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Abstract—With modern multi-core architectures, web ap-
plications are usually configured to serve multiple requests
simultaneously by spawning multiple instances. These instances
may access the same external resources such as database tables
and files. Such contentions may become severe during peak
time, leading to violations of atomic business logic. In this
paper, we propose a novel static analysis that detects atomicity
violations of external operations for server side scripts. The
analysis differs from traditional atomicity violation detection
techniques by focusing on external resources instead of shared
memory. It consists of three components. The first one is an
interprocedural and path-sensitive resource identity analysis
that determines whether multiple operations access the same
external resource, which is critical to identifying contentions.
The second component infers pairs of external operations that
should be executed atomically. Finally, violations are detected
by reasoning about serializability of interleaved atomic pairs.
Experimental results show that the analysis is highly effective
in detecting atomicity violations in real-world web apps.

Keywords-php; resource contention; static analysis; con-
straint solving

I. INTRODUCTION

Web is becoming an important computation platform.

Many daily tasks such as online shopping, social network-

ing, data storage, and document processing are carried out

by web applications (apps). An important trend of web

apps is to leverage modern multi-/many-core architectures.

However, the incompatibility between the sequential pro-

gramming model of server side scripts and the concurrent

execution model configured in servers to leverage multiple

cores may lead to harmful contentions on external resources.
Particularly, for design simplicity, popular server side

scripting languages such as PHP do not support threading.

As a result, web app developers tend to think that they are

performing sequential programming, and they are at a safe

distance from troubles caused by concurrency. However, it

is not true under the most popular LAMP (Linux, Apache,

MySQL and PHP) web app environment, in which Apache

is the web server and server side scripting support is

provided through PHP. PHP scripts communicate with a

database system (e.g. MySQL) or the file system to provide

services. To optimize server performance, Apache is usually

configured to run in the MPM (Multi-Processing Modules)

mode, which allows multiple instances of a server side script

being spawned, each serving an independent client request.

Although these instances do not share variables in memory

as variables are by-default local to a thread, they do share

external resources such as database tables and files. Such

sharings nonetheless cause race conditions.

Many web application failures are essentially due to

such race conditions. For example, in ProductCart[1] and

OpenCart[2], they led to products being over-sold, resulting

in back-orders. In Drupal[3] and Joolam BibTeX[4], they

caused critical runtime exceptions and file corruptions.

Unfortunately, there are mis-perceptions that induce de-

velopers to overlook such problems. One of such is that

race conditions on external resources are well guarded by

the internal protection in the database engine and the file

system, otherwise any regular sequential programs would

be vulnerable as multiple instances of the same program

may share the same resources. The observation is that while

it is unlikely that multiple instances of a regular sequential

program are running simultaneously, the likelihood is much

higher for a web app as it aims to deliver the same service

to many users. In other words, we argue that the problem is

substantially exacerbated in the context of web apps.

Existing solutions for detecting concurrency errors fall

short. Most race detection [27], [24], [22], [23] and atom-

icity violation detection [14], [19], [26], [18] techniques

rely on analyzing synchronization primitives. However such

primitives are simply not provided by server side scripting

languages. Most existing techniques work by reasoning

about the interleavings of accesses from different threads

on shared memory. However, scripts usually do not share

memory. Sharing is on external resources instead. To reason

about the effect of interleaving external resource accesses,

one needs to model these external operations, e.g. queries

to the database engine. Furthermore, these operations cannot

be simply modeled as reads or writes on shared objects. For

example, the DELETE and INSERT database queries have

more complex semantics that cannot be described as simple

reads/writes. Identifying the resources being accessed also

poses a unique challenge as they are usually denoted in the

program as concatenations of strings and variables. One has

to reason about the equivalence of such representations to

determine if the same resources are being accessed.

There has been some recent work specifically focusing

on concurrency errors in web apps. In [37], researchers

proposed a technique to detect race conditions caused by

the asynchronous AJAX requests. The technique is unfortu-



nately not applicable as it only works on client side through

JavaScript and does not reason about external resources.

A dynamic analysis was proposed to detect race condi-

tions caused by interactions between a web app and the

database [25]. It collects SQL query traces and checks

whether a specific interleaving pattern occurs in traces.

It demands a proper input and a proper interleaving to

expose a bug, which are in general hard to acquire due

to non-determinism. The technique also completely neglects

program semantics, leading to false positives.

In this paper, we propose a whole program interprocedural

static analysis that detects atomicity violations regarding

external resources in PHP scripts. The overview of our

technique is presented in Fig. 1. It takes the PHP code of a

web app and translates it to C. The C code is analyzed in

three phases. The first phase is the resource identity analysis

that determines whether multiple operations access the same

external resource, which is critical to identifying contentions.

The second phase infers pairs of external operations that

should be executed atomically. In phase three, violations

are detected by reasoning about serializability of interleaved

atomic pairs.

We make the following contributions.
• We develop a context- and path-sensitive interproce-

dural static analysis to automatically detect atomicity

violations on shared external resources in PHP code.

• We develop the resource identity analysis, a technique

to reason about the equality of resources being accessed

by external operations. It is interprocedural and path

sensitive, leveraging a SMT solver.

• We propose a novel way of statically inferring atomic

regions in PHP code, which avoids demanding the

developer to annotate such regions, or guessing them

from synchronization primitives or dynamic traces [14],

[19], [34]. It leverages the observation that atomicity

properties in PHP programs are more amenable for

automatic inference compared to general concurrent

programs in C++ and Java, as PHP developers usually

follow a sequential programming paradigm.

• We develop expressive abstractions for external opera-

tions. They go beyond the read and write abstractions

for shared memory accesses. We define atomicity vio-

lations based on these abstractions.

• We evaluate the technique on real world web apps. The

results show that it is highly effective, detecting 113

real bugs. Some of them have financial impacts.

II. MOTIVATING EXAMPLES

A. Atomicity Violation in OpenCart 1.4.9.4

We first use a bug in a recent version of OpenCart

(v1.4.9.4) to motivate our technique. OpenCart is an open

source shopping cart application. It was reviewed as one

of the best open source e-commerce platforms [5] in 2010.

A user of OpenCart can be either a normal user or an

@ catalog/controller/checkout/confirm.php
005  public function index() {
2011 $tmp_coupon = $this->session->data['coupon'];
2012 $coupon = getCoupon($tmp_coupon);

203    if (  $coupon ) {
204       $data['coupon_id'] =  $coupon['coupon_id'];
205    } else {
206       $data['coupon_id'] = 0;
207    }
216    $this->session->data['order_id'] = create(  $data );

439  }

@ catalog/model/checkout/coupon.php
003  public function getCoupon($coupon) {
006     $coupon_query = mysql_query("SELECT * FROM coupon c … 
                WHERE …   c.code =” . $coupon . “AND …” 

0131 $x= $coupon_query->row[‘coupon_id’]
0132 $sql = "SELECT COUNT(*) AS total FROM order WHERE…” 
                       . “coupon_id = " . $x;

0133 $coupon_redeem_query = mysql_query( $sql );
$total = $coupon_redeem_query->row['total'];

           /* coupon validation */

015     if ( ...  && $total < $allowed) 
059          $coupon_data = $coupon_query;

076     return $coupon_data;
078  }

@ catalog/model/checkout/order.php
058  public function create(  $data ) {

/* create an order using a valid coupon*/

0701      $y=$data[‘coupon_id’]
0702 $sql = "INSERT INTO  order  SET...coupon_id = " .$y…; 
0703 mysql_query( $sql );
093  }

Figure 2. Code snippet from OpenCart v1.4.9.4. The two rectangled
database queries may not execute atomically while they should. The update
query is (transitively) dependent on the select query through the underlined
variables. For readability, we normalize the code snippet by breaking some
statements into sub-statements, described by the subscripts.

administrator. The administrator can add, modify or delete

products and coupons. A normal user can place orders

with the option of applying coupons. The problem to be

demonstrated allows illegal coupon usage. In particular,

when multiple users place orders concurrently, which is very

likely to happen in peak time, a coupon can be applied for

arbitrary number of times, ignoring its use limit.

Fig. 2 shows the relevant code snippet. Function index()

in confirm.php validates a coupon by calling getCoupon() at

line 201 and then places the order by calling create().

In coupon.php, function getCoupon() dispatches two

queries at lines 6 and 13. The first query is to retrieve

the coupon information from database. The second query

is to determine the number of coupon uses by accessing

table order. If the coupon has reached its limit, variable

$coupon data holds the FALSE value at line 76, which

is returned to method index(), indicating expiration of the

coupon. Otherwise, the coupon details such as discount are

loaded to $coupon data and returned. Finally, at line 70 in

function create() in order.php, an order is placed by inserting

a record to table order, with the same coupon id.

The bug manifests itself when multiple users apply the

same coupon in the mean time. To simplify discussion,
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Figure 1. Overview of our technique.

Order Request1 Handler

1.006  $sql = “SELECT ...”
1.013  $coupon_redeem_query = mysql($sql);

$total = 
$coupon_redeem_query->row[‘total’]; 

// $total = 0
……

1.015  if ( … && $total < $allowed)
// $allowed = 1, coupon valid

1.059  $coupon_data= $coupon_query;
……

1.0702 $sql = “INSERT…” ;
1.0703 mysql_query($sql);

Order Request2 Handler

2.006  $sql = “SELECT ...”
2.013  $coupon_redeem_query = mysql($sql);

$total = 
$coupon_redeem_query->row[‘total’]; 

// $total = 0
……

2.015  if ( … && $total < $allowed)
// $allowed = 1, coupon valid

2.059  $coupon_data= $coupon_query;
……

2.0702 $sql = “INSERT…” ;
2.0703 mysql_query($sql);

Figure 3. The buggy interleaving for the OpenCart example. Symbol
1.013 means line 13 in the 1st thread.

suppose there are two concurrent order requests with the

same coupon that is supposed to be redeemed only once.

They can be processed concurrently by two threads on two

respective CPUs, leading to arbitrary interleaving of the

entailed database operations. Fig. 3 shows a failure inducing

interleaving, in which the coupon usage selection query of

the second user (line 2.013) happens in between the selection

query (line 1.013) and the order insertion query (line 1.070)

of the first user. As a result, both users observe a valid

coupon and are allowed to apply the coupon. OpenCart has

also other similar bugs, leading to various undesirable effects

such as products being over-ordered.

Although the essence of such bugs is typical atomicity

violation, static detection of such violations for web appli-

cations is challenging, due to the following reasons.

• Compared to traditional atomicity violations, which are

caused by shared memory accesses not being suffi-

ciently protected, web app atomicity violations have

different characteristics. They usually don’t involve

shared memory, but rather external resources. PHP does

not have any build-in synchronization primitives either.

To reason about external resources, we have to model

the semantics of the operations on these resources

as part of the PHP program. Some apps leverage

external synchronizations (e.g. database transactions),

which need to be properly modeled in the analysis too.

• The operations involved in an atomicity violation have

to access the same external resource. Otherwise, there

are no real contentions. However, determining if mul-

tiple operations access the same resource is highly

challenging. Consider the OpenCart example. We need

to determine that the select query at line 132 and the

insert query at line 702 access the same tuples so that a

concurrent execution of the select query may observe a

stale value (about the same coupon). It requires proving

that x at 132 is equivalent to y at 702, demanding a

non-trivial interprocedural analysis.

• A necessary condition for the technique is the avail-

ability of atomic region definitions as violations are

@ include/transfer.php

146  function download( $url, $outputFile ) {

154    $fh = @fopen( $url, 'rb' );

158    $ofh = @fopen( $outputFile, 'wb' );

164    $failed = false;

165    while ( ! feof( $fh ) && ! $failed ) {

166      $buf = fread( $fh, 4096 );

172      if ( fwrite( $ofh, $buf ) != strlen( $buf ) ) {

173        $failed = true; break;

176      }

181    }

182    fclose( $ofh );

183    fclose( $fh );

189   }

Figure 4. Code snippet from eXtplorer File Manager v2.1.0-RC3

identified by reasoning about serializability of these

regions. There are often a lot of operations accessing

the same external resources, and only some of them

need to be atomic. Traditional ways to defining atomic

regions include user annotations [32], leveraging ex-

isting critical sections [14] (e.g. regions delimited by

lock acquisitions and their corresponding releases), and

inference from dynamic runs [19]. However, none of

these solutions are applicable in our context. Further-

more, atomic regions in web apps may not be lexical

(i.e. they do not form a lexical region such as a branch

or a block of straight line code). In many cases, the

operations that ought to execute atomically distribute

in different functions. For example in Fig. 2, atomicity

is present in the two rectangled SQL queries that are in

different functions and the region (i.e. the path between

them) is non-lexical.

The goal of our work is to develop a static analysis that

overcomes the aforementioned challenges.

B. Atomicity Violation in eXtplorer File Manager

Besides databases, file system is another external shared

resource that can suffer from similar problems. Next, we

use the popular eXtplorer file manager v2.1.0-RC3 web

app to explain the atomicity violation problem in file sys-

tem. EXtplorer is a PHP based file management system.

According to the stats of Sourceforge, eXtplorer has been

downloaded for more than 300,000 times since its initial

release in July 2007. The version we use is the latest release.

Its UI is similar to that of a PC file manager. After logging

in, the user can create, browse, edit, upload, download, and

archive files. While operations are executed on the server

via server side scripts, the user controls through a web-

based interface on the client side. Some operations may

entail downloading files from other remote servers to the

local server.

Fig. 4 shows a code snippet from eXtplorer, in which

function download () is used to download files from other

remote servers. It takes two parameters: the address of the



source file $url and the local path (on the local server)

$outputFile to save the downloaded file. At line 166, it firstly
reads from a remote server to a local buffer and then writes

the buffer to the local path at line 172. The read and write

are inside a while loop. Depending on the size of the file,

fwrite() may be invoked several times.

Since a file is incrementally written in the loop, between

invocations to fwrite() in consecutive iterations, a concurrent

fwrite () to the same file through a different user request may

happen, corrupting the file.

Detecting such file system related atomicity violations re-

quires addressing the same set of challenges as for database

related violations.

III. RESOURCE IDENTITY ANALYSIS

In order to reason about atomicity violations regarding

external resources, we have to determine if multiple opera-

tions are accessing the same external resource. We develop

a resource identity analysis for this purpose. The analysis

encodes the semantics of external operations into bit-vector

logic constraints. These constraints, together with those

generated from the regular PHP statements, are resolved

by a SMT solver to determine if two given operations are

accessing the same external resource. We will focus on

analyzing database operations, which is more challenging

than analyzing file system operations.

A. Analyzing Database Queries

We assume that all SQL queries in a program have their

keywords, table names and tuple field names as constants1.

We preprocess the program to its SSA form so that

one variable represents one value in the rules in this sec-

tion. Moreover, we preprocess the program by introducing

dummy variables to represent non-keyword constant strings

and values. This is to simplify the description of the analysis

as we don’t need to distinguish cases operating on constants

from those operating on variables.

Modeling Simple Queries. We first discuss SELECT

queries that retrieve a set of tuple fields from a single table

with a where-clause. Such a select query is modeled as a set

of conditional assignments of tuple fields to the result data

structure. The assignments are guarded by the conditions

described by the where-clause.

$r =l mysql query(“SELECT f1, ..., fn FROM T WHERE”. C)
ρ

=⇒ ρt(C) −→ (tuple(l) = t ∧ r.f1 = t.f1 ∧ ... ∧ r.fn = t.fn)∧
(¬ρt(C) −→ tuple(l) 6= t)

(SELECT)

C1. “ AND ”. C2
ρt

=⇒ ρt(C1) ∧ ρt(C2) (COND-AND)

C1. “ OR ”. C2
ρt

=⇒ ρt(C1) ∨ ρt(C2) (COND-OR)

“f ⊲⊳ ”. $x
ρt

=⇒ t.f ⊲⊳ x (CLAUSE)

1In our experience, dynamic table/column names are not common. For
example, OpenCart has 59 data tables, all static, and 780 query strings with
only 1 using a variable as the column name.

The above rule (SELECT) presents the encoding. Rules

(COND-AND), (COND-OR), and (CLAUSE) describe the

where-clause encoding. We use ‘.’ to denote string con-

catenation. Program statements are on the left and the

corresponding encodings are on the right. The arrow in the

middle labeled with ρ represents the transformation, which is

sometimes also denoted as a function ρ(), with an optional

superscript representing its context. For example, symbol

ρt represents that the transformation is in the context of

abstract tuple t. We introduce an abstract tuple t to represent

the tuple being selected. Observe that t is not constrained.

Later, we will show how to properly constrain the abstract

tuple based on the information from other queries. Also,

while at runtime multiple concrete tuples may be retrieved,

we statically represent them with the same abstract tuple.

The supporting function tuple() in rule (SELECT) maps

a program point, denoted by label l, to an abstract tuple. It

denotes the query at l entails reading tuple t. We support

regular comparison operations in the where-clause, denoted

by ⊲⊳ in rule (CLAUSE).

mysql queryl(“INSERT INTO T (f1, ..., fn)VALUES(”.

$x1. ... $xn)
ρ

=⇒ tl.f1 = x1 ∧ ... ∧ tl.fn = xn (INSERT)

Rule (INSERT) shows the encoding for an insert query. Note

that we introduce an abstract tuple tl specifically for the

query at label l, denoting the tuple inserted by that query.

The encoding process models an insert query as a sequence

of assignments to the fields of the abstract tuple.

mysql query l(“UPDATE T SET (f1 = $x1, ..., fn = $xn)
WHERE”. C)

ρ
=⇒ ρt(C) −→ (tuple(l) = t ∧ tl.f1 = x1 ∧ ... ∧ tl.fn = xn)∧

(¬ρt(C) −→ tuple(l) 6= t) (UPDATE)

An update-query at label l is encoded to conditional field

assignments to tuple tl, guarded by the conditions in the

where-clause. Since an update-query entails reading tuples,

we use tuple(l) = t to denote the tuple to be read at l. Note

that we use different abstract variables t and tl to denote that

the tuple has different values before and after the update.

Constraining Abstract Tuples. In our analysis, we aim

to determine if multiple operations are accessing the same

shared resource. For instance, we may need to know if a

tuple inserted by query at l2 can be accessed by a select-

query at l1 (assuming the same table and l1 precedes l2).

If so, l1 in a thread may contend with l2 in another thread,

leading to atomicity violations (recall the OpenCart example

in Section II).

To leverage the SMT solver to determine resource identity,

we constrain the abstract tuple in the select-query to those

in the insert/update queries, guarded by the where-condition

of the select-query. Intuitively, it means that if the tuples

added/changed by the insert/update queries satisfy the where

condition of the select-query, they may be retrieved by

the select-query and thus the two queries access the same

tuple. It is possible that multiple inserted/updated abstract



tuples satisfy the where-condition in the select-query. In

such a case, the retrieved tuple can be any of them, without

assuming any specific order.

Without losing generality, we assume there are 2 write-

queries (i.e. insert or update queries) to the same table T in

the program, at labels l1 and l2. The revised encoding rule

for a select query (SELECT-X) to T is presented as follows.

$r =l mysql query(“SELECT f1, ..., fn FROM T WHERE”. C)
ρ

=⇒ F1 ∧ F2 ∧ Fboth ∧ Fneither (SELECT-X)

F1 = (ρtl1 (C) ∧ ¬ρtl2(C)) −→
(tuple(l) = tl1 ∧ r.f1 = tl1.f1 ∧ ... ∧ r.fn = tl1.fn)

F2 = (¬ρtl1 (C) ∧ ρtl2(C)) −→
(tuple(l) = tl2 ∧ r.f1 = tl2.f1 ∧ ... ∧ r.fn = tl2.fn)

Fboth = (ρtl1 (C) ∧ ρtl2(C)) −→
(tuple(l) = tl1 ∧ r.f1 = tl1.f1 ∧ ... ∧ r.fn = tl1.fn)

∨

(tuple(l) = tl2 ∧ r.f1 = tl2.f1 ∧ ... ∧ r.fn = tl2.fn)

Fneither = (¬ρtl1 (C) ∧ ¬ρtl2 (C)) −→ tuple(l) 6= tl1 ∧ tuple(l) 6= tl2

The revised encoding of a select-query is the conjunction of

four clauses F1, F2, Fboth, and Fneither . F1 constrains the

selected tuple with the tuple at l1 but not the one at l2. F2

is the opposite. Fboth describes that if both tuples at l1 and

l2 satisfy the where-condition, the selected tuple could be

either of them.

Example. Consider a simple PHP program as follows. It

performs three queries, the first two insert two tuples with

the first field being 12 and 8, respectively, and the third

query selects the tuples with the first field greater-than 10.

Therefore, only the tuple inserted at 1 is selected.

1 mysql_query("INSERT TO T(f1,f2) VALUES(12,".$x);

2 mysql_query("INSERT TO T(f1,f2) VALUES(8,".$y);

3 $r=mysql_query("SELECT f2 FROM T WHERE f1>10");

The corresponding encoding is as follows. From the three

formula, it is easy to infer tuple(3) = t1.

ρ(1) = t1.f1 = 12 ∧ t1.f2 = x
ρ(2) = t2.f1 = 8 ∧ t2.f2 = y
ρ(3) =

(t1.f1 > 10 ∧ ¬t2.f1 > 10) −→ (tuple(3) = t1 ∧ r.f2 = t1.f2)
∧

...

Aggregation queries are very common in PHP programs.

Sample aggregation queries include those acquiring the

count, sum, average of tuples/fields. They are usually accom-

panied by the groupby keyword. It is difficult to statically

model values of aggregation queries. Fortunately in our

context, we only need to model the correlation between

queries, such as if an insert query affects the result of an

aggregation query, which is mainly determined by the where-

condition instead of the specific aggregation function. Hence

our encoding is very similar to that for regular selects and

thus elided. Our technique currently does not support sub-

queries.

Modeling PHP statements. Modeling queries alone is not

sufficient to reason about resource identity as queries may

use variables that are computed by regular PHP statements.

Therefore, we have to model regular PHP statements as part

of the analysis, including assignments, conditionals, loops,

and simple arithmetic operations.
Assignment statements are encoded as simple equivalence

constraints. The encoding is field sensitive, supporting

definitions and uses of data structure fields. It also models

the access of a query result through keyword row . For

instance, $x = $r → row [′f ′

1
] is modeled as x = r.f1.

Similar to all constraint solving based static analysis [13],

[35], loops need to be unrolled to conditional statements. In

this work, we unroll the loop body twice. It allows us to

reason about the operations in consecutive iterations. More

unrollings are unlikely useful as it is unlikely for a resource

identity property to manifest itself after a large number of

iterations in PHP programs.
Conditional statements are encoded from their SSA form.

The following example shows a typical SSA transformation.

1 if (C)
2 $x = E1

3 else
4 $x = E2

ssa
=⇒

11 if (C)
12 $x1 = E1

13 else
14 $x2 = E2

15 $x3 = (C)? $x1 : $x2;
A conditional assignment such as the one at line 15

is further encoded to a constraint by the following rule

(COND-ASSN).

$x = C?$y : $z
ρ

=⇒ (ρ(C) −→ x = y) ∧ (¬ρ(C) −→ x = z)
(COND-ASSN)

Condition C in the rule corresponds to the predicate in the

original conditional statement. It is also called the guard of

the assignment. Our analysis is hence path sensitive as by

encoding predicates, we are able to leverage the solver to

associate a resource identity property with a feasible path,

determined by finding a satisfying solution to the related

guards. Our analysis is also interprocedural. It is summary-

based.
At last, we deliver analysis results through a primitive

relation same resource, which can be queried by other

analysis components.

same resource(l1 , l2 ) :- ρ(program) ∧ tuple(l1) = tl2

The meaning of the relation is that the program is accessing

the same resource at program points l1 and l2 if the formula

to the right of symbol :- is satisfiable. Intuitively, it means

that from the program encoding we can infer that the tuples

accessed at l1 and l2 are the same.
Example. Consider the motivation example in Fig. 2. Part of

the encoding is presented in Table I. From the conjunction

of (1)-(14), we can infer tuple(133) = 703 so that we

have same resource(133 , 703 ). In particular, the condition

in (2), i.e. t703 .coupon id = x, can be inferred from (1)

x = coupon query.coupon id and the equivalence of y

and coupon query.coupon id , which is established from

the conjunction of (14), (13), (12), (10), (8), (7), (5) and

(4). �



Table I
PART OF THE ENCODING OF THE CODE SNIPPET IN FIG. 2.

statement encoding

131 (1) x = coupon query .coupon id

132, 133 (2) t703 .coupon id = x −→ (tuple(133) = 703 ∧
coupon redeem query .total = fv133

∧
...

14 (3) total = conpon redeem query.total

15, 59

(4) coupon data1 = coupon query
(5) total < allowed −→ coupon data2 =

coupon data1
(6) ¬ total < allowed −→ coupon data2 = false

76, 2012 (7) coupon = coupon data2

203− 206

(8) data1 .coupon id = coupon.coupon id
(9) data2 .coupon id = 0
(10) ¬coupon = false −→ data3 = data1
(11) coupon = false −→ data3 = data2

216, 58 (12) data4 = data3
701 (13) y = data4 .coupon id

702, 703 (14) t703 .coupon id = y
fv133 in (2) is a free variable.

B. Analyzing File Operations

Determining if multiple file operations have the same

subject file is relatively easier. In this work, we focus on

file open, read and write. We do not consider other file

operations (e.g. getting a file’s path) as they are less likely

to be error-prone due to their nature. The basic idea of our

analysis is to use the label of a file open statement as the

abstraction of the file and then use constraint solver to reason

about if multiple operations are on the same abstract file.

Analysis results are delivered through the same primitive

relation same resource(l1 , l2 ).

IV. SERIALIZABILITY ANALYSIS

Atomicity violation detection is a process of reason-

ing about serializability of operations in atomic regions.

Specifically, given an sequence of interleaved operations

from multiple (usually two) atomic regions in different

threads/processes, a violation is reported if the sequence is

not serializable. Hence, atomic region definitions are critical.

In this work, we do not require the developer to annotate

atomic regions. A way to addressing the lack of atomic

region definitions, as in [19], [34], [28], is to reason about

pair-wise atomicity instead, that is, to reason about if two

consecutive accesses of the same shared memory location

inside a thread, called local accesses, should be atomic. For

example, in [19], [34], if during training executions, two

consecutive local accesses are never observed to interleave

with another access from a different thread, called the

remote access, they are considered to be atomic. The key

observation is that inferring atomic pairs is a lot more

tractable than inferring an arbitrary atomic region.

In this work, we adopt a similar solution by considering

pair-wise atomicity of external operations. However, we

do not rely on dynamic runs but rather infer statically,

leveraging the aforementioned resource identity analysis and

program dependences. With such atomic pairs, violations

are detected by reasoning about serializability of interleaved

pairs. We will discuss how to infer atomic pairs in the next

section. In this section, we assume the availability of atomic

pairs and discuss the serializability analysis.

Typical Serializability Analysis Not Applicable. In ex-

isting work [19], [34], it was shown that to detect pair-

wise atomicity violations, it is sufficient to analyze serial-

izability when an atomic pair of accesses are interleaved

with a remote access. Because shared memory accesses are

modeled as two kinds: read and write. There are totally 23

possible patterns. Table II presents some of these patterns.

For example in case two, given an atomic pair that first reads

(R) and then writes (W), if it interleaves with a remote read

(R’), the resulting sequence is serializable as it is equivalent

to the sequence of R’ R W. In contrast, case one is not.

Table II
DETERMINING PAIR-WISE ATOMICITY VIOLATIONS FOR SHARED

MEMORY. R DENOTES READ, W DENOTES WRITE. Local(1/2) ARE THE

TWO LOCAL ACCESSES INVOLVED IN AN ATOMIC PAIR. EACH ENTRY

SHOWS A PAIR INTERLEAVED WITH A REMOTE ACCESS.

case local1 remote local2 serializable

1 R W’ W no

2 R R’ W yes

3 W W’ W yes

... ...

8 W W’ R no

However, such analysis is not sufficient for our purpose.

First, modeling external operations to merely reads and

writes is problematic. For example, intuitively, we should

model a file write as W. According to case 3 in Table II,

two local file writes interleaved with a remote file write

are serializable, which is wrong. Consider another example.

Intuitively, SQL selects should be modeled as R, and deletes

as W. In case 1, a local select and a local delete interleaved

with a remote delete (on the same tuple) are not serializable,

which is incorrect as it has the same consequence as first

performing the two local operations and then the remote

deletion, which becomes a no-op. The reason of these

problems is that the semantics of file writes and SQL deletes

cannot be precisely described as low level writes.

Second, while all the eight patterns are possible for

shared memory accesses, a lot of them are rarely observed

in external operations in our experience. For instance, an

atomic pair with the form of WR is common for shared

memory accesses. But it may not be the case for external

operations, especially in PHP code, because it is unlikely

that a program first writes to a tuple/file, and then reads it

in the same thread.
Table III

CATEGORIZING EXTERNAL OPERATIONS.

Category Description Operations

A append SQL inserts, file writes

D delete SQL deletes

W write SQL updates

R read SQL selects, file reads

Our Solution. We propose to model external operations

to four access categories, as shown in Table III, covering



(1) R R′ (A|W |D) (A′|W ′) (2) A (A′|R′|W ′) A
(3) W (A′|R′) (W |A) (4) D D′ A A′

Figure 5. Atomicity violation patterns for external operations. Remote
operations are superscripted.

the most common external operations. Two new categories,

append and delete, are introduced.

Note with the new categories, theoretically there are many

more interleaving patterns. Fortunately, according to our

discussion earlier, most of them are not feasible in practice.

We hence only consider a small subset as listed in Fig. 5.

We also preclude patterns that are serializable.

The examples in Fig. 2 and 4 belong to the patterns R

R’ A A’ and A A’ A, respectively. One example of pattern

(3) is that two update-queries update two disjoint sets of

fields of the same tuple. A select query from a different

thread is not supposed to see the partially updated tuple.

Note that pattern (4) involves four operations, which are

the interleaving of two DA atomic pairs. The code snippet

in Fig. 6 shows an example. It corresponds to the coding

pattern of cleaning stale data (maybe multiple tuples) before

inserting a new tuple with the same key. Sequence D D’ A

A’ is not serializable as two tuples will be inserted. This

pattern also discloses that reasoning about only triples (two

locals and one remote) as in shared memory serializability

analysis is not sufficient for external resources. Observe that

although pattern (4) is unserializable, its sub-patterns D D’

A and D’ A A’ are serializable.

1 $s1 = "DELETE FROM book WHERE ID = ’" . $bookID . "’";

2 $r1 = mysql_query($s1);

/*update information about the book*/

3 $s2 = "INSERT INTO book VALUES(’". $bookID ."’, .... )";

4 $r2 = mysql_query($s2);

Figure 6. Example for an atomic pair involving delete- and insert-queries.

V. ATOMIC PAIR INFERENCE

In this section, we discuss how to infer atomic pairs

from PHP programs. Considering all operations in a PHP

thread/process atomic is too simplistic to be useful. Many

operations present in a program allow concurrency. Our

experimental results (in Section VII) show that naively

considering all operations on the same resource atomic leads

to many false positives.

We propose to consider program dependence in order to

infer pair-wise atomicity properties. The observation is that

if two external operations are correlated through program de-

pendences, the original intention of the developer was most

likely to assume such program dependences are exercised in

a way identical to a sequential execution. Recall that in the

OpenCart example in Fig. 2. The insert-query is transitively

dependent on the select-query as the execution of the insert-

query is determined by if the value of the selected total

number of coupon uses has not reached the allowed limit.

The precise dependence path is indicated in the figure by

underlining the involved variables. The assumption implied

by the dependence path is that the total number of uses

should remain constant from the select-query till the insert-

query that places a new order.

We consider program dependences in two different ways

depending on the category of an atomic pair.

• A pair of operations with the first operation being a

read is considered atomic if there is a dependence path,

including both control and data dependences, from the

first operation to the second. It corresponds to that

the result of the first operation is used in the second

operation. The OpenCart example illustrates this case.

• A pair of operations with neither being a read is

considered atomic if both are data dependent on the

same variable and there is a valid program path

correlating the two operations. Intuitively, it means

that both operations are consuming/storing the same

or correlated computation results. Such a process is

often not intended to be interfered by other threads. The

eXtplorer example in Fig. 4 illustrates this case. The file

writes in two consecutive iterations are both dependent

on the creation of the output file. Another example is

presented in Fig. 6, in which the two operations are

delete and insert. Both are dependent on the definition

point of variable $bookID.

Datalog Rules for Atomic Pair Inference. The atomic pair

inference process is described as datalog rules in Fig. 7.

Datalog [9] uses a Prolog-like notation. It provides a neat

representation for whole program analysis. Data flow facts

can be formulated as relations. Analysis is represented as

inference rules on these relations. Relations are in the form

P (x1, x2, ..., xn) with P being a predicate and x1, ..., xn

representing program artifacts, such as labels. A predicate

is a declarative statement on the variables. For example,

datadep(l1, l2) denotes that there is a data dependence path

from l1 to l2.

The form of an inference rule is as follows.
P :- B1, B2, ..., Bn

B1, B2, ..., and Bn are either relations or negated rela-

tions. The rule means that if B1, B2, ..., and Bn are true

then P is true.

Relations can be either inferred or atoms. In program

analysis, we often start with a set of atoms that describe basic

facts of the program and then infer other more interesting

relations.

In Fig. 7, we assume program dependence relation dep

and data dependence relation datadep as atoms. These

relations are generated through standard program analysis.

Rules (D1) and (D2) present the rules that infer atomic

pairs. Rule (D1) describes the process of inferring atomic

pairs with the first operation being a read. It infers

from 4 atoms, in which same resource relation is de-

scribed in Section III. In the OpenCart example, an entry

sql atomic RA(133, 703) is inferred.



Rule (D2) describes the inference of atomic pairs with

neither operation being a read. Note that in (D1), we

don’t explicitly require l2 is reachable from l1 because

dep(l1, l2) implies that. In the example in Fig. 6, an entry

sql atomic DA(2, 4) is inferred.
Rules (D5) and (D6) describe the inference of file opera-

tion atomic pairs, which is very similar to database operation

pairs. Note that the possible patterns for file operation atomic

pairs are fewer. Other patterns are either impossible or rare.

VI. VIOLATION DETECTION

Given the inferred atomic pairs, violations are detected

by observing if the interleaving patterns presented in Fig. 5

can happen. Since the remote operation is from a different

execution instance of the same PHP code, it is sufficient to

analyze if the same program contains the specific offending

remote operation. Although PHP does not provide any

buildin synchronization support, developers can make use of

external primitives such as database transactions, table locks,

and file locks to ensure atomicity. Therefore, our technique

also needs to detect if an atomic pair is well protected by

those external primitives.

Rule (D3) determines if a given pair of program points

(l3, l4) is nested in a database transaction. It requires the

existence of a transaction that starts and ends at l1 and l2,

respectively, and l1 dominates l3 and l2 post-dominates l4
such that all paths leading from program entry to l3 must

go through l1 and all paths from l4 to program exit must go

through l2.

Rule (D4) detects query atomicity violations of the pattern

WR’W with R’ being a remote select-query. It reports (l1, l2)
as an atomic WW pair that could be violated if there exists

a sql-select at l3 that operates on the same abstract tuple,

and (l1, l2) is not protected by a database transaction. Our

analysis also models table locks. Due to the space limitation,

we are not presenting the relevant rules.

Detection rules for other sql operation and file operation

interleaving patterns can be similarly derived as Rule (D4).

VII. EVALUATION

Our system is implemented on LLVM[7], an open source

PHP compiler (phc) [6], and the STP solver [8]. Phc is used

to translate PHP to C. The main analysis is implemented

in LLVM. It takes the C program and transforms it to

constraints, which are resolved by the solver. We translate

PHP to C to leverage LLVM for call graph construction,

points-to analysis, etc., as we are not aware of infrastructures

that allow us to analyze PHP direclty.

Since phc aims to generate C code that is compilable

and executable, the PHP features not directly supported by

C are realized by chunks of C code. For example, array

fields in PHP can be added dynmaically. In translated C,

hash tables are used, substantially increasing difficulty for

our analysis. We therefore modified the code generator of

phc to generate simplified C code by replacing those hash

table accesses with field accesses. The resulting code may

not be executable, but reflecting the original semantics.

The LLVM component translates the generated C pro-

grams to their SSA forms, which are further encoded to

constraints. In order to understand external operations and

encode them properly, we implement a simple string analysis

that tracks string concatenations so that we can acquire the

the query strings. A string variable is mapped to a linked list

of constants and variables denoting its value. Query strings

can be parsed to identify table name and field names. Our

system currently requires these names to be constant.

Since PHP files are largely independent modules,it is

unnecessary to encode all the files of a web app. We use

a demand-driven strategy. In particular, given a query about

resource identity, we perform program slicing to identify the

relevant PHP modules and functions and then only encode

the slice.

We apply our technique to a set of real world web

applications. The benchmarks are mainly from previous PHP

analysis works[11], [31], [36], excluding those that have

trivial external resource accesses or functionally overlap

with the selected ones. In addition, the shopping, forum and

wiki kinds of apps are often accessed concurrently, so we

randomly pick OpenCart, phpBB, aphpkb for each kind.

The characteristics of these programs are listed in Ta-

ble IV. Observe that many of them are very large web apps,

with a few hundred PHP files and over 100k LOC. All

experiments are run on an Intel Dual Core 2.5GHz machine

with 2GB memory. The OS is Linux-2.6.35.

Table IV
PROGRAM CHARACTERISTICS.

PHP PHP LOC
Application files mean stdev max total

openCart v1.4.9.4 535 99 152 1233 53025

phpBB v3.0.0 245 685 2933 45178 167797

ajallerix v0.1 16 402 1283 5207 6435

eXtplorer v2.1.0-RC3 277 291 397 4618 80598

scarf v2007-02-27 19 89 91 369 1686

phpoll v0.97 beta 27 167 122 494 4522

AWCM v2.2 187 79 85 483 14717

webChess v1.0.0 rc2 28 186 264 1243 5219

faqforge v1.3.2 19 90 73 218 1710

schoolMate v1.5.4 63 129 94 539 8120

timeclock v1.04 63 330 437 2832 20800

aphpkb v0.95.5 46 93 67 264 4283

news pro v1.4.0 30 231 183 811 6925

DCP-Portal v 6.1.1 362 335 428 5075 121410

Employee Scheduler v2.1beta 43 215 220 1231 9264

Table V presents the result of violation detection. “PHP

LOC w/ inclusion” is the average LOC of PHP files after

inlining the scripts indicated by the include keyword.

“Converted C LOC” is the average LOC of the C programs

translated from the expanded PHP. “Constraint complexity”

presents the average number of variables and constraints

in the formula. The last four columns present the number

violations reported and the number of false positives for our

technique and a simplified static analysis. “SA w/o Dep.”



Atoms

dep(l1, l2) : there is a program dependence path from l1 to l2, including both data and control dependences.
datadep(l1, l2) : there is a data dependence path from l1 to l2.
sql R/W /A/D(l) : there is a SQL select/update/insert/delete query at l.
file R/A(l) : there is a file read/write operation at l.
reachable(l1, l2) : l2 is reachable from l1.
trans(l1, l2) : a database transaction is created at l1 and then released at l2.
dom(l1, l2) : l1 dominates l2.
pdom(l1, l2) : l1 post-dominates l2.

Rules for Database Queries
/* (l1, l2) is a sql RW/RA/RD atomic pair*/
(D1) sql atomic RW /RA/RD(l1, l2) :- sql R(l1), sql W /A/D(l2), same resource(l1, l2), dep(l1, l2)

/* (l1, l2) is a sql DA/WW/WA atomic pair*/
(D2) sql atomic DA/WW /WA(l1, l2) :- sql D/W /W (l1), sql A/W /A(l2), same resource(l1, l2), reachable(l1, l2),

datadep(l, l1), datadep(l, l2)

/* The two operations at l3 and l4 are protected by the transaction in between l1 and l2*/
(D3) in trans(l1, l2, l3, l4) :- trans(l1, l2), dom(l1, l3), pDom(l2, l4)

/* WR’W atomicity violation, l1 and l2 should be atomic, but the interleaving with l3 is not serializable*/
(D4) sql violation wRw(l1, l2) :- sql atomic WW (l1, l2), sql R(l3), same resource(l3, l1),¬ in trans(l4, l5, l1, l2)

Rules for File Operations
/* (l1, l2) is a file RA atomic pair*/
(D5) file atomic RA(l1, l2) :- file R(l1), file A(l2), same resource(l1, l2), dep(l1, l2)
/* (l1, l2) is a file AA atomic pair*/
(D6) file atomic AA(l1, l2) :- file A(l1), file A(l2), same resource(l1, l2), reachable(l1, l2), datadep(l, l1), datadep(l, l2)

Figure 7. Datalog rules for atomicity violation detection for external operations. W, R, A, and D denote write, read, append, and delete.

Table V
ANALYSIS RESULT.

PHP LOC w/ Converted Complexity (avg) Our method SA w/o Dep.
Application inclusion (avg) C LOC (avg) Variable Constraint vioc FPc vios FPs

openCart v1.4.9.4 899 49068 1359 1972 32 0 32 0

phpBB v3.0.0 2490 83683 1054 1568 14 0 14 0

ajallerix v0.1 86 5170 247 762 1 0 1 0

eXtplorer v2.1.0-RC3 781 10559 326 598 2 0 2 0

scarf v2007-02-27 402 9313 76 165 5 0 12 7

phpoll v0.97 beta 208 5586 83 232 4 0 4 0

AWCM v2.2 2679 51607 124 227 2 0 15 13

webChess v1.0.0 rc2 1706 63616 82 174 7 0 11 4

faqforge v1.3.2 217 2993 52 89 3 0 3 0

schoolMate v1.5.4 421 14489 123 185 11 3 33 25

timeclock v1.04 1154 25746 147 194 3 0 27 24

aphpkb v0.95.5 842 17663 75 97 3 0 5 2

news pro v1.4.0 1129 28331 178 239 11 0 30 19

DCP-Portal v 6.1.1 423 20940 253 597 11 0 11 0

Employee Scheduler v2.1beta 2089 84659 169 271 7 0 8 1

Total — — — — 116 3 208 95

represents a technique that can be considered as a static

version of the one used in [25] (which is dynamic). In

particular, it does not infer atomicity properties from PHP

code, but rather directly compares the query strings. Queries

that access the same table and abstract tuple, and may form

unserializable interleavings are reported. The analysis time

is mostly within a few seconds and thus elided.
We make the following observations from the result.
• Our analysis is able to detect many violations in these

real world web apps. We manually validate each bug by

constructing a real test input and exercising the prob-

lematic interleaving pattern. These bugs could lead to

problems such as coupon misuses, product being over-

sold, data corruption and runtime database exceptions.

• Our analysis produces very few false positives.

• The simplified approach produces many false positives.

This illustrates the benefit of analyzing PHP code.

It also suggests that even though many queries are

accessing the same table and the same tuples, they are

allowed to execute concurrently.

• Slicing is an effective optimization because even though

the programs are large on average, the average numbers

of constraints and symbolic variables are small.

False Positive. Our analysis sometimes reports false posi-

tives. A typical example is shown in Fig. 8. Variables such

as $ POST[...] hold the values submitted by the client so

that they are defined in the client-side. Our analysis is not

able to make any assumptions about these values. Therefore,

we treat them as free variables.



Based on such assumptions, the predicates at lines 1
and 5 are both satisfiable, rendering the path between

the two queries (at lines 3 and 7) feasible. Since the

queries access the same resource and both depend on the

same $_POST[total] variable, according to our detec-

tion rules, the two operations are considered to be atomic.

Interleaving “1,1’,5” hence constitutes a violation. However,

in practice, these two queries are not related.

The reason of the FP in Fig. 8 is that we missed the

constraint that a client can never submit a single request

that can add a new record and edit an existing one in the

meantime. We speculate if we can model the client-side

logic, such FPs can be eliminated. We leave it to our future

work.

1 if($_POST["addassignment"] == 1) {

2 $s1 = "UPDATE courses SET ... $_POST[total] ... ";

3 $r1 = mysql_query($s1);

4 }

5 if($_POST["editassignment"] == 1) {

6 $s2 = "UPDATE courses SET ... $_POST[total] ... ";

7 $r2 = mysql_query($s2);

8 }

Figure 8. False Positive Example - simplified snippet from schoolMate.

False Negative. Our analysis is incomplete and may have

false negatives. For example, the atomicity inference is

heuristic based. The current string analysis handles string

concatenation but doesn’t support functions such as sub-

str() or strrpos(). However, without an oracle, it’s hard to

determine false negatives automatically. We leave it to our

future work.

VIII. RELATED WORK

Data Race and Atomicity Violation Detections. There are

many works on data race detection [27], [24], [22], [23]

and atomicity violation detection[14], [19], [26], [18].They

are mostly addressing problems caused by shared memory

accesses. They often leverage synchronization primitives. In

contrast, the problem in our scenario is caused by sharing

external resources. Server side scripts provide no build-in

threading or synchronization support. In other words, we

have to address a largely different set of challenges.

Web app testing. Server side script testing is increasingly

studied lately. Wassermann et al. [33] designed an auto-

matic input generation algorithm for web apps based on

concolic execution. They also models the semantics of string

operations and solve constraints involving different types.

Harman et al. [16] proposed a session data repair method for

regression testing. The work by Halfond et al. [15] precisely

identifies a web app’s interface to improve test input gener-

ation via symbolic execution. Artzi et al. [11] proposed to

combine concrete and symbolic executions to automatically

generate test cases that expose faults by analyzing the server-

side script. Sprenkle et al. [30] suggested that statistical

model-based test generation can be adopted and applied for

web app testing. Marchetto et al.[21] proposed a testability

measurement that can be leveraged in automated testing

of web apps. The vulnerability measurement proposed in

[29] heuristically inspects SQL hotspots in server scripts to

decide priority. Carzaniga et al. [12] proposed an automatic

workaround of web app failures. Provided a failure, it tries

to find a different execution sequence that achieves the same

functionality while bypass the failure. The above approaches

do not address problems caused by concurrent executions.

Web app comprehension. Since web app source code is

usually not well organized, it is difficult for human de-

veloper/maintainer to understand the (complex) correlations

between modules. Thus, many works have been proposed

to help people get better understanding. Hassan et al.

[17] proposed to extract code structure and display the

interactions between components. WANDA [10] instruments

web apps and combines dynamic and static informations

to address the problem. Similarly, the integration of WARE

and WANDA[20] combines static and dynamic analysis to

enhance comprehension. These works are too general to

solve our problem.

IX. CONCLUSION

We propose a static analysis that detects atomicity vi-

olations in web apps regarding external resources. The

technique features a novel resource identity analysis that is

interprocedural and path-sensitive. It models external opera-

tions to constraints and leverages a SMT solver to determine

whether multiple operations are accessing the same external

resource, which is a critical condition for contention. We also

develop an automated approach to statically infer if a pair of

operations that access the same resource demands atomicity.

Violations are detected by reasoning about serializability of

interleaved atomic pairs. Our results show that the technique

is highly effective, capable of detecting many real atomicity

violations in large web apps.
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