
Path Sensitive Static Analysis of Web Applications
for Remote Code Execution Vulnerability Detection

Yunhui Zheng Xiangyu Zhang
Department of Computer Science, Purdue University

Abstract—Remote code execution (RCE) attacks are one of
the most prominent security threats for web applications. It is
a special kind of cross-site-scripting (XSS) attack that allows
client inputs to be stored and executed as server side scripts.
RCE attacks often require coordination of multiple requests and
manipulation of string and non-string inputs from the client side
to nullify the access control protocol and induce unusual execu-
tion paths on the server side. We propose a path- and context-
sensitive interprocedural analysis to detect RCE vulnerabilities.
The analysis features a novel way of reasoning both the string
and non-string behavior of a web application in a path sensitive
fashion. It thoroughly handles the practical challenges entailed
by modeling RCE attacks. We develop a prototype system and
evaluate it on ten real-world PHP applications. We have identified
21 true RCE vulnerabilities, with 8 unreported before.

I. INTRODUCTION

The Internet has been an important social and business plat-

form for many daily activities, which are usually performed

through web applications (apps). Once a web app is put online,

it can be accessed and used by anyone around the world. A

large volume of valuable and sensitive user data are processed

and stored by web apps, making them attractive targets of

security attacks. According to a risk report from IBM [3],

in the past a few years, security attacks to web apps have

become the dominant kind of attacks (i.e., 55% of all the

attacks reported in 2010).

Among the web app attacks, Remote Code Execution (RCE)

is one of the most harmful threats [2]. It takes advantage of

defects of a web app to inject and execute malicious server-

side script in the context of the targeted app. Consequently,

the attacker could gain accesses to resources authorized to the

app (e.g. user data in a database). According to a report from

the Open Web Application Security Project (OWASP), PHP

RCE is the most widespread PHP security issue since July

2004 and thus has been ranked the number one threat on the

web apps security problem list [2]. We have also observed

popular apps suffering from RCE defects. One of them has

been downloaded for over six million times.

Essentially, RCE is a special kind of Cross Site Scripting

(XSS) attacks. The root cause is the same as the typical

XSS and SQL injection attacks, which is that invalid client-

side inputs are undesirably converted to scripts and executed.

However, RCE attacks are usually much more sophisticated.

A successful RCE attack may require coordinations between

multiple requests to more than one server side scripts. There

may also be requirements on the session of these requests. In

other words, the attacks are stateful, crossing multiple rounds

of communication between a server and a client. Furthermore,

it demands manipulating both the string and non-string parts

of the client side inputs. In some cases, the inputs have to be

so crafted that they are not even legitimate inputs allowed by

the client side interface.
There have been a lot of works on detecting SQL injec-

tion [20], [31], [18], [33], XSS [9], [16], [21], [23], [26], [33],

and HTTP request tampering [8], [11] attacks. However, due

to the unique characteristics of RCE attacks, they fall short in

detecting and confirming these attacks.
Dynamic tainting based techniques [11], [8] can monitor

information flow inside web app execution to determine if any

client side inputs can flow to critical places. They can be used

to detect runtime instances of RCE attacks, but cannot expose

vulnerabilities before real attacks are launched.
While static analysis has the potential of exposing vulner-

abilities, most of them [20], [31], [27], [33], [34], [35], [17]

cannot cohesively reason about the string and non-string parts

of an application and many lack path sensitivity, whereas

RCE attacks require satisfying intriguing path conditions,

involving both strings and non-strings. Recently, researchers

have proposed techniques that can model both strings and

non-strings in dynamic symbolic execution of web apps [25],

[12]. However, they focus on modeling only the executed

path, whereas vulnerability detection requires modeling all

program paths. A more thorough discussion of the limitations

of existing techniques can be found in Section III.
In this paper, we propose a path- and context-sensitive inter-

procedural static analysis that detects RCE vulnerabilities in

PHP scripts. It features the capabilities of reasoning both the

string and non-string parts of an application in a cohesive and

efficient manner, and reasoning across multiple scripts and

requests. It is able to guide exploit generation (i.e. gener-

ating requests with concrete inputs) to confirm the reported

vulnerabilities. It analyzes and encodes PHP scripts as two

kinds of constraints: non-string and string constraints. A novel

algorithm is developed to solve these constraints in an iterative

and alternative fashion. Real exploits can be composed from

the satisfying solutions.
The contributions of the paper are summarized as follows.

• We develop a static analysis to automatically detect

RCE vulnerabilities in PHP code. The analysis is inter-

procedural, context- and path-sensitive, leveraging a

string solver and a SMT solver.

• We propose to abstract a web app into two separate sub-

programs: one capturing the non-string semantics and

session_name('phpMyAdmin');
…

48 if ($_GET['submit_save']) {
52 file_put_contents('./config/config.inc.php', getConfigFile());
56 }

@ setup/config.php

21 public static function getConfigFile()
22 {
26 $c = getConfig();
41 foreach ($c['Servers'] as $id => $server) {
42 $ret .= … . $id
55 }
76 return $ret;
78 }

@ setup/lib/ConfigGenerator.class.php

474 public function getConfig()
475 {
476 $c = $_SESSION[‘ConfigFile0’];
481 return $c;
482 }

@ setup/lib/ConfigGenerator.class.php
266 if ($_GET['session_to_unset']))
267 {

// parse_str() parses the argument into var assignments.
268 parse_str($_SERVER['QUERY_STRING']);
276 }

@ index.php

[3] Execute the PHP script injected

Send http://pmaURL/config/config.inc.php

(a) Exploit steps

(b) Code snippets relevant to step [1] (c) Code snippets relevant to step [2]

[1] Session poisoning
Set $code = urlencode(“arbitrary_php_script ”)

Send http://pmaURL/index.php?_SESSION[ConfigFile0][Servers][$code]=0&session_to_unset=1

[2] Script Injection: save the poisoned session in a PHP file

Send http://pmaURL/setup/config.php?submit_save=1

session_name('phpMyAdmin');
33 require 'swekey.auth.lib.php';

@ swekey.auth.lib.php

Fig. 1: RCE in phpMyAdmin v3.4.3 (simplified)

the other modeling the string related behavior. The two

sub-programs are encoded separately. We also develop a

novel algorithm that solves the two sets of constraints

simultaneously.

• We address a number of practical challenges, including

analyzing across scripts and requests to simulate stateful

attacks, handling dynamic conditional script inclusion,

and modeling session constraints.

• We have evaluated the technique on 10 real world web

applications. We successfully identify 21 RCE vulnerabil-

ities with 8 that have not been reported in the past. We

have confirmed all these vulnerabilities by constructing

real exploits based on the analysis results. The overhead

of our technique is reasonable.

II. MOTIVATING EXAMPLE

We use two examples to motivate our approach.

A. RCE in phpMyAdmin

Recently, a RCE vulnerability was reported for phpMyAd-

min v3.4.3 1, which is a MySQL database management tool

using a web interface. The vulnerable versions have been

downloaded over six million times according to SourceForge.

Fig.1 (a) describes an exploit to the vulnerability, which

consists of three steps. The first two are session poison-

ing and script injection. In the first step, a crafted re-

quest is sent to index.php to change the configuration

of the server. Instructed by the command session to unset,

a key-value pair is stored to a special session array

SESSION[ConfigFile0][Servers] that is supposed to store the

list of servers under administration. The key-value pair con-

tains a piece of PHP script $code as the key, which gets

stored to the current session. In the second step, another

request is sent to config.php to save the current con-

figuration, including the information stored in the session

array SESSION[ConfigFile0][Servers] by the previous step.

1CVE-2011-2506: http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-2506

Consequently, the provided code piece is stored to a PHP file,

which gets executed by the request in the third step.

The relevant code snippets are shown in Fig.1 (b-c).

Fig.1 (b) shows the relevant snippets in index.php and

swekey.auth.lib.php that are executed in the ses-

sion poisoning step. index.php first specifies the cur-

rent session name. Then it executes the included script

swekey.auth.lib.php. Depending on the value of the

incoming parameter session to unset, method parse str()

is called at line 268, parsing its argument to variable

assignments. For example, parse str(‘a=1&b=2’) has the

same effect as that of executing ‘$a=1; $b=2;’. The vari-

able $ SERVER[‘QUERY STRING’] stores the query string

from the client. Hence the invocation at line 268 defines

$ SESSION[‘ConfigFile0’][‘Servers’][‘$code’] to 0. As PHP

treats arrays as hash mappings indexed by keys, the key value

$code is stored to the session array.

Fig.1 (c) shows the relevant snippets in config.php that

are executed in the script injection step. At line 52, there is

a write to a PHP file guarded by a predicate at line 48. In

the file write, the string returned by getConfigFile() is written.

At line 41 inside getConfigFile(), $c[‘Servers’] is aliased to

$ SESSION[‘ConfigFile0’][‘Servers’]. Then in the foreach loop,

the previously stored key value $code is assigned to $id and

defined as part of the return value $ret. In this way, the string

($code) composed by the client in the previous request is

written to a PHP script.

A hidden complexity is that the session of the requests have

to be identical. In handling client side requests, if not explicitly

specified, a default session name (‘PHPSESSION’) is assigned.

Therefore, in the session poisoning step, one cannot directly

send the request to swekey.auth.lib.php, even though

the request can be correctly parsed and the arguments can be

stored into the (default) session. Because the default session

is different from the session specified in the second step. We

have to call index.php instead to ensure we are referring

to the same named session ‘phpMyAdmin’ as in config.php

in the second step.

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-2506

// Accessing directly is allowed in common.php
 13 require_once 'common.php';
 16 $cmd = $_REQUEST['cmd'];
 22 switch ($cmd) {
 23 case '_debug':
 24 ……
 27 default:
 32 $script_cmd = $cmd . '.php';
 39 }
 ……
 64 include ($script_cmd);

@ cmd.php

(a) Exploit

 35 $direct_scripts = array('cmd.php', …);
// $_SERVER[‘SCRIPT_NAME’] is the script client requesting

 42 $script_running = $_SERVER['SCRIPT_NAME'];
 43 foreach ($direct_scripts as $script) {
 46 if (preg_match('$script, $script_running))
 47 $scriptOK = true;
 51 }
 ……

// If script requested is not in $app[‘direct_scripts’], deny
 57 if (! $scriptOK)
 62 die();

@ common.php
 // This page not directly accessible
 13 require_once 'common.php';
 32 if ($_REQUEST['search'])

masort(… , $_REQUEST[‘oderby’]);
 ……
1002 function masort (&$data, $sortby) {
1014 foreach (split(',' , $sortby) as $key)
1017 $code .= "… $key… ";

 // turn the string held by $code into a dynamic function
1080 $CACHE = create_function (… , $code);
1083 uasort(… , $CACHE);
1084 }

@ query_engine.php

Set $code = urlencode(“arbitrary_php_script ”)
Send http://phpLDAPadminURL/htdocs/cmd.php?cmd=query_engine&search =1&orderby=$code

(b) Relevant code snippets

call edge

file inclusion

Fig. 2: RCE in phpLDAPadmin v1.2.1.1 (Simplified)

From the example, we make a number of observations.

First, determining if a vulnerability is a true positive demands

reasoning both string and non-string parts. Observe that the

path conditions at line 48 in config.php and line 266 in

swekey.auth.lib.php entail non-string reasoning while

the file name and the file content at line 52 in config.php

require string reasoning. Second, we have to reason across

requests and scripts, and handle sessions properly. Neither

index.php nor config.php is vulnerable by itself. Third,

in order to successfully construct an exploit to confirm the vul-

nerability, we need to know the concrete inputs to satisfy the

path conditions. For instance, the parameter session to unset

in the step (1) request in Fig.1 (a) is to satisfy the condition

at line 266. The parameter in the step (2) request is to satisfy

the condition at line 48. In other words, the analysis ought to

be path-sensitive.

B. RCE in phpLDAPadmin

Another type of RCE vulnerabilities is related to eval()

that executes a string provided as its parameter. There is

a vulnerability2 in phpLDAPadmin v1.2.1.1 rated “critical”

by the developer. PhpLDAPadmin provides user-friendly web

interfaces to manage a LDAP server. It is a popular tool and

has been installed for more than 242 thousand times.

As shown in Fig. 2 (a), the vulnerability is exploited by a

request to cmd.php, which is supposed to accept and execute

a command from the client. In the exploit, an invalid command

is provided such that a PHP script named by the command (i.e.

query_engine.php) gets executed. The script is supposed

to be internal and cannot be requested directly. It can accept

the rest of the parameters in the exploit request and execute

the malicious script provided by variable $code.

The relevant code snippets are shown in Fig. 2 (b). The

script cmd.php first gets executed. It includes common.php

for access control, which is a common design pattern for PHP

programs. The access control is conducted by comparing the

current script acquired from $ SERVER[’SCRIPT NAME’] at

line 42, with a white-list specified in array $direct scripts. Ob-

serve that at line 35 in common.php, cmd.php is listed and

the execution is allowed to proceed. Lines 16-39 in cmd.php

determine the command indicated by the client request. If it

2CVE-2011-4075: http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-4075

is not a pre-defined command, such as “_debug”, the code

constructs a PHP file name with the command argument (line

32) and tries to load and execute the file at line 64. In this

case, the script query_engine.php is executed. Inside

query_engine.php, common.php is again included and

executed for access control. Since query_engine.php is

included by cmd.php, it inherits all its privileges. Hence,

despite the script itself is not in the while-list, the execution

is allowed to continue. At line 32 in query_engine.php,

if the client parameter search is set, the masort() function is

called to execute a sorting function constructed dynamically by

lines 1014-1080. The construction allows the string provided

in the client parameter $orderby to be included as part of

the constructed function and executed at line 1083. Note that

variable $sortby is an alias to $orderby and uasort() at line

1083 is equivalent to eval().

Note that the root cause of the defect is not just the masort()

function because executing a dynamically constructed function

is the intended semantics of masort(). It is the combination

of the mistake in access control, i.e. allowing the client to

indirectly invoke query_engine.php, and the masort()

function that constitutes the vulnerability. Hence, our tech-

nique ought to be able to analyze access control mechanism,

which is essentially through predicates. For this example,

the request is so crafted (i.e. the cmd parameter has to be

‘query engine’, not even a legitimate command) to get through

the access control. It is unlikely that an analysis incapable of

modeling path conditions would identify the exploit.
The example also illustrates the necessity of handling dy-

namic file inclusion (line 64). We have to model the fact that

the name of the file to be included is a variable in the program.

Based on the value of the variable, different files need to be

modeled and encoded as part of the constraints.

III. PROBLEMS IN EXISTING STATIC ANALYSIS

Existing static techniques fall short in RCE vulnerability

detection and exploit generation.

String Analysis is Needed. Web apps are different from

regular programs in that they heavily rely on string operations.

Inputs from the client side are mostly strings. The outputs of

web apps are mainly strings as well, such as SQL queries, html

pages, and JavaScript code pieces. In some sense, the main

functionality of a web app is often string processing. However,

 http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-4075

PHP Script Non-string Abstraction String Abstraction

01 if ($_POST['a'] < 3) {
02 $role = "visitor";
03 $log = “v”;
04 }
05 else {
06 if ($_POST['a'] < 5) {
07 $role = "user";
08 $log = $_POST[`msg’];
09 }
10 else {
11 $role = "admin";
12 $log = “a”;
13 }
14 }
15 if ($role == "admin")
16 writeFile(“f.php”, $log);

101 b1 = _POST_a < 3 ;
102 if (b1) {
103 Tr=0;
104 Tl=0;
105 }
106 else {
107 b2 = _POST_a < 5 ;
108 if (b2) {
109 Tr=0;
110 Tl=1;
111 }
112 else {
113 Tr=0;
114 Tl=0;
115 }
116 }
117 if (b3)
118 assert1 (Tl=1);

201 if (b1) {
202 role:= "visitor";
203 log:= “v”;
204 }
205 else {
206 if (b2) {
207 role:= "user";
208 log := _POST_msg;
209 }
210 else {
211 role := "admin";
212 log := “a”;
213 }
214 }
215 b3=compare(role, “admin”);
216 if (b3)
217 assert2 (“f.php” in “*.php”)

Fig. 3: Constraint Generation Example

cfg log1:="v"; cfg role1:="visitor"; //line 02-03

cfg log2:=post_msg; cfg role2:="user"; //line 07-08

cfg log3:="a"; cfg role3:="admin"; //line 11-12

cfg log4:=log2|log3; cfg role4:=role2|role 3; //line 13

cfg log5:=log1|log4; cfg role5:=role1|role 4; //line 14

assert("f.php" in "*.php"); //Assertions not in HAMPI format

assert(log5==post_msg); //Simplified for reading

Fig. 4: Path insensitive encoding

a lot of existing static analysis for regular programs [32], [14]

do not focus on properly modeling strings.

String Analysis Alone is Not Sufficient. On the other hand,

string analysis [20], [31] alone is not sufficient as most web

apps still have substantial non-string operations, which are for

execution path control, access control, and arithmetic compu-

tation. The string and non-string operations cohesively depend

on each other. Most existing string analysis are based on

context free grammar (CFG) and only model string operations,

abstracting away the non-string part of a web app. This could

lead to false positives. Moreover, since they do not reason

about path conditions, users can hardly use them to construct

exploits because that requires knowing the inputs satisfying

various path conditions.

HAMPI. Hampi [20] is a string analysis engine developed in

the past. A lot of recent web app analysis are built upon it [25].

It models a string assignment as a grammar rule definition.

Assignments to the same variable in the two branches of a

conditional statement become alternatives in the right hand

side of a rule.

Take the script in the left column of Fig. 3 as an example.

It determines the role of the client according to the value of

$ POST[‘a’], defines the content in $log and finally writes to

a PHP file if the role is “admin”. To detect if the file write is

vulnerable to RCE attacks, at line 16, we assert that (1) the file

written is a PHP file and (2) the content written to the file is

from $ POST[‘msg’] provided by the client. The first assertion

is trivially true. However, path sensitive and path insensitive

analysis yield different answers to the second one.

In standard string analysis such as HAMPI, the CFG gen-

erated for the program is shown in Fig. 4 and the second

assertion is satisfiable with the CFG. Therefore, a vulnerability

is reported. However, it is a false positive. Consider the

predicate at line 15, the reachability condition of line 16

requires $role = “admin”, which implies $log = “a”. This can

only be prevented by a path-sensitive analysis modeling both

string and non-string behavior.

Solving String and Non-String Constraints Together is

Difficult. While we need to reason about string and non-

string behavior together, existing solutions are not adequate.

One class of solutions models strings as bit-vectors which can

be handled by existing SMT solvers to achieve solving string

and non-string constraints together. However, a precondition

in bit-vector logic is that the lengths of bit-vectors are fixed

and decidable. However, this does not hold for strings. For

example, str := post msg | “123” is a CFG rule. The length

of str varies depending on the alternatives. In one of the

alternatives, it is determined by the client side input, which is

uncertain. This causes difficulty in reasoning about constraints

built on top of str. Most existing techniques in this category are

developed in the context of dynamic symbolic execution [25],

[12]. Since they only need to model the executed path, string

lengths or strong hints of string lengths can be acquired from

the execution. These techniques can hardly be applied in our

context as we need to model all possible paths. Another

plausible solution is to translate both string and non-string

constraints to a third party constraint language [28] and solve

them together. However, third party languages are often limited

in expressiveness. For example in [28], the M2L constraint

language used can only model a very small set of arithmetic

operations, namely addition and subtraction, and it does not

allow more than one variables in an expression.

Incapabilities in Modeling RCE Specific Characteristics.

As we can observe from the two cases in the previous section,

RCE attacks have specific characteristics that need to be

properly handled. For example, multiple requests to more

than one scripts need to be analyzed together; dynamic file

inclusion needs to be modeled. As far as we know, none of

the existing techniques can meet the challenges.

IV. DESIGN

Given a web app, we first identify the operations sensitive to

RCE attacks, called sinks. We consider two kinds of sinks: file

writes and dynamic script evaluations (e.g. eval()). For a file

write, if we can determine along some feasible path it writes

to a .php file and the content contains values from the client, it

is considered problematic. For a dynamic script evaluation, if

the string evaluated as a script contains values from the client

along some feasible path, it is considered problematic.

Our technique is an inter-procedural, context-sensitive and

path-sensitive static analysis. It reasons about both string

and non-string behavior. To begin with, the technique creates

two abstractions of the given app: one for the string related

behavior and the other for the non-string related behavior.

The non-string abstraction includes additional taint semantics

to reason about the input correlation for each variable. The

two abstractions are encoded separately. Then we solve them

together via a novel and sound, iterative and alternative

algorithm. For a potentially vulnerable file write, we query the

string constraints if the file name ends with the PHP extension

and query the non-string constraints to determine if the written

content is tainted and the file write is reachable. The solution

has to consistently satisfy all these queries.

A. Abstractions

For each PHP script, we create two abstractions: string and

non-string abstractions. Intuitively, one can consider they are

simplifications of the original program that handle only string

type and non-string types, respectively. To facilitate abstrac-

tion, we have implemented a number of auxiliary analysis.

One is type inference [22] as PHP programs are dynamically

typed. It leverage the known interface of string operations. For

example, if a statement is a string concatenation, the variable

holding the return value as well as the arguments are of string

type. Transitively, other correlated variables can be typed. The

second is a standard context-sensitive alias analysis. The third

one is a field name analysis that identifies all the field names

or constant indices for an array. We assume a program is

normalized such that the predicate in a conditional statement

is a singleton boolean variable.

TABLE I: String Abstraction Rules. Operator ‘:=’ represents defini-
tion and ‘.’ concatenation. Variables $s1, $s2, $s3 are of string type, $a, $a1
and $a2 are of array type, and $b is of boolean type. F1,..., and fn are constant
field names of $a, $a1, and $a2 identified through the field name analysis.

Statements Abstraction
(1) $s1 = $s2; s1 := s2
(2) $s1 = concat($s2, $s3) s1 := s2.s3
(3) $s1[‘c’] = $s2; s1 c :=s2
(4) $s1 = $s2[‘c’]; s1 :=s2 c
(5) $a1 = $a2; a1 f1 :=a2 f1

...
a1 fn :=a2 fn

(6) $b= ($s1==$s2) b = compare(s1, s2)
(7) if (b) {...} else {...} if (b) {...} else {...}
(8) foreach ($a as $s1⇒$s2) s1:=‘f1’; s2:=a f1; /* loop body */;

/*loop body*/ ...
s1:=‘fn’; s2:=a fn;/*loop body*/;

String Abstraction. The abstraction retains the control flow

structure, statements of string type, and string comparisons in

the original program. Other statements are abstracted away. It

thus models the string related behavior in the program.

The detailed abstraction rules are presented in Table I. String

copies and concatenations (rules (1) and (2)) are straightfor-

ward. For an array access indexed by a constant field name,

such as $a[‘c’], we create a new variable a c to denote the

field (rules (3) and (4)). Currently, we have limited support

for dynamically constructed field names/indices: we use free

variables to denote such accesses. For an array copy (rule (5)),

we generate the definitions for the fields identified by the field

name analysis. For a string comparison (rule (6)), we retain the

same boolean result variable and make use of the compare()

primitive that compares two strings. We will explain in later

sections how this will be turned into string constraints and

solved by HAMPI. Rule (7) means that we retain the structure

of a conditional statement. For a regular loop, we unroll the

loop body once and turn it into a conditional statement. This

is a standard solution to handling loops in constraint based

analysis [13]. A foreach loop involving strings, “foreach ($a

as $s1⇒$s2)”, means that $a is a mapping and the loop iterates

over each entry of the mapping and instantiates $s1 with a key

and $s2 the corresponding value. We unroll the loop n times

for the n fields we have identified for the array (rule (8)). In

each iteration, the field name is associated with s1 and the

field value is associated with s2.
Note that the string abstraction is incomplete due to the

dynamic nature of the language. For example, it is difficult

to reason about string values in field accesses through dy-

namically constructed field names/indices. Fortunately, from

our experience, most field accesses have constant names. For

example in phpLDAPadmin, 3656 out of 4636 field accesses

have constant names. In our experiments, this has not led to

any false positives.
The third column in Fig. 3 shows the string abstraction for

the program in the first column. It is essentially a simplified

version of the original program with the integer comparisons

excluded and some unbounded boolean variables used.

TABLE II: Non-String Abstraction Rules. Variables $x, $y, $z are
of non-string type, $a is of array type, $s1, $s2 and $s3 are of string type, and
$b is of boolean type. Operator ⋄ denotes a binary operation. Tx represents
the boolean taint bit of $x. F1,..., and fn are constant indices identified through
the field name analysis.

Statements Abstraction
(8) $x = $y; x = y; Tx = Ty

(9) $x = $y ⋄ $z; x = y ⋄ z; Tx = Ty |Tz

(10) $x = $a[‘c’]; x = a c; Tx = Ta|Ta c

(11) if (b) {...} else {...} if (b) {...} else {...}
(12) foreach ($a as $x⇒$y) x=f1; y=a f1; Tx = Ta;

/*loop body*/ Ty = Ta|Ta f1;/*loop body*/;
...
x=fn; y=a fn; Tx = Ta;
Ty = Ta|Ta fn;/*loop body*/;

(13) $s1 = $s2; Ts1 = Ts2

(14) $s1 = concat($s2, $s3) Ts1 = Ts2|Ts3

(15) foreach ($a as $s1⇒$s2) Tx = Ta; Ty = Ta|Ta f1;
/*loop body*/ /*loop body*/;

...
Tx = Ta; Ty = Ta|Ta fn; ...

Non-String Abstraction. The Non-String abstraction retains

the same control flow structure as the original program and

all the statements of a non-string type. It also introduces taint

semantics into the abstracted program. The taint semantics

is standard, that is, a resulting variable is tainted if any of

the operands are tainted. This is to model the correlations to

client inputs. Hence, variables and statements of string type

are not completely abstracted away. Instead, a boolean variable

is introduced to represent the taint of a string variable. String

operations are abstracted to corresponding taint operations.
Table. II presents the rules. Rules (8) and (9) are standard.

In rule (10), the result variable $x is tainted if either the array

$a is tainted or the specific field is tainted. Intuitively, it means

if the entire array comes from the client, an array field comes

from the client. This allows us to model the taint propagation

semantics of array accesses with dynamically constructed field

names/indices. For instance, in the sample code in Fig. 1.

Statically, we don’t know what variables are written by line

268 without knowing the concrete request. However, it is

straightforward to assume that the $ SESSION array is tainted.

According to rule (10), $c is tainted at line 476, which leads

to $id being tainted at line 42, disclosing that $id could come

from the client. Rule (12) abstracts foreach loops with non-

string operands. Similar to that in string abstraction, it unrolls

the loop n times for the n constant fields identified through the

field name analysis. Observe that the taint propagation of $y

is similar to rule (10). Rules (13-15) are for string operations,

which are abstracted to taint operations.

There are some operations that have string operands but

non-string results, such as getting the index of a string in an-

other string, our implementation currently uses free variables

to denote the results of such operations.

The second column in Fig. 3 shows the non-string abstrac-

tion of the sample program. Observe that the two abstractions

use the same set of predicate variables, which allows us to

reason about the two parts together.

B. Constraint Encoding and Solving

With the two abstractions, the next step is to encode

them separately and then solve them together. We develop a

novel algorithm to drive the solution process. The algorithm

queries the STP solver and the HAMPI string solver iteratively

and alternatively to derive a consistent path-sensitive solution

for both sets of constraints. Intuitively, one can consider

the algorithm first solves the non-string constraints and pro-

duces a solution for the path conditions, the solution is then

used to derive the HAMPI encoding for that path from the

string abstraction. Doing so, the imprecision caused by path-

insensitivity can be avoided. If HAMPI fails to resolve the

constraints for the path, it means that the solution is infeasible.

The algorithm alternates to the STP solver to explore a new

solution. In the algorithm, we leverage the observation that

string constraints are strong in pruning search space. In many

cases, a not fully path-sensitive string encoding may not have

any solutions so that we can completely avoid exploring the

individual paths in that sub-space.

The encoding of the non-string part is standard (i.e. first

translates the program to its SSA form and models individual

statements to bit-vector operations) and hence omitted.

Encoding and Solving String Constraints. Before encoding,

the abstracted program is translated to its SSA form in which

a unique variable name is assigned to each definition and φ

operators are used at joint points to multiplex the different

values along different branches. The encoding is driven by

the assignment for the boolean variables in the abstraction.

The process is detailed in Algorithm 1.

Function genStrCSTR() generates HAMPI constraints (i.e.

a CFG) for a statement in the SSA form. It is a recursive

function, driven by the abstract syntax tree (AST) of the

statement. In particular, for an assignment statement (lines

1-2), a HAMPI CFG definition, denoted by keyword cfg,

is inserted to the CFG. For a conditional statement (lines

3-10), depending on the value assignment of the predicate

variable, one of the branch is encoded. If the variable value

is not specified, both branches are encoded. Note that, if

all predicate variables are specified, we essentially encode a

full program path. If only some are specified, we say that

we encode a partial path, denoting a set of full paths. In

lines 11-17, φ operators are encoded, which may introduce

alternatives in the resulting grammar (line 17). Lines 18-22

encode string comparisons. Because HAMPI doesn’t support

direct comparison of two strings, we use rules “assert v in s1;

assert v in s2” to query the equivalence of s1 and s2 with v

a free variable. Note that HAMPI will instantiate v when it

finds a satisfying solution.

Algorithm 1 Generate and solve string constraints

Input: S : a statement in the string abstraction in SSA form
R : assignment to boolean variables, indexed by var.

Output: the CFG Cstr .

genStrCSTR(S,R)

1: if S ≡ “s1 := s2” then
2: Cstr ← Cstr ◦ {cfg s1 := s2}

3: if S ≡ “if (b) S1 else S2” then
4: if R[b] ≡ true then
5: genStrCSTR(S1,R)
6: else if R[b] ≡ false then
7: genStrCSTR(S2,R)
8: else
9: genStrCSTR(S1,R)

10: genStrCSTR(S2,R)

11: if S ≡ “s1 := φ(b, s2, s3)” then
12: if R[b] ≡ true then
13: Cstr ← Cstr ◦ {cfg s1 := s2}
14: else if R[b] ≡ false then
15: Cstr ← Cstr ◦ {cfg s1 := s3}
16: else
17: Cstr ← Cstr ◦ {cfg s1 := s2 | s3}

18: if S ≡ “b = compare(s1, s2)” then
19: if R[b] is true then
20: Cstr ← Cstr ◦ {assert v in s1; assert v in s2; }
21: else
22: Cstr ← Cstr ◦ {assert v in s1; assert v not in s2; }

Input: P : string abstraction
R : assignment to boolean variables.

Output: SAT or UNSAT.

solveStrCSTR(P,R)

//generate HAMPI CFG
23: foreach top level statement S ∈ P do
24: genStrCSTR(S,R)

25: return QueryHampi(Cstr)

Function solveStrCSTR() determines if a (partial) path,

denoted by the (partial) specification of path conditions R,

is feasible from the perspective of the string abstraction P . It

builds the CFG by calling genStrCSTR() on all the top level

statements and then solves it by calling HAMPI.

Iterative Solving. The iterative driver algorithm is presented

in Algorithm 2. Function driver() takes the non-string con-

straints N , (the conjunction of the non-string encoding, the

reachability assertions, and the taint assertions), and the string

abstraction P , then produces a satisfying solution S if there is

one. A reachability assertion dictates a sink under considera-

tion is reachable (e.g. asserting line 118 is reachable in Fig. 3).

A taint assertion dictates the content of a file write or eval()

is tainted (e.g. the assertion at 118 in Fig. 3).

Lines 1-5 are the fast path to detect unsatisfying cases. Note

that the invocation of the string solver at line 4 considers the

path-insensitive encoding. Lines 6-7 are also the fast path,

checking if the fully path-sensitive string encoding with the

path specified by R is satisfiable. If so, we simply terminate

with R. If neither fast path can be taken, the recursive method

iterSolver() is called to derive a path-sensitive solution.

Algorithm 2 Iterative and Alternative Solving

Input: N : Non-string constraints.
P : String Abstraction.

Output: a satisfying solution or UNSAT.

driver(N,P)

1: (Satn, R)← querySTP(N)
2: if Satn ≡ UNSAT then
3: exit UNSAT

4: if solveStrCSTR(P, φ)≡ UNSAT then
5: exit UNSAT

6: if solveStrCSTR(P,R)≡ SAT then
7: exit R

8: iterSolver(N, P,R, φ)

Input: R : a known satisfying solution for N
S : the generated final solution

Output: function returns implies UNSAT

iterSolver(N,P,R, S)

9: if R ≡ φ then
10: exit S
11: b← select(R), bv ← R[b]
12: if solveStrCSTR(P, S ◦ {b = bv})≡ SAT then
13: iterSolver(N ◦ {ASSERT(b ⇐⇒ bv)}, P,R − {b}, S ◦ {b =

bv})

14: (Satn, R
′)← querySTP (N ◦ {ASSERT(b⇐⇒ ¬bv)})

15: if Satn ≡ UNSAT then
16: return
17: if solveStrCSTR(P, S ◦ {b = ¬bv})≡ UNSAT then
18: return
19: iterSolver(N ◦ {ASSERT(b ⇐⇒ ¬bv)}, P,R

′ − {b}, S ◦ {b =
¬bv})

Method iterSolver() takes an existing solution R to the non-

string part N as a reference to derive the final solution S.

The algorithm tries to speculate a (true/false) solution for a

selected predicate at one iteration. The speculation is guided

by the provided solution R. In other words, it tries to follow the

satisfying path for the non-string part as much as possible until

the string constraints become unsatisfiable. Then it backtracks

and tries a different speculation.

Lines 9-10 are the termination condition, it means that if we

have successfully speculated all predicates, we acquire a solu-

tion. Line 11 selects a predicate from the provided solution R.

Right now our selection is based on the dependence distance to

the sink under consideration. Line 12 speculates its value based

on R and queries the string solver. Note that S contains all the

predicates that have been speculated thus far and it does not

specify any predicate that has not been speculated. Essentially,

it is equivalent to querying the string engine with partial path-

step b1 b2 b3 STP HAMPI

1 f - - SAT

2 f t - UNSAT

3 f f - UNSAT

4 t - - UNSAT

TABLE III: Solving the example in Fig. 3.

sensitivity. This is to leverage the observation that in many

cases even partial path-sensitive string constraints are difficult

to satisfy, allowing us to prune search space. At line 13,

we continue speculation by recursively calling iterSolver().

Note that N is updated with the speculation, the predicate is

removed from R, and the speculated path (the final solution)

S is lengthened with the speculation.

In lines 14-19, when mis-speculation occurs, the negation

of the selected predicate is explored. If both branches of the

selected predicate have been tried but a satisfying solution

could not be found, the method returns, which is equivalent

to backtracking to the previous iteration.

Our experience shows that the algorithm can quickly con-

verge in both the SAT and UNSAT cases (Section VI).

Example. Consider the example in Fig. 3. The STP solver

first generate a solution {b1 = f, b2 = t, b3 = t} (line

1 in Algorithm 2). The path insensitive string encoding (i.e.

the one in Fig. 4) has a satisfying solution too. But, the

path sensitive HAMPI encoding (shown as follows) is not

satisfiable, disclosing the path is not a correct solution.

var v : 0 .. 20;

cfg role1 := "user"; // line 207

cfg log1 := post_msg ; // line 208

assert ("f.php" in "*.php);

assert (v in role1);

assert (v in "admin");

Hence, the algorithm resorts to the iterative solver. Table III

shows the process. At the beginning, it tries to follow the

SAT solution by STP. At step 1, the string constraints with

only b1 = f specified are SAT. So that the algorithm tries to

further speculate b2 = t, but this time the string constraints

are UNSAT. It then alternates to the STP solver, exploring

b2 = f , which turns out to be UNSAT. It backtracks and

explores b1 = t with the STP solver, which is UNSAT too. It

then terminates with UNSAT.

Our technique analyzes sinks one by one. To reduce com-

plexity, for each vulnerable candidate (sink), we use a PHP

slicer, which was implemented in our prior work [35], to prune

the irrelevant parts before abstraction and encoding. Since

our technique does not handle some string operations such

as indexOf(), it is unsound. However in practice, the number

of false positives is low (Section VI).

V. HANDLING PRACTICAL CHALLENGES

In this section, we discuss how to overcome a number of

practical challenges for RCE vulnerability detection.

Handling Dynamic Inclusion. At runtime, through dynamic

file inclusion, several PHP scripts may be combined together

as the running script. We need to model such effects. For

example, in Fig. 5, at lines 1 − 2 in index.php, based on

the value of $ REQUEST[’role’], different script files may be

@ admin.php @ user.php

11 function accessControl() {
12 if ($_SESSION [‘user’] ! = ‘admin’)
13 header(“Location: login.php”);
14 }
15 function editData() { … }
16 accessControl();

21 function editData() { … }

@ index.php

 1 if ($_REQUEST[‘role’] == ‘admin’) include (‘admin.php’);
 2 else require (‘user.php’);
 3 editData();

Fig. 5: Example to illustrate dynamic inclusion and access control.

/* b1=(_REQUEST[‘role’]==‘admin’) */

if (b1) {

 inc=1;

/*inlining admin.php*/

 /* b2=(_SESSION[‘user’]!=‘admin’) */

 if (b2) {

 exit;

 }

} else

 inc=2;

b3= (inc==1);

if (b3)

 /*inlining editdata() in admin.php*/

b4= (inc==2);

if (b4)

 /*inlining editdata() in admin.php*/

lines

1 and 2

line 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig. 6: The non-string abstraction of the program in Fig. 5.

included at runtime. As a result, the function invoked at line

3 may refer to different code bodies.

The solution is to have conditional inlining at the call

site that has multiple method bodies (e.g. line 3 in Fig. 5).

However, we need to model the fact that the condition of

inlining is not the reachability condition of the call, but rather

the reachability condition of the inclusion site. We handle it by

introducing a dummy variable at the inclusion site to denote

the choice and later using the variable to guard the invocation.

Example. Fig. 6 shows the non-string abstraction of the

program in Fig. 5. Lines 1-9 abstract lines 1-2 in the original

code and lines 10-15 abstract the original line 3. Note that the

definitions of b1 and b2 are not in the non-string abstraction,

but rather the string abstraction. The page redirection at line

13 in Fig. 5 is abstracted as exit because when the page is

redirected, none of the following statements gets executed.

We introduce a dummy variable inc to denote the inclusion

option and use it to guide the inlining in lines 10-15.

Reasoning Across Requests. RCE attacks may require coor-

dination of multiple requests. Since in PHP requests are pro-

cessed independently, cross-request attacks usually leverage

sessions to preserve data. In PHP, a session can be determined

by two parts: the session name and the session id. When

a server and a client communicate, the session name and

id are set in the HTTP header. The session name can be

explicitly defined in a PHP script, otherwise the default value

(PHPSESSID) is used. Also, a unique session id is assigned to

each new visiting client. In order to reason about dependences

across requests, we need to ensure the relevant requests are

referring to the same session. Note that as long as the attacker

ensures exploit requests are sent within the session expiration

window, the session ids of these requests are automatically

identical. Therefore, we only need to check if the session

statement abstraction
string non-string

[f1] initially SN NAME f1:=PHPSESSID

[f1]session name(’C’) SN NAME f1:=’C’

[f1]parsestr(...) b=(s== SN NAME f1) Tsn=b?1:0
[f2]$x= SESSION s:= SN NAME f2 Tx = Tsn

TABLE IV: Session abstraction.

names of these requests can be made identical.

Our solution is that for a statement in which a session

value may be set, such as line 268 in the phpMyAdmin

example in Fig. 1, we abstract the statement to a taint bit set

operation guarded by a condition that the session name from

the other request must be identical to the current session name.

Therefore, any read from session in the other request is tainted

only when it has the same session name. Table IV explains

the process. The 1st column lists the relevant statements with

f1/f2 the script. The 2nd and 3rd columns show the string

and non-string abstractions, respectively. Initially, each script

has a default session name (1st row). Any invocation to

session name() is abstracted as setting the current session

name (2nd row). A statement or library call that allows the

client to set session values is abstracted as a guarded taint bit

set (3rd row). A session read in the other request f2 sets the

global variable s to its session and copies the session taint bit.

VI. EVALUATION

Our system makes use of LLVM, the PHP compiler (phc)

[4], the STP solver and the HAMPI string solver[20]. Phc is

used to translate PHP to C, allowing us to leverage the existing

analysis in LLVM (e.g. alias analysis). The main analysis is

implemented in LLVM. It takes the C program and transforms

it to constraints. The solving algorithm is implemented in C.

We apply our technique on a set of real world applications

as listed in Table V. Observe that some of them are large, with

a few hundred files and over 200k LOC. These web apps are

selected as we were able find some RCE reports about them

on the Internet. One of our goals is to see if we can identify

these reported vulnerabilities. All experiments are run on an

Intel Dual Core i5 2.5GHz machine with 8GB memory. The

experimental results are publicly available at [1].

TABLE V: Program characteristics.

PHP PHP LOC
application files avg stdev max total

aidiCMS v3.55 273 157 280 2976 42843

phpMyFAQ v2.7.0 347 690 2956 30222 239380

zingiri webshop v2.2.2 457 139 304 4517 63768

phpMyAdmin v3.4.3 527 432 1498 26136 227716

phpLDAPadmin v1.2.1.1 97 293 522 3108 28456

phpScheduleIt v1.2.10 171 383 394 2157 65493

FreeWebshop v2.2.9 R2 190 198 412 4971 37636

ignition v1.3 30 118 375 2092 3542

monalbum v0.8.7 41 105 104 452 4288

webportal v0.7.4 514 59 89 1022 30266

Table VI presents the detection results. Constraint presents

the average number of variables and constraints in the for-

mula. Sink is the number of the places that are potential

vulnerable. They are the number of file writes and dynamic

script evaluations. They are analyzed one by one. Report is

the number of vulnerable sinks that our technique reports.

Among those reported, FP presents the number of false

TABLE VI: Analysis Result.

constraint(avg) avg solve avg non-string string
application variable constraint iteration time(s) sink report FP known new report FP report FP

aidiCMS v3.55 95.2 96.6 0.0 7.5 55 5 2 1 2 5 2 11 8

phpMyFAQ v2.7.0 58.6 59.0 0.8 9.4 25 5 2 1 2 6 3 7 4

zingiri webshop v2.2.2 159.5 159.5 6.5 22.8 68 2 1 1 0 2 1 3 2

phpMyAdmin v3.4.3 167.0 160.0 0.0 1.6 65 1 0 1 0 1 0 1 0

phpLDAPadmin v1.2.1.1 491.0 493.0 38.0 87.6 6 1 0 1 0 2 1 1 0

phpScheduleIt v1.2.10 135.5 178.0 3.0 3.0 52 4 0 4 0 25 21 4 0

FreeWebshop v2.2.9 R2 185.8 198.0 15.3 30.8 38 4 1 1 2 5 2 12 9

ignition v1.3 62.0 69.7 0.0 1.6 8 3 0 1 2 5 2 3 0

monalbum v0.8.7 174.0 200.0 0.0 11.8 2 1 0 1 0 1 0 1 0

webportal v0.7.4 13.0 11.0 0.0 0.3 39 1 0 1 0 1 0 2 1

TOTAL 358 27 6 13 8 53 32 45 24

TABLE VII: Constraint solving comparison.

algo. 2 non-guided solving
application iteration time(s) iteration time(s)

aidiCMS v3.55 0 3.33 0 3.37

phpMyFAQ v2.7.0 5 4.63 69 30.49

zingiri webshop v2.2.2 13 45.56 53 98.27

phpMyAdmin v3.4.3 0 1.09 0 1.01

phpLDAPadmin v1.2.1.1 39 84.78 187 102.53

phpScheduleIt v1.2.10 9 6.30 96 50.00

FreeWebshop v2.2.9 R2 62 86.03 1402* 1843.83*

ignition v1.3 1 0.75 4 1.90

monalbum v0.8.7 0 0.01 0 0.01

webportal v0.7.4 0 0.30 0 0.29
* One UNSAT case times out. It cannot be solved in 30 minutes.

positives, Known is how many of them have been reported.

New presents those that have not been reported in the past.

Iteration reports the average number of iterations needed to

determine SAT/UNSAT (precluding the cases that are UNSAT

for either the string or the non-string constraints alone). Time

is the average analysis time including the abstraction and

constraint solving time.
For comparison, in the last four columns we also present

the results generated by considering only the string part (which

is equivalent to using HAMPI alone for detection [20]) and

only the non-string part (which is equivalent to a path-sensitive

static taint analysis [29]).
For the new true positive reports, we have constructed

exploits from the SAT solutions (for path conditions) to

confirm them. The exploits are also available at [1]. They are

concrete HTTP requests that can execute an arbitrary piece of

payload script.
We have the following observations from the results.

(1) Our technique is effective. Its false positive rate is only

22%. It identifies 21 real RCE vulnerabilities, including all the

reported ones (13) and 8 new ones.
(2) Its overhead is reasonable. Observe that the average num-

ber of iterations is small. Sometimes, it is zero if the solutions

can be found in the fast path. It indicates our algorithm can

quickly converge for both SAT and UNSAT cases. Another

performance study can be found later.

(3) Considering either the string or the non-string part alone

produces a lot of FPs, indicating the need of reasoning both

parts cohesively.

False Positive. Our technique produces FPs. Currently we

cannot model some environment related library functions such

as file exists() because they require dynamic information. We

have limited support for string functions such as substr() and

getExtension() due to the limit of HAMPI. We introduce free

@ modul/tinymce/plugins/ajaxfilemanager/ajax_save_text.php

11 $path = $not_important . $_POST[’name’];

21 if (getFileExt($_POST[’name’]) == "php")

{ ... }

28 else

{

33 if(file_exists($path)) { ...}

36 else {

38 $fp = fopen($path , "w+");

40 fwrite($fp, $_POST[’text’]);

...

}

} Fig. 7: FP in adidCMS

variables in the constraints to denote the outcome of these

functions. This leads to false positives sometimes.

A false positive in adidCMS is presented in Fig.7. This

piece code saves the content ($ POST[’text’]) posted by the

client into a file whose name ($ POST[’name’]) is also pro-

vided by the client. If we don’t consider the path conditions,

the file write at line 38 can write the content from the client

into a PHP file named by the client. However, if the file

name ends with .php, the predicate at line 21 will capture

the dangerous behavior. However, we currently cannot model

getFileExt() and file exists() , leading to the false positive.

Evaluating the Constraint Solving Algorithm. We perform

another experiment to evaluate our solving algorithm. Recall

we use the STP solution to guide the overall process and

leverage the string solver to prune search space (Algorithm 2).

We compare the algorithm with a simple algorithm that also

solves string and non-string constraints. The simple algorithm

acquires a SAT solution from STP and then validates it using

HAMPI. If UNSAT, it acquires a different SAT solution from

STP, until a solution is found or STP reports UNSAT. The

results are shown in Table VII. The iteration number and time

in the table are the sum of those for analyzing individual

sinks for each benchmark. The runtime is the solving time,

not including the abstraction time. Observe that our algorithm

is in general much better. The simple algorithm may run into

deep troubles for UNSAT cases (e.g. FreeWebShop) when

the search space is large.

VII. RELATED WORKS

The work in [28] also statically models the string and non-

string behavior of a program. It translates both to a common

M2L constraint language. However, M2L has limited expres-

siveness (Section III). Researchers have also modeled both

strings and non-strings in the context of dynamic symbolic

execution [25], [12]. However, they require knowing string

lengths beforehand and they only model the executed path

whereas we need to encode all possible paths.
String operations can also be modeled as finite state trans-

ducers(FST). The work in [30] introduces symbolic represen-

tations in automata to handle the infinite alphabets problem in

the classical FST. In [24], string constraint solving is used to

repair HTML generation errors. ViewPoints [5] applies static

string analysis to compute inconsistency between client-side

and server-server input validation functions. However, they all

have very limited support for non-string behavior.
RCE attacks are a special kind of Cross Site Scripting

(XSS) attack and thus our work is related to detecting SQL

injection [20], [31], [18], XSS [9], [16], [21], [23], [26] and

HTTP request parameter tampering [8], [11] attacks. Among

these works, the dynamic analysis based approaches [11], [9],

[16], [21], [23], [26], [8], [10], [7], [6] require running the

program. The effectiveness of these techniques is dependent

on the concrete executions monitored.

Static techniques [20], [31], [17], [35] consider all possible

executions. In particular, [20], [31], [33], [19] abstract away

non-string computation and reason about string manipulations

in a path insensitive way. In [17], researchers used a static

constraint solving based technique to precisely identify the

interface of a web app. In [35], a path-, context- and field-

sensitive static analysis was proposed to detect resource con-

tention problems. However, both works have limited support

for string reasoning and only consider constant strings.
Similar to our work, researchers in [15] also observed that

modeling session is important in analyzing web applications.

However, the work aimed at test suite generation.

VIII. CONCLUSION

We propose a path- and context-sensitive analysis to detect

Remote Code Execution (RCE) attacks in web apps. The

analysis reasons about the string and non-string behavior of a

program cohesively. It first creates two abstractions of the pro-

gram to model the string and non-string behavior, respectively,

which are encoded to constraints separately. A novel algorithm

is developed to resolve the two sets of constraints together.

The technique handles a lot of RCE specific challenges by

extending the abstractions. Our experiment shows that the

technique is very effective in detecting RCE vulnerabilities

in real-world PHP applications, producing much fewer false

positives compared to alternative techniques. And the under-

lying constraint solving algorithm is very efficient.

REFERENCES

[1] http://www.cs.purdue.edu/homes/zheng16/rce/index.html.
[2] OWASP PHP Top 5. https://www.owasp.org/index.php/PHP Top 5.
[3] IBM threat reports. http://www.ibm.com/services/us/iss/xforce/trendreports/.
[4] Phc: open source PHP compiler. http://www.phpcompiler.org/.
[5] M. Alkhalaf, T. Bultan, S. Roy Choudhary, M. Fazzini, A. Orso

and C. Kruegel. ViewPoints: Differential String Analysis for Dis-
covering Client and Server-Side Input Validation Inconsistencies
In ISSTA’12.

[6] G. Antoniol, M. D. Penta and M. Zazzara. Understanding Web
Applications through Dynamic Analysis. IWPC’04

[7] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar and
M. Ernst. Finding bugs in dynamic web applications. ISSTA’08

[8] M. Balduzzi, C. T. Gimenez, D. Balzarotti and E. Kirda. Auto-
mated Discovery of Parameter Pollution Vulnerabilities in Web
Applications. In NDSS’11.

[9] D. Bates, A. Barth and C. Jackson. Regular expressions consid-
ered harmful in client-side XSS filters. In WWW’10.

[10] C. Bezemer, A. Mesbah and A. Deursen Automated security
testing of web widget interactions. In FSE’09.

[11] P. Bisht, T. Hinrichs, N. Skrupsky and V. N. Venkatakrishnan.
WAPTEC: whitebox analysis of web applications for parameter
tampering exploit construction. In CCS’11.

[12] N. Bjørner, N. Tillmann and A. Voronkov. Path Feasibility
Analysis for String-Manipulating Programs. In TACAS ’09.

[13] E. Clarke, D. Kroening, F. Lerda. A Tool for Checking ANSI-C
Programs. In TACAS’04.

[14] M. Das, S. Lerner, M. Seigel. ESP: path-sensitive program
verification in polynomial time. In PLDI’02.

[15] S. G. Elbaum, S. Karre and G. Rothermel. Improving Web
Application Testing with User Session Data. In ICSE’03.

[16] M. V. Gundy and H. Chen. Noncespaces: Using Randomization
to Enforce Information Flow Tracking and Thwart Cross-Site
Scripting Attacks. In NDSS’09.

[17] W. Halfond, S. Anand and A. Orso. Precise Interface Identifi-
cation to Improve Testing and Analysis of Web Applications. In
ISSTA’09.

[18] W. Halfond and A. Orso. Preventing SQL injection attacks using
AMNESIA. In ICSE’06.

[19] P. Hooimeijer and W. Weimer. Solving string constraints lazily.
In ASE’10.

[20] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer and M. D. Ernst.
HAMPI: a solver for string constraints. In ISSTA’09.

[21] M. T. Louw and V. N. Venkatakrishnan. Blueprint: Robust
Prevention of Cross-site Scripting Attacks for Existing Browsers.
In SP’09.

[22] R. Milner. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 1978.

[23] Y. Nadji, P. Saxena and D. Song. Document Structure Integrity:
A Robust Basis for Cross-site Scripting Defense. In NDSS’09.

[24] H. Samimi, M. Schafer, S. Artzi, T. Millstein, F. Tip and
L. Hendren. Automated repair of HTML generation errors in PHP
applications using string constraint solving. In ICSE 2012.

[25] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant and
D. Song. A Symbolic Execution Framework for JavaScript. In
SP’10.

[26] P. Saxena, D. Molnar, B. Livshits. SCRIPTGARD: automatic
context-sensitive sanitization for large-scale legacy web applica-
tions. In CCS’11.

[27] F. Sun, L. Xu and Z. Su. Static Detection of Access Control
Vulnerabilities in Web Applications. In USENIX Security 2011.

[28] T. Tateishi, M. Pistoia and O. Tripp. Path- and index-sensitive
string analysis based on monadic second-order logic. In ISSTA’11

[29] O. Tripp, M. Pistoia, S. Fink, M. Sridharan and O. Weisman.
TAJ: effective taint analysis of web applications. In PLDI’09

[30] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar and
N. Bjørner. Symbolic finite state transducers: algorithms and
applications. In POPL’12.

[31] G. Wassermann and Z. Su. Sound and Precise Analysis of Web
Applications for Injection Vulnerabilities. In PLDI’07.

[32] Y. Xie and A. Aiken. Saturn: A scalable framework for error
detection using Boolean satisfiability. In ACM Trans. Program.
Lang. Syst. May, 2007.

[33] F. Yu, M. Alkhalaf and T. Bultan. Patching Vulnerabilities with
Sanitization Synthesis. In ICSE’11.

[34] F. Yu, T. Bultan and B. Hardekopf. String Abstractions for
String Verification. In SPIN’11.

[35] Y. Zheng and X. Zhang. Static Detection of Resource Con-
tention Problems in Server-Side Scripts. In ICSE’12.

http://www.cs.purdue.edu/homes/zheng16/rce/index.html
https://www.owasp.org/index.php/PHP_Top_5
http://www.ibm.com/services/us/iss/xforce/trendreports/
http://www.phpcompiler.org/

	Introduction
	Motivating Example
	RCE in phpMyAdmin
	RCE in phpLDAPadmin

	Problems in Existing Static Analysis
	Design
	Abstractions
	Constraint Encoding and Solving

	Handling Practical Challenges
	Evaluation
	Related works
	Conclusion
	References

