
Coalescing Executions for Fast Uncertainty Analysis

William N. Sumner Tao Bao Xiangyu Zhang Sunil Prabhakar
Department of Computer Science, Purdue University
{wsumer,tbao,xyzhang,sunil}@cs.purdue.edu

ABSTRACT
Uncertain data processing is critical in a wide range of ap-
plications such as scientific computation handling data with
inevitable errors and financial decision making relying on hu-
man provided parameters. While increasingly studied in the
area of databases, uncertain data processing is often carried
out by software, and thus software based solutions are at-
tractive. In particular, Monte Carlo (MC) methods execute
software with many samples from the uncertain inputs and
observe the statistical behavior of the output. In this paper,
we propose a technique to improve the cost-effectiveness of
MC methods. Assuming only part of the input is uncer-
tain, the certain part of the input always leads to the same
execution across multiple sample runs. We remove such re-
dundancy by coalescing multiple sample runs in a single run.
In the coalesced run, the program operates on a vector of
values if uncertainty is present and a single value otherwise.
We handle cases where control flow and pointers are uncer-
tain. Our results show that we can speed up the execution
time of 30 sample runs by an average factor of 2.3 without
precision lost or by up to 3.4 with negligible precision lost.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming; D.2.5 [Software Engineering]: Testing and Debug-
ging; D.3.3 [Programming Languages]: Language Con-
structs and Features

General Terms
Languages, Experimentation, Performance

Keywords
uncertainty, sensitivity, monte carlo, coalescing

1. INTRODUCTION
Uncertain data processing is becoming more and more

important. In scientific computation, data are collected

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

through instruments or sensors that may be exposed to rough
environmental conditions, leading to errors. Computational
processing of these data may hence draw faulty conclusions.
For example, it was shown that a protein was mistakenly
classified as a cancer indicator by slightly altering a param-
eter of the program used to process experimental data [29].
These parameters are uncertain because they are provided
by biologists based on their experience. Such mistakes could
be highly costly because expensive follow-up wet-bench ex-
periments could be further conducted based on the faulty
protein. One of the most widely used sources for protein
data is Uniprot [8], in which proteins are annotated with
their functions. The annotations may come from real exper-
iments (accurate) or computation based on protein similar-
ity (uncertain). Software operating on these data must be
aware of the uncertainty [16]. In modern combat, soldiers
rely on data collected by sensors deployed on harsh battle-
fields. Processing unreliable data and making proper deci-
sions is key to their survival. Software facilitating financial
decision making is often required to model uncertainty [19].

Traditionally, uncertainty analysis is conducted on the un-
derlying mathematical models [28]. However, modern data
processing uses more complex models and relies on com-
puters and programs, rendering mathematical analysis diffi-
cult. Realizing the importance of uncertain data processing,
recently, researchers have proposed database techniques to
store, maintain and query uncertain data [25, 13]. However,
more sophisticated data processing is often performed out-
side a database. Addressing uncertainty from the software
engineering and program analysis perspective becomes nat-
ural. Continuity analysis [6] is a static technique analyzing
if a given program output varies in a continuous way as in-
put changes. While the analysis has been shown to work on
simple programs like sorting algorithms, applying it to pro-
grams with complex computation remains a challenge. Taint
analysis [21, 7] tracks the set of inputs used to compute indi-
vidual outputs through program dependence tracking. Users
can thus focus their attention on the relevant inputs when
analyzing uncertainty. However, it does not provide direct
help as it cannot identify whether one input in the lineage
set is more important than another.

Monte Carlo (MC) methods provide a simple and effective
means of studying uncertainty [13, 5, 26]. They randomly
select input values from predefined distributions and aggre-
gate the computed outputs to yield statistical insights on the
output space. They are increasingly studied by researchers
in software engineering. For instance, MC methods are used
to classify input values critical to the output [5] and test

float foo (float * A, float x) {

 float t = 10.0 – x;

 float s=0, y;

 for (int i=0; i<10; i++) {

 y=(t+i)*A[i];

 s=s+y;

 }

 return s;

}

float foo (float * A) {

 float s=0, y;

 for (int i=0; i<10; i++) {

 y=(5.0+i)*A[i];

 s=s+y;

 }

 return s;

}

1

2

3

4

5

6

7

8

10

11

12

13

14

15

16

float foo (float * A) {

 y=5.0*A[0];

 s=y;

 s=s+6.0; //s=s+(5.0+1)*1.0

 s=s+14.0; //s=s+(5.0+2)*2.0

 y=8.0*A[3]

 s=s+y;

 …

}

21

22

23

24

25

26

27

28

29

(a) Original function (b) After specialization on x=5.0 (c) Trace based specialization on A

Figure 1: Program Specialization. Assume A[0] and A[3] are uncertain; other A[i]=i.

stability of numerical implementations [26].
In this paper, we improve the efficiency of MC methods.

MC methods require computing independent solutions, or
trials, for many samples. In the context of uncertain data
processing, often only part of the data are uncertain. Hence,
the sample runs have a lot redundancy, dictated by the cer-
tain part of the input, i.e. the part that remains the same
across sample runs.
Eliminating redundant execution caused by a certain part

of the input is not a new challenge. Classic solutions in-
clude partial evaluation (program specialization) [15, 17,
24] and memoization. However, they fall short for our pur-
pose. In particular, partial evaluation generates specialized
versions of a program that can run faster. For example, sup-
pose a function has multiple input parameters, and some of
the parameters often take the same values. Specialized ver-
sions of the function can be generated by replacing those
parameters and computation related to them with concrete
values at compile or binding time. Consider the program
in Fig. 1 (a). Suppose variable x often takes the value 5.0.
Specialization creates the version in (b). Specialization
is harder where only part of an array is uncertain. Recent
work specializes execution traces [24], working at the array
element level, but such techniques unroll loops and generate
linear code [14]. Supposing A[0] and A[3] are uncertain in
our example, figure (c) shows the program after trace based
specialization . Observe that statements 2, 3, 4, and part of
5 are concretized as their outcomes are certain. Trace based
specialization is intended for use on functions, whereas we
need to specialize whole programs. Section 6 shows that
when only one input element is uncertain, up to 98.84% of
the executed instructions for some programs operate on un-
certain data and are hence not concretizable. This implies
the specialized programs will have a huge static size.
Memoization [18, 22, 1] is a technique that caches func-

tion level output for frequently occurring function inputs so
that redundant computation can be pruned. It works well
when a function is called frequently in a single run and pos-
sible inputs to the function are few. However, our scenario
is different: in one sample run, a program may call some
functions a large number of times, but likely with different
inputs each time; the same function inputs only occur across
runs. To reduce such cross-run redundancy, we may have to
cache for all the possible function inputs in a single run.
We propose a technique called execution coalescing that

packs multiple MC trials into one execution. The approach
allows users to mark program inputs that should receive
samples from a random distribution. Using this informa-
tion, our approach automatically finds work that is common
across multiple trials and coalesces it so that the common
work is only done once, but the results of that work can still
be used independently in each trial. In particular, a variable

 float t = 10.0 – x;

 float s=0;

 for (int i=0; i<10; i++)

 y=(t+i)*A[i]

 s=s+y;

 for (int i=0; i<10; i++)

 y=(t+i)*A[i]

 s=s+y;

 …

2

3

4

5

6

4

5

6

5.0

0.0

T

{-5.0, 0.0, 5.0}

{-5.0, 0.0, 5.0}

T

6.0

{1.0, 6.0, 11.0}

Trace State

Figure 2: Coalesced execution. Assume three sam-
ples are taken for A[0] and they are {-1.0, 0.0, 1.0}.
The state shows the left hand side values after each
statement execution.

is associated with a vector if it is directly or indirectly com-
puted from uncertain input. Assume its size is n. The ith
element in the vector corresponds to the value of the vari-
able in the ith sample run. Operations on uncertain values
are carried out on individual elements in the vectors. One
step forward in the packed execution is equivalent to step-
ping forward in the n sample runs simultaneously. Variables
that are certain have only one value. In this case, stepping
forward in the n sample runs is done by executing only one
operation instead of executing n instructions simultaneously,
which allows eliminating redundancy.

Consider the program in Fig. 1 (a). Assume the random
values -1.0, 0.0 and 1.0 are chosen for A[0] in three sepa-
rate trials. The coalesced execution of these trials together
is shown in Fig. 2. These different values are shown as a vec-
tor at the first instance of line 5. Furthermore, the instances
of line 6 also have vector values as they rely on the uncer-
tain input and may yield different results for each trial. In
contrast, because the values generated at other places are
shared across all trials, the state of the variables is repre-
sented by individual values. Note that if the three trials
are executed independently, the shared evaluations must be
repeated three times. For example, line 2 needs to execute
three times without coalescing but only once with it.

Recent advances in hardware and software enable effi-
ciency in execution coalescing. Our technique tracks uncer-
tain values that need to be associated with a vector through
program dependence tracking, which is often the dominant
overhead factor. Recent work [23] shows that such analysis
can be implemented efficiently. Moreover, the intel Stream-
ing SIMD Extensions (SSE) instruction set for x86 architec-
tures allows operating on a vector of values in one cycle. Our
technique is mostly transparent to users. They only need to
indicate which input values are uncertain and their distri-
butions. It has no specific requirements for the subject
programs and hence can be adapted to other applications
such as combinatorial testing. Our current implementation
supports both C and FORTRAN programs.

Our contributions are summarized as follows.

• We present vector based program evaluation rules for
packing multiple MC trials into one execution. It coa-
lesces the common work between trials while produc-
ing unique and correct results for each individual trial.
The semantics handles conditional statements on un-
certain values. If necessary, it executes both branches,
one after the other. It also handles uncertain pointers.

• We conduct formal analysis on the possible savings of
our technique that allows the user to estimate benefits
in different use cases.

• We devise optimizations to remove unnecessary uncer-
tainty on the fly to further improve cost effectiveness.
The optimization allows the user to exchange precision
for efficiency. Our evaluation shows that high perfor-
mance can be achieved with little loss of precision.

• We have implemented the approach and evaluated it
to examine the impact and utility of different parame-
ters that characterize efficacy in reducing the runtime
costs of Monte Carlo techniques.

2. COALESCING EXECUTIONS
In this section, we formally define execution coalescing

and discuss some important properties.

P ∈ L ::= s

s ∈ Stmt ::= s1; s2 | skip | x ← e

| if (x) then s1 else s2 endif

| while (e) s endwhile

e ∈ Expr ::= x | c | x1 binop x2 | x1 binop c | input() | ...

x ∈ V ar ::= {x, y, . . .}

c ∈ Const ::= {true, false, 0, 1, 2, . . .}

input() ::= ⊥ → (c | normal(c, c) | uniform(c, c) | ...)

Figure 3: Simple kernel language L with Monte
Carlo sampling.

Our system is built on top of gcc and hence supports mul-
tiple programming languages. For generality, our formal dis-
cussion is facilitated with a simple kernel language presented
in Fig. 3. The kernel language includes no-ops, assignments,
conditional execution via if statements, looping with while

statements, binary operators, and both constant and vari-
able values. It explicitly models program input through the
input() function. The function returns a certain value or
a distribution. The simplest form is a uniform distribution
over a range. For the moment, the kernel language does not
model functions, arrays and pointers. We will discuss how
to support these features in Section 4.

Trial ::= {1, ..., N}
σ ∈ Store ::= V ar → Const
Γ ∈ SampleStore ::= V ar → (Trial→ Const)
µ ∈ SampleMask ::= P(Trial)

Figure 4: Definitions for evaluation.

2.1 With Certain Control Flow
We first introduce how the technique works assuming con-

trol flow is certain. In other words, we assume predicates
do not operate on uncertain variables, and hence different

trials follow the same control flow. For instance, in a ma-
trix multiplication program, if only the matrix elements are
uncertain, execution always follows the same path.

Fig. 4 presents the definitions relevant to program state.
Symbol N represents the number of sample runs we want to
coalesce. We assign a unique id for each sample run. Trial
represents the set of ids. Symbol σ represents the regular
store, which is a mapping from variables to constants. To
allow coalescing, we introduce an extra store in the sample
space, denoted as Γ. It maps a variable to a mapping from
a sample run id to a value. Intuitively, for each variable, it
stores the values of the variable for each sample run if the
variable is uncertain. We call the mapping the vector value
of the variable, whereas the value in the regular store is the
regular value. Symbol µ is used in the presence of uncertain
control flow, which will be discussed in the next section.

The evaluation rules are presented in Table 1. They spec-
ify the actions for evaluating a statement when the condi-
tions are satisfied. The rule names are provided in the last
column. We allow two types of input through the explicit
input() method. In rule Input-Certain, if the statement
reads a certain input value to variable x, x is associated
with the value in the regular store and with ⊥ in the sample
store, meaning that x is undefined in the sample store. Note
that x might have had an uncertain value before the assign-
ment. Rule Input-Uncertain specifies that if the input is
uncertain, i.e., the input method returns a distribution, N
samples will be taken and stored to the sample space.

The remaining three rules specify evaluation of the assign-
ment of a binary operation. Rule Binop-Both-Uncertain

applies when both source operands x1 and x2 have uncertain
values. According to the rule, the left-hand-side variable x
maps to a vector storing the results of the binary operation
on the corresponding elements in the two source vectors. If
x1 is uncertain and x2 certain, rule Binop-1st-Uncertain

applies and x has a vector value. Each vector element is
computed from the corresponding vector element in x1 and
the value of x2 in the regular store. If both source operands
have certain values (rule Binop-Both-Certain), the result-
ing value is computed from the regular values and updated
to the regular store, and the sample store of x is reset to un-
defined. Other rules are similarly derived and hence elided.
Fig. 2 shows an example of such evaluation.

2.2 With Uncertain Control Flow
In real programs, there are often predicates operating on

uncertain values. In such cases, it is uncertain which branch
will be taken. To handle these cases, upon encountering an
uncertain predicate, we split the coalescing into two sub-
coalescings: one with the sample runs following the true
branch, called the true coalescing, and the other with those
following the false branch, called the false coalescing. We
evaluate them one after the other. At the merge point of
the two branches, the two subcoalescings conjoin to the orig-
inal coalescing. If uncertain predicates nest, a subcoalesc-
ing may further split into smaller subcoalescings1. We have
to make sure the evaluations of the split subcoalescings of
the same predicate are isolated, otherwise a definition in the
true branch evaluation may reach a use in the following false
branch evaluation of the same predicate, leading to errors.

Table 2 presents an important subset of evaluation rules.

1Such splittings are bounded because subcoalescings with
only one trial cannot be split.

Table 1: Evaluation rules with certain control flow.
statement condition action name

x ← input()
input() returns constant c σ(x) = c; Γ(x) = ⊥ Input-Certain
input() returns distribution d ∀i ∈ Trial, Γ(x, i) = random(d) Input-Uncertain

x ← x1 binop x2

Γ(x1) 6= ⊥ Γ(x2) 6= ⊥ ∀i ∈ Trial, Γ(x, i) = Γ(x1, i) binop Γ(x2, i) Binop-Both-Uncertain
Γ(x1) 6= ⊥ Γ(x2) = ⊥ ∀i ∈ Trial, Γ(x, i) = Γ(x1, i) binop σ(x2) Binop-1st-Uncertain
Γ(x1) = ⊥ Γ(x2) = ⊥ σ(x) = σ(x1) binop σ(x2); Γ(x) = ⊥ Binop-Both-Certain
...

Table 2: Evaluation rules with uncertain control flow. We use JsK to denote the action of evaluating a
statement s. We use Γ(x, µ) as the shorthand for ∀i ∈ µ,Γ(x, i).
statement condition action name

if (x) then s1 else s2

Γ(x, µ) = true Js1K If-UC-True

∃i ∈ µ, Γ(x, i) = true
∃j ∈ µ, Γ(x, j) = false

µT = {i ∈ µ, Γ(x, i) = true};
µF = µ− µT ; push(µ);
µ = µT ; Js1K;
µ = µF ; Js2K;
µ = pop();

If-UC-Both

...

x ← input()

input() returns constant c
µ = Trial

σ(x) = c; Γ(x) = ⊥ Input-C

input() returns constant c
µ ⊂ Trial

Γ(x, µ) = c Input-C-Mask

input() returns distribution d Γ(x, µ) = random(d) Input-UC

x ← x1 binop x2

Γ(x1) = ⊥ Γ(x2) = ⊥ µ = Trial σ(x) = σ(x1) binop σ(x2); Γ(x) = ⊥ Binop-Both-C
Γ(x1, µ) = ⊥ Γ(x2, µ) = ⊥
µ ⊂ Trial

Γ(x, µ) = σ(x1) binop σ(x2) Binop-Both-C-Mask

Γ(x1, µ) 6= ⊥ Γ(x2, µ) 6= ⊥ ∀i ∈ µ, Γ(x, i) = Γ(x1, i) binop Γ(x2, i) Binop-Both-UC
...

x ← x1 binop c
Γ(x1, µ) = ⊥ µ ⊂ Trial Γ(x, µ) = σ(x1) binop c Binop-C-Const-Mask
...

while (x) s endwhile
Jif (x) then s; while (x) s endwhile

else skipK
While

We enhance program state with a sample mask µ, whose
definition is in Fig. 4. It identifies which trials are being
evaluated along the current path. We only need to compute
the values for these trials in the current path. Other trials
require separate computation along different paths.
The first two rules describe the evaluation of an if state-

ment predicating on uncertain values. The first rule If-UC-
True specifies that even though the predicate operates on
a vector value, if the vector elements are universally true,
we only evaluate the true branch. Rule If-UC-Both speci-
fies that if predicate x has both true and false values, we
divide the current mask µ into two submasks µT and µF ,
each identifying those trials that follow the true and false
branches, respectively. The true branch statement s1 evalu-
ates with µT and s2 evaluates with µF . Note that although
the stores are not explicitly specified in the rule, they up-
date in evaluation order. In other words, the evaluation of
s2 operates on stores that have been updated in s1’s evalu-
ation. The two submasks facilitate isolation, i.e. preventing
the evaluation of s2 from seeing values produced in s1.
The next three rules describe input behavior. Rule Input-

C specifies that we save the certain input to the regular store
only when µ is the universal set Trial, meaning the current
coalescing has not been split, i.e. the current path is cer-
tain. Rule Input-C-Mask specifies that although the input
is certain, the assignment is performed on the sample store
if µ is a subset. More intuitively, the rule dictates that if
the evaluation is for a split coalescing, we cannot save the
value to the regular store even though it is certain. Because
it is certain only regarding the sample runs indicated by µ,
it might have a different value in other sample runs.

The next three rules are for the assignment of a binary op-
eration. Rule Binop-Both-C specifies that if both operands
are certain and the sample mask is the universal set, we up-
date the regular store of x and reset the sample store. In con-
trast, from Binop-Both-C-Mask, if the sample mask is only a
subset, we update the sample store although both operands
are certain. Note, we test if an operand is certain regarding
the current mask, i.e. Γ(x, µ) = ⊥, instead of Γ(x) = ⊥.
The reason is that Γ(x, Trial − µ) might have been defined
in the evaluation along the other split branch, which has
no implications on whether x is certain along this branch.
Rule Binop-Both-UC specifies that if both source operands
are uncertain, we update the sample store, constrained by µ.
Rule Binop-C-Const-Mask is similar to Binop-Both-C-Mask.
Observe that any assignment along a split path (µ ⊂ Trial)
only updates the sample store but never the regular store,
which ensures that uses of the regular store in rule Binop-

Both-C-Mask in a split branch never see values defined in
the other branch, but rather those before the split.

Rule While evaluates a while statement to an if state-
ment so that the rules for the if statement can be used.
Example. Consider the program in Fig. 5. It computes
a person’s salary based on the rate and the hours she/he
works. Table 3 presents a sample evaluation. The first col-
umn shows the control flow, the second and third columns
show the regular store and the sample store, and the last
column shows the rules applied. Here, we coalesce five sam-
ple runs. At the beginning, the sample mask is the universal
set. The input at line 2 is uncertain, so we take 5 samples.
At line 3, we apply rule If-UC-Both, and the mask is di-
vided. The 1st, 3rd, and 5th sample runs evaluate in the

1 r ← input();
2 h ← input();
3 if (p ← h > 40)
4 then r ← r + 2
5 s ← r× h
6 if (q ← s > 500)
7 then s ← 500
8 else r ← r− 1
9 s ← r× h
10 endif;
11 output(s)

Figure 5: Example for uncertain control flow. The
program computes salary s from rate r and work
hours h. The rate is higher (line 4) if a person works
for more than 40 hours. The salary has a cut-off
value 500 (lines 6 and 7). If a person works for less
than 40 hours, the rate is reduced (line 8).

true branch, and the 2nd and 4th runs in the false branch.
At line 4, even though r holds a certain value, the sample
store updates for the 1st, 3rd, and 5th runs. At line 6, the
mask further divides into two submasks. Hence, the assign-
ment at line 7 only updates the value for the 5th run to 500
as highlighted. After the true branch evaluates, the false
branch evaluates. At line 8, rule Binop-C-Const-Mask ap-
plies so that the 2nd and 4th elements of r’s vector update.
Note that the values are computed from r’s value in the reg-
ular store σ, and hence the definition to r at line 4 has no
effect on line 8. At line 11, the submasks join. Observe, at
the end the values in the sample store are identical to those
acquired in the corresponding independent sample runs.

Safety. In the following, we present the safety claim of our
technique. It is critical to show that the coalesced execution
is equivalent to the N independent MC trials. Note that
an independent MC trial is a regular program execution.
Assume random sampling is deterministic for each uncertain
input, i.e., given the same random seed and a distribution,
the same N samples are generated. We further define the ith
independent trial as the execution with each uncertain input
taking the ith sample in the sequence of N . For instance,
the first MC trial in Table 3 corresponds to the execution
taking the inputs r = 8 and h = 45.

Property 1. Execution coalescing is safe. In particular,
at the end of program evaluation,
(1) if a variable x has Γ(x) ≡ ⊥, it must have the same
value across the N independent MC trials and the value is
identical to σ(x);
(2) if Γ(x) 6= ⊥, Γ(x, i) must be identical to the value of x
in the ith MC trial.

The property holds for our kernel language. The proof is
elided. For real programs, it holds when we do not consider
exceptions and interrupts. We leave it to our future work to
extend the technique to handle such cases.

3. COST BENEFIT MODEL
The computational benefits of execution coalescing de-

pend on a combination factors. In this section, we present
a model for estimating the benefits.
Without coalescing, all MC trials are executed indepen-

dently. Let’s first consider the case that all trials execute
along the same control flow. If there are N trials, with each
trial executing I instructions, the total number of instruc-

tions S(N) is given as follows.

S(N) = NI (1)

In comparison, the cost of execution coalescing, in terms
of executed instructions, is decided by the following factors.

• The number of trials that are coalesced. Let it be N .

• For each instruction, our technique must check whether
it operates on uncertain variables. Let the slow down
factor for such checking be K.

• We represent the percentage of instructions operating
on uncertain values as T . Hence, in the coalesced exe-
cution, I(1−T) instructions need to execute just once
for the n trials. For each of the remaining IT instruc-
tions, the operation is performed on vectors, which is
equivalent to executing the instruction N times.

• There is a constant bookkeeping overhead factor M
when executing an instruction on a vector.

Combining all these components yields the expected cost
presented in equation 2.

C(N,K, T,M) = KI +NMTI = (K +NMT)I (2)

We further compute the benefit factor B in equation 3.

B =
S(N)

C(N,K, T,M)
=

NI

(K +NMT)I
=

1

K/N +MT
(3)

Execution coalescing is beneficial when B > 1. A few
observations can be made from equation 3.

• N needs to be larger than K and MT needs to be
smaller than 1. In our implementation, K is often a
constant in the range 4-10. Hence, we need to coalesce
enough executions to make the technique beneficial.

• If MT < 1, B increases as N increases, reflecting that
if more trials are coalesced, each executed instruction
that is shared across trials has a greater reduction in
overall work. It is bounded by 1

MT
.

• The benefit increases as the uncertain percentage T
decreases. This reflects that as fewer instructions op-
erate on uncertain values, more of the execution can
be coalesced across trials. It is bounded by N

K
.

The above analysis allows us to decide if execution coa-
lescing is appropriate and tune the configuration of N (and
T if possible). For instance, assume M = 1.20 and T = 0.90.
Since MT = 1.08 > 1, it is guaranteed that coalescing pro-
vides no benefit. Moreover, assume M = 1.20, T = 0.33,
and K = 4.0. If we want to achieve a speed up B = 2, we
should use N = 40.

When uncertain control flow is considered, the benefit fac-
tor is computed as follows.

B =
1 + U

K/N +MT +KMU
(4)

U is the ratio between the instructions that are unique
in a trial over those common in all trials, describing the
percentage of uncertain control flow. We assume U is a
constant over all trials. The derivation of the inequality is
omitted for space. From the equation, to satisfy B > 1, the
following condition must hold.

U <
1−K/N −MT

KM − 1
(5)

Table 3: Sample execution for program in Fig. 5. h 7→ {..., 525} means h has value 52 in the 5th sample run.
control flow σ Γ µ rule
1 r ← input () r 7→ 8 {1,2,3,4,5} Input-C
2 h ← input () h 7→ {451, 302, 483, 254, 525} {1,2,3,4,5} Input-UC
3 if (p ← h > 40) p 7→ {T1, F2, T3, F4, T5} {1,2,3,4,5} If-UC-Both
4 then r ← r + 2 r 7→ {101, 103, 105} {1, 3, 5} Binop-C-Const-Mask
5 s ← r× h s 7→ {4501, 4803, 5205} {1, 3, 5} Binop-Both-UC
6 if (q ← s > 500) q 7→ {F1, F3, T5} {1, 3, 5} If-UC-Both
7 then s ← 500 s 7→ {4501, 4803,5005} { 5} Assgn-Const-Mask
8 else r ← r− 1 r 7→ {101,72, 103,74, 105} {2, 4} Binop-C-Const-Mask
9 s ← r× h s 7→ {4501,2102, 4803,1754, 5005} {2, 4} Binop-Both-UC
11 output(s) {1,2,3,4,5}

Table 5: Example for uncertain array indices. As-
sume the sample mask is {1, 2}; σ = {A[0] 7→ 3, A[1] 7→
9}; Γ = {i 7→ {01, 12}, j 7→ {11, 02}}.

instruction wrong correct
1 A[i] = 5 σ = {A[0] 7→ 5, Γ = {..., A[0] 7→ {51},

A[1] 7→ 5} A[1] 7→ {52}}
2 A[j] = 7 σ = {A[0] 7→ 7, Γ = {..., A[0] 7→ {51, 72},

A[1] 7→ 7} A[1] 7→ {71, 52}}

1 for (each i ∈ µ)
z= lib foo(x,y) 2 Γ(z, i)= lib foo(Γ(x, i), Γ(y, i));

Figure 6: Calling a library function.

While we can configure N to reduce the effect of K/N in
the condition, the technique must not be beneficial if U >
1−MT

KM−1
. Intuitively, our technique cannot be beneficial when

the ratio between the divergent control flow and the common
control flow is higher than a threshold.

4. HANDLING PRACTICAL ISSUES
In this section, we discuss how to support more complex

features that are not modeled by our language.
Uncertain Array Indices. Extra effort is needed when
uncertain values are used as array indices. We cannot sim-
ply perform the array operation on the regular store with
the addresses specified by the vector value of the index, even
though that seems straightforward. Instead, the operation
must be performed on the sample store. Specifically, a vec-
tor v needs to be created for each address specified by the
uncertain index. Only the ith element of the vector created
for the ith address gets updated. The reason is that the ith
address should only be used in the evaluation of the ith trial.
Consider the example in Table 5. Indices i and j are

uncertain. Both can take values 0 and 1 but take different
values within the same trial. The second column shows that
if we follow the näıve approach, after evaluating line 1, A[0]
and A[1] map to 5 in σ. After line 2, both map to 7. The
state after line 2, however, is wrong and does not correspond
to the coalescing of the two trials. Proper evaluation should
yield that at line 1, both A[0] and A[1] map to vector values,
and only the 1st trial in A[0] and the 2nd trial in A[1] are
set to 5. Similarly, after line 2, only the 2nd trial in A[0]
and the 1st trial in A[1] are set to 7. The state correctly
represents the coalescing of the two independent trials.
Table 4 presents some of the array access rules. We cur-

rently do not support uncertain base addresses (A has to be
certain). Uncertain pointers are supported in the same way
because they are equivalent to uncertain array indices.
Functions. Handling user defined functions is direct. For
library functions taking uncertain arguments, since we do
not have their source code, we cannot transform the func-

tions to operate on uncertain values. Our solution is to wrap
the function call in a loop that iterates through each trial in
the sample mask. Each iteration calls the function with the
regular values in a trial (extracted from the sample store).
The results are written to the corresponding elements in the
result vector. Fig. 6 shows an example.

5. OPTIMIZATION BY REMOVING UNNEC-
ESSARY UNCERTAINTY

We observe that during coalesced execution, there are
variables that are considered uncertain, having vector val-
ues, but the values in the vector are identical or have only
negligible differences. We can reduce the vector to a single
value so that the subsequent computation with these vari-
ables can be re-coalesced. Such cases can be caused by:

• An uncertain value going through an operator repre-
senting a many-to-one mapping. Multiple inputs to
the operator can lead to the same output. Sample sce-
narios include: multiply by 0 (e.g. y ← x× 0), mod-
ulo operation (e.g. y ← x%10), bit operations (e.g.
y ← x & 0xfff), and comparisons (e.g. p ← (x >
10)). Note that our evaluation rules are suboptimal
for these cases because y is uncertain as long as x is
uncertain, disregarding the values in the vector of y.

• Floating point round-off, overflow, and underflow can
also lead to identical values in vectors. For instance,
consider the following statement.

y ← x+ 1.0e9

And assume Γ(x) = {0.0021, 0.0052, 0.0073}. Since
the floating point representation can only hold a fixed
number of the most significant digits (suppose it can
hold 7 digits), the contribution from x is then rounded
off, leading to Γ(y) = {1.0e91, 1.0e92, 1.0e93}.

• Recall that when we encounter an uncertain predicate,
we first evaluate a subset of trials along the true branch
and then the remaining trials along the false branch.
Any assignments inside these branches are performed
on the sample store. It is possible that a variable is
defined with the same value in the two branches.

There are also cases where floating point values in a vector
are highly similar although they are not completely identi-
cal. We hence develop a general solution to leverage the
above observations. Given a significance threshold k, if the
differences between the first value in a vector Γ(x) and any
other values in the vector are less than k, we re-coalesce the
vector to a single value. The threshold based recoalescing

Table 4: Evaluation rules for uncertain array indices.
statement condition action name

A[x] = c Γ(A) = ⊥ Γ(x, µ) 6= ⊥ ∀i ∈ µ, Γ(A[Γ(x, i)], i) = c Arr-Const-Wr-UC
y = A[x] Γ(A) = ⊥ Γ(x, µ) 6= ⊥ ∀i ∈ µ, Γ(A[Γ(x, i)], i) 6= ⊥ ∀i ∈ µ, Γ(y, i) = Γ(A[Γ(x, i)], i) Arr-Rd-UC

provides a means to trade a configurable degree of precision
for increased efficiency by decreasing T in equation 3 (the
uncertain ratio). Note that when k = 0, we only merge
identical values, no precision is lost.

6. EMPIRICAL EVALUATION
Our system is built in gcc, based on the GIMPLE IR.

Since our technique operates on vectors, we leverage SIMD
(Single Instruction, Multiple Data) instructions for better
performance. In particular, we use packed floating point in-
structions, such as addition, subtraction or computing square
roots, from the SSE2 extension of SIMD instructions. Note
that the benefit of SSE2 instructions is limited by the width
of the SSE registers, which is 128-bit for our machine. In
other words, we can only pack two double precision floating
point values at a time.
Our experiments are performed on an Intel quad core

Xeon 1.86GHZ machine with 4GB RAM. We use SPECFP-
2000 as the benchmark set, which includes both C and For-
tran programs. We excluded 2 programs. In particular,
189.lucas is a program that identifies prime numbers and
hence uncertainty analysis is not applicable. 177.mesa is
omitted because we have not supported direct assignments
of aggregate types such as assignments of struct. We have
total 12 programs (3 C and 9 Fortran).
Our first experiment evaluates the benefits of execution

coalescing together with its space overhead but without the
optimization removing unnecessary uncertainty. For each
program, we vary the number of coalesced trials (factor N
in eqn 3 in Section 3) among 1, 10, 20, and 30. We also
vary the percentage of input marked as uncertain, which will
affect the percentage of instructions operating on uncertain
values (T in eqn 3), among 1 input, 1%, 5%, 10%, 15%,
and 20% of the input. For each uncertain input, we select
samples from 50%-100% of the original value following a
uniform distribution. The reason that we select samples
smaller than the original is that larger samples may fall out
of the legal range.
Detailed results are presented in Table 6. Details for 30

samples are omitted for space. The native columns show the
original time. The T% columns show the percentage of state-
ments operating on uncertain values. The K columns show
the normalized overhead when only one sample is taken,
which corresponds to running the program on the original
input (w/o uncertainty) with the overhead of checking and
propagating uncertainty (the K factor in eqn 3). The B
columns show the benefit factor (i.e. the speedup) with
the subscripts representing the number of samples. For
172.mgrid and 301.apsi, the columns under 1% uncertain
input present data for marking all inputs as uncertain due
to their small number of inputs. We also summarize the
results in Fig. 7, showing the variation in the benefit over
the number of samples, taking the average over the percent-
age of uncertain input. Note that we put in the data for
30 samples. Fig. 8 further shows the variation in benefit
over uncertain input, taking the average over the number of
samples. Fig. 9 summarizes the normalized space overhead

(details omitted for space). From the table and the figures,
we make the following observations.

1.1

1.8
2.3

0

1

2

3

4

5

6
10-sample 20-sample 30-sample

Figure 7: Change in speedup over the number of
samples.

0.0

1.0

2.0

3.0

4.0

5.0
1 uncertain input 1% uncertain input 5% uncertain input

10% uncertain input 15% uncertain input 20% uncertain input

Figure 8: Change in speedup over uncertain input.

0

5

10

15

20

25

30
0-sample 10-sample 20-sample 30-sample

Figure 9: The normalized space overhead.

• Coalescing can speed up MC simulations by an average
factor ranging from 0.6 to 5.2 with an average of 2.3
when 30 samples are coalesced. We expect the num-
ber to be high if memory is large enough to fit more
samples. The average overhead of checking and propa-
gating uncertainty (K) ranges from 2.1 to 17.0 with an
average 7.9. Since the nature of the uncertainty propa-
gation is similar to dynamic information flow tracking
and the state of the art [23] reports an average 2 times
speedup if their aggressive optimizations are applied,
we speculate our overhead can be similarly reduced in
the future. The large K implies that we have to coa-
lesce sufficient trials to make it beneficial (see eqn 3).

• The speedup increases with the number of coalesced
samples. It decreases as more inputs are marked un-
certain. The decrease is not that substantial for some
programs. When T is large, we hardly benefit with 10
samples.

• The space overhead ties closely with the number of co-
alesced samples. It could be high when coalescing a
large number of samples. We use the standard shadow

Table 6: Performance with different configurations.

program native
of 1 uncertain input 1% uncertain input 5% uncertain input
input T% K B10 B20 T% K B10 B20 T% K B10 B20

168.wupwise 4.39 4.6E6 29.27% 4.98 1.24 2.00 30.31% 5.14 1.23 1.90 33.02% 5.24 1.14 1.80
171.swim 0.40 2.6E5 0.64% 4.16 2.36 4.69 3.18% 4.38 2.00 3.94 6.72% 4.78 1.73 3.20
172.mgrid 34.09 10 98.84% 5.80 0.88 1.43 98.84% 5.80 0.88 1.43 N/A
173.applu 0.41 65 66.42% 10.10 0.63 1.04 66.42% 10.10 0.63 1.04 67.87% 10.06 0.63 1.05
178.galgel 1.61 5.2E3 54.01% 8.06 1.17 2.21 54.05% 8.34 1.17 2.18 54.08% 7.87 1.17 2.22
179.art(C) 27.64 1.0E4 25.42% 7.78 0.89 1.48 25.42% 6.99 0.89 1.48 25.43% 6.56 0.92 1.57

183.equake(C) 0.48 7.3E3 20.88% 6.26 1.18 1.94 21.90% 6.35 1.17 1.93 26.94% 6.86 1.00 1.65
187.facerec 9.64 6.6E4 16.76% 2.08 2.66 4.15 16.95% 2.08 2.63 4.09 17.01% 2.08 2.63 4.07

188.ammp(C) 4.49 9.6E3 9.59% 5.94 1.38 2.39 9.59% 5.88 1.37 2.38 9.59% 5.91 1.36 2.42
191.fma3d 5.08 544 87.82% 13.57 0.47 0.67 87.95% 13.41 0.47 0.68 88.65% 13.52 0.46 0.67
200.sixtrack 7.19 7.9E4 65.17% 15.12 0.41 0.52 78.40% 16.84 0.35 0.44 78.40% 16.82 0.35 0.45
301.apsi 4.41 9 8.35% 4.15 2.11 3.67 8.35% 4.16 2.09 3.65 N/A

program
10% uncertain input 15% uncertain input 20% uncertain input

T% K B10 B20 T% K B10 B20 T% K B10 B20

168.wupwise 34.65% 5.44 1.10 1.74 36.84% 5.53 1.06 N/A 37.92% 5.59 1.04 N/A
171.swim 11.34% 5.39 1.44 2.53 17.38% 5.91 1.18 2.06 20.38% 6.36 1.09 1.85
172.mgrid N/A N/A N/A
173.applu 67.89% 10.20 0.63 1.05 67.91% 10.20 0.63 1.06 67.94% 10.16 0.63 1.07
178.galgel 58.74% 8.53 1.11 2.15 58.78% 8.31 1.12 2.13 58.90% 8.28 1.12 2.05
179.art 25.43% 6.93 0.90 1.57 25.44% 6.77 0.97 1.55 25.44% 6.77 0.91 1.56

183.equake 31.08% 7.35 0.84 1.41 33.50% 7.71 0.80 1.32 34.76% 7.88 0.79 1.27
187.facerec 17.03% 2.07 2.61 4.11 17.04% 2.07 2.55 4.09 17.05% 2.10 2.61 4.04
188.ammp 9.59% 5.89 1.36 2.39 9.59% 5.86 1.36 2.37 9.59% 5.88 1.38 2.38
191.fma3d 88.70% 13.51 0.47 0.66 88.82% 13.54 0.47 0.67 88.88% 13.80 0.47 0.67
200.sixtrack 78.40% 16.95 0.35 0.45 78.40% 16.96 0.35 0.45 78.40% 16.97 0.34 0.44
301.apsi N/A N/A N/A

memory allocation strategy [20] to allocate shadow
space for a page when any address in that page is used
by the original program. We expect a more sophisti-
cated strategy would reduce the overhead.

The second experiment shows the effect of optimizing away
the unnecessary uncertainty. Here, we randomly select one
configuration: 10 samples and 1 single uncertain input. We
vary the re-coalescing threshold k, i.e. if the variations of
all elements in a vector are smaller than k, we re-coalesce
the vector back to one value. Fig. 10 presents the speedup
results. Table 7 presents the resulting output errors due to
re-coalescing. We do not collect output errors for the pro-
grams that do not benefit from the optimization. Observe,
the optimization is not always applicable, depending on pro-
gram semantics (see Section 5). In such cases, we have to pay
the overhead for testing variations, which explains the slight
degradation for 183.equake in Fig. 10. For some programs,
it substantially improves the speedup factor, e.g. from 1.25
to 3.4 for 168.wupwise, with little lost in precision. Note
that a larger k leads to a better speedup. The precision lost
also slightly increases. Our experience with the few other
randomly selected configurations also shows similar results.
The third experiment observes the effectiveness of MC

simulation. Here, we vary the uncertain inputs and observe
the output variations. We randomly select 183.equake. The
program simulates the propagation of elastic waves in large
basins. An unstructured mesh consists of nodes and linear
tetrahedral elements is used to model the earthquake area.
The program computes the displacements for each individ-
ual node. We vary the altitude of a node from 100% to 80%
(of its original value) 2 and observe the outputs. Fig. 11
presents the outputs with the most substantial displacement

2We used the provided test input and varied node 977, which
is randomly selected from those in the source of the quake.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

no merging threshold 1 (1E-8) threshold 2 (1E-7)

threshold 3 (1E-6) threshold 4 (1E-5) threshold 5 (1E-4)

Figure 10: Speedup by re-coalescing with different
thresholds.

values and their variations over the input changes. Each
curve represents one output. We can observe that many of
these outputs change irregularly and substantially. Tradi-
tional uncertainty analysis based on monotonicity, linearity,
and continuity would fail in this case. Furthermore, we ob-
serve that a few percent change of the inputs may lead to
substantial output changes. The variations could be a few
times larger than the origianl values.
Case Study. In the following, we further study the case
and explain the substantial and irregular output variations
by connecting them to uncertain control flow and uncertain
array indices.

For each node i, its position is defined by a tuple of (lat-
itude, longitude, altitude) stored in (c[i][0], c[i][1], c[i][2]),
where c[i][2] is the altitude. The altitude of node 977 is
−11.2. We look at the 10 samples from 95% to 77% of the
original altitude value to explain the impact.

Initially, we have a vector for the altitude of node 977, σ =
{c[977][2] 7→ −11.2}; Γ = { c[977][2] 7→ {−10.641, −10.4162,...,
−8.62410} }.

Table 7: The average and maximum output error after merging, for 10 samples and 1 uncertain input.

program
threshold 1 (1E-8) threshold 2 (1E-7) threshold 3 (1E-6) threshold 4 (1E-5) threshold 5 (1E-4)

avg/max avg/max avg/max avg/max avg/max

168.wupwise 9.6E-10/1.6E-08 7.7E-09/5.5E-08 8.7E-09/1.6E-07 8.7E-09/9.1E-06 2.1E-08/9.6E-05
171.swim 3.0E-10/1.8E-05 3.0E-10/1.8E-05 3.0E-10/1.8E-05 2.8E-10/1.3E-05 2.8E-10/1.3E-05
179.art 6.4E-16/3.1E-13 6.4E-16/3.1E-13 6.4E-16/3.1E-13 6.4E-16/3.1E-13 6.4E-16/3.1E-13

187.facerec 5.4E-10/1.6E-09 3.3E-09/1.3E-08 3.3E-09/1.3E-08 3.3E-09/1.3E-08 3.3E-09/1.3E-08
188.ammp 1.3E-14/4.3E-12 3.1E-13/3.6E-12 3.1E-13/3.6E-12 3.1E-13/3.6E-12 4.7E-03/9.5E-02
191.fma3d 3.0E-09/2.9E-11 3.0E-09/2.9E-11 3.0E-09/2.9E-11 8.4E-09/2.0E-10 8.4E-09/2.0E-10
200.sixtrack 1.6E-09/4.6E-09 2.2E-09/9.3E-09 1.4E-09/6.2E-09 1.4E-09/6.2E-09 1.4E-09/6.2E-09
301.apsi 8.3E-06/1.0E-02 1.7E-04/7.7E-02 2.0E-03/9.0E-01 3.8E-05/7.9E-03 3.8E-05/8.0E-03

-4E-04

-3E-04

-2E-04

-1E-04

0E+00

1E-04

2E-04

100% 95% 90% 85% 80%

Figure 11: Output variations for 183.equake.

/* Search for the node closest to the point source */
244 bigdist1 = 1000000.0;
247 for (i = 0; i < ARCHnodes; i++) {
248 c0[0] = c[i][0];
249 c0[1] = c[i][1];
250 c0[2] = c[i][2];
251 d1 = distance(c0, Src.xyz);
254 if (d1 < bigdist1) {
255 bigdist1 = d1;
256 Src.sourcenode = i;
257 }
264 }

One step of the computation selects the closest node to
the given earthquake source point in Src.xyz in the above
code. All the nodes are traversed with a loop between
line 247 and 264 (shown above). In the 979th iteration,
at line 250, c0[2] receives the vector {−10.641,−10.4162, ...,
−8.624}. Returning from the function distance(), d1 at
line 251 gets the vector of values {0.6751, 0.9982, 1.4223,
1.9464, ..., 6.0729, 7.19810}. The variable bigdist1 holds
the value 4.657. Therefore, we encounter an uncertain pred-
icate (d1 < bigdist1) at line 254. The sample mask µ
is divided into two submasks µT = {1, 2, ..., 7} and µF =
{8, 9, 10}. According to the evaluation rules in Table 2,
we compute the values of bigdist1 and Src.sourcenode

in both branches with µT and µF respectively. After line
257, the values in the sample stores are joined together,
i.e. bigdist1 7→ {0.6751, 0.9982, 1.4223, 1.9464, ..., 4.6578,
4.6579, 4.65710}, Src.sourcenode 7→ {9771, 9772, 9773, ...,
9738, 9739, 97310}.
After the loop, the node closest to the source point is

selected and stored in variable Src.sourcenode. Now we
have Src.sourcenode 7→ {9771, 9772, 9773, ..., 9738, 9739,
97310}. Thus, for the first 7 trials, the computed source
node is node 977 while for the last 3 trials it is node 973.
Another code snippet shows that uncertain array indices

add to the irregularity. Variable cor holds a certain value
at line 2. When it equals 977 or 973, the coalescing splits
after evaluating the branch at line 293. For instance, when

cor equals 973 at line 293, we get a submask of {8, 9, 10}, so
only the 8th, 9th and 10th elements of vertices[j][k]’s vector
get updated, according to the evaluation rules in Table 4.
Similarly, the 1st to 7th elements of the vector get updated
when cor equals 977.

289 for (i = 0; i < num_elems; i++) {
293 if (cor == Src.sourcenode) {

...
298 vertices[j][k] = c[cor][k];
306 }
307 }

In later phases, the sub-coalescings are further divided
because of other predicates. This implies that we observe
discontinuity or different trends between outputs belonging
to different sub-coalescings because they go through differ-
ent computation. In contrast, outputs belonging to the same
sub-coalescing often have continuity or even monotonicity.
These explain the curves in Fig. 11, where monotonic seg-
ments are observed but irregularity exists across segments.

7. RELATED WORK
Parallelized Monte Carlo. Parallelization has improved
the efficiency of MC techniques in the context of specific ap-
plications [2, 4]. In contrast, our approach is fully automated
and works on already developed programs. Additionally, we
don’t rely on parallelization to improve running time, in-
stead we reduce the common, redundant work across Monte
Carlo trials. Hence, it is orthogonal to parallelization.

Partial Evaluation & Memoization. Partial evaluation
generates a new version of a program where additional as-
sumptions about runtime behavior allow more aggressive op-
timization [15]. Memoization caches the results of a function
for given input such that the results can be reused instead
of reevaluating the function. As noted in section 1, these are
useful in program optimization, but they cannot realistically
handle the combining of multiple disparate executions.

Delta Execution. Delta execution [9] eliminates redundancy
across state explorations in model checking. Each type in
the program is wrapped in a container type that maintains
a vector of the original type. At runtime, operations trans-
late to operations on these container types. The technique
closely ties into model checking. The savings largely come
from places specific to model checking, such as state com-
parison to avoid repeated state exploration. They also han-
dle control flow splitting differently. Leveraging state man-
agement in the model checker, they allow split branches to
work on isolated stores. Branches only merge at the end
of a method. In contrast, we cannot afford checkpointing
and restoration; thus our split branches operate on the same

stores and achieve isolation through careful evaluation rules.
We also aggressively merge split branches at the join point.
A variant of delta execution also relates [27]. While our

approach enables execution of one program on multiple in-
puts at once, the variant enables execution of multiple pro-
grams on one input at once, efficiently finding differences.

Uncertainty Analysis. Uncertainty and sensitivity anal-
yses compose one client field of Monte Carlo techniques.
Other efforts provide a means of partially automating these
analyses efficiently. These approaches include model check-
ing and theorem proving [10, 6], automated differentiation [3]
and controlled perturbation [12]. They have difficulty han-
dling data structures with heterogeneous data (certain and
uncertain) or multiple uncertain variables, which is noted as
one of the reasons to use sampling based approaches [11].

8. CONCLUSIONS
We propose a technique that can coalesce multiple Monte

Carlo sample executions into one. We leverage the obser-
vation that these sample runs often share a lot of common
execution and hence coalescing avoids repeating the common
execution. Coalescing is achieved by allowing the program
to operate on a single value if it is the same across all the
coalesced runs, and on a vector otherwise. Our technique
executes both the true and false branches of a predicate in
an isolated fashion if its vector values can be both true and
false. Pointers, array indices, and function calls on vector
values are also handled safely such that the coalesced run
produces the same results as independent runs. Our evalu-
ation shows that we can speed up the runtime of 30 sample
runs by an average factor of 2.3 without precision lost or by
up to 3.4 with negligible precision lost.

9. ACKNOWLEDGMENTS
This research is supported, in part, by the National Sci-

ence Foundation (NSF) under grants 0845870 and 0916874.
Any opinions, findings, conclusions, or recommendations in
this paper are those of the authors and do not necessarily
reflect the views of NSF.

10. REFERENCES
[1] U. Acar, G. Blelloch, and R. Harper. Selective

memoization. In POPL, 2003.

[2] V. Alexandrov, I. Dimov, A. Karaivanova, and C. Tan.
Parallel monte carlo algorithms for information
retrieval. Math. Comput. Simul., 62(3-6), 2003.

[3] J. Barhen and D. Reister. Uncertainty analysis based
on sensitivities generated using automatic
differentiation. In ICCSA, 2003.

[4] I. Beichl, Y. Teng, and J. Blue. Parallel monte carlo
simulation of mbe growth. In IPPS, 1995.

[5] M. Carbin and M. Rinard. Automatically identifying
critical input regions and code in applications. In
ISSTA, 2010.

[6] S. Chaudhuri, S. Gulwani, and R. Lublinerman.
Continuity analysis of programs. In POPL, 2010.

[7] J. Clause, W. Li, and A. Orso. Dytan: a generic
dynamic taint analysis framework. In ISSTA, 2007.

[8] U. Consortium. The universal protein resource
(uniprot) in 2010. Nucleic Acids Res, 38, Jan 2010.

[9] M. d’Amorim, S. Lauterburg, and D. Marinov. Delta
execution for efficient state-space exploration of

object-oriented programs. In ISSTA, 2007.

[10] M. Heimdahl, Y. Choi, and M. Whalen. Deviation
analysis through model checking. In ASE, 2002.

[11] J. Helton, J. Johnson, C. Sallaberry, and C. Storlie.
Survey of sampling-based methods for uncertainty and
sensitivity analysis. Reliability Eng. & Sys. Safety,
91(10-11), 2006.

[12] Y. Ho, M. Eyler, and T. Chien. A gradient technique
for general buffer storage design in a production line.
Int. Jour. of Prod. Res., 17(6), 1979.

[13] R. Jampani, F. Xu, M. Wu, L. Perez, C. Jermaine,
and P. Haas. Mcdb: a monte carlo approach to
managing uncertain data. In SIGMOD, 2008.

[14] N. Jones, C. Gomard, and P. Sestoft. Partial
evaluation and automatic program generation.
Prentice-Hall, Inc., 1993.

[15] N. Jones, P. Sestoft, and H. Sondergaard. An
experiment in partial evaluation: the generation of a
compiler generator. In RTA, 1985.

[16] P. Karp. What we do not know about sequence
analysis and sequence databases. Bioinformatics,
14(9), 1998.

[17] G. Keller, H. Chaffey-Millar, M. Chakravarty,
D. Stewart, and C. Barner-Kowollik. Specialising
simulator generators for high-performance monte-carlo
methods. In PADL, 2008.

[18] Y. Liu and T. Teitelbaum. Caching intermediate
results for program improvement. In PEPM, 1995.

[19] M. Morgan and M. Henrion. Uncertainty: A Guide to
Dealing with Uncertainty in Quantitative Risk and
Policy Analysis. Cambridge University Press, 1992.

[20] N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In
PLDI, 2007.

[21] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature
generation of exploits on commodity software. In
NDSS, 2005.

[22] W. Pugh and T. Teitelbaum. Incremental
computation via function caching. In POPL, 1989.

[23] O. Ruwase, S. Chen, P. Gibbons, and T. Mowry.
Decoupled lifeguards: enabling path optimizations for
dynamic correctness checking tools. In PLDI, 2010.

[24] A. Shankar, S. Sastry, R. Bod́ık, and J. Smith.
Runtime specialization with optimistic heap analysis.
In OOPSLA, 2005.

[25] S. Singh, C. Mayfield, R. Shah, S. Prabhakar,
S. Hambrusch, J. Neville, and R. Cheng. Database
support for probabilistic attributes and tuples. In
ICDE, 2008.

[26] E. Tang, E. Barr, X. Li, and Z. Su. Perturbing
numerical calculations for statistical analysis of
floating-point program (in)stability. In ISSTA, 2010.

[27] J. Tucek, W. Xiong, and Y. Zhou. Efficient online
validation with delta execution. In ASPLOS, 2009.

[28] B. Worley. Deterministic uncertainty analysis.
Technical report, Oak Ridge National Lab. TN, 1987.

[29] M. Zhang, X. Zhang, X. Zhang, and S. Prabhakar.
Tracing lineage beyond relational operators. In VLDB,
2007.

