprocedural and interproce-
dural, betweenx and the end of program passy with CC(yj) and
there does not existxi < yk < yj that satisfies the aforementioned
condition.

In the execution trace presented in Figure 1,CC(13) =< 21, 22 >

andCC(31) =< 21 >. If 1 is associated with the calling context
of < 21, 22 >, all the paths from1 to the end of the program have

to pass3 with the context of< 21 >. Therefore,31

dpd
−−→ 13.

Similarly, 32

dpd
−−→ 31.

Note that it is impossible for two instances of the same state-

mentsi
dpd
−−→ sj if only intraprocedural execution is considered.

In the execution (1) of Figure 3,62

dpd
−−→ 61, 62

dpd
−−→ 11, 61 does

not dynamically post-dominate11 because of the existence of the
program path as demonstrated in execution (2).

Let ŝi be a BP instance andIDPD(ŝi) be its immediate dy-
namic post-dominator based on Definition 6. Note that previously
we usedIPD(ŝ)m to denote theintraprocedural immediate dy-
namic post-dominator.

THEOREM 4 (Calling Context).
If only regular interprocedural control flow is considered,
CC(ŝi) ≡ CC(IDPD(ŝi)).

PROOF. AssumeCC(ŝi) 6= CC(IDPD(ŝi)). Therefore there
are only two cases:
(i). (CC(ŝi) ∩ CC(IDPD(ŝi)) < CC(ŝi);
(ii). CC(ŝi) < CC(IDPD(ŝi)).

Here∩ and< denote the common prefix and comparison opera-
tions on ordered lists.

In case(i), the executed path from̂si to IDPD(ŝi) must en-
counter the context of(CC(ŝi)∩CC(IDPD(ŝi)). In other words,
the control flow has to return to the common calling ancestor of
both ŝi and IDPD(ŝi). In other words, the return of the en-
closing function ofŝi, denoted byRET (ŝi)j , must satisfŷsi <

RET (ŝi)j < IDPD(ŝi). Moreover, since regular interprocedu-
ral control flow has only one return point for each function,

RET (ŝi)j
dpd
−−→ ŝi. It is contradictory toIDPD(ŝi) being the

immediate dynamic post-dominator —- (1).
In case(ii) , CC(ŝi) is a prefix ofCC(IDPD(ŝi)). Let

CC(IDPD(ŝi)) ≡ CC(ŝi)| < ct, ct+1, ... >, , in which the
executed instancect

j has the same context asŝi and ŝi < ct
j <

IDPD(ŝi) Apparently, any program path, starting withCC(ŝi),
has to passct with CC(ŝi) in order to encounterCC(IDPD(ŝi)).

Therefore,ct
j

dpd
−−→ ŝi. It is contradictory toIDPD(ŝi) being the

immediate dynamic post-dominator —- (2).
Combining (1) and (2), the theorem is proved.

Based on this theorem,IDPD(ŝi) is also an intraprocedural im-
mediate dynamic post-dominator ofŝi and therefore has the form
of IPD(ŝi)m.

Given the new definition of dynamic post-dominance. The defi-
nition of interprocedural dynamic control dependence remains iden-
tical to Definition 3. Since a region is still delimited by a BPand
its immediate dynamic post-dominator, Theorem 3 and Theorem 2
hold. Proofs can be carried out in a similar way. Due to the space
limit, they are omitted in this paper. The examples of interprocedu-
ral regions and dynamic control dependences can be found in Fig-

ure 1 and 3. In Figure 1,R(1̂1) = (1̂1, 43). Therefore,12

dcd
−−→ 11

and42

dcd
−−→ 11. In the execution (1) in Figure 3,61

dcd
−−→ 11.

Based upon Theorem 4, the terminating point of a region has to
be in the same calling context of the director of the region. The
equivalence test of calling contexts can be efficiently performed by
comparing the timestamped call stack frame base pointers.

Algorithm 3 Detecting Dependence With Regular Interprocedural
Control Flow
1: Branching (ŝi, IPD(ŝ), bp)
2: {
3: if (CDS.top().second≡ IPD(ŝ)bp {
4: CDS.top().first=̂si;
5: } else{
6: CDS.push(< ŝi, IPD(ŝ)bp >);
7: }
8: }
9: Merging(tj , bp)

10: {
11: if (CDS.top().second≡ tbp)
12: CDS.pop();
13: }

A refined algorithm which accommodates regular interprocedu-
ral control flow is presented by Algorithm 3. Variablebp represents
the timestamped call stack pointer ofŝi. The algorithm labels the
expected terminatingIPD with bp and performs identity check
before it pops an entry from the CDS. The last column of Table 2
presents an example of computing interprocedural dependence for
Figure 1.

Effect On Intraprocedural Dependence. Interprocedural exe-
cution can affect computation of intraprocedural dynamic control
dependence especially when functions are recursively called. If not
handled correctly, recursive execution may result in wrongdepen-
dence.

Let us revisit the example in the introduction, Table 2 presents
the computation table for the example trace. Assume we want to
compute the controlling predicate of3bp1

2 , in which the superscript
bp1 is the calling context label. According to the previous Algo-
rithm 1, it is retrieved fromS(1), the shadow variable of3’s static
depended predicate. The result is13, which is wrong. The correct
answer would be11. A similar effect is also observed in Algo-
rithm 2.

The key to this problem is that the calling context should be
taken into account when computing intraprocedural dynamiccon-
trol dependence in case of interprocedural execution. In our previ-
ous work [20], we coupled the shadow variables in Algorithm 1
with the call stack by allocating shadow variables on the appli-
cation’s call stack, which can be achieved by manipulating stack
pointers. In other words, the same predicate may have multiple
shadow variables depending on if there exist multiple active calling
contexts that contain the predicate. For example, as shown in the
third column of Table 2, at the execution point of1bp3

3 , predicate
1 has three active shadow variables, allocated in three active stack
frames pointed bybp1, bp2, and bp3. At the moment of3bp1

2

being executed, the shadow variable in the current calling context,
which is referred to asSbp1(1), contains the depended predicate
instance11.

However, our experience shows that in practice it is very hard
to manipulate the stack pointers for certain functions, especially
when those functions are from libraries that may be compiledus-
ing various compilers or even written by hands. The reason isthat
allocating shadow variables on a stack frame entails identifying the
particular instruction that allocates stack space for local variables

Table 2: Computation of The Execution In Figure 1.
Trace Algo 1 Refined Algo 1 CDS in the Refined Algo 2

** 1bp1

1 S(1) =< 1, 11 > Sbp1(1) =< 1, 11 > [< 11, 4
bp1 >]

2bp1

1 - - same as above
1bp2

2 S(1) =< 3, 12 > Sbp2(1) =< 3, 12 > [< 11, 4
bp1 > — < 12, 4

bp2 >]
2bp2

1 - - same as above
1bp3

3 S(1) =< 5, 13 > Sbp3(1) =< 5, 13 > [< 11, 4
bp1 > — < 12, 4

bp2 > — < 13, 4
bp3 >]

4bp3

1 - - [< 11, 4
bp1 > — < 12, 4

bp2 >]
3bp2

1 - - same as above
4bp2

2 - - [< 11, 4
bp1 >]

3bp1

2 - - same as above
4bp1

3 - - []
** the superscript describes the current stack frame pointer .

and/or parameters, usually by pattern matching. While codegener-
ated by commonly used compilers such asgcc has unique patterns,
library functions, especially a lot oflibc functions, do not follow
these patterns.

The problem can be easily overcome by Algorithm 3. As shown
by the last column in Table 2, the expected terminating IPDs of
regions are labeled with stack pointers. For instance, the correct
depended predicate of3bp1

2 can be retrieved from the top entry of
the CDS, which is11.

Handling Function Pointers. Function pointers are used quite
often in some C and C++ programs. They do not impose any
new challenges to our technique. We treat the call sites of func-
tion pointers as branching points whose immediate post-dominators
are the return sites. In other words, a call site that has morethan
one outgoing call edges and its return site delimit a region at run-
time, all the executed statement instances within the region are di-
rectly/indirectly control dependent on the call site instance.

4.2 Detecting Dependence For Irregular In-
terprocedural Control Flow

The most intriguing cases happen when irregular interprocedural
control flow occurs because oflongjmp,exit, and so on. As ob-
served in earlier work on static interprocedural control dependence
[15, 3, 14], it is no longer true that a function has only one return
point. A function may not return or have multiple return sites.

Irregular Flow Caused by longjmp. A typical type of irregu-
lar interprocedural control flow is caused bysetjmp andlongjmp,
which is commonly used to implement exception handling and er-
ror recovery. Figure 4 presents a sample program with multiple
functions and an irregular flow caused bysetjmp andlongjmp.
Let us look at the following execution trace.

11 21 31 71 111 121 22 51;

A longjmp is performed in the execution. Following our def-
initions of dynamic post-dominance in Definition 6 and dynamic

control dependence in Definition 3, instance51

dpd
−−→ 1̂11 because

all the possible paths from11 to 5, if constrained by the calling
contexts, have to take either the executed path or the path11 →
14 → 8 → 5. Moreover,51 ≡ IDPD(1̂11) because neither121

nor 22 dynamically post-dominates111. Therefore,

R(1̂11) ≡ (1̂11, 51) ≡ {121, 22}

, and thus22

dcd
−−→ 1̂11.

The observation is that even though our definitions still accom-
modate irregular interprocedural flow. Theorem 4 no longer holds.
In other words, a region may be bounded by instances with differ-
ent calling contexts as demonstrated byR(1̂11).�������� �!�"�#�$��%�������������

&' () *+,-./ '+01(234 '/�()5' (26*�265 ' () 7 ' (2*�267' () 34 '/�()890:-./ '+01; ���(26*�26

�� /� � *�<=>?@#� *�<=>?A
B90,C98 489D BE88 C+,FC0

�� 5' ("� 7' (��� /���� 890:-./��� *�2<=>?G 3CC+:F8EC

�� *+,-./

Figure 4: An Example For setjmp and longjmp

Our solution is demonstrated by Figure 5.
For the function that containssetjmp, a dummy edge is added

between the call site of the function that may incurlongjmp and
the control flow successor ofsetjmp. For example, a dummy
edge is added from 3 to 2 in the CFG ofA(). This edge turns the
call site into apseudo-predicate, which is taken into consideration
when computing post-dominance. However, it is not instrumented
as a BP at runtime.

For functions that do not containsetjmp but may lead to a
longjmp, a DUMMY node is added and dummy edges are in-
troduced between thelongjmp or the call site leading tolongjmp
and theDUMMY node, and between theEXIT and the
DUMMY nodes. The modified CFGs forB() andC() are pre-
sented in Figure 5. The dummy nodes and edges affect computa-
tion of post-dominance but they do not correspond to any runtime
instrumentation.

HI JKLI MKNOPQRSI TU V KI MWXYZJ [I MHNOPQ\]I ^U V
_`aab

KKI JHKHI cdefYZJKgI MSNOPQh_`aabideXjdc kcdl mnZZo WmfW JMWnmd Tpqrstuvt wxyszv{|uvt wx

} ~ �

Figure 5: Handling longjmp flow

The fact that a BP is statically post-dominated by theDUMMY

node can be interpreted at runtime as the immediate dynamic post-
dominator of the BP being the post-dominator of the pseudo pred-
icate. For example,11 hasDUMMY as itsIPD. During the

aforementioned sample execution,51

dpd
−−→ 1̂11.

Next we prove the correctness of this statement.
Let s be the pseudo-predicate in the procedureP with setjmp.

Given an executed instancesi, let IPD(ŝ)m be the first instance
of s’s intraprocedural immediate post-dominator executed since.

THEOREM 5 (Longjmp Flow) .
For any ŝi < t̂j < IPD(ŝ)m such thatt is a real BP in a proce-
dureG 6= P andIPD(t̂) ≡ DUMMY ,
IPD(ŝ)m ≡ IDPD(t̂j).

The theorem says thatIPD(ŝ)m is the immediate dynamic post-
dominators for all the executed predicates in betweenŝi andIPD(ŝ)m,
whoseIPDs areDUMMY nodes. Therefore,IPD(ŝ)m serves
as the upper bound for not onlyR(ŝi) but also allR(t̂j)s.

PROOF. According to Definition 6, we need to prove:

(i) IPD(ŝ)m
dpd
−−→ t̂j ;

(ii) There does not existzk in betweent̂j andIPD(ŝ)m such that

zk
dpd
−−→ t̂j

It is easy to prove that given anŷsi < zk < IPD(ŝ)m,

IPD(ŝ)m
dpd
−−→ zk because all program paths from̂si to the end

of execution have to reachIPD(ŝ)m with CC(ŝ).
In order to prove(ii) , assume there iszk such that̂tj < zk <

IPD(ŝ)m andzk
dpd
−−→ t̂j . Let us further assume there is an edge

between a call sitec andDUMMY in G. In other words, the func-
tion called atc may not return. Therefore, there exist a program
path fromt̂j to IPD(ŝ)m, the calling contexts of the path follows
the below pattern:
CC(t̂j) → CC(t̂j)| < cl > → CC(t̂j)| < cl, ... > → ... →
CC(t̂j)| < cl, ... > → CC(IPD(ŝ)m) ≡ CC(ŝi).

SinceIPD(t̂) ≡ DUMMY , there is a program path that does
not includec. As a result, the calling context ofCC(t̂j)| < cl, ... >

never happens along that path.
According to the definition of dynamic post-dominance in Defi-

nition 6,(a). CC(zk) ≡ CC(tj) or (b). CC(zk) ≡ CC(ŝi). Case
(a) is impossible becauseIPD(t̂) ≡ DUMMY . Neither is case
(b) possible becauseIPD(ŝ)m is the intraprocedural immediate
post-dominator.

Therefore,zk does not exist, which completes the proof.

This theorem explains why we do not instrument statement 14 or
either of theDUMMY nodes. Because we only need to check the
termination of regions even those directed by11x at statement 5.
The instrumentation remains almost identical as Algorithm3. The
only change required is to passIPD(ŝ) as the expected termina-
tion point and thebp of CC(ŝi) for tjs. Note thattj andŝi belong
to different functions.��������������

�� �� �� ���� ��� ��������� �� �� ���� ��������������
�� ���� ��������� �� � �

�� ¡
�� �� �� ����� ��� ������¢�� ¡
£

¤¥¦§¨¥© ª©¥« ¬®®¯ °¬±° ²³°¬¥ ´µ ¶·¸¹º»¼¹½ ¾¿
Figure 6: An Example For exit.

Irregular Flow Caused by exit. Another type of irregular in-
terprocedural flow is caused byexit statements, which terminate
program execution.

Figure 6 presents a sample program with multiple functions and
an irregular flow caused byexit. Let us look at the following
execution trace.

11 21 51 81 41

According to the definition of dynamic post-dominance, none
of the execution instances after5̂1 dynamically post-dominateŝ51

because of the path5 → 6. The same holds for̂11. Therefore, all
the execution instances after5̂1 directly or indirectly dynamically

control depends on it. In other words,81

dcd
−−→ 5̂1 and41

dcd
−−→ 5̂1.

Intuitively, the executions of81 and41 are controlled by the branch
outcome of̂51.

The observation is thatthe CDS never needs to pop5̂1 or beyond.
Figure 6 shows how we deal with this case. In the figure, dummy
edges are introduced to turn theIPD of 1̂ from 4 to DUMMY

and that of̂5 from 8 to DUMMY . Here, theIPD of a BP being
theDUMMY node means that the correspondingBranching()
instrumentation flushes the entire CDS and pushes the current BP
instance, which will never be popped by anyMerging(). The
previous Algorithm 3 can be easily extended to accommodate this
case. The detail is omitted here for brevity.

5. IMPLEMENTATION AND EVALUATION
In this section, we discuss the implementation strategy andeval-

uate the efficiency of our algorithm for detecting dynamic control
dependence. We also compare the overhead of the algorithm pre-
sented here with the previous algorithm that is based on static con-
trol dependence.

Our dynamic detection algorithm is integrated into user program
through instrumentation. To build the instrumentation tool, we
choose the Diablo/Fit [1] toolkit. Diablo is a link time binary

Toolchain
(gcc, ld ..)

Fit

.c .h files
Application

a.out .o .map files

a.out

Our Instrumentor

Application

Instrumented

dynctrldep.anal.c
dynctrldep.inst.c

Diablo Toolkit

Figure 7: Tool Implementation and evaluation setup.

rewriting tool and Fit is an instrumentation tool generatorbased
on Diablo. With Fit, we can code our detection algorithm in two
separate.c files. We then feed these two files to Fit to generate our
customized instrumentation tool. Our tool accepts application bi-
naries and produces instrumented versions (In order to use Diablo,
the binaries have to be produced by the compiler from the toolchain
shipped with Diablo). One can then run the instrumented applica-
tion to collect dynamic control dependence trace. This whole pro-
cess is shown in Figure 7.

Implementing our algorithm is mostly straightforward. How-
ever, there are some difficulties that we have to overcome when
recording the function calling contexts as discussed in Algorithm
3. Conceptually, since we are working on X86 architecture, the
value of the base frame pointer, i.e. the%EBPregister, could be
used to denote a calling context. However, we found that in the
assembly code, this register is sometimes manipulated explicitly,
for example, being used to store a temporary value. This makes it
unusable for our purpose. We handle this by using a global calling
context ID that is increased (decreased) at function entry (exit).

For benchmarks, we use those from the Trimaran tool kit. It in-
cludes subsets of SPEC2000 and SPEC95. The infrastructure failed
for the benchmarksgcc andvortex. All data are collected on
an Intel Pentium III 1GHz machine with 500MB memory, running
Gentoo Linux (kernel 2.6.14).

Efficiency. In order to show the efficiency of our algorithm, we
compare the execution time of applications with and withoutdy-
namic control dependence detection code. The execution times are
presented in Table 3. TheBasecolumn shows the execution time of
code without instrumentation (in seconds), theDCD column with
dynamic control dependence detection code. On average, it is about
2.57 times slower when running with the detection code. We think
that this is generally an affordable price to pay. Furthermore, we
are exploring ways inside Diablo that will allow us to selectively
inline instrumentation functions. Since the instrumentedcode size
is relatively small, especially for theMerging function, inlining
may provide further room for reducing the runtime overhead of our
algorithm. There are also optimization opportunities regarding loop
entry basic blocks.

Comparison with the previous approach.In our previous work
on dynamic control dependence detection, we devised an algorithm
that is based on static control dependence data. As briefly discussed
in Section 2, each branch point (BP) is assigned an ID and a times-
tamp. As the branch points are encountered during execution, their
timestamps are updated. Each basic block’s dynamic controlde-
pendence are determined by finding the largest timestamp among
its static control dependent basic blocks. Basic blocks with zero
or only one static control dependence do not need search for the
largest timestamp.

Benchmark Base(s) DCD(s) Overhead
008.espresso 1.35 5.03 3.73x
124.m88ksim 0.18 0.64 3.55x
129.compress 115 255 2.22x
132.ijpeg 40 73 1.83x
164.gzip 3.7 12.6 3.41x
175.vpr 24 81 3.37x
181.mcf 90 127 1.41x
197.parser 23 52 2.26x
256.bzip2 36 71 1.97x
300.twolf 39 79 2.02x

Avg. - - 2.57x

Table 3: Overhead of our detection algorithm.

We reimplemented this algorithm for this experiment. We usea
separate stack to store the timestamps of branch points, as opposed
to allocating space in the current function frame on the callstack,
as suggested in the previous approach. We thus avoid the issue as-
sociated with library code. Branch points in each function are stat-
ically assigned an 10-bit ID (functions with more than 1024 branch
points are the rare case), starting from 0. Upon method entry, one
word is allocated for each branch point in that function on top of
the stack. When dynamic dependence is determined for a block, its
static dependent BPs’ IDs are packed into words and passed tothe
GetControlDep function to find the BP with the largest times-
tamp. With 2 words, a maximum of 6 static dependences can be
checked. Again, basic blocks with more that 6 static dependences
are the rare case.

In order to do a fair comparison, interprocedural control depen-
dence also needs to be detected for this algorithm. We achieve this
by pushing an additional entry to the stack at a function callsite.
The entry will be the PC of the basic block that is the dynamic con-
trol dependence of the basic block invoking the call. Withinthe
called function, basic blocks with 0 static control dependence will
have this entry as their dynamic dependence.

As seen from the above discussion, our reimplementation strat-
egy is fairly optimized. We implemented this algorithm in the same
Diablo/Fit framework. The performance data are shown in Table 4.
The DCD column corresponds to the algorithm in this paper, and
the Old column corresponds to the previous algorithm. As seen
from the table, our new algorithm are, on average, 2.54 timesfaster
than the old algorithm. Both algorithms have to update some data
structure when a branch point is executed, but for checking the dy-
namic control dependence, the new algorithm is much faster.In the
new algorithm, the dynamic control dependence is always readily
available on top of the control dependence stack, while in the Old
approach, a number of comparisons are required, linear to the num-
ber of static control dependences of the current basic block.

6. RELATED WORK
In this section, we discuss some previous work on program con-

trol dependence, both static and dynamic.
Static Approaches. Among the static approaches, Ferrante et al. [6]

studied the using of dependence graphs in compiler optimizations.
They proposed the concept ofProgram Dependence Graphthat
combines both data and control dependence relations in one graph.
They then demonstrated how certain compiler optimizationscan be
done more efficiently on this kind of graph. Our efforts toward
clear definitions for dynamic post-dominance and dynamic control
dependence are generalized from the definitions they adopted for

Benchmark DCD(s) Old(s) Improvement
008.espresso 5.03 14 2.78x
124.m88ksim 0.64 1.98 3.09x
129.compress 255 657 2.58x
132.ijpeg 73 160 2.19x
164.gzip 12.6 37 2.94x
181.mcf 127 196 1.54x
197.parser 52 175 3.37x
256.bzip2 71 128 1.80x

Avg. - - 2.54x

Table 4: Comparison with our old detection algorithm.

the static counterparts.
Horwitz et al. [7] worked on dependence graphs in the contextof

precise static program slicing. They introduced what is called Sys-
tem Dependence Graphthat combines both data and control depen-
dence as well as interprocedural data dependence that is captured
by the concept oftransitive flow dependence edges, which in turn
are computed by a technique borrowed from Attribute Grammar.
Based on this graph, they developed an efficient two-phase slicing
algorithm that curbs the loss of precision due to merged callsites
in previous methods.

Sinha et al. [15, 16] extended the work by Horwitz et al. to
specifically handle what they callpotentially non-returning call
sites (PNRCs). They are caused by statements such asexit,
setjmp/longjmp, try/catch in popular languages like
C/C++ and Java. The way they handled these cases inspires part of
our solution. We adopt a similar view when we define interprocedu-
ral dynamic control dependence in light of arbitrary interprocedural
control flow in this paper.

Kumar et al. [9] worked on how to efficiently compute static
source-level executable program slice in light of irregular control
flow like switch andgoto in C. They discussed a series of defi-
nitions, with each one refined over the previous one, for whatcon-
stitutes as acorrect slice, starting from a definition Weiser had
in [18]. In the process, they discussed how these irregular flow
can be handled. This process is very similar to our work presented
in this paper except that we are working in the dynamic context
and we are working on the binary level. Also, since we are not
concerned about reproducing program fragments at source level,
we can treat the irregular flow likeswitch andgoto the same
as other branching or fall-through basic blocks. These differences
also apply when comparing our work with the all other static ap-
proaches.

Dynamic Approaches. Research on dynamic program
control/data dependence are drawing increasing attentions. Wang
et al. [17] addressed the space cost issue that is associatedwith
collecting dynamic traces in dynamic slicing. They devisedan al-
gorithm to compress Java bytecode traces and demonstrated how to
perform dynamic slicing by directly backward traversing the com-
pressed traces. During the backward traversing, static control de-
pendence information is consulted for finding dynamic control de-
pendence for a bytecode. They did not discuss how interprocedural
control dependence are discovered.

Vachharajani et al. [12] worked on architecture support forin-
formation flow analysis that is based on dynamic data and control
dependence. In their proposed framework, security labels are as-
signed to data/control memory locations and these labels are prop-
agated as instructions execute. Finally when data are written to cer-
tain channels (files, sockets etc.), their security labels are checked
against a user policy. Besides data flow dependence, dynamiccon-

trol dependence information is crucial for their work. Theydid not
discuss how dynamic control dependence can be detected in their
paper, so that our work here is a good compliment.

Zhang et al. [20] worked on using dynamic slicing in the con-
text of fault location. In their work, efficient dynamic control de-
pendence detection algorithms are required. The comparison was
made clear in the main body of the paper.

In summary, we consider that our work presented in this papera
good compliment for some of the previous work done in this field.
Furthermore, to our best knowledge, our formulation on dynamic
control dependent and dynamic post-dominator relations, taking
into consideration the interprocedural case, is the first effort toward
such a goal.

7. CONCLUSIONS
In this paper, we introduce a novel definition of dynamic control

dependence that accommodates both intraprocedural and interpro-
cedural cases even in presence of irregular control flow. Based upon
this definition, an efficient online detection technique is proposed.
The experimental results show that our algorithm incurs only 2.57
times slowdown to program execution. Compared to the existing
algorithm, it improves the performance by a factor of 2.54. Given
the critical role of dynamic control dependence in many dynamic
program analyses, our technique has the potential to fostermore
efficient new designs and implementations for those analyses.

8. REFERENCES
[1] http://www.elis.ugent.be/diablo/.
[2] H. Agrawal and J. R. Horgan. Dynamic program slicing. In

PLDI ’90: Proceedings of the ACM SIGPLAN 1990
Conference on Programming Language Design and
Implementation, 1990.

[3] Matthew Allen and Susan Horwitz. Slicing java programs
that throw and catch exceptions. InProceedings of the ACM
SIGPLAN 2003 Workshop on Partial Evaluation and
Semantics Based Program Manipulation, 2003.

[4] Thomas Ball and Susan Horwitz. Slicing programs with
arbitrary control-flow. InAutomated and Algorithmic
Debugging, pages 206–222, 1993.

[5] Arpad Beszedes, Tamas Gergely, and Tibor Gyimothy.
Graph-less dynamic dependence-based dynamic slicing
algorithms.Sixth IEEE International Workshop on Source
Code Analysis and Manipulation, 0:21–30, 2006.

[6] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The
program dependence graph and its use in optimization.ACM
Transactions on Programming Languages and Systems,
9(3):319–349, 1987.

[7] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. InPLDI ’88: Proceedings of the
ACM SIGPLAN 1988 conference on Programming Language
design and Implementation, pages 35–46, Atlanta, Georgia,
United States, 1988.

[8] B. Korel and J. Laski. Dynamic program slicing.Information
Processing Letters, 29(3):155–163, 1988.

[9] Sumit Kumar and Susan Horwitz. Better slicing of programs
with jumps and switches. InFundamental Approaches to
Software Engineering, volume 2306, page 96, April 2002.

[10] Andrew Myers. Flow: Practical mostly-static information
flow control. InPOPL ’99: Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 1999.

[11] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software, 2004. Technical Report
CMU-CS-04-140, Carnegie Mellon University.

[12] N.Vachharajani, M.J.Bridges, J.Chang, R.Rangan, G.Ottoni,
J.A.Blome, G.A.Reis, M.Vachharajani, and D.I.August.
Rifle: An architectural framework for user-centric
information-flow security. InMICRO 37: Proceedings of the
31st annual ACM/IEEE International Symposium on
Microarchitecture, 2004.

[13] A. Podgurski and L.A. Clarke. A formal model of program
dependences and its implications for software testing,
debugging, and maintenance.IEEE Transactions on Software
Engineering, 16(9):965–979, 1990.

[14] V. Ranganath, T. Amtoft, A. Banerjee, M. Dwyer, and
J. Hatcliff. A new foundation for control-dependence and
slicing for modern program structures. InESOP 2005: The
European Symposium on Programming.

[15] Saurabh Sinha, Mary Jean Harrold, and Gregg Rothermel.
System-dependence-graph-based slicing of programs with
arbitrary interprocedural control flow. InICSE ’99:
Proceedings of the 21st international conference on Software
engineering, pages 432–441, Los Alamitos, CA, USA, 1999.
IEEE Computer Society Press.

[16] Saurabh Sinha, Mary Jean Harrold, and Gregg Rothermel.
Interprocedural control dependence.ACM Transactions on
Software Engineering and Methodology, 10(2):209–254,
2001.

[17] Tao Wang and Abhik Roychoudhury. Using compressed
bytecode traces for slicing java programs. In
ICSE’04:Proceedings of the International Conference on
Software Engineering, pages 512–521, Edinburgh, United
Kingdom, 2004.

[18] Mark Weiser. Program slicing. InICSE ’81: Proceedings of
the International Conference on Software Engineering,
pages 439–449, San Diego, California, United States, 1981.

[19] Mingwu Zhang, Xiangyu Zhang, Xiang Zhang, and Sunil
Prabhakar. Tracing lineage beyond relational operators,
2007. Technical Report, Purdue University.

[20] X. Zhang, H. He, N. Gupta, and R. Gupta. Experimental
evaluation of using dynamic slices for fault location. In
AADEBUG, 2005.

[21] X. Zhang, S. Tallam, N. Gupta, and R. Gupta. Towards
locating execution omission errors. InPLDI ’07:
Proceedings of the ACM SIGPLAN 2007 conference on
Programming Language design and Implementation, San
Diego, CA, 2007.

[22] Xiangyu Zhang and Rajiv Gupta. Matching execution
histories of program versions. InESEC/FSE-13:
Proceedings of the 10th European Software Engineering
Conference held jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, pages 197–206, Lisbon, Portugal, 2005.

[23] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. Precise
dynamic slicing algorithms. InICSE ’03: Proceedings of the
International Conference on Software Engineering, pages
319–329, Portland, Oregon, 2003.

