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ABSTRACT

Analyzing web applications requires reasoning about strings
and non-strings cohesively. Existing string solvers either
ignore non-string program behavior or support limited set
of string operations. In this paper, we develop a general
purpose string solver, called Z3-str, as an extension of the
73 SMT solver through its plug-in interface. Z3-str treats
strings as a primitive type, thus avoiding the inherent limita-
tions observed in many existing solvers that encode strings in
terms of other primitives. The logic of the plug-in has three
sorts, namely, bool, int and string. The string-sorted terms
include string constants and variables of arbitrary length,
with functions such as concatenation, sub-string, and re-
place. The int-sorted terms are standard, with the exception
of the length function over string terms. The atomic formu-
las are equations over string terms, and (in)-equalities over
integer terms. Not only does our solver have features that
enable whole program symbolic, static and dynamic anal-
ysis, but also it performs better than other solvers in our
experiments. The application of Z3-str in remote code exe-
cution detection shows that its support of a wide spectrum
of string operations is key to reducing false positives.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-

bugging

General Terms
Verification, Algorithms

Keywords
String Analysis, String Constraint Solver, Web Application

1. INTRODUCTION

Constraint solving plays an important role in web pro-
gram analysis for the purpose of test generation for coverage
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[22], bug finding [3, 32] and vulnerability detection [17, 5].
The reason is that solver-based analysis tools enable more
precise analysis with the ability to generate interesting bug-
revealing inputs. Furthermore, solver-based analysis tools
are often more robust and easier to build than otherwise.
While most powerful constraint solvers like Z3 [19] support
a rich input language for traditional program analysis, they
typically don’t support combined logics over strings and non-
string operations essential for web program analysis.

In this paper, we present Z3-str, a satisfiability solver that
supports a rich combined logic over strings and non-string
operations aimed at symbolic, static and dynamic analysis of
web applications. Z3-str is built as an extension of the pow-
erful Z3 SMT solver [19] using its plug-in interface. Z3-str
treats strings as a primitive type, thus avoiding the inherent
limitations observed in many existing string solvers that en-
code strings in terms of other primitives. The supported
logic has three sorts, namely, bool, int and string. The
string-sorted terms include string constants and variables
of arbitrary length, with functions such as concatenation,
sub-string, and replace. The int-sorted terms are standard,
with the exception of the length function over string terms.
The atomic formulas are equations over string terms, and
(in)-equalities over integer terms. Formulas are constructed
in the usual way through boolean combination of atomic
formulas. Z3-str takes a formula in this logic as input, and
decides if it is satisfiable.

Many string solvers such as HAMPI [17], DPRLE [13],
and Rex [27] support only string operations. However, such
logics are not sufficiently expressive for many program anal-
ysis since non-string operations are also widely used in web
applications. More importantly, the string and non-string
operations interact in subtle ways leading to program er-
rors that are hard for humans to find without automation.
Finally, a string-only analysis will likely miss pure integer
or string-to-integer constraints (e.g., length of string) thus
resulting in path constraints that are not precise enough,
leading to false positives.

Many recent works [22, 8, 26, 21] on string solvers have ad-
dressed exactly this problem, namely, how to efficiently rea-
son about string and non-string constraints generated during
analysis of web applications. A key feature of all these ap-
proaches to string solvers is to transform both string and
non-string constraints to a uniform domain.

Some solvers [22, 8] (including early versions of Kaluza)
convert strings into bit-vectors, which are also used to rep-
resent integer constraints. The resulting constraints can be
solved using an existing SMT solver. However, to convert a



string into a bit-vector, its length has to be decided before-
hand as a prerequisite of the bit-vector encoding. Hence,
current techniques have to enumerate the possible length
values and then encode the string constraints based on the
concrete length values. The encoded constraints are then
passed to an SMT solver. This requires encoding repetitively
and querying the SMT solver many times. Consequently,
these techniques are more suitable for dynamic analysis,
wherein string length values can be easily computed from
concrete execution paths. However, for static analysis tech-
nique, such concretization-based solvers may be either too
inefficient or even non-terminating. The reason is that dur-
ing static analysis of a program, the range of lengths of a
string term in the program may not be precisely knowable.
By contrast, our algorithm is designed in an incremen-
tal fashion to follow the plugin interaction protocol of Z3,
leveraging its power of incremental solving. Given a set of
string equations, the algorithm systematically breaks down
constant strings into sub-strings and splits variables to sub-
variables to denote their sub-structures, until the break-
down is so fine-grained that the variables are bounded with
constant strings/characters. Any implied length constraints
are checked internally by Z3 for consistency with the given
input length constraints.
Contributions. Our contributions include the following;:

e We develop a novel string solver that has a rich input
language supporting string and non-string terms and
operations.

e Since it is unknown if the satisfiability problem of string
equations with length constraints in general is decid-
able, we carefully refine the problem scope so that we
can develop a sound and terminating algorithm. Our
system is complete for positive equations and length.
‘We do handle dis-equations, but we haven’t established
completeness for it. We believe the refined problem
definition is sufficient for constraints generated from
real-world web application.

e We empirically compare Z3-str with other solvers [22,
33] and show that our solver out-performs others in
terms of efficiency, in addition to providing a richer in-
put language and supporting both static and dynamic
analysis. We also apply the solver in remote code ex-
ecution vulnerability detection. Our experimental re-
sults show that the capability of modeling commonly
used string operations is key to reducing false positives.

e 7Z3-str is publically available at: nttp://www.cs.purdue.
edu/homes/zhengl6/str [1]

e 73-str has been successfully evaluated by the ESEC/FSE

artifact evaluation committee and found to meet ex-
pectations.

2. MOTIVATING EXAMPLE

In this section, we use a piece of php script as an exam-
ple to demonstrate the limitations of existing solvers and
motivate our approach.

The second column of the table in Fig. 1 shows the ex-
ample php script. In lines 1-13, $role can be assigned to
one of four different strings according to the value of the
session variable $_SESSION[ usergroup’]. Lines 14-16 calculate
the total cost based on the variable $ POST[ price’] submit-
ted by the client. And finally, in lines 17-19, if the cost is
larger than 500, a function notifyAdmin() is invoked for the

user whose $role starts with the character 'n'.

To successfully invoke the function notifyAdmin(), the input
and session variables have to satisfy certain branch condi-
tions at lines 2,3,9,17 and 18, where both string and non-
string constraints are involved. More importantly, the string
condition at line 18 is actually related to but not control de-
pendent on the integer conditions at lines 2,3 and 9. There-
fore, we have to reason about the string and non-string parts
together since they are closely correlated with each other.

Assume we are interested in identifying the variable valu-
ations that drive the execution to the statement where noti-
fyAdmin() is invoked. Let us compare the ways that existing
solvers handle this problem.

STP [10] is a SMT constraint solver. It supports integer
and boolean operations but does not support strings. Part
of the string equivalence problem could be solved by using
integer ids to denote constant strings, as shown by the mod-
ification in lines 4, 6,10 and 12 marked in green in the STP
column of the table in Fig. 1. However, more complex string
operations such as concat and substr() are not natively sup-
ported so that we have to ignore the predicate at line 18.
Therefore, the satisfying solution got from STP states the
function will be called as long as the price posted makes the
total cost larger than 500, which is imprecise.

HAMPI[17] is one of the most popular open-source string
solvers. It was originally designed for detection of SQL injec-
tion vulnerabilities. It was then widely used in other web ap-
plication analysis [5, 22, 25]. It models strings as context free
grammars (CFG) and supports regular expressions. String
concatenation is modeled based on the CFG. It can handle
queries about whether a string expression is in a regular ex-
pression or a CFG. However, it does not model arithmetic
and boolean operations. More importantly, HAMPI is path
insensitive, meaning that it is not able to reason about path
feasibility. Thus, in Fig. 1, statements related to the arith-
metic computation as well as the path conditions, which are
marked in red, are not supported and will be ignored. The
grammar rule at line 13 is generated by HAMPI, modeling
the possible values of $role. Consequently, HAMPI deter-
mines that notifyAdmin() will always be executed. Besides,
HAMPI doesn’t support direct string comparison and other
string operators like indexof() and substr().

Other solvers [9, 24, 13, 14, 27, 31, 26, 2, 21] that work
exclusively in the string domain have similar limitations.

Kaluza is the core of a JavaScript dynamic test genera-
tion framework [22]. It extends both STP and HAMPI, and
supports int, boolean and string constraints generated from
an execution path. Kaluza leverages HAMPI’s frontend to
model strings as bit-vectors so they can be reasoned uni-
formly with other types of constraints in STP. However, a
pre-requesite is that the lengths of bit-vectors have to be
known before-hand. Hence, before solving the string val-
ues, Kaluza first tries to find a satisfying solution to string
lengths. Then it encodes string constraints based on the
concrete length values. However, string lengths vary from
path to path, and sometimes may be unknown in the static
analysis context. For example, in Fig. 1, the length of $role
can change in different paths. Hence, multiple paths cannot
be encoded. To use Kaluza, one has to have a path explo-
ration engine and perform per-path encoding. Even given
a path, if there are multiple satisfying solutions of length
constraints, the solver has to enumerate individual concrete
solutions and encode separately. This suggests that the STP
solver needs to be frequently queried, inducing high cost.
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Figure 1: Existing solver comparison.

:;.f“(substr($x,0,3)==’abc’) {
if ...
}else { ... }

Figure 2: Example for Search Space Elimination
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Furthermore, building the string solver outside the un-
derlying SMT solver prevents the SMT solver from pruning
search space by leveraging the string solving results. Con-
sider the example in Fig. 2. Assume the string comparison
at line 2 is UNSAT. With the separated design, the compar-
ison is invisible to the path exploration engine so that the
engine has to explore both branches and the paths inside the
branches. If the string solver is built inside the SMT solver
like in our proposed design, the SMT solver can easily avoid
exploring the paths involving the true branch.

A few recent solvers [8, 21] work in a way very similar to
Kaluza and thus have the same limitations. They are mostly
used in the context of dynamic test generation or symbolic
execution in which individual paths are explored, and cannot
be directly applied in static analysis. Some of them do not
support certain important operations. For example, Kaluza
has very limited support of replace, demanding hints from
concrete execution traces.

PISA[26] is the first path- and index-sensitive string solver
that is applicable for static analysis. It’s a part of a com-
mercial tool and the source is not publically available. It
supports int, boolean and string operations by translating
them all into a third party language M2L(Str). However,
its expressiveness for arithmetic operations is restricted due
to the limitations of M2L. It does not support binary op-
erations between two variables since PISA requires at least
one of them is constant. Therefore, the statements in lines
15,16 are not supported and the predicate at line 17 may
not be correctly modeled. As a result, the reachability anal-
ysis is incomplete. Furthermore, it doesn’t support numeric
multiplications and divisions.

From the above discussion, we make two observations.
First, reasoning about both strings and non-strings simul-
taneously is needed. Second, existing techniques aiming at
solving string and no-string constraints together fall short as
they rely on other theories (e.g bit-vector) or languages (e.g.
M2L), inheriting their limitations. Hence, we aim to develop
an independent, more general and more capable string the-
ory inside an existing SMT solver.

3. DESIGN OF Z3-str
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Figure 3: Architecture overview

SAT & a possible model

In this section, we present the details of Z3-str. A key
choice in the design is to support strings as a primitive type
so that we do not need to convert them to other represen-
tations, such as bit-vectors. This avoids determining string
lengths before the solving process, which can be very dif-
ficult through static analysis. More importantly, it allows
us to support unbounded string variables and related oper-
ations that otherwise cannot always be supported if lengths
have to be determined a priori. Furthermore, building Z3-str
using Z3’s plugin API also has the advantage of leveraging
the state-of-the-art capabilities of Z3.

At the beginning of this section, we briefly introduce the
73 SMT solver, especially how it interacts with a theory
plug-in. Then, we describe the details of Z3-str.

3.1 Z3 SMT Solver and Its Plug-in API

73 [19] is an SMT solver developed by Microsoft Research.
Input constraints are provided to Z3 as a boolean combina-
tion of atomic formulas, where these atomic formulas are
defined over theories supported by Z3 such as integer and
real arithmetic, bit-vectors, arrays and functions. The ar-
chitecture of Z3 is shown in Fig. 3. It is mainly composed
of the following modules: the congruence closure engine, a
SAT solver-based DPLL(T) layer, and several default the-
ory solvers or plug-ins (solvers specialized in solving the sat-
isfiability problem of theories such as integer linear arith-
metic, bit-vectors etc.). The congruence closure engine is a
key module of Z3. Briefly, it detects if functional terms are
equivalent and if so maintains them in appropriate equiva-
lence classes. The SAT-based DPLL(T) layer is responsible
for handling the boolean structure of the input formula. For
example, it may assert conjunction of theory formulas to
the respective solvers, and backtrack if its assertions to the
theory solver are unsatisfiable.

The Z3 solver works roughly as follows: The core (con-
gruence closure and DPLL(T) layer) traverses the boolean



So assert(e; A(e; Vez)Aey)
e;: x = concat("abc",m)
e,: y = concat("efg",n)
e3: y = "abcd"

rx=y

{e;=T, e,=T
B ] t
e,=T} d -
— > backtrack
<= interaction with
string plugin

{e,=T, e,=F, o state
e3=T, ,=T, | [+:] facts

es=T} [=<] axiom

es:m = "d". Add:
concat("abc",m) = "abcd" - eg

Figure 4: Example of String Solving

structure of the input formula, and asserts a conjunction of
literals or facts (atomic formulas or their negation) to the
appropriate theory plug-ins based on the type T of the terms
used in the literals. The theory plug-in derives new facts in
domain T from the asserted facts and conveys them back to
the core as new azioms. Any equivalence between the terms
in the newly derived axioms and existing terms is detected
by the congruence closure engine, and appropriate equali-
ties are derived. If the derived equalities and disequalities
are over shared variables (i.e., shared by multiple theory
plug-ins), then the core asserts them to all such plug-ins.
The core detects if the input formula and derived facts are
unsatisfiable under the current assignment. If so, it back-
tracks. This process repeats until a satisfying assignment is
produced or the input formula is deemed unsatisfiable.

3.2 String Solving Procedure: Overview

Next, we will use an example to explain how Z3-str works.
Consider the string constraint on the right of Fig. 4. Since
the core cannot interpret the string operations, it treats
them as four independent boolean variables (e1, e2, es and
e4) and tries to assign values to them. Initially (state So),
there is no fact or axiom. The core starts by setting e; and
e4 to true and reaches state S3. Then, assume the core tries
true for es before assigning es at state Ss.

Recall that the core can detect functionally equivalent
terms (i.e., based on the theory of uninterpreted functions).
Hence, from the facts ei=true, ea=true and es=true, the
core puts z, y, concat(“abc”,; m) and concat(“efg”, n) into one
equivalence class and notifies the plug-in. The plug-in thus
knows the two concats above are equivalent. However, from
the semantics of concatenation, these two concats cannot
equal to each other under any circumstances because they
do not share a same prefix. The plug-in informs the core
about the new finding through an axiom (e1 A e2 — —es).
With the new axiom and the existing facts, the core detects a
conflict on e4 (in the boolean domain). The core backtracks
to state S2 and tries the other option for es. Note that when
the core backtracks, it discards the recent fact and any in-
sertions into equivalence classes as the consequence of the
fact. Then, the core assigns true to ez so that “abcd” will
be put in the same equivalence class as concat(“abc”, m).
Again, based on the concatenation semantics, the value of
string variable m can be inferred by the string theory plug-
in, which must be “d”. This new finding is formulated by
introducing a new variable (e5) in an axiom concat(“abc”,
m)=“abcd”— es5, which is sent back to the core. The new
state is Sg in the figure. From the existing facts and the new
axiom, the core derives es is true.

At state Sg, all boolean expressions have been assigned
and the assignments are consistent. Besides, the satisfying

Term:bool ::= (Var:bool)

true

false

contains ( (Term:string), (Term:string) )
Term:int = (Var:int)

Number

(Term:int) {4+, —, X, =} (Term:int)

length ( (Term:string) )

indexof ( (Term:string), (Term:string) )
Term:string ::= (Var:string)

ConstString

concat ( (Term:string), (Term:string) )
substring ( (Term:string), (Term:int), (Term:int) )
replace ( (Term:string), (Term:string), (Term:string) )
Ezxpr:bool  ::= (Term:bool)

(Term:bool) = (Term:bool)

(Term:int) {<,<,=,>,>} (Term:int)
(Term:string) = (Term:string)

not (Exzpr:bool)

(Ezpr:bool) N (Exzpr:bool)

(Ezpr:bool) V (Expr:bool)

if (Ezpr:bool) then (Ezpr:bool) else (Expr:bool)
(Ezpr:bool) implies (Ezpr:bool)

::= assert ( Exzpr:bool)

Figure 5: Constraint syntax
values of string variables x,y and m can be retrieved from
their equivalence classes. So, a set of consistent and satis-
fying solutions for the input constraint has been found and
the search procedure terminates.

Assertion

3.3 Constraint Syntax

The constraint syntax is presented in Fig. 5. For simplic-
ity, we only list three primitive types: int, bool and string".
Our plug-in supports the following string operations: string
equation, concatenation, length, substring, contains, indexof,
replace and split®.

3.4 Supporting String Operations

In this section, we will explain how the string operations
are supported. We first discuss three primitive operations:
string equation, concatenation and string length. Then we
will explain how to reduce other string operations to an
equivalent formula based on these primitives. Z3 core
can directly model the equivalence relation between objects,
i.e. variables and constants, by putting them into the same
equivalence class. Hence, our overall strategy is to reduce
various string operations to simple equivalence relations.
The Z3-str algorithm is incremental, driven by the try-and-
backtrack procedure of the Z3 core.

3.4.1 String Concatenation

String concatenation is a very commonly used operation.
It is also a primitive operation in Z3-str. The plug-in is
notified by the Z3 core when a string equation is asserted
as part of the try-and-backtrack process. In particular, the
core invokes a call back function in the plug-in, providing the
abstract syntax tree (AST) of the equation as a parameter.
The call back function inspects the AST, if it involves string
concatenations, the function tries to perform AST transfor-
mation to reduce the AST to a new one that is simpler and
easier to resolve.

The reduction is conveyed to the core by adding an ax-
iom with the form of “AST — AST"” with AST and AST’
the original and the transformed syntax trees, respectively.
Recall that since the core does not understand the string
domain, it treats both AST and AST’ independent bool
variables. As AST has been assigned a (true) value, with
the new axiom, the core will assign a (true) value to AST",

173 supports more primitive types [19)
2 Split is not presented in the syntax due to its special format.



DEFINITIONS:
x € Var : String s € ConstString

AUXILIARY FUNCTIONS:
split(Y) = recSplit(nil,Y")

recSplit(Yr, - Yr) ={
recSplit(Yz, nil) =¢
len(s-Y) ="“s|+7-len(Y)

Y € CompoundString := s-CompoundString | - CompoundString | ¢

split := CompoundString — P(CompoundString x CompoundString x Expr : bool)
recSplit(Ye, s+ Yr) = Uy, 5= {(Ye " $n, st Yr, true)} U recSplit(Yr s, Yr)

(Y 21, 2 YR, ®1-22=x)} | recSplit(Yr - z, Yr)

len(z - Y) = “length(z) + 7 - len(Y)

len(nil) = “0”

Figure 6: Definitions for Algorithm 1 and Table 1

which is a new fact triggering further plug-in processing.
The reduction continues until the simple equivalent form of
expressions, e.g. x = Y, with Y a constant string, or a
compound string composed of constants and variables, are
reached. The dependences of these simple expressions are
then constructed so that the plug-in can try assigning val-
ues to free variables (i.e. variables do not depend on others),
if any, to produce a satisfying solution.

Algorithm 1 Concatenation Reduction Algorithm
CALLBACK (Y1 = Y2)

1: REDUCE (Y1 = Y5);

2: for an object Y € Y1/Y2’s equivalence class do
3:  REDUCE (Y; =Y);

4:  REDUCE (Y2 =Y);

5: if Y1 = Y5 is of the form x = s then

6

7

for any Y involving x in existing eq-classes do
REDUCE (Y);

Algorithm. The high level concatenation reduction pro-
cess is presented in Algorithm 1. Upon the core assigning
true to a string equation of two compound strings (i.e. con-
catenations of constants and variables as defined in Fig. 6),
function CALLBACK() in Z3-str is invoked. The core idea be-
hind the concatenation reduction given in Algorithm 1 is to
derive new equations between the sub-strings on two sides
of the equation, and over all terms equivalent to these sub-
strings (recall that Z3’s core maintains equivalence classes
of terms). For instance, assume a string variable = has its
equivalence class {z,“a” - z1}. If a new equation z = “ab”
is asserted to the plug-in, we can use the concatenation re-
duction algorithm to derive z1 = “b” from this new fact and
the equivalence class. Furthermore, if the new equation is
of the form x = s with s a constant string, in lines 5-7,
the algorithm traverses all the expressions in existing equiv-
alence classes that involve z and replaces = with s, which
may trigger further reduction.

Reduction Rules. The first four rules in Table 1 are con-
catenation reduction with relevant definitions in Fig. 6. In
Table 1, the second column shows the transformation and
the third column is the condition of the reduction. Note that
the transformation rule is in the form of “orig_formula—mnew_
formula”, which is essentially the axiom we add to the Z3
core. For easier presentation, we flatten an AST to a com-
pound string that is a flat concatenation of constants and
variables. Note that during flattening, all the consecutive
constant strings are concatenated to a longer constant string.

Rule (HEAD-CONST-RMYV) removes the left-most com-
mon constant substring of the left-hand side (LHS) and the
right-hand side (RHS) of an equation. Note that we assume
the RHS has the longer constant string without losing gener-
ality. If the LHS and the RHS do not share a common prefix,

an axiom “—orig_formula’ is added, causing backtrack. Rule
(TAIL-CONST-RMYV) is similar.

After applying the constant removal rules, we get to a
point that either the LHS or the RHS starts with a vari-
able. Rule (SPLIT) allows further reduction for such ex-
pressions. Without losing generality, assume the LHS is of
the form z; - Y1, in which z; is a variable and Y7 a com-
pound string. The rule divides the RHS compound string
Y> to two substrings Y, and Y:, by calling function split(),
and asserts 1 = Yj and Y1 = Y;. The split function may
also generate a new constraint C' that denotes the side-effect
of splitting. The condition is conjoined with the two asser-
tions. Note that there are many ways of splitting Y>. Hence
the split() function returns a set of splittings, which are
associated with Y operator. The operation is similar to a
boolean or but it requires only one option can be true. For
example, z Y y = true implies either x = true,y = flase or
r = false,y = true.

The details of function split(Y) is shown in Fig. 6. It
is a recursive process by function recSplit(Yr,Yr), which
returns the set of possible splittings. Particularly, it splits
the leading literal of Yr at a time and moves it to the end
of Yz. Hence, the process starts with Yo = nil AYr =Y
and terminates with Y7, = Y A Yr = nil. If the literal
is a constant s, it creates multiple splittings that split at
different positions in s. If the literal is a variable z, it creates
one splitting, which is to split = to z; and z2 with z; and
x99 fresh variables. The correlation of variables is asserted
in the splitting condition, which will be part of the reduced
equation (i.e. C'in Rule (SPLIT)).

Consider a compound string “ab”-xz. The generated splits
are {(“7,“ab’ -z, true), (“a”,“b”-x, true), (“ab”, x, true), (“ab”
Z1,%2,%1 - T2 = T)}.

An important observation of the split rule is that the in-
dividual options (of the ¥ operator) in the transformed for-
mula are simpler than the original formula. This guarantees
monotonicity in reducing the original formula. Note that
these simpler options will be explored and further reduced
by Z3-str separately. However, we also add new constraint C'
to the system during splitting, which may raise the concern
of termination. We will further discuss this issue in Sec. 3.5.

Rule (CONCRETIZE) replaces a variable z in Y1 -z - Y2 with
a constant string when they become equivalent. Note that
in order to ensure the inserted formula is an axiom, we have
to conjoin x = s with the original expression.

Simple Equations. When no more reduction can be con-
ducted, if each equivalence class has a constant, the solv-
ing process terminates with a SAT solution. Otherwise, the
plug-in builds a dependence graph of variables involved in
simple equations, which are equations in the form of z =Y
and the equivalence class of x has no more than one non-
singleton compound string terms (i.e. not a constant or a
variable). For example in x = Y, x depends on all vari-



Table 1: Reduction Rules

Rule Reduction Condition
HEAD-CONST-RMV $1-T1-Y1 =82-Ys — r1-Y1 =83-Ys if 51 - 83 = 59
S1-T1-Y1 =82-Ys — j(81-.’1/‘1-1/'1:Sz-sz) ifs1isnotapreﬁxofsz
TAIL-CONST-RMV Yi‘z1-s51=Ya 52 —  Yi-xz1=Y>2-s3 if 8351 = s2
Yiczi-s1=Yars0 — —(Yi-zio851 =Y 50) if s1 is not a suffix of s2
SPLIT -1 =Ys — yv<yh)y“c>espl,;f,(y2)(.’I)] = Yh) A (1/1 = K) AN C
CONCRETIZE (z=s)ANY1-2-Y2) — Yi-s-Y, if z=3s
STRINGLEN Yi=Ys —  len(Y1) =len(Y2)
FREE-VAR Context — = VY r=%Q" V x="“QQ"... x a free variable

ables inside Y. Note that complex formulas will cause re-
duction and generate simple formulas. From the dependence
graph, we identify free variables, i.e. variables that do not
depend on others and do not have constants in their equiva-
lence class. We then assign concrete values to free variables
by adding new axioms. Such assignments will be explained
when we discuss the string length operation.

Example. Consider the following constraint composed of
three clauses with z, y, and z string variables.

z=1x- y z = “a77 Cw T - “d” — “abd”

The solving process is presented in Table 2. The sec-
ond column shows the fact/assignment from the core; the
third column shows the corresponding equivalence class; the
fourth column shows the reduction/action. In step 1, the
new fact does not trigger any reduction. In step 2, the two
compound strings in the equivalence class of z causes reduc-
tion by Rule (SPLIT). In step 4, the axiom added in step 3
causes the fact x = “ab”. In steps 5 and 6, the core tries to
explore the [1] and [2] options in the axiom added in step 2
but detects conflicts. It then explores the [3] option in step
7. In step 8, no more reduction can be performed, Z3-str
hence looks at variable dependences and identifies that ws
is a free variable. Note that in the current context, we have
y = w2 and w1 - w2 = w from the [3] option. Assigning an
empty string to w2 produces a SAT solution. O.

3.4.2 String Length

String length is another important primitive operation as
other operations can be reduced to it. Since the Z3 core
does not understand the semantics of the operation, it sim-
ply treats it as an integer variable. Z3-str hence needs to
ensure the correlation between the length variable and the
corresponding string. The basic design is to generate the cor-
responding length constraints (in the integer domain) when
the plug-in is invoked by the core upon new facts in the
string domain. If the new length constraints cause any con-
flict in the integer domain, the core will backtrack and try
a different solution in the string domain.

Rule (STRINGLEN) describes how Z3-str generates length
constraint upon a new fact Y1 = Ya. It calls function len()
(defined in Fig. 6) to translate the two compound strings to
integer expressions and asserts their equivalence. It trans-
lates a constant string to its length and introduces a length
variable length(x) for a string variable z.

Example. Consider the following three clauses.

190}

T = “a T2 = x1-“efg” V o = x1-“e” length(z2) < 3

Suppose the core first assigns true to x1 =“a”. This fact al-
lows Z3-str to add the axiom (z; =“a”) — (length(zi) =
1). Now assume the core tries the first option of the sec-
ond clause. Z3-str adds the axiom z2 = z; - “efg’ —
length(z2) = length(x1) + 3. It causes a conflict with
the third clause in the integer domain. The core then turns

to the second option and finds the SAT solution. O

In the previous discussion of concatenation rules, we men-
tion that we can assign any value to a free variable. However
a free variable x in the string domain may be constrained
by length assertions (in the integer domain) on the variable
itself or on other variables that are dependent on z. Since
length constraints do not constrain string values but rather
their length, we introduce a free variable Rule (FREE-VAR)
to allow the core to try to assign predefined constant strings
of various lengths to a free variable in order to satisfy length
constraints. According to the rule, if the plug-in detects
that a string variable x is a free variable in the current con-
text, it adds an axiom which states that the current context
implies that  may have constant strings of various lengths.
The context is the conjunction of all the facts set by the
core upto this point. We have to use the context as the
antecedent as x may not be a free variable in a different
context. Any conflicts by length constraints will cause the
core to try a constant string of different length. Consider
the example in the previous section (Table 2). If we have an
additional clause length(z) > 2, the assignment of ws =
will be UNSAT, the core will further try to assign ws =“@”,
which generates a SAT solution.

3.4.3 Other Operations

The concatenation and length operations are supported
by performing incremental reduction and adding new ax-
ioms gradually, driven by the try-and-backtrack process.
The other operations are supported in a different way. We
perform pre-processing to translate them to formulas using
concatenation and length operations.

Substring. The substring operator, substring(z, ¢, j), takes
three arguments. It returns a substring of = starting at po-

sition 4, and its length is j. The substring operator can be

reduced to a formula with concatenation and string length

operations. Particularly, as shown by Rule (SUBSTRING),

since the return string is a part of the first argument, we

break the first argument into three pieces zi, x2 and x3,

and assert the middle piece x2 equals to the return string.

We assert the lengths of x1 and x2 to respect the position

and length constraints.

Contains. The string membership operator contains(z1,
x2) takes two parameters and checks whether z2 is a sub-
string of z1. According to Rule (CONTAINS), we break z2
into three pieces z,, x2 and zs. Note that the middle piece
is 2. The negation of contains is more challenging as it
is essentially an operation with universal quantifier. Our
method is to generate solutions for z; and 2 as if the con-
straint did not exist and use post-processing to check if x»
is contained in z1. If so, we force the core to backtrack.

IndexOf. The operation indexof(x1,z2) returns the start-
ing position of substring x2 in x1. If 2 is not a substring of
x1, it returns —1. As shown by Rule (INDEXOF), we break
1 into three pieces xs1, s2 and xs3. The result value 7 has



Table 2: Example for concatenation reduction

step fact eq-class reduction/action
1 z=z-y {z, -y}
2 z=""" w {z, z-y,“2a7 - w} |z-y=%a" - w —
o ] [1] e [2] = [3]
|a::"/\y:'a’-1u| Y|.T,:'a’/\y:w| !|ac:‘a'~'u;1/\y:wg/\wlwugzw
3 |z @ = “abd’ | {x °d, “abd’] |z @ = “abd’ — z — “ab’
1 - — “ab” Tz, “ab’}
5 1 conflict between x = “ab” and = = “”, backtrack
6 2 conflict between x = “ab” and x = “a”, backtrack
7 3 Tz, b, an] | “ab’ = a7 wr = wi = b
8 Identify ws as the free variable based on dependences: z ~ y ~ w2 and w ~ wa, assign ws = 7
SAT solution: wo =y =", x = z = “ab”, wy = “b”
Table 3: Preprocessing Rules for Other Operations
Rule New Formula
SUBSTRING  substring(z,i,j) =2 — x=z1-x2-23 N z2=1x; A length(z1) =¢ A length(zs) =7
CONTAINS contains(z1,2x2) — T1=xp T2 Ts
INDEXOF indexof(zi,z2) =1 — (r1 =261 Ts2-%s3) A (i=—-1Vi=0) A ((i =—-1) <> —contains(z1,z2)) A
((1 2 0) ¢ (i = length(zs1) A zso =x2 A (—contains(zsi1,z2))))
REPLACE replace(x1,x2,23) =2¢ — (1= Xs1 Ts2-Ts3) A i = indexof(zi,z2) A

if (i > 0) then &y = xs1 - 23 -2s3 A length(zs =1i) else x¢ =z

SPLIT

split(z1,x2) = [Ta, Te2] — 1 = x41 - T2 - 42 A —contains(x¢1, x2) A ~contains(ziz, x2)

two options: if and only if 1 doesn’t contain x2, 7 is —1.

Part of their reductions are shown as below.

In the first

Otherwise, if and only if xs2 equals to x2, its predecessor
zs1 doesn’t contain x2, and t equals to the length of xs;.

Replace. The transformation is shown in Rule (REPLACE).
In the rule, we assume only one substring is replaced. It
can be easily extended to support cases in which less than
n replacements occur with n a pre-defined constant.

Split. We support split in a similar way to that of replace.
In the rule, we assume only one substring matches the pat-
tern xs. It can be extended to support cases with less than
n occurrences.

3.5 An Improved Algorithm for a Restricted
Theory of Strings

Unfortunately, it is unknown if the satisfiability problem
of string constraints with length operations is decidable in
general [11, 18]. This has a bearing on our algorithm in
that it may not terminate for certain cases, stuck in infinite
splitting. To avoid such non-termination we restrict the the-
ory in certain ways as described below. For this restricted
theory, the satisfiability problem becomes decidable and our
algorithm is one such decision procedure.

To better illustrate the problem, observe in Rule (SPLIT),
while we are simplifying the original equation, we may in-
troduce new ones, denoted by C, which may cause further
splitting. In some cases, the splitting becomes infinite.

- ="z — ... Y (Ex-I)
(1]

Consider the above example, which shows part of the re-
duction of a string equation with the same variable appears
as the prefix of LHS and the suffix of RHS. The equation
is not satisfiable. However, according to our reduction rule
(SPLIT), one of the options as shown induces new equiva-
lence between the RHS’s of [1] and [2]. Observe that the new
equation has a very similar form as the original one. Hence,
the exploration and reduction will not terminate (i.e. z1 in
[1] will be further splitted).

|9c-Y1:Y2-y|[3] |y-Y3:Y4~z[4] (Ex-II)

Such non-termination could also occur in equations that in-
volve multiple variables. Assume the above two clauses.

reduction, y is splitted and in the second reduction, x is
splitted. Observe that the equivalence between RHS of [5]
and RHS of [8], and the equivalence between RHS of [6] and
RHS [7] form a recursion of the form of the original two
clauses, causing infinite reduction.

(5] 6

01> ¥ (Vo] A% = A=) ¥
7

=Y (y=Yem ] A% =z A[T=m m ] Y

The root cause of non-termination is that the splitting of
a variable directly or indirectly causes further splitting of
the same variable. In Ex-I, the splitting of = introduces
new equivalence such that a subpart of it, z1, sets out to be
splitted. However, we observe that such cases rarely happen
in the constraints generated from web applications. There-
fore, we define a sub-class of the problem that is decidable
and leads to an algorithm that ensures termination.

The Refined Problem. We capture the essence of the
non-termination issue using a graphical representation of
equation in Fig. 7. Such graphical representation was in-
troduced in various studies of string theories [12]. A solid
horizontal segment represents a variable or a constant string.
We call it the projection of the variable or string. A com-
pound string consisting of a sequence of variables and con-
stant strings is denoted as a sequence of segments that are
slightly misaligned vertically for better visibility. The equiv-
alent compound strings (e.g. the LHS and RHS of an equa-
tion) are projected to the same graph. The vertical dotted
lines represent the boundaries of segments and the alignment
across strings. Note that the positions of the boundaries may
vary for different solutions.

For example, Fig. 7 (a) shows the graphical representation
of example Ex-I. Fig. 7 (b) shows a simplified one for Ex-II.
It is the union of the two projections regarding equation [3]
and [4] by unifying the two y’s in [3] and [4] and omitting
some compound strings for readability. A split corresponds
to that the end of a variable segment falls in the middle of
another variable segment. We call it a cut.

DEFINITION 1. We say a varaible x cuts y, denoted as
x |y, if there is a reduction from x-Y1 = Yo -y - Y3 to
(=Y -y1 AN Yi=y2-Ys A y=1u1-y2).
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Figure 7: Subgraphs (a) and (b) show the graphical representation
of Ex-I and Ex-II, (c) shows a well-formed solution of Ex-II.

Hence, in Fig. 7 (a), the top z (in the LHS of the original
equation) cuts the bottom z (in the RHS). In (b), the top z
cuts y and y cuts the bottom x.

We observe that non-termination is caused by cases in
which the projections from the same variable overlap (but
not completely coincide). The shaded regions in Fig. 7 rep-
resent the overlapping regions. As such, a cut of a segment
will have its projection in other segments of the same vari-
able. These projections may further cut the original segment
due to the overlap, resulting in infinite cutting. In Fig. 7 (a),
the cut at (D on the bottom x has its projection at 2) on the
top = and this projection cuts the bottom x again. Figure
(b) is similar.

Note that overlapping of multiple projections of the same
variable implies recursive self constraining of the same vari-
able. For instance, in Fig. 7 (a), it implies the prefix and
suffix of x are mutually constrained. Based on our obser-
vation, such self constraining is very rare in the program
analysis context. Hence, we preclude such cases in order to
devise a better algorithm that guarantees termination.

The formal definitions regarding the refined problem are
presented as follows.

DEFINITION 2. Given a solution of a set of string con-
straints and a variable x, the projection of the solution re-
garding x uses the segment of x as the base and projects all
the other wvariables that overlap with x in some constraint
according to the solution.

Fig. 7 (b) and (c) are sample solution projections regard-
ing y for Ex-II.

DEFINITION 3. We say a solution is well-formed if and
only if in the projection regarding any variable, there is not
a variable x whose multiple projections overlap.

Fig. 7 (c) is a well-formed solution but (b) is not as the x
segments overlap.

Given the definitions, the problem is refined to finding
well-formed solutions of a set of string constraints.

The Revised Algorithm. We revise the previous algo-
rithm. The revision mainly lies in the split function. We in-
troduce a few new definitions. Mapping VAR identifies the
original string variable (of an intermediate variable). For
example in Ex-I, VAR(z,) = x. We also annotate each in-
termediate variable  with the variable y that cuts VAR(z)
and induces the generation of . Note that ¥ implies that x
is a suffix of y according to the definition of a cut. Initially,
we annotate all string variables with themselves.

We revise the recursive split function, particularly the
part that splits a variable. The function is invoked with
the variable z* that causes the split. For instance, given
an equation x* - Y1 = Ya, recSplit(z*,nil,Y2) is called to
start splitting. If it is to split a variable y in the RHS. It
checks if z == VAR(y) to avoid self-splitting. Note that
since z == VAR(z) for any original variable z, we trivially

prevent direct self-splitting. If the cut is admissable, the
splitted variable y; inherits the annotation z and y» retains
the annotation of y. If the cut is not admissable, the variable
is not splitted.

Example. Lets revisit Ex-II. We annotate the original
clauses initially as follows.

x y[S] Y m[4]
[o" vi=vay'|" |y ve=vi e

Part of the reduction of [3] is as follows.

= =115 ——(6]
by (F=vi] =t [T ] )Y -

Part of the reduction of [4] is the following.

41 ¢ (A =i AEZ A -

From [6] and [7], we have y{ - y§ = Ya - 2}. However, yf
will not cause splitting of ¥ as VAR(z1) = =, which is the
annotation of yi. Hence, the search will focus on splitting
Y4, which corresponds to the well-formed solution as shown
in Fig. 7(c).

4. EVALUATION

Our evaluation consists of two experiments. In the first ex-
periment, we compare the performance of Z3-str with Kaluza,
which only supports encoding a single path. In the second
experiment, we compare Z3-str with our prior work on a
solver that integrates HAMPI and STP and supports en-
coding multiple paths, in terms of both efficiency and ef-
fectiveness. We choose to compare with these two solvers
as they can solve string and non-string constraints together.
All experiments are run on an Intel Core 15-2520M machine
with 8 GB memory.

4.1 Comparison with Kaluza

We use the test cases shipped with the Kaluza package
to compare performance. Since we currently do not sup-
port regular expressions, we remove the constraints related
to regular expressions, which account for a small percentage
of all the constraints. Then, we run both solvers 100 times
for each test case and take average of the execution time.
The results are presented in Table 4. We can see Z3-str is
faster than Kaluza in 13 out of 14 cases. We also observed 6
solutions provided by Kaluza are partially incorrect. In the
last case, Kaluza outperfoms Z3-str. This case has a large
set of simple string constraints that are easy to satisfy. We
observed a lot of backtrackings due to string length incon-
sistencies in Z3-str for this case. Further analysis shows that
because the version of Z3 we use does not allow us to ac-
quire the concrete values assigned to length variables in the
integer domain during the solving process, we cannot lever-
age the values explicitly to optimize splitting. Although the
infeasible splittings are immediately rejected by the integer



DEFINITIONS:
VAR(xz) ==

x with x itself.
AUXILIARY FUNCTIONS:

recSplit(x*, Yr, s-YR)
recSplit(z*, Yo, y*-Yr) =

{(YL -y*, Yg, true)} U recSplit(z*, Yi-y", Yr)

recSplit(x®, Y, nil) =9

the original string variable of a temporary variable (which is generated by splitting)
Each variable z is annotated with a variable y to denote x was generated by y cutting VAR(x). Initially, we annotate

= Uy, -s0=s 1YL " Sy st YR, true)} U recSplit(z®, YL - s, Yr)

{ {OVe-vi, y3' - Yr, yi-y8 =y")} U recSplit(z®, YL -y"“, Yr)

zl = VAR(y)
otherwise

Figure 8: New Definitions

theory, Z3-str has to pay the cost of unnecessary splitting
and backtracking. In contrast, Kaluza first acquires the con-
crete length values and then performs encoding. Because
these constraints are simple, Kaluza does not need to enu-
merate multiple solutions for string lengths. Z3 is recently
open-sourced. We are looking into if Z3-str can communi-
cate with the integer theory better to improve performance.
We also want to point out again that Z3-str is more general
in one respect than Kaluza, as Z3-str does support encoding
multiple program paths while Kaluza does not.

Table 4: Comparison with Kaluza [22]

stats Correct? Time (s)

var | cstr | K 7 K 7 | K/Z
bettermatchl™ 10 8| v v 0.276 | 0.035 | 7.9x
bettermatch2™ 9 7TV v 0.242 | 0.036 6.7x
concat 9 9 X v 0.216 | 0.035 6.2x
idxof™ 31 40 X v 0.632 | 0.067 9.4x
indexof™ 12 14 v v 0.198 | 0.035 5.7x
match 16 16 X v 0.207 | 0.036 5.8x
replace” 18 19 | v v 0.205 | 0.049 | 4.2x
search™ 8 7 v v 0.193 | 0.035 5.5x
split™ 15 13 X v 0.203 | 0.038 5.3x
streq 11 15 v v 0.187 | 0.035 5.3x
substr 9 12 X v 0.179 | 0.034 5.3x
substr_idxof™ 30 38 | x v 0.210 | 0.062 | 3.4x
bigl® 75 91 v v 0.241 0.154 1.6x
big2™ 573 713 v v 0.962 2.718 0.4x
[Rewge [ [ [ [ [ T T55]

* Regular expression constraint removed.

4.2 Comparison with Our Prior Work

In our prior work in detecting remote code execution vul-
nerabilities [33], which allow malicious PHP code to be in-
jected and executed, we developed a solver that supports
encoding multiple program paths for static analysis. It com-
bines STP and HAMPI in an Alternative and Iterative (Al)
fashion. It uses STP to generate sets of feasible paths with-
out considering string behavior. It then uses HAMPI to
encode string behavior along those paths. Solving the string
constraints determines the true path feasibility. We use the
same set of benchmarks to compare the performance. The
two solvers are provided the same set of constraints. Each
constraint encodes an entire program (after using a static
slicer to prune irrelevant parts). The results are listed in Ta-
ble 5. We use Al solver to denote the prior solver. The data
suggest that Z3-str performs much better. This is because
in AT solver, infeasible paths caused by string constraints
cannot be detected by STP and have to encoded and passed
on to HAMPI, to determine their true feasibility, whereas Z3
can leverage the interal results from Z3-str to avoid them en-
tirely. The frequent queries to STP and HAMPT also cause
overhead in process starting and finishing.

Eliminating False Positives in [33] . Next, we will show
that Z3-str allows us to remove all the false positives (FP) in

and Split Function.
Table 5: Comparison with AI Solving [33]

stats AT solver Z3-str | AI solver
application var | cstr | iteration | real(s) | real(s) | / Z3-str
aidiCMS v3.55 446 464 0 3.950 0.421 9.4x
phpMyFAQ v2.7.0 296 307 5 6.228 0.187 33.3x
zingiri webshop v2.2.2 300 315 13 | 47.380 0.109 434.7x
phpMyAdmin v3.4.3 164 150 0 1.053 0.119 8.8x
phpLDAPadmin v1.2.1.1 628 627 39 | 84.938 0.693 122.6x
phpSchedulelt v1.2.10 514 597 9 6.812 0.228 29.9x
FreeWebshop v2.2.9 R2 1099 | 1147 62 | 95.995 0.255 376.5x
ignition v1.3 260 256 1 0.748 0.227 3.3x
monalbum v0.8.7 175 174 0 0.348 0.211 1.6x
webportal v0.7.4 12 9 0 0.359 0.031 11.6x
@ fws/adminedit.php
51  $name = explode(".", $_GET[’filename’]);
67 if ($_POST[’action’] == "write_changes") {
68 if ($name[1] == "txt" || $name[1] == "sql") {
69 if ($name[1] == "txt" && ... ) {
70 $fp=fopen($_GET[’filename’],"w");
71 furite($fp,$_POST[’text2edit’]);
73 } else {...} 1} 1}

Figure 9: FP type 1 in Zingiri webshop

the prior work as Z3-str supports the commonly used string
operations while the prior solver does not.

In web applications, clients often can upload files or save
user input in a server-side file. Sometimes, the file name can
be provided by the client too. If arbitrary user input can
be saved in a user specified file ending with “.php”, a RCE
vulnerability is introduced since the client may inject and
execute arbitrary PHP code by writing and manipulating
that file. Many web applications have proper protection by
having checks on file names before file writes. The reason
for the 6 FPs we had before is because we cannot model the
file name checking logic due to the string operators used.

Two of the FPs have file name checking similar to that
in Fig. 9. Function explode is used to separate a string
to substrings. Previously, due to the lack of support of
split, we cannot model the function and have to use free
variables to denote $name. As a result, its relation with
$_GET['filename’] is missed. Therefore, the assertions of
$_GET['filename’] being ended with “.php” and the reach-
ability conditions at line 71 are SAT. With Z3-str, we can
model explode() precisely with split and correctly determine
that writing to “.php” file is infeasible.

The remaining four FPs are similar to Fig. 10, in which
getFileExt() cannot be properly modeled. With Z3-str, the
function can be modeled using substring and indexof.
Hence, we can correctly decide that the file write at line
40 is not reachable when the file name extension is “.php”.

S. RELATED WORK

There is a vast literature on the problem of solving equa-
tions of all manner through unification [16, 15] and term
rewriting [4]. Schulz uses a combination of tehcniques from



@ modul/tinymce/plugins/ajaxfilemanager/ajax_save_text.php
11  $path = $not_important . $_POST[’name’];

21 if ( getFileExt($_POST[’name’]) == "php" ) { ... }
28 else {

33 if( file_exists($path) ) { ...}

36 else {

38 $fp = fopen($path , "w+");

40 furite($fp, $_POST[’text’]); 1} }

Figure 10: FP type 2 in adidCMS

string-unification and Makanin’s algorithms to solve the prob-

lem of terminating minimal and complete word unification [23].

Based on the underlining representation, existing string
analyses can be roughly categorized into two kinds: automata-
based [9, 24, 13, 14, 27, 31, 26, 2, 21] and bit-vector-based
[17, 22, 8, 21]. We have made comparison with a number
of these existing works [17, 22, 33, 26] in Sections 2 and 4.
Hence in this section, we focus on the other works.

Automata/regular-expressions are a natural form to rep-
resent strings so that many works are based on them. Java
String Analyzer(JSA) [9] applies static analysis to model
flow graphs of Java programs. These graphs capture de-
pendencies among string variables. Finite automata can be
computed from the graphs to reflect possible string values.
Shannon et al. [24] used finite state machines (FSMs) to
model strings. String computation is modeled by FSM re-
finement. They have ad-hoc rules for integer relations but
do not support integer constraints in general. Hooimeijer
and Weimer [14] designed an heuristics based approach to
find a SAT solution. They search lazily to avoid building
full automata. As a result, the performance is improved
greatly compared to their previous work [13]. Rex[27, 28]
uses symbolic automata where labels are represented by
predicates. It uses symbolic language acceptor and explores
various optimizations of symbolic automata, like minimiza-
tion, to leverage the underlying SMT solver and eliminate
inconsistencies. Also, the trade-offs between the language
acceptor based encoding and automata-specific algorithms
are discussed [28]. Symbolic automata are implemented in
the symbolic automata library [29]. Stranger[31] developed
by Yu et al. analyzes strings for PHP based on automata.
ViewPoints [2] uses DFA to model client- and server-side
input validation functions. The inconsistency between vali-
dation functions can be found by comparing their DFAs. [7]
surveyed a large set of existing string solvers and compared
them using a table.

Using automata/FSM /regular-expressions allows the above
techniques nicely support infinite strings and regular expres-
sion related operations. However, many of them have diffi-
culties in handling string constraints related to integers like
length and substring (with variable indices). More impor-
tantly, many of them do not provide native support for other
types of constraints such as integer, which is needed in rea-
soning about both string and non-string behavior together.

In [30], string automata are extended with arithmetic au-
tomata to support integers and length constraints in ad-
dition to string constraints. Prefix/suffix operations and
Presburger arithmetic constraints on integer variables (i.e.,
linear arithmetic constraints + Boolean connectives + quan-
tification) are also supported. In comparison, Z3-str is based
on term rewriting and leverages Z3, which may allow better
scalability and support a richer set of theories.

The STeP system[6] had a different rewriting style string
solver. It was complete for a specific fragment of strings
called “queues”, where a concatenation is restricted to having
at most one variable. It can solve equations and inequalities.

It also used extensions for general concatenation, length and
reverse. Z3-str supports multiple variables.

Bjgrner et al. [8] proposed a string constraint solving
technique to reason about feasibility of a concrete execu-
tion path. It works in a way similar to Kaluza, encod-
ing strings into bit-vectors. Hence it needs to enumerate
concrete length values. It supports common integer related
string operations expect replace. Regular expressions are not
supported. Redelinghuys et al. [21] developed a constraint
solving engine that can handle multiple types of constraints
for Java PathFinder. It first ignores string constraints and
gets a satisfiable solution for numeric and boolean variables.
These concrete values are then used to encode string con-
straints to bit-vectors (with fixed lengths). If the string part
is UNSAT, it tries a different SAT solution from the non-
string domains. They can handle many operators. They
have limited support for replace, requiring the result and
arguments must be concrete. They do not handle regular
expressions. As discussed in Section 2, the above techniques
have similar limitations as Kaluza as they only allow encod-
ing one path and hence not ideal for static analysis. The
path exploration engine can hardly leverage the string solv-
ing results to prune search space (see Fig. 2).

There have been a lot of theoretical research in general
string theory [12, 18, 11, 20]. Some proposed algorithms to
solve string equations. However, these algorithms usually
do not consider important string operations such as length.
Z3-str shares some similarity to [18] in splitting variables. In
contrast, we refined the problem scope to make the problem
decidable and yet sufficient for web program analysis and the
algorithm is incremental, driven by the try-and-backtrack
procedure of Z3.

6. CONCLUSION

We develop a general purpose string solver, Z3-str, as an
extension of Z3. Z3-str treats strings as a primitive type,
avoiding the inherent limitations observed in many existing
solvers that encode strings in terms of other primitives. It
supports string constants and variables of arbitrary length,
and commonly used string operations. It allows encoding
single or multiple program paths such that it can be used
in both dynamic and static analysis. The underlying al-
gorithm based on constant string and variable splitting is
sound and guarantees termination for a restricted theory
that is sufficient in practice. Our system is complete for
positive equations and length. We do handle dis-equations,
but we haven’t established completeness for it. Our exper-
iments show that Z3-str outperforms other state-of-the-art
solvers and its support of various string operations allows
us to eliminate all false positives in remote code execution
vulnerability detection.

7. ACKNOWLEDGMENTS

We would like to thank Leonardo De Moura and Nikolaj
Bjgrner for their help and comments. We thank the review-
ers for their substantial efforts. This research is supported,
in part, by the National Science Foundation (NSF) under
grants 0845870, 0917007, 1218993 and Canadian NSERC
Discovery Grant 2013. Any opinions, findings, and conclu-
sions or recommendations in this paper are those of the au-
thors and do not necessarily reflect the views of NSF.



8. REFERENCES

[1] http://www.cs.purdue.edu/homes/zhengl6/str

[2] M. Alkhalaf, S. Choudhary, M. Fazzini, T. Bultan, A. Orso
and C. Kruegel. ViewPoints: Differential String Analysis for
Discovering Client- and Server-Side Input Validation
Inconsistencies. In ISSTA’12.

[3] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar
and M. Ernst. Finding Bugs in Web Applications Using
Dynamic Test Generation and Explicit-State Model
Checking. In TSE, vol.36, no.4, pp.474-494, 2010.

[4] F. Baader and T. Nipkow. Term rewriting and all that.
Cambridge University Press, 1998.

[5] P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz and
V. Venkatakrishnan. NoTamper: automatic blackbox
detection of parameter tampering opportunities in web
applications. In CCS’10

[6] N. Bjgrner. Integrating decision procedures for temporal
verification. Ph.D. thesis, Stanford University, 1999

[7] N. Bjgrner, V. Ganesh, R. Michel and M. Veanes. An
SMT-LIB Format for Sequences and Regular Expressions. In
SMT workshop 2012.

[8] N. Bjgrner, N. Tillmann and A. Voronkov. Path Feasibility
Analysis for String-Manipulating Programs. In TACAS’09.

[9] A. Christensen, A. Mgller, and M. Schwartzbach. Precise
analysis of string expressions. In SAS’03.

[10] V. Ganesh and D. L. Dill. A decision procedure for
bit-vectors and arrays. In CAV’07.

[11] V. Ganesh, M. Minnes, A. Solar-Lezama and M. Rinard.
Word equations with length constraints: what’s decidable?
In HVC’12.

[12] C. Gutiérrez. Solving Equations in Strings: On Makanin’s
Algorithm. In LATIN’98

[13] P. Hooimeijer and W. Weimer. A decision procedure for
subset constraints over regular languages. In PLDI’09.

[14] P. Hooimeijer and W. Weimer. Solving string constraints
lazily. In ASE’10.

[15] J. Jaffar. Minimal and complete word unification. In
Journal of the ACM 37(1), 47-85, 1990.

[16] Y. Khmelevskii. Equation in free semigroups. In Trudy
Math. Inst. Steklov. 107 (1971); English Transl., Proc.
Steklov Inst. Math. 107 (1971).

[17] A. Kiezun, V. Ganesh, P. Guo, P. Hooimeijer and M. Ernst.

HAMPI: a solver for string constraints. In ISSTA ’09.

[18] G. Makanin. The problem of solvability of equations in a
free semigroup. In Mathematics of the USSR-Sbornik, 1977,
32, 129.

[19] L. Moura and N. Bjgrner. Z3: An Efficient SMT Solver. In
TACAS’08.

[20] W. Plandowski. An efficient algorithm for solving word
equations. In STOC’06.

[21] G. Redelinghuys, W. Visser and J. Geldenhuys. Symbolic
execution of programs with strings. In SAICSIT’12.

[22] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant
and D. Song. A Symbolic Execution Framework for
JavaScript. In SP’10.

[23] K. Schulz. Word unification and transformation of
generalized equations. In J. Autom. Reason. 11(2):149-184,
1993.

[24] D. Shannon, I. Ghosh, S. Rajan and S. Khurshid. Efficient
symbolic execution of strings for validating web applications
In DEFECTS’09.

[25] F. Sun, L. Xu and Z. Su. Static detection of access control
vulnerabilities in web applications. In USENIX Security’11.

[26] T. Tateishi, M. Pistoia and O. Tripp. Path- and index-
sensitive string analysis based on monadic second-order
logic. In ISSTA’11.

[27] M. Veanes, P. Halleux and N. Tillmann. Rex: Symbolic
Regular Expression Explorer. In ICST’10.

[28] M. Veanes, N. Bjgrner and L. Moura. Symbolic automata
constraint solving. In LPAR-17.

[29] M. Veanes and N. Bjgrner. Symbolic Automata: The
Toolkit. In TACAS’12.

[30] F. Yu, T. Bultan and O. Ibarra. Symbolic String
Verification: Combining String Analysis and Size Analysis
In TACAS’09.

[31] F. Yu, M. Alkhalaf and T. Bultan. Stranger: An
Automata-based String Analysis Tool for PHP. In
TACAS’10.

[32] Y. Zheng and X. Zhang. Static Detection of Resource
Contention Problems in Server-Side Scripts. In ICSE’12.
[33] Y. Zheng and X. Zhang. Path Sensitive Static Analysis of
Web Applications for Remote Code Execution Vulnerability

Detection. In ICSE’13.


http://www.cs.purdue.edu/homes/zheng16/str

	Introduction
	Motivating Example
	Design of Z3-str
	Z3 SMT Solver and Its Plug-in API
	String Solving Procedure: Overview
	Constraint Syntax
	Supporting String Operations
	String Concatenation
	String Length
	Other Operations

	An Improved Algorithm for a Restricted Theory of Strings

	Evaluation
	Comparison with Kaluza
	Comparison with Our Prior Work

	Related Work
	Conclusion
	Acknowledgments
	References

