
Enabling Tracing Of Long-Running Multithreaded
Programs Via Dynamic Execution Reduction

Sriraman Tallam
Chen Tian

Dept. of Computer Science
University of Arizona

{tmsriram,tianchen}

@cs.arizona.edu

Xiangyu Zhang
Dept. of Computer Science

Purdue University
xyzhang@cs.purdue.edu

Rajiv Gupta
Dept. of Computer Science

University of Arizona
gupta@cs.arizona.edu

ABSTRACT
Debugging long running multithreaded programs is a very
challenging problem when using tracing-based analyses. Since
such programs are non-deterministic, reproducing the bug
is non-trivial and generating and inspecting traces for long
running programs can be prohibitively expensive. We pro-
pose a framework in which, to overcome the problem of bug
reproducibility, a lightweight logging technique is used to
log the events during the original execution. When a bug
is encountered, it is reproduced using the generated log and
during the replay, a fine-grained tracing technique is em-
ployed to collect control-flow/dependence traces that are
then used to locate the root cause of the bug. In this pa-
per, we address the key challenges resulting due to tracing,
that is, the prohibitively high expense of collecting traces
and the significant burden on the user who must examine
the large amount of trace information to locate the bug in a
long-running multithreaded program. These challenges are
addressed through execution reduction that realizes a com-
bination of logging and tracing such that traces collected
contain only the execution information from those regions
of threads that are relevant to the fault. This approach
is highly effective because we observe that for long run-
ning multithreaded programs, many threads that execute
are irrelevant to the fault. Hence, these threads need not
be replayed and traced when trying to reproduce the bug.
We develop a novel lightweight scheme that identifies such
threads by observing all the interthread data dependences
and removes their execution footprint in the replay run. In
addition, we identify regions of thread executions that need
not be replayed or, if they must be replayed, we determine if
they need not be traced. Following execution reduction, the
replayed execution takes lesser time to run and it produces
a much smaller trace than the original execution. Thus,
the cost of collecting traces and the effort of examining the
traces to locate the fault are greatly reduced.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’07, July 9–12, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-734-6/07/0007 ...$5.00.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids, Testing tools, Tracing

General Terms
Algorithms, Measurement, Reliability

Keywords
debugging, checkpointing, event logging, replay, control flow
and dependence tracing

1. INTRODUCTION
Debugging long running, multithreaded applications is a

challenging task due to two reasons. First, they are gener-
ally non-deterministic, that is, two executions on the same
input could behave differently depending on the order in
which the threads were scheduled. While the bug may man-
ifest itself in one execution, it need not do so in another exe-
cution. Second, it is expensive to collect and store dynamic
traces which may be needed to locate a bug. To address the
first problem, when designing a debugging framework for
multithreaded programs, it is important to make use of a
checkpointing/logging infrastructure that can precisely log
the important events so that when a bug manifests itself,
it can be reproduced during the replay of the current exe-
cution. However, solving the second problem by providing
a fine-grained tracing mechanism that is practical for long-
running programs is a far more challenging task. Support for
fine-grained tracing is needed so that the fault can be later
analyzed and the root cause of the bug can be detected. It
is very important that the traces collected are small because
long traces create two problems. First collection and stor-
age of long traces is very expensive in terms of execution
time and space needs. Second, the greater the amount of
trace information, the greater is the effort required on part
of the user to inspect them and locate the root cause of
the bug. In the remainder of this section we discuss these
techniques (checkpointing/logging and tracing) in more de-
tail and propose a framework that can effectively address
the above issues by integrating logging and tracing. This
framework is practical due to our novel idea for generating
small traces through execution reduction.

Checkpointing/logging/replaying is an attractive tech-
nique, the merit of which is its capability to replay from the

intermediate points of the execution at which checkpoints
are created. It was invented to facilitate debugging parallel
and distributed programs [16, 26]. It quickly gained pop-
ularity in general application debugging [19, 20]. A lot of
research has been carried out on how to reduce its cost [25,
15] and improve its usability [22]. However, most of the ex-
isting checkpointing techniques focus on how to faithfully
replay an execution. They do not discuss what to do with
the replayed execution and simply suggest that the replayed
execution can be debugged with general debuggers such as
gdb. However, these debuggers are usually less powerful
than tracing based tools.

Tracing techniques must be supported in an effective de-
bugging framework as tracing allows us to closely inspect the
program and detect the root cause of the bug. Heavy-duty
dynamic analyses can be performed on the traces efficiently
once they have been gathered. As a result, software errors
become much more recognizable if appropriate traces are
gathered. For example, dynamic slicing, proposed by Korel
and Laski [11], is a tracing based technique to help program-
mers in the process of debugging. The dynamic slice of a
value computed at a program point in the execution trace
includes all those executed statements which were directly
or indirectly involved in the computation of the value. Prior
work [9, 30] has demonstrated that dynamic slicing is quite
effective in automatically isolating the cause effect depen-
dence chain from the root cause to the failure point. Unfor-
tunately, tracing based techniques do not scale for long exe-
cutions even though state-of-the-art techniques can achieve
a space efficiency of 0.1-4 bits per instruction [29, 8]. A sim-
ple task such as starting Mozilla and browsing a html page
creates traces in the order of giga bytes.

We collected a set of multithreaded benchmark programs
shown in Table 1. Table 2 shows the sizes of control flow
traces and dependence traces for sample runs of these mul-
tithreaded programs. It is clear from the data that the sizes
of the traces produced is large and the runtime overhead of
their collection is substantial. Also, even if the traces are
collected, it can be a huge burden on the programmer to
inspect these traces and get to the root cause of the bug.

Table 1: Benchmarks and the bugs used in the Ex-
periments.

Program Description LOC Description
of bugs used

mysqld Database 508 K a) Mem. bug (mysql-1),
(ver. 3.23.56) reported in [2]

b) Atomicity bug (mysql-2),
(ver. 3.23.56) reported in [3]

c) Mem. bug (mysql-3),
(ver. 3.23.48) reported in [4]

prozilla Download 16 K a) Mem. bug (prozilla-1),
Accelerator reported in [5]

b) Mem. bug (prozilla-2),
(ver.1.3.5.1) reported in [6]

proxyc small C proxy 219 a) SIGPIPE bug (proxyc-1),
Found using Change Log

axel Download 3 K a) Mem. bug (axel-1),
Accelerator reported in [7]
(ver. 1.0a)

pftp Port File 8 K NONE
Transfer

balsa Email client 100 K NONE
evolution email, address 438 K NONE

book

Table 2: Trace sizes of multithreaded programs for
small runs and their collection time in seconds.

Program Num of Exec. Time (secs.) Control Dep.
Threads Original Traced Trace Trace

mysql 10 13 2886 6 GB 21 GB
evolution 10 11 179 87 MB 390 MB
balsa 7 17 1787 92 MB 209 MB
pftp 3 10 903 543 MB 482 MB
proxyc 9 10 880 1360 MB 456 MB
axel 3 8 184 313 MB 456 MB
prozilla 5 8 2640 2 GB 6 GB

From the above discussion we can see that an integration
of checkpointing and tracing within a single infrastructure
would be very useful. It will allow us to replay the fault
and collect traces during replay, to debug the program and
find the root cause of the bug, and will also be efficient if
the tracing overhead can be minimized. In this paper, we
propose one such framework which can achieve the above ob-
jective. Our approach essentially consists of two main steps.
First, we log the events of the original run and checkpoint
at regular intervals in order to be able to faithfully replay
the execution from any checkpoint or the start of the pro-
gram. In case the execution fails, like due to a segmentation
fault, during the replay we turn on our tracing infrastruc-
ture that can generate fine grained traces which allows us to
look closely at the execution and find the root cause of the
bug. To make this framework practical, we minimize the
tracing overhead by reducing the execution footprint. We
propose the novel idea of execution reduction that reduces
the length of the execution for replay and tracing by exploit-
ing the observation that most threads that get executed are
not directly relevant to the fault and need not be replayed
or traced.

Many multithreaded and long-running applications such
as server programs are event driven and, usually, a thread is
spawned to service a new request from a client. Most of the
threads execute independently of the other and a fault that
occurs in one thread, which can even lead to a crash, is not
influenced by a majority of the other threads. We exploit
this observation during replay as follows. We only replay
those threads that cause the fault to occur and prevent the
remaining threads from executing as they are irrelevant to
the fault. The result is that the replayed execution is exactly
what is necessary to reproduce the bug and hence, the trace
that it generates is shorter and also exactly captures the
program behavior that led to the fault. To find the threads
that are relevant to the fault, we have developed a tech-
nique that can detect the various dependences between the
executing threads very efficiently in time and space. Using
the dependence information between threads, we can obtain
the set of those threads that contributed to the fault and
those that were irrelevant to the fault. Now, we trace the
execution by only replaying the threads relevant to the fault.
The resulting trace sizes of the shortened executions are 3
to 6 orders of magnitude smaller than the original trace size
and they are generated with an overhead smaller than the
original traced execution by factors ranging from 4 to 5618.

Our algorithm essentially consists of three phases: Logging
phase; Execution Reduction Phase; and Replay Phase. Log-
ging Phase corresponds to the original program run during
which the checkpointing and logging infrastructure is turned
on. This phase produces the record of all the events, that is,
the event log. In the case a bug is encountered, during the

Original Log

00000: open path=/etc/localtime

...

00031: open path=/etc/my.cnf

00051: open path=/home/tianchen/my.cnf

... …

... …
02084: poll
... …

... …

02116: accept

// Received request from User1

... …

... …
 //Initialization thread 3
02654: poll
... …

... …
02714: accept
//Received request from User2
... …

... …

 //Initialization thread 4

02976: poll

... …

... …

03068: read data="show databases;"

...

03106: socket-write //send result to user

... …

... …

03182: read data="use test;"

...

03251: read data="select * from b;"

...

11537: socket-write //send result to user

... …

... …

11613: read data="load data infile

 ‘file’ into table mydb1.table1;"

...

// SERVER CRASH - SEG. FAULT

00000: open path=/etc/localtime

...

00031: open path=/etc/my.cnf

00051: open path=/home/tianchen/my.cnf

... …

... …
02084: poll
... …

... …

02116: accept

// Received request from User1

... …

... …
 //Initialization thread 3
02654: poll
... …

... …
11613: read data="load data infile
 ‘file’ into table mydb1.table1;"
...
// SERVER CRASH - SEG. FAULT

1

2

7

6

5

4

3

9

8

1

2

3

4

9

Reduced Log

T
h
re
a
d
 E
x
e
c
u
ti
o
n

In
te
rv
a
l
(T
E
I)

T
4

T
3

T
2

T
1

T
1

T
1

T
3

T
3

T
4

T

T

Thread Schedule

Figure 1: Motivation - MySql (Seg. Fault) Memory
error, the different threads (T1, . . . , T4) are marked
and the thread execution intervals (1, . . . , 9) are num-
bered. The reduced log shows the intervals that are
replayed. The Symbol ’T’ in the reduced log shows
the only intervals that are traced.

Replay Phase the event log can be used to replay the execu-
tion from a checkpoint or the start of the program. During
the Replay Phase tracing is turned on to collect control-flow
and/or dependence traces that are then used during debug-
ging for fault location. Since the cost of the Replay Phase
can be very high due to tracing, to reduce the cost of this
phase it is preceded by the Execution Reduction Phase. In
this phase first the dynamic dependences between the vari-
ous threads are discovered. Then using this information, the
subset of threads and their execution intervals that must be
replayed in order to reproduce the fault are identified. Only
the identified execution intervals of the subset of threads are
retained for the Replay Phase and the event log is pruned
to enable replay of the reduced execution. The key contri-
butions of this paper are as follows.

• We propose a framework to debug long-running, mul-
tithreaded programs by combining two powerful tech-
niques, checkpointing/logging and tracing. Logging is
turned on during the original program run and, in case
a bug is encountered, tracing is turned on during re-
play. Thus, tracing is used when needed.

• To limit the trace collection overhead and trace size,
we propose a novel execution reduction technique that
replays only relevant parts of the execution by auto-

matically removing irrelevant threads and thread exe-
cution intervals.

• To discover and eliminate irrelevant threads, and thread
execution intervals, we propose a dynamic technique
that finds dynamic shared memory dependences be-
tween threads accurately and efficiently.

The rest of the paper is organized as follows. Section 2
gives an overview of our approach using an example. Section
3 describes the three phases of our debugging framework in
detail. Section 4 discusses the implementation aspects of
our framework. Section 5 presents the results of our exper-
iments. Related work is presented in section 6 and conclu-
sions are presented in section 7.

2. A MOTIVATING EXAMPLE
In this section, we motivate our approach using as exam-

ple, a memory bug in the MySql database server. MySql [1]
is a multithreaded application which is one of the world’s
most popular open source databases. It is known for its
consistent fast performance, ease of use and high reliability.
It is used in more than 10 million installations and runs on
more than 20 platforms. Next we describe a known error in
a MySql version and we show how to apply our approach of
replay to trace on the faulty execution.

According to [2], MySql version 3.23.56, has a memory
error which is as follows. When a thread tries to load data
into a table without explicitly connecting to the database,
the field that stores the database name is accessed without
checking for the NULL value. This causes the server to crash
at this point. Let us consider an execution in which, after
processing a set of queries, the above fault is exercised.

Logging Phase. To begin with, the server is run with light
weight logging enabled, that is, the events are logged and
checkpoints are performed at fixed intervals. Figure 1 shows
the events recorded in the event log. T1, T2 T3, and T4 refer
to four unique threads created. The event log also shows the
points where a thread is descheduled and another thread is
scheduled. We refer to a region in the log corresponding to
the maximal set of consecutive events from the same thread
as a thread execution interval (TEI). The log in Figure 1
shows 9 thread execution intervals.

The queries and the activities of the corresponding threads
are as follows:

• Thread T1 is the startup thread that handles new con-
nections and creates threads to service requests.

• Thread T2 is created by T1 to handle signals.

• Thread T3 is created by T1 to handle a user. This user
first looks at all the databases and then crashes the
server by issuing the ”load” command.

• Thread T4 is created by T1 to handle another user.
This user does a ”select” operation on table ’b’ in
database ’test’.

The server crashes at TEI 9 and the program is taken to
the next phase of our framework. Figure 2 shows the root
cause for this bug. Notice how the database field(thd→db)
is accessed without checking for an invalid value. The fix is
to place a check before the access and report an error if the
value is invalid, instead of crashing.

sql/mysql_load.cc:

int mysql_load (THD *thd,...)

{

 …

150 if(…

151 … +strlen(thd->db) + 3 <

152 FN_REFLEN)

 ...

}

Figure 2: Source Code - MySql Memory Error, root
cause

Execution Reduction Phase. Once it is known that a fault
has occurred (e.g., program crash has occurred), we would
like to replay the fault and collect the trace during replay
to assist the user in debugging. However, first the execution
reduction phase is used to determine the subset of compu-
tation that needs to be replayed and traced.

The first step in this phase is to identify and remove the
threads from the event log that did not contribute to the
bug. This reduces the execution time of the program and
keeps the resulting traces small. Alternatively, if we try
to generate the trace for the entire execution by replaying it
with the tracing turned on, then the resulting trace sizes are
as high as 16 GB for 15 seconds of execution. It is easy to see
that if the programs had run for a long time before the fault
occurred then the trace sizes would become unmanageable.

Lets consider the threads in our example. We notice that
thread T4 is irrelevant to the fault. Intuitively, it can be
seen that the bug would have still occurred even if the sec-
ond user did not exist. The queries corresponding to the
execution of thread T4 are completely independent of the
queries corresponding to T3. Hence, we first remove all the
events from the replay log corresponding to T4. In the re-
duced log in Figure 1, notice that the TEIs 5, 6, and 8 do
not exist. These correspond to the creation and execution
of thread T4 in the original log.

Now that we have removed irrelevant threads we proceed
to the next step in this phase which identifies irrelevant
TEIs. All the remaining threads are relevant to the bug
but not all of their TEIs are relevant. In Figure 1, TEI
7 corresponding to T3, which is the execution correspond-
ing to a ”show databases” query from the user, is irrelevant
to the fault. Hence, this is also removed from the replay
log. The reduced log now shows only the relevant TEIs that
caused the fault. Replaying the program using the reduced
log generates the fault much faster.

Replay Phase. In this final phase we replay the program
using the reduced log with the tracing infrastructure turned
on. Since the execution contains only the necessary TEIs,
the traces produced are much smaller. We further optimize
the size of the traces in this phase by exploiting the following
observation. We observe that even though all the TEIs in
the reduced log have to be replayed to produce the fault, not
all of them have to be traced.

For instance, thread T1 is present only to create the faulty
T3, and thread T2 to handle signals. The code that is exe-
cuted in T1 and T2 does not contain the root cause. Hence,
only thread T3 needs to be traced, that is, TEIs 4 and 9
in the reduced log. The original trace is reduced in size
by 99.99% and this reduced trace captures the root cause
as desired. The user then inspects the generated trace and
discovers the root cause of the bug.

3. AUTOMATED EXECUTION
REDUCTION

In this section we identify the types of dynamic depen-
dences that must be found to automatically perform execu-
tion reduction as well as efficient dynamic algorithms used
to identify these dynamic dependences. Before we present
the above details we briefly describe the types of events that
are recorded in the replay log.

When the application is being executed in the real world
environment, we execute it with a lightweight checkpoint-
ing/logging mechanism turned on. Non-deterministic events
are recorded as and when they happen. In addition, the pro-
gram is checkpointed at regular intervals. The logging is to
ensure that the program can be replayed to reproduce a fault
if one occurs. Let us discuss some of the events that must be
recorded in the log in order to correctly replay the execution
of the multithreaded program. The thread scheduling events
of a multithreaded program are the most important events
that need to be captured since they can vary from one ex-
ecution to another. The replay log captures all the events
where a thread was descheduled and a different thread was
scheduled. It should be noted that the order in which the
different threads access shared memory, which must be pre-
served to successfully replay a multithreaded program, need
not be captured explicitly. By recording the scheduling in-
formation, we ensure that when the program is replayed as
per the schedule, the order of shared memory accesses by
the different threads does not change. This holds only when
the user level threads are executing in a uniprocessor en-
vironment. Notice that the order in which a single thread
accesses memory is preserved in the control flow of the exe-
cution and hence, need not be explicitly recorded. To sum-
marize, by preserving the thread scheduling of the original
execution we guarantee that the order of memory accesses
in the replayed program is exactly the same as the original
program. Some of the other important events that need to
be captured are external events like signals, interrupts, and
IO reads and writes. Reads and writes to files need to be
logged along with the file offsets and the size of the read
or write in order to undo these operations and restore the
original file contents when commencing replay.

When a fault is encountered, we carry out execution re-
duction before carrying out replay for the purpose of col-
lecting traces to aid in debugging. Execution reduction is
critical because even if the program is replayed from the
most recent checkpoint, the trace that is generated can be
very long and its generation can take a long time. Execution
reduction is based upon two types of information: identifi-
cation of irrelevant threads; and identification of irrelevant
thread execution intervals. The algorithms for identifying
irrelevant threads and irrelevant thread execution intervals
are described in the next two subsections.

3.1 Discovering Irrelevant Threads
Lets consider the problem of identifying threads that are

irrelevant to the fault, that is, the execution of these threads
does not influence the execution of the threads that resulted
in the fault. To achieve this goal, we need to know the
interactions or dependences between the different threads.
Thread interactions can take place via events, files, or shared
memory. Examples of event interactions are actions such as
thread creation and join involving two or more threads. File
interactions occur when threads communicate by reading

and writing from files. The most frequent type of thread
interactions are through the use of shared memory regions.

To detect whether a thread is relevant or irrelevant to the
fault, we need to obtain the information about the three
kinds of dependences between the threads. To replay a
thread Ti, we also replay another thread Tj if and only if
thread Ti depends on thread Tj . Once we have the de-
pendence information, we construct a Thread Dependence
Graph (TDG). We then identify the set of relevant threads,
REL(Ti), for any thread Ti by traversing the TDG. To re-
play the execution of thread Ti exactly, it is necessary and
sufficient to only replay those threads that are in the set
REL(Ti). Given this information, we can detect and elimi-
nate all the threads that are irrelevant to the faulty thread
by pruning the replay log. We will then only have those
threads that contributed to the fault resulting in reduc-
tion in the execution. The definitions of TDG and Relevant
Threads are given below.

Definition 1.(Thread Dependence Graph (TDG)) The
Thread Dependence Graph of a multithreaded pro-
gram execution, TDG(N, E), consists of a set of
nodes N and a set of directed edges E where each
node ni ∈ N corresponds to a unique thread Ti

that was created in the current run and each edge
(mi → nj) ∈ E indicates that there is a depen-
dence path from thread Ti to thread Tj , that is, Tj

is dependent on thread Ti. Also, each edge is an-
notated with one or more of the symbols in the set
{File, Event, SharedMem} to indicate the type of
dependence(s).

Definition 2.(Relevant Threads) The set of relevant
threads corresponding to a thread Ti, REL(Ti), is
defined as REL(Ti) = {Tj |Tj ∈ Γ and ∃ a depen-
dence path from Tj to Ti} where Γ is the set of all
threads in the current run.

Next we discuss each of the three types of interthread
dependences in detail. In particular, we discuss how they
are identified.

Event Dependences. The replay log contains explicit infor-
mation on all the thread events (e.g., thread creation and
termination, synchronization events such as join, etc.) and
hence the log can be analyzed to obtain all event depen-
dences between threads. Hence, by inspecting the log and
looking at the records corresponding to these events, the
various event dependences between the different threads can
be detected. For example, in the replay log in Figure 1, the
events in TEI 1 corresponding to thread T1 indicate that a
new thread T2 was created and scheduled to run in TEI 2.
Hence, we infer that thread T2 is dependent on thread T1 by
the parent-child relationship. Notice that this means T1 has
to be replayed in order to replay T2 whereas the reverse is
not true. In summary, the replay log captures all the event
dependences between threads and a simple scan of this log is
enough to discover all of them.

File Dependences. We now discuss how to discover depen-
dences between threads due to file operations. A file data
dependence exists from thread Ti to thread Tj if thread

Tj reads from an offset in any file F that was written to
by thread Ti. This implies that for successful execution of
thread Tj , thread Ti must also be replayed. Dependences
between threads due to files can be directly obtained from
the replay log. The replay log records information on the
files that were read or written by every thread, the offsets
from which the reads and writes took place and the size of
the operation. This is done primarily to restore the con-
tents of the files while commencing replay. Hence, by scan-
ning the replay log all file dependences between threads can
be retrieved.

Shared Memory Dependences. Let us now discuss how to
discover the most common interactions between threads that
result in shared memory dependences. There exists a shared
memory dependence from thread Ti to thread Tj if Tj reads
a value from any memory address ‘a’ that was written by
Ti. We say that Tj is dependent on Ti since Ti generates the
value and has to be replayed for successfully replaying Tj .

Shared Memory dependences between threads cannot be
simply obtained from the replay log. Recall that to make
the logging scheme lightweight, explicit capturing of infor-
mation unnecessary for replay must be avoided. By cap-
turing the thread schedule in the log, the need of capturing
the shared memory dependences does not arise. Therefore,
to obtain shared memory dependences, we must replay the
program and track these dependences as they occur using a
mechanism for detecting shared memory dependences. This
mechanism must track shared memory dependences between
threads and output thread ordered pairs (Ti, Tj) that are in-
volved in at least one shared memory dependence. Note that
to construct the TDG, we do not output every occurrence
of a dependence between a pair of threads.

It is desirable that the technique that detects shared mem-
ory dependences has low overhead. Even though this phase
is carried out in the debugging stage of the program, un-
reasonable delays is not desirable to the user who is debug-
ging the code. One approach that does not involve runtime
overhead could be based upon static analysis [23, 21]. This
approach has the disadvantage of producing a conservative
TDG using which fewer threads may be identified as being
irrelevant. Another issue is that dynamic opportunities for
eliminating irrelevant threads will be lost. During a given
execution, a potentially shared memory region may how-
ever, be accessed by just one thread. The static approach
cannot take advantage of such opportunities. However, a
well designed dynamic approach can take advantage of this
information to identify more irrelevant threads.

Let us first consider a naive dynamic strategy for detecting
shared memory dependences. A hash table can be used to
maintain, for each address ‘a’, the thread id of the thread
that performed the most recent write to ‘a’. To detect an
interthread dependency, when a load operation is performed
on address ‘a’ by thread Tj , we retrieve the thread id Ti

that wrote to it last from the hash table and then form an
interthread dependence if Ti and Tj are different. Although
this scheme is straightforward, it is inefficient in both space
and time. It is space inefficient because the size of the hash
table is as large as the memory footprint of the original
program. For large applications, we could potentially run
out of memory. It is time inefficient because every load and
store that executes must access the hash table. Every store
must write the thread id to the corresponding hash entry

do for every load and store(ThreadId currThread, Address a){
/* RegionMap, array of 216 entries, each entry has 2 fields

isSharedMem bit, firstThread field - initialized to 0 */
// prevThread,prevRegion,prevSharedMem - prev. load / store
currRegion=a >> 16; // higher order 16 bits
Stage I :

if(prevThread=currThread && prevRegion=currRegion
&& prevSharedMem=False)
return;

prevThread=currThread; prevRegion=currRegion;
Stage II :

entry = RegionMap[currRegion];// Lookup Region table
if(entry→isSharedMem=False)

if(entry→firstThread=0)
prevSharedMem=False;
entry→firstThread=currThread; return;

if(currThread = entry→firstThread)
prevSharedMem=False; return;

else

prevSharedMem=True;
/* stores update shared memory bit
loads check for dependence with first thread */
if(load instruction)

return;
Stage III :

if(store instruction)
write threadid into hash entry(a);

else //load instruction
threadId = read threadid from hash entry(a);
if(threadId is valid)

Track Dependence(currThread, threadId);
else

Track Dependence(currThread, entry→firstThread);
return;

}

Figure 3: Pseudo-code for detecting shared memory
dependences. The code shows the processing that is
done for every memory load and store instruction.
The 3 stages are clearly marked.

and every load must read it from the hash table. Next we
present a scheme that greatly improves the efficiency of the
above naive interthread dependence detection scheme. This
scheme is efficient in both space and time. This scheme is
based upon two optimizations that achieve elimination of
majority of the expensive hash table lookups.

The first optimization introduces a new look-up table,
called RegionMap, such that accesses to this new table are
less expensive than accesses to the hash table. Often times,
the dependence is resolved by accessing the RegionMap and
hence the need for accessing the hash table is eliminated re-
sulting in savings in time. In addition, we will see that the
size of the hash table is greatly reduced.

Let us discuss the RegionMap in greater detail. We divide
the 32-bit virtual memory address into two parts: the higher
order 16-bits act as a region specifier; and the lower order
16-bits are used as the offset address within the region. The
region itself can be either a shared memory region or a non-
shared memory region. The RegionMap is indexed by the
16-bit region specifier and it contains a bit for every region,
called isSharedMem, that indicates if the region has been
dynamically observed to behave as a shared memory region
or not. All region bits are initially set to False implying
that all regions are non-shared memory to start with. The
region bit for a region is set to True if more than one thread
accesses the region. The region table also contains a field,
called firstThread that stores the identifier of the first thread
that wrote to it. This is initially set to an invalid value and
is initialized by the first thread that writes to it.

Let us now see how an access to the hash table may be

avoided by first accessing the RegionMap. For a load opera-
tion, we look up the RegionMap first to see if we are accessing
a shared memory region or not. If the region is currently
indicated to be non-shared memory, we do not need to do
anything further as this load does not involve an interthread
dependence. However, if it is a shared memory region we ob-
tain the threadId of the store operation involved in the de-
pendence by looking up the hash table and check if it is an
interthread dependence. For a store operation, if the region
is shared memory, we update the hash entry corresponding
to the memory address with threadId. If the region is not
shared memory, we check if the thread performing this store
could potentially make it a shared memory region, that is,
we compare the current thread’s id with firstThread id to see
if they are different. If they are different, a shared memory
region has been detected and the region bit, isSharedMem,
for this region is set to True in the RegionMap. The hash
entry for the 32-bit address is also updated. However, if the
region is still not shared then we have to do nothing further.

From the above operation of the RegionMap, and the hash
table, we have achieved the following. The size of the hash
memory now at most equals the combined sizes of only the
shared memory regions and not the total virtual space used.
Hence, this is a huge saving and for the many programs
we looked at, the amount of shared memory that is used
is much less than the actual memory used. Also, for loads
and stores that do not access shared memory regions, the
expensive hash table lookup operation is avoided.

The second optimization is designed to further reduce the
runtime overhead by reducing the RegionMap lookups and
replacing them with cheaper operations. In this sense this
optimization is analogous to the first optimization which
reduced the runtime overhead by replacing some of the ex-
pensive hash table lookups by cheaper RegionMap lookups.
This second optimization exploits the locality in the regions
accessed by most loads and stores. In particular, locality
here refers to the characteristic that consecutive executions
of the same static load (store) often involve the same re-
gion. When this is the case, handling of one region access
by a load (store) makes the handling of the next access to
the same region by the same load (store) redundant.

Finally, we obtain a three stage algorithm for handling
each load and store such that first stage is the cheapest and
the last stage (hash table lookup) is the most expensive.
While in general a load or store may have to go through
all three stages, very often this is not the case and hence
the runtime overhead of the three stage scheme is greatly
reduced when compared to the runtime overhead of a single
stage scheme involving hash table lookup. Next we put all
of the ideas together into a three stage algorithm described
below (pseudocode is given in Figure 3).

Stage I - Check region of previous memory operation. In this
stage, for the load or store that is being processed, if the pre-
vious memory operation (load or store) was from the same
thread, it accessed the same region, and was found to be non-
shared, then we can guarantee that this region will continue
to remain non-shared. (The variables prevThread, prevRe-
gion and prevSharedMem contain this information about the
most recent load/store operation.) Hence, we do not require
a RegionMap lookup and we are done processing this mem-
ory operation. Due to significant locality of regions, over
half of the loads/stores did not proceed beyond this stage.

Stage II - Check RegionMap table and update isSharedMem
bit. In this stage, we need to access the RegionMap as the
locality check in Stage I failed. The RegionMap tells us if
the region accessed is shared memory or not. For a load or
store, if this region is not shared memory we do not need to
consult the hash table. However, a check needs to be done
to see if this thread’s access could potentially make it shared
memory and flip the isSharedMem bit accordingly.

Stage III - Access the hash table. In this stage, we have
determined that the region is shared memory by looking
up the region table and therefore we perform the expensive
hash accesses. For a load operation we access the hash table
to retrieve the thread that wrote to this 32-bit address last
and check if it is an interthread dependence. The function
Track Dependence does this check. However, if this address
was last written to by a thread when this region was not de-
tected to be shared memory, then the contents of the hash
memory would be invalid as the thread that wrote to it
last did not create the hash entry. In this case, we access
the firstThread field of this region. We now have the de-
pendence. For a store operation, we update the hash entry
corresponding to the 32-bit address.

Table 3: Cost of shared memory dependence track-
ing for some multithreaded programs.

Program Staged Tracking Time Memory Used
Stage I Stage II Staged/ Naive Staged
%Ld+St %Ld+St Naive

mysql 52 % 10 % 55 % 3.6 MB 0.8 MB
evolution 16 % 10 % 64 % 8.4 MB 5.9 MB
balsa 67 % 15 % 73 % 8.1 MB 1.8 MB
proftp 50 % 0 % 50 % 3.3 MB 3.3 MB
proxyC 72 % 16 % 56 % 6.6 MB 1.3 MB
axel 50 % 18 % 12 % 0.3 MB 0.1 MB
prozilla 56 % 19 % 41 % 1.2 MB 0.3 MB

Average 52 % 13 % 58 % 4.5 MB 1.9 MB

We have conducted experiments on some multithreaded
long running programs and measured the percentage of loads
and stores that terminated at each stage. Table 3 shows the
data. It also shows the space overhead of this approach.
From this data we can see that on average 52% of all loads
and stores terminate at Stage I, that is, they do not require a
RegionMap or a hash table access. Additional 13% terminate
in Stage II. Thus, finally, on an average, only 35% of all
loads and stores performed hash accesses as they reached
Stage III. The runtime overhead of the staged approach is
58% of the naive tracking scheme. Also, on an average, the
total memory used by the Staged Tracking approach is only
42% of the memory used by the naive approach.

Note that the region size, which is 16 bits now, can be
varied to be coarser or finer. By making it finer, we could
determine shared memory space much more accurately but
we would lose on the locality optimization. Notice that a
region size of 32 bits is basically equivalent to the naive
approach. Making the region size coarser could give more
opportunities for locality but more regions would become
shared memory and hence the locality benefits might not
be useful. Hence, the region size is a trade-off between how
finely we can detect shared memory and how much locality
we could get. We found a 16 bit sized region to work well
with our benchmarks.

Eliminating Irrelevant threads. At this point we have the
complete thread dependence graph with all dependences de-
tected and annotated. We find the set of threads that are
relevant to replaying the fault. The rest of the threads are
irrelevant. We prune the replay log to remove all the records
corresponding to the irrelevant threads. Now, the reduced
replay log has only information on relevant threads and the
execution has already been shortened.

3.2 Discovering Dependences Across TEIs
Now that we have eliminated the threads that are irrele-

vant to the fault, we now discuss how to eliminate irrelevant
thread execution intervals (TEIs) from the relevant threads.
For this step, we need to detect the interactions between
the various TEIs. Notice that we already have the informa-
tion on the dependences between TEIs that correspond to
different threads. Now, we need to find the event, file, and
memory dependences between TEIs belonging to the same
thread. Event and file dependences across TEIs of the same
thread are found using the original replay log. To find mem-
ory dependences, we replay the program again, but using the
reduced replay log, and use the naive approach described in
the last section as the execution has been shortened already.

Now, just as we detected irrelevant threads by using the
TDG, analogously, we construct a dependence graph for
TEIs and remove all irrelevant TEIs. We prune the reduced
replay log further to remove all records corresponding to the
irrelevant TEIs. We now have a highly reduced log that con-
tains only relevant TEIs. This completes the second phase
of our framework.

3.3 Selective Tracing of Reduced Execution
The reduced replay log contains only those thread execu-

tion intervals that need to be replayed. However, not all
TEIs have to be traced. For instance, a thread’s execution
trace, that merely created the faulty thread which has a
memory error, is not useful as the invalid memory access
could not have come from this thread. We identify all such
TEIs. During replay, we turn on tracing when a TEI needs
to be traced and turn it off otherwise. The overhead of tog-
gling tracing is low as it is done at the granularity of TEIs.
At the end of this stage, we get a trace of the faulty execu-
tion that is short and contains the root cause of the bug.

4. THE EXECUTION REDUCTION
SYSTEM

In this section, we describe the implementation of the
ER system that incorporates checkpointing/logging, depen-
dency detection, and (selective) tracing. This system was
used to analyze several bugs in long-running multithreaded
programs.

Figure 4 shows the system. The system consists of a log-
ging component whose main role is to log the events of the
original execution and also create checkpoints at regular in-
tervals. Our system’s key component is the dynamic in-
strumentation engine. It is involved in many steps of the
debugging process. It uses the information in the replay log
created by the logging infrastructure to replay the multi-
threaded program exactly. Also, while replaying the pro-
gram, it can dynamically instrument the binary to detect
dependences and collect traces. The information it gener-
ates is used to shorten the replay logs by pruning irrelevant

LOGGING

INFRASTRUCTURE

(jockey)

Replay Log

checkpoints

events

Reduced Log

threads

remove

remove

TEIs

Final

Reduced Log

Trace of

Faulty Run

DYNAMIC (valgrind)

INSTRUMENTATION

Thread Dependence

Detector

DYNAMIC (valgrind)

INSTRUMENTATION

TEI Dependence

Detector

binary, input

binary, input binary, input

binary, input

DYNAMIC (valgrind)

INSTRUMENTATION

Tracing Infrastructure

Figure 4: Implementation of our system showing
each step of the framework.

threads and TEIs. Since the instrumentation is dynamic,
tracing can be turned on and off at run-time. Let us discuss
the tools used to perform logging and dynamic instrumen-
tation.

Logging/Checkpointing Infrastructure. We have used the jockey
user level library [22] to perform checkpointing and logging
for replay. jockey is a very powerful system that works on
most multithreaded programs and is also very easy to use.
During execution, even before the application can execute,
jockey takes control and scans the application binary for
system call instructions. It then redirects these calls to a
jockey handler and lets the application execute. During sys-
tem calls, jockey logs events, scheduling decisions, creates
checkpoints, etc. Scheduling of the user-level threads can
be controlled by jockey because it uses its own thread li-
braries and any current thread is descheduled only at a sys-
tem call boundary. Checkpointing is achieved by retrieving
the layout of the application’s virtual space and dumping
all virtual memory segments that belong to the application.
To summarize, jockey related work is performed only dur-
ing a system call and otherwise, the application executes as
though it was unaware of jockey. Since jockey works only for
uni-processor systems, we cannot log the execution of multi-
threaded programs that run on multiprocessors. However,
our approach is general and by using a logging mechanism
for multiprocessors [13, 27], our execution reduction tech-
niques can be applied to programs that execute on multi-
processors.

Dynamic Instrumentation Engine. To perform dynamic in-
strumentation, we have used the valgrind [24] system which
can handle x86 binaries. The binary is executed with val-
grind which calls an instrumentation function just before a
basic block is to be executed for the first time. The instru-
mentation transforms the basic block and rewrites the code
cache with the instrumented basic block so that future calls
to execute this basic block does not have to go through the
instrumentation process. The code cache of a basic block can
be invalidated which will cause the instrumentation function
to be called when this basic block executes again. Here, we
could either modify or turn off the instrumentation. Hence,
the instrumented code can be dynamically manipulated.

The dynamic instrumentation engine forms the core of
our framework. Its first job is to parse the log generated by
jockey and replay the program. For multithreaded programs,
the scheduler decisions are the most important events that
have to be replayed. We replay the schedules as follows.
We know that scheduling decisions in the original program

are made only at system call sites by jockey’s thread library.
When logging the schedule, we also log the number of system
calls that the thread executed since it was scheduled and
before it was descheduled. In valgrind, for a thread that
is currently executing, we use the number of system calls
executed to decide when to deschedule the thread. When
we reach that system call (valgrind has event handlers that
are called before and after a system call and we use this
to count system calls), we force the scheduler to deschedule
this thread and switch to the appropriate thread. Hence, we
can guarantee that the threads will be scheduled according
to the replay log. As we have mentioned before, preserving
the schedules will also guarantee that the shared memory
dependences of the original execution will be preserved. File
events can be replayed exactly if we restore the contents of
the modified files. There are some system calls for which
jockey saves the contents of the original run. For example,
in a server program, if a client makes a connection request,
the contents of the socket-read system call are saved in the
jockey log. During replay, when the system call socket-read is
to be executed, jockey will return the saved contents instead
of executing the system call. We do exactly the same in
valgrind when we replay the program. When the socket-
read system call is reached, we do not perform the system
call but return the contents saved in the jockey log. For the
programs we considered, the events that we handled were
enough to replay the execution.

Given that we can successfully replay the program in val-
grind, we now use it to detect shared memory dependences,
TEI dependences and, finally, obtain traces. In the thread
execution reduction phase, we replay the program and in-
strument the loads and stores in every basic block according
to the algorithm described in Figure 3. Once we have ob-
tained the shared memory dependences, we can now find
the irrelevant threads of this faulty execution. Note that
the file and event dependences are already available in the
replay log. We then use this information to prune the replay
log. Similarly, we find dependences across TEIs and further
prune the log. Once we have the final reduced log, we use
valgrind to trace the shortened execution and output the
trace. Here, since we do not trace all replayed TEIs, we use
valgrind’s ability to selectively switch on or off the tracing
for a particular TEI.

5. EXPERIMENTS
The multithreaded benchmark programs used in our ex-

periments were already described in Table 1. For all these
programs, the trace sizes and the cost of detecting shared
memory dependences have been already shown in Tables 2
and 3 respectively. Now, for studying the effectiveness of
our entire ER system, we performed experiments with only
the buggy versions of these programs.

For each bug, we have created the following execution
scenario. We take the buggy program and then create a
reasonably long running execution at the end of which the
bug triggers the failure. For example, in mysql, we create a
number of clients and issue queries to the different databases
we created. Some of the query operations we have used were
among the common ones like select, join, insert, delete, or-
derby, etc. At the end we perform the query operations that
causes the bug to occur. We have limited the length of the
execution to be around 10 seconds for mysql and proxyc.
For prozilla, the length of the execution is around 5 to 7

Table 4: Trace sizes produced by the original and shortened runs (M - million, B - billion).
Program Number of Basic Blocks Number of Data Dependences

Orig. R Thread R TEI SR TEI Orig./SR TEI Orig. R Thread R TEI SR TEI Orig./SR TEI
mysql-1 976 M 19349 16695 1964 490000 1.5 B 30375 25391 3175 470000
mysql-2 733 M 1.1 M 29809 29809 24500 1.1 B 1.27 M 49263 49263 22000
mysql-3 857 M 122 M 24834 9511 90100 1.3 B 188 M 40869 17929 73000
prozilla-1 536 M 106749 81179 81179 6600 720 M 135466 123918 123918 5800
prozilla-2 764 M 764 M 764 M 1.6 M 478 1 B 1 B 1 B 2.6 M 380
proxyc-1 200 M 23736 23736 23736 8400 56 M 6513 6513 6513 8600
axel-1 55.4 M 7734 7734 1622 34000 53.9 M 5119 5119 1156 46600

Table 5: Overhead of logging and the running time in seconds of the original execution and the reduced
execution with and without tracing.

Bug Logging Overhead Replay without Tracing Replay with Tracing
Program Orig-1 Logged Logged/ Orig-2 R Thread-2 R TEI-2 Orig-3 Orig-3/ R Thread-3 R TEI-3 SR TEI-3

Orig-1 Orig-2

mysql-1 14.8 16.8 1.1 16.4 0.1 0.08 3736 227.8 0.8 0.7 0.67
mysql-2 12.3 14.0 1.1 12.6 1.1 0.1 2806 222.6 4.0 0.9 0.9
mysql-3 13.9 15.8 1.1 15.4 2.3 0.09 3270 212.3 468 0.9 0.9
prozilla-1 4.8 13.4 2.8 12.4 0.08 0.05 2664 214.8 0.6 0.5 0.5
prozilla-2 7.2 18.7 2.6 16.5 16.5 16.5 2364 143.3 2364 2364 560
proxyc-1 11.0 19.8 1.8 16.6 0.07 0.07 960 57.8 0.3 0.3 0.3
axel-1 0.15 0.16 1.1 0.14 0.02 0.02 3.2 22.8 0.3 0.3 0.26

seconds. For axel, the bug that we consider happens dur-
ing the initialization phase. Hence, we could not make this
program as long as other programs. Note that even though
checkpointing is supported in our system, given the lengths
of executions, multiple checkpoints were not created. Now,
let us discuss the different experiments we have conducted.

Space Overhead. Table 4 shows the size of the basic block
(control flow) and dependence traces in terms of the num-
ber of basic blocks and dependences for the various execu-
tions we have considered. We have measured the basic block
and dependence trace sizes for four different executions of
the same program. First, we measured the trace sizes of
the original run shown under the heading Orig in Table 4.
Then, we measured the trace sizes of the programs by re-
playing only the relevant threads which is shown under the
heading R Thread. The data under the heading R TEI
corresponds to the trace sizes by replaying only the relevant
thread execution intervals in the program. For R Thread
(R TEI), the basic block traces are smaller than the origi-
nal by factors ranging from 1 (1) to 50442 (58460) and the
dependence traces are smaller by factors ranging from 1 (1)
to 49300 (59000).

We also performed an additional experiment of measur-
ing the trace sizes by using selective tracing (SR TEI), that
is, we replay all the relevant TEIs but do not necessarily
trace all of them. Selective tracing of TEIs is performed as
follows. For programs with a memory bug, that causes a
Segmentation Fault, the bug manifests itself from the root
cause to the crash point through a series of memory depen-
dences in the program. Hence, if the faulty interval TEIi

is not memory dependent on another interval TEIj , then
the trace of TEIj does not contain any useful information
about the crash. However, TEIj may still have to be re-
played since TEIi may be dependent on it due to event de-

pendences. Since we already have all dependences between
the various TEIs, we use this information to decide which
TEIs to trace. Then, we use our dynamic tracing infras-
tructure to selectively turn on tracing for the appropriate
TEIs. With selective tracing, the reduced basic block traces
are smaller than the original by a factor of 478 to 490000.
The corresponding reduction factors for dependence traces
range from 380 to 470000. Note that this huge reduction
in trace sizes comes from both execution reduction and se-
lective tracing. For prozilla-2, selective tracing is the only
single contributing factor.

Time Overhead. Table 5 gives the data on the runtime per-
formance for the various executions we have considered.
First, we measured the logging overhead on the original exe-
cution. In Table 5, under the heading of Logging Overhead,
we give the execution times of the program run without log-
ging (Orig-1) and with logging (Logged). The ratio of the
two in column Logged/Orig-1 shows that the program exe-
cution slows down by a factor ranging from 1.1 to 2.8. The
logging overhead is small for mysql and axel and slightly
higher for prozilla, proxyc, and proftp. The reason for the
slightly increased overhead for some programs is because
their long-running execution involves downloading large files
from a website. Jockey makes a separate copy of the con-
tents of the downloaded file and this increases the overhead.
However, the overhead is still reasonable and is acceptable
to have logging turned on during normal execution.

We then measured the execution times of the programs
during replay from corresponding logs both without and
with tracing. In each of these two cases we made three
measurements: the execution time to replay the entire exe-
cution (Orig-2/3); the execution time to replay the execu-
tion of only the relevant threads (R Thread-2/3); and the
execution time to replay the execution of only the relevant

Table 6: Replay Log Sizes of original and shortened
runs, (M - million).

Program Number of events in replay log
Orig. R Thread R TEI Orig./

R TEI
mysql-1 4801 281 236 20.3
mysql-2 3749 489 365 10.3
mysql-3 5453 902 332 16.4
prozilla-1 7.2 M 621 73 98000
prozilla-2 10.8 M 10.8 M 10.8 M 1
proxyc-1 32.8 M 798 798 41000
axel-1 1695 954 954 1.8

thread execution intervals (R TEI-2/3). In case of replay
with tracing, we made an additional measurement that takes
advantage of selective tracing (SR TEI-3).

Let us consider the performance of replaying the original
and reduced executions without tracing turned on. Exclud-
ing prozilla-2, while the original execution time Orig-2 that
includes all threads ranges from 0.14 to 16.6 seconds, the ex-
ecution time R Thread-2 which excludes irrelevant threads
ranges from 0.02 to only 2.3 seconds. Then, if irrelevant
TEIs are removed, the execution time is further reduced to
R TEI-2 which ranges from 0.02 to only 0.1 seconds. With
the exception of prozilla-2, all the buggy programs have a
significant reduction in their execution times.

Next we consider the performance of the various execu-
tions with tracing turned on. The overhead of tracing given
by column Orig-3/Orig-2 is as high as 228 which is the
factor by which the execution slows down. For mysql our
data shows that tracing can cause a significant slowdown
in performance which cannot be tolerated even during de-
bugging. However, after execution reduction this overhead
is greatly reduced. Excluding prozilla-2, while the original
execution time Orig-3 that includes all threads ranges from
3.2 to 3736 seconds, the execution time R Thread-3 which
excludes irrelevant threads ranges from 0.3 to 468 seconds.
Then, if irrelevant TEIs are removed, the execution time
R TEI-3 is further reduced and it ranges from 0.3 to only
0.9 seconds (excluding prozilla-2). With selective tracing the
execution time SR TEI-3 for prozilla-2 is greatly reduced,
that is, from 2364 to 560 seconds. Thus, the combination of
removing irrelevant threads, removing irrelevant TEIs, and
performing selective tracing proves effective for all programs.

Table 6 gives the number of events in the original and re-
duced replay logs for the original and shortened executions.
The final reduced log is smaller than the original by factors
ranging from 1 to 41000 which translates into smaller ex-
ecution times as already observed and hence smaller trace
sizes.

6. RELATED WORK
There have been many works that have explored the tech-

nologies of checkpointing/logging for replay [25, 15, 22] and
lower level tracing [29, 8] to collect dynamic information
useful in debugging. However, these technologies have been
explored separately. In this paper, we show benefits of inte-
grating them into a single framework.

The prior work that is closest to ours is the Execution Fast
Forwarding (EFF) [30] system. The EFF system also per-
forms a form of Execution Reduction by integrating check-

pointing with fine-grained tracing. It is based on the idea
that often a fault is triggered by a certain input. By filtering
the inputs to find the fault triggering input, the fault can
be reproduced. Tracing can then be applied to the smaller
program run corresponding to the triggering input. How-
ever, the Execution Reduction (ER) system described in this
paper is much more general than the EFF system. In partic-
ular, the advantages of ER over EFF include the following:

• The ER system is designed to handle multithreaded
applications while the EFF system was designed for
single threaded applications. One of the key contribu-
tions of the ER system is the dynamic algorithm that
we provide for efficiently identifying the interthread
dependences. The EFF system does not address this
issue as it does not consider multithreaded applica-
tions.

• In the EFF system, the execution reduction is achieved
by exploiting information collected using static analy-
sis. The disadvantage of using static analysis is that
it is conservative and hence dynamic opportunities for
achieving execution reduction cannot be exploited. In
particular, if static dependences do not manifest them-
selves at runtime, this information can be exploited for
execution reduction in the ER system but not in the
EFF system.

• The ER system does not necessarily trace the entire ex-
ecution that is replayed. In contrast, the EFF system
traces the entire execution that is replayed. Therefore,
in the ER system, the reduction in tracing is not lim-
ited by the amount of execution reduction achieved.

• Finally, input filtering that is used as the basis of exe-
cution reduction in EFF is the special case of execution
reduction achieved by the ER system. ER system can
handle a variety of situations, including those where
input filtering is applicable.

In summary, the attractive features of the ER system are
that it is more general and more effective than the EFF
system.

There has been some recent work that propose designs
of specialized hardware to limit the overhead of checkpoint-
ing/logging [13, 27]. These systems aim to minimize the
overhead incurred while logging an execution for replay. This
work is orthogonal to ours as these systems could be used
to improve the performance of our logging phase. However,
the advantage of the proposed ER system is that it relies
entirely on software techniques and is therefore applicable
to systems being used today. There has also been work
on how to record shared memory dependences efficiently to
replay multithreaded programs when run on a multiproces-
sor [28, 14]. When run on a multiprocessor, recording the
schedules alone is not enough because multiple threads can
execute simultaneously. However, only the shared memory
dependences (RAW, WAR and WAW) of concurrently ex-
ecuting threads need to be recorded. In our work, to find
interthread dependences, we need to track all shared mem-
ory dependences but only of the type RAW.

7. CONCLUSIONS
In this paper, we described the execution reduction system

that can effectively combine checkpointing and tracing in

order to debug long-running multithreaded programs. Our
system uses dynamic techniques for eliminating the execu-
tion of irrelevant threads and irrelevant thread execution
intervals from the final replay phase that collects traces.
Further, it also eliminates unnecessary tracing during the
replaying of relevant threads and thread execution inter-
vals. The combined effect of the above approach is that
the tracing overhead and the amount of trace data collected
is greatly reduced. Most importantly, to make the above
scheme work, we developed a three stage scheme for iden-
tifying dynamic shared memory dependences between exe-
cuting threads that is both space and time efficient. Our
experiments demonstrate the effectiveness of the proposed
techniques.

8. REFERENCES
[1] www.mysql.org
[2] http://bugs.mysql.com/bug.php?id=110
[3] http://bugs.mysql.com/bug.php?id=169
[4] http://bugs.mysql.com – Change Log
[5] http://www.securityfocus.com/bid/12635
[6] http://prozilla.genesys.ro/?p=news
[7] http://www.securityfocus.com/bid/13059
[8] S. Bhansali, W-K. Chen, S. de Jong, A. Edwards, R.

Murray, M. Drinic, D. Mihocka, and J. Chau, “Framework for
instruction-level tracing and analysis of program executions,”
Virtual Execution Environments Conference, Ottawa,
Canada, June 2006.

[9] N. Gupta, H. He, X. Zhang, and R.Gupta, “Locating Faulty
Code Using Failure-Inducing Chops,” 20th IEEE/ACM
International Conference on Automated Software
Engineering, pages 263-272, Long Beach, California, Nov.
2005.

[10] T. Gyimothy, A. Beszedes, I. Forgacs, “An efficient relevant
slicing method for debugging,” 7th European Software
Engineering Conference/ 7th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
Toulouse, France, 1999.

[11] B. Korel and J. Laski, “Dynamic program slicing,”
Information Processing Letters, Vol. 29, No. 3, pages 155-163,
1988.

[12] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou,
“BugBench: a benchmark for evaluating bug detection tools”,
Workshop on the Evaluation of Software Defect Detection
Tools, 2005.

[13] S. Narayanasamy, G. Pokam, and B. Calder, “BugNet:
Continuously Recording Shared Memory Dependences for
Deterministic Replay Debugging,” Thirty Second
International Symposium on Computer Architecture,
Wisconsin, USA, June 2005.

[14] S. Narayanasamy, C. Pereira, and B. Calder, “Recording
Shared Memory Dependences using Strata,” Twelfth
International Conference on Architectural Support for
Programming Languages and Operating Systems, San Jose,
California, October 2006.

[15] R.H.B. Netzer and M.H. Weaver, “Optimal Tracing and
Incremental Reexecution for Debugging Long-Running
Programs”, ACM SIGPLAN Conference on Programming
Language Design and Implementation, Orlando, FL, USA,
pages 313-325, June 1994.

[16] D.Z. Pan and M.A. Linton, “Supporting reverse execution
of parallel programs,” ACM workshop on parallel and
distributed debugging, Madison, WI, USA, May 1988.

[17] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou, “Rx:
treating bugs as allergies - a safe method to survive software
failures”, the 20th ACM Symposium on Operating Systems
Principles Brighton, UK, pages 235-248, Oct. 2005

[18] M.C. Rinard, C. Cadar, D. Dumitran, D.M. Roy, T. Leu,
and W.S. Beebee, “Enhancing Server Availability and

Security Through Failure-Oblivious Computing”, the Sixth
Symposium on Operating System Design and Implementation
San Francisco, California, pages 303-316, 2004

[19] M. Ronsse, K. De Bosschere, M. Christiaens, J.C. de
Kergommeaux, and D. Kranzlmller, “Record/replay for
nondeterministic program executions”, Communication of the
ACM 46(9), pages 62-67, 2003

[20] M. Ronsse, K. De Bosschere, and J.C. de Kergommeaux,
“Execution replay and debugging”, Fourth Workshop on
Automated and Analysis-Driven Debugging, Munich,
Germany, August 2000.

[21] R. Rugina and M.C. Rinard, “Pointer Analysis for
Multithreaded Programs,” ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages
77-90, Atlanta, May 1999.

[22] Y. Saito, “Jockey: a user-space library for record-replay
debugging”, Sixth International Symposium on Automated
and Analysis-Driven Debugging, Monterey, California,
September 2005.

[23] A. Salcianu and M.C. Rinard, “Pointer and Escape
Analysis for Multithreaded Programs,” 8th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, pages 12-23, Snowbird, Utah June 2001.

[24] J. Seward et al. “Valgrind: A GPL’d system for debugging
and profiling x86-linux programs”, http://valgrind.ked.org/,
2004.

[25] S.M. Srinivasan, S. Kandula, C.R. Andrews, and Y. Zhou,
“Flashback: a lightweight extension for rollback and
deterministic replay for software debugging”, USENIX
Annual Technical Conference, Boston, MA, USA, June 1994.

[26] L.D. Wittie. “Debugging distributed C programs by real
time replay,” ACM workshop on parallel and distributed
debugging, pages 57-67, Madison, WI, USA, May 1988.

[27] M. Xu, R. Bodik, and M. Hill. “A Flight-Data Recorder for
enabling Full-System Multiprocessor Deterministic Replay,”
Thirtieth International Symposium in Computer Architecture
, San Diego, California, June 2003.

[28] M. Xu, R. Bodik, and M. Hill. “A Regulated Transitive
Reduction for Longer Memory Race Recording,” Twelfth
International Conference on Architectural Support for
Programming Languages and Operating Systems, San Jose,
California, October 2006.

[29] X. Zhang and R. Gupta, “Whole Execution Traces,”
IEEE/ACM 37th International Symposium on
Microarchitecture, pages 105-116, 2004.

[30] X. Zhang, S. Tallam, and R. Gupta “Dynamic Slicing Long
Running Programs through Execution Fast Forwarding,” 14th
ACM SIGSOFT Symposium on Foundations of Software
Engineering, Portland, Oregon, November 2006

