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ABSTRACT
Fine-grained program execution comparison examines dif-
ferent executions generated by different program versions,
different inputs, or by perturbations. It has a wide range of
applications in debugging, regression testing, program com-
prehension, and security. Meaningful comparison demands
that executions are aligned before they are compared, other-
wise the resulting differences do not reflect semantic differ-
ences. Prior work has focused on aligning executions along
the control flow dimension. In this paper, we observe that
the memory dimension is also critical and propose a novel so-
lution to align memory locations across different executions.
We introduce a canonical representation for memory loca-
tions and pointer values called memory indexing. Aligned
memory locations across runs share the same index. We for-
mally define the semantics of memory indexing and present
a cost-effective design. We also show that memory indexing
overcomes an important challenge in automated debugging
by enabling robust state replacement across runs.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Measurement, Reliability

1. INTRODUCTION
Comparing executions is a fundamental challenge in dy-

namic program analysis with a wide range of applications.
For instance, comparing executions of two versions of a pro-
gram with the same input can be used to isolate regression
faults [10], and analyze the impact of code changes [17]. It
helps identify implementation differences between the two
versions, which can be exploited by attackers. Comparing
program state at different points within executions can also
be used to normalize and cluster execution traces, simplify-
ing analyses that use those traces as input [6]. Execution
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comparison also provides unique advantages in program de-
obfuscation [7] and debugging compiler optimizations, where
aggressive transformations make static comparison less effec-
tive. Two executions from the same concurrent program can
be generated with schedule perturbations to confirm harm-
ful data races [21], and real deadlocks [15]. In computing
cause transitions for failures [22, 19], a failing execution and
a passing execution are compared to isolate instructions or
program states relevant to the failure.

Recently, a technique called structural indexing [21] was
proposed to align the dynamic control flow of executions at
the granularity of instruction execution such that compari-
son can be carried out at aligned places. This substantially
improves accuracy in race detection [21], deadlock detec-
tion [15], and computing cause transitions for failures [19].
However, structural indexing only solves one dimension of
the problem – control flow. The other unsolved dimension,
orthogonal to control flow, is memory. In the presence of
program differences, input differences, or non-determinism,
corresponding heap memory regions are allocated in differ-
ent places across runs. Therefore, although executions are
aligned along control flow paths, if memory regions are not
properly aligned, comparing values is hardly meaningful.

Existing techniques rely on sub-optimal solutions [22, 17,
19], such as identifying memory using symbolic names. In
particular, to compare memory states of two executions, ref-
erence graphs [1] are first constructed in which global and lo-
cal variables are roots, and memory regions, especially heap
regions, are connected by reference edges. Roots align by
their symbolic names; other memory regions align by their
reference paths, which consist of variable and field names.
We call it symbolic alignment. However, symbolic alignment
is problematic in the presence of aliasing. Detailed discus-
sion can be found in Section 2.

In this paper, we propose a technique called memory in-
dexing (MI). The central idea is to canonicalize memory ad-
dresses such that each memory location is associated with a
canonical value called its memory index. Memory locations
across multiple executions align according to their indices.
Pointers are compared by comparing the indices of their val-
ues. Memory indices are maintained along an execution such
that they can be directly accessible or computable.

Overall, we make the following contributions.

• We formally present the memory indexing problem.
We identify key properties of valid solutions.

• We discuss two semantics for memory indexing. The
first one is an online semantics that computes indices
on the fly during execution and handles pointer arith-
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metic. The second is a lazy semantics that computes
indices on demand. It has lower cost and is more suit-
able for languages without pointer arithmetic.

• We introduce a practical design that uses a tree to
allow multiple indices to share their common parts.
Optimizations remove redundant tree construction and
maintenance.

• We illustrate how memory indexing facilitates comput-
ing cause transitions for failures. Novel memory com-
parison and substitution primitives resolve limitations
of existing solutions. They allow robust mutation of
a passing run to a failing run by copying state across
runs.

• We evaluate the proposed MI scheme. It causes a 41%
slow down and 213% space overhead on average. The
results of two client studies show that MI is able to
canonicalize address traces across runs, and it scales
cause transition computation to programs with com-
plex heap structures.

2. MOTIVATION
Execution comparison not only requires alignment on the

control flow dimension, but also on the memory dimension.
Aligning and comparing memory snapshots across runs is
thus a key challenge. Existing techniques do not provide
satisfactory solutions to the following challenges.

Figure 1: Pointer Comparison. Linked lists rep-
resent the snapshots of different executions. Each
node has two fields: val and next.

Support for Pointer Comparison. Many applications
require the ability to compare pointers across runs. For ex-
ample, regression debugging [10] and computing cause tran-
sitions [22] rely on contrasting variable values in a passing
run and a failing run to identify faulty values. For pointer
related failures, it is critical to identify when a pointer con-
tains a faulty value. However, due to semantic differences
or non-determinism, even pointers that point to the same
(heap) data structure can have different values across runs,
and hence they are not directly comparable. Most exist-
ing techniques do not support pointer comparison. Instead,
non-pointer field values, such as p → val and p → next → val
in Figure 1, are compared following their symbolic reference
paths. For the case in Figure 1 (b), such comparison yields
the right result. That is, only p → val has different val-
ues across executions. Whereas in case (a), the conclusion
is that p → val and p → next → val have different values,
implying the definitions to these fields are faulty in a de-
bugging application, which is not true. A more appropriate
conclusion is that only the pointer p has different values, all
other differences are manifestations of the pointer difference.

Figure 2: Destructive State Mutation. (a) Snapshot
in run one. (b) In run two. (c) Mutating (a) to (b).

Destructive State Mutation. Applications such as com-
puting cause transitions [22] compare memory snapshots
from a passing run and a failing run. A variable having dif-
ferent values in the two respective runs is called a difference.
In order to reason about the causal relevance of differences
with the failure, values of difference subsets are copied from
the failing run to the passing run to see if the failure is even-
tually triggered in the mutated passing run. However, using
symbolic alignment causes a destructive mutation problem
in the presence of aliasing. In particular, a memory location
may have multiple reference paths. It may be classified as
a difference when it is compared under one path but not
along another path. Mutation along one path destroys the
semantic constraints along other paths and often leads to
undesirable effects. Consider the example in Figure 2. Two
snapshots are shown in (a) and (b) with p pointing to differ-
ent locations in each. With symbolic alignment, the root p
is aligned first, followed by nodes along paths from p. As a
result, the first node in (a) is aligned with the second node
in (b), the second node in (a) with the third node in (b),
and so on. Comparing the non-pointer fields of the aligned
nodes yields the following reference paths denoting differ-
ences: p → val, p → next → val and p → next → next → val.
They are fields in (b) having values different than those in
(a). Suppose we try to mutate (a) to (b) by copying val-
ues from (b) to (a) following the paths of differences. The
resulting state is shown in (c). Observe that t’s value is
undesirably destroyed.

Figure 3: Lost Mutation.

Lost Mutation. If multiple differences alias, they may re-
sult in lost mutation when they are applied together. Specif-
ically, the differences applied earlier may be overwritten un-
desirably by differences applied later. This may lead to in-
correct conclusions about the relevance of differences. Con-
sider the example in Figure 3. Assume the failure is that
(p → val) + (t → val) has the wrong value. Pointer t points
to the wrong place, and the node pointed to by p has the
wrong value. These together cause the failure. Symbolic
alignment and non-pointer value comparison identifies two
differences denoted by their reference paths: p → val and
t → val. However, as p and t alias in (a), when the dif-
ferences are applied to (a) in the order of p difference first
and then t difference, the rightmost leaf first has the value
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2 and then 1. The mutated state does not lead to the ex-
pected failure. Hence, we mistakenly conclude that the two
differences are irrelevant to the failure.

3. PROBLEM STATEMENT AND OVERVIEW
To overcome the aforementioned problems and provide ro-

bust support for memory comparison and mutation, we pro-
pose a novel technique called memory indexing. The basic
challenge is to associate each memory location with a canon-
ical value such that locations across runs are aligned by their
canonical values; pointers can be compared by their canonical
values. Such values are also called memory indices because
they essentially provide an indexing structure for memory.

Figure 4: Overview of Memory Indexing.

The idea is illustrated by Figure 4, which revisits the ex-
ample in Figure 3. Focus on the parts inside the boxes for
now. Each node is associated with a canonical value (in-
dex) circled at a corner. Nodes are aligned by their indices.
Hence, we can see the root nodes align as they have the same
index α. The node with index δ on the right does not align
with any node on the left. Besides its concrete value, pointer
p also has a canonical value π in both runs. Pointer t has
π on the left but δ on the right. With memory indexing,
the differences of the two states can be correctly identified:
pointer t has a different pointer value and the nodes pointed
to by p have different field values. When mutation occurs,
t is set to the location with index δ, which is not present in
the passing run and thus entails allocation. p’s field value is
changed to 2. Such mutation properly induces the failure.

A valid memory indexing scheme should have the follow-
ing property: at any execution point, each live memory loca-
tion must have a unique index. We call this the uniqueness
property. If this property is not satisfied, multiple locations
may share the same index or one location may have multi-
ple indices, which makes proper alignment across runs im-
possible. Symbolic alignment does not always satisfy this
property and is thus not a good indexing scheme.

A good indexing scheme should have the following addi-
tional feature: locations across runs that semantically corre-
spond to each other should share the same index. We call this
the alignment feature. Using the concrete address of a mem-
ory location is an indexing scheme satisfying the uniqueness
property, but it does not deliver good alignment.

Figure 5: Graph Matching may be Undesirable.

Inadequacy of Graph Matching. Finding the most ap-
propriate memory alignment concerns program semantics

and is thus, in general, not a concretely knowable problem.
As pointed out in [22], one possible approximate solution in
the general case is to represent the memory snapshots under
comparison as reference graphs and formulate the alignment
problem as a graph matching problem [2]; the goal of which
is to produce a match with the minimal number of graph dif-
ferences. However, this solution is too expensive (NP com-
plexity) to be practical [22]. More important, we observe
that it fails to deliver desirable alignment in many cases be-
cause it does not capture semantic differences. Consider the
example in Figure 5. The failure in (b) occurs because the
value field passed to the node constructor is incremented by
one. With a graph matching algorithm, to minimize graph
differences, the second node in (a) aligns with the first node
in (b), the third node in (a) aligns with the the second node
in (b), and so on. As highlighted in the figure, the graph
differences, namely the graph operations needed to mutate
(a) to (b), are: add (b)’s tail to (a); add the edge to the
added node; remove the head in (a). However, such differ-
ences imply that the shape of the linked list is faulty, which
is not true. The most appropriate alignment matches the
corresponding nodes in the lists, resulting in four field value
differences that precisely reflect the semantic differences.

Our Indexing Scheme. We propose to use the execu-
tion point where the allocation of a memory region occurs as
the index of the region. We leverage the observation that se-
mantic equivalence between executions often manifests itself
as control flow equivalence. Hence, semantically equivalent
memory regions are often allocated at corresponding execu-
tion points. Figure 4 presents an overview. The two lines in
the middle represent the control flows. The memory indices
are essentially canonical flow representations of the alloca-
tion points. For instance, the root nodes share the memory
index α, indicating they are allocated at the same point α.
In contrast, index δ’s presence in only the failing run means
that the allocation does not occur in the passing run. Our
indexing scheme satisfies the uniqueness property and pro-
vides high quality alignment in practice.

4. SEMANTICS
In this section, we present two semantics for memory in-

dexing. The first is for low level languages such as C. It
supports pointer arithmetic by updating indices on the fly.
This is called the online semantics. The other semantics
computes indices on demand and does not need interpreta-
tion of pointer arithmetic. We call this the lazy semantics.

In our semantics, each memory location is canonically rep-
resented by a pair (region, offset), with region as the canon-
icalized representation of its containing allocated region and
offset as its offset inside the region. The canonical represen-
tation of a region is generated when the region is allocated
and serves as a birthmark of the region during its lifetime.
We provide a function MI() that maps a concrete address
to its index. We also maintain a function PV() that maps
a pointer variable to the index of the value stored in the
pointer. In the lazy semantics, PV(p) is lazily computed
from MI(p), whereas in the online semantics PV(p) is up-
dated on the fly through pointer manipulations on pointer
p. Hence, PV(p) may be different than MI(p) in the online
semantics. As we will later show, separating PV from MI
allows us to precisely handle pointer arithmetic, which is
desirable for certain applications.
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Rule Event Instrumentation

(5) Prog. starts for each global variable g:
MI(&g)= (nil, global_offset(g))

(6) Enter proc. X for each local variable lv of X:
MI(&lv)= (CS, local_offset(lv))

(7) pc: p = malloc(s) for i=0 to s-1:
MI(p + i)= ([SI, pc], i)

PV(p)= MI(p)
(8) p = &v PV(p)= MI(&v)
(9) p = q PV(p)= PV(q)
(10) p = q ± offset PV(p)=(PV(q).first,

PV(q).second± offset)

Figure 6: Online semantics. A memory index MI(a)
represents the memory index of an address a, which
is a pair comprising a region identifier and an off-
set. CS represents the current call stack. pc repre-
sents the program counter. SI represents the cur-
rent structural index. PV(p) represents the memory
index of the address value stored in p.

4.1 Online Semantics
In this subsection, we discuss the online semantics.

Indexing Global Memory. We consider global memory
locations as part of a global region. Hence, the memory in-
dex of a global location is its offset in the global region (Rule
5 of Figure 6). In our terminology, &g denotes the concrete
address of a variable g. If executions from different program
versions are considered, e.g. in comparing regressing execu-
tions, symbolic names of variables are used instead of their
offsets. It is easy to see the uniqueness property is satisfied.

Indexing Stack Memory. We consider stack memory to
be allocated upon function entry. The allocated region is
the stack frame of the function. Hence, we use a stack frame
identifier and the stack frame offset of a location to represent
its index. Recursive calls allow multiple instances of the
same function to exist in the call stack at an execution point
so that we have to use the call path of a stack frame as its id.
Such stack indices trivially satisfy the uniqueness property
and provide meaningful alignment. This is presented in Rule
6 of Figure 6. Some programs perform dynamic allocation on
the stack, which makes stack variables have varying offsets.
We identify such variables through static analysis and use
our own IDs to replace the offsets.

4.1.1 Indexing Heap Memory.
The essence of our technique is to create a birthmark of a

memory location as its canonical representation. The birth-
marks of heap locations are more tricky. Using the program
counter (PC) of the allocation point is not sufficient because
multiple live heap regions may be allocated at the same PC.
The calling context of the allocation point is not sufficient ei-
ther. For example, the code in Figure. 7 (a) creates a linked
list in the loop on lines 1 and 2. All allocations occur in the
same context (statement 2 inside F()). Adding an instance
count does not help either because different executions may
take different paths so that the same count does not imply
correspondence. In this paper, we utilize structural indexing.

Background: Structural Indexing [21] is a technique
that provides a canonical representation for execution points
within control flow such that points across runs can be
aligned. Readers familiar with structural indexing can skip
to the ending � symbol.

Conceptually, an execution is indexed by a tree represent-
ing its nesting execution structure. A leaf node denotes an

execution point, and internal nodes represent control struc-
tures such as branches, loop bodies, and method invocations.

Consider the program in Figure 7 (a). The index trees for
the two runs are shown in Figure 7 (b) and (c). The two
control flow traces are displayed horizontally from left to
right. Individual trace points are also the leaves. Consider
the (b) tree. The root represents the whole execution, which
consists of six statement executions presented as the leaf
children of the root, namely statements 1, 3, 4, 5, 10, and
11. Since the for statement has substructure, an internal
node 1T, pronounced as “the true branch of statement 1”,
is created to represent the loop body. The remainder is
constructed similarly. Traces are aligned by the index trees
in a top-down fashion. First, the two roots align. Then the
six leaf children align, dictated by the aligned parents. Note
that their alignment is independent of the branch outcomes of
1 and 5. Internal nodes may or may not align, depending on
their labels (i.e., the branch outcomes). If they do, recursive
alignment is performed. The two trees in Figure 7 (b) and
(c) align except for the subtree rooted at 5T .

The structural index of an execution point is the path lead-
ing from the root to the leaf node representing the point.
For instance, the index of the shaded 7 in the left tree is
[F, 5T, 7]. Deciding the presence of an execution point in
other runs is equivalent to deciding the presence of its index
in the corresponding trees. An important property is that
each dynamic point in an execution has a unique index.

Rule Event Instrumentation
(1) invoke function F SI.push(F c)

at call cite c
(2) Exit proc. F SI.pop()

(3) Predicate p takes SI.push(pB)
branch B

(4) Statement s while ( s is the immediate post-
dominator of SI.top()) SI.pop()

*SI is the structural index represented as a stack.

Figure 8: Semantics for Structural Indexing.

Structural indices are computed using control dependence
analysis [8]. Figure 8 defines the semantics of structural
indexing. Each internal node in an index tree represents
an execution region delimited by a function entry and its
exit or by a branch point (including loop predicates) and
its immediate postdominator. Regions are either disjoint or
nesting, analogous to function invocations. Hence, a stack
similar to a call stack, named the structural indexing stack
(SI), is used to maintain the structural nesting relation. An
entry is pushed upon function entries (Rule 1) or predicate
executions (Rule 3). The top entry is popped upon the exit
of a function (Rule 2) or when the immediate postdominator
of the predicate on top is encountered (Rule 4). The SI stack
always contains the structural index of the current execution
point. More details and examples can be found in [21]. �

To index heap memory, we use the structural index of the
allocation point as the id of an allocated region to compose
the memory index. The uniqueness property of structural
indexing ensures the uniqueness of heap indices. The align-
ment feature of the memory indexing scheme also originates
from the fact that structural indexing identifies equivalent
allocation points across executions. In particular, heap in-
dices are set when a region is allocated (Rule 7 in Figure 6).
A heap index consists of the current SI and the allocation
site pc. Besides setting the memory indices, the rule also sets
the canonical value of the pointer variable, i.e. PV(p), to the
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Figure 7: Example for heap indexing. The code constructs a linked list of three nodes with values of 0, 1
and 3. Initially, the three pointers h, p, and r all point to the head of list. There is a regression bug at
line 4 in computing the predicate. As a result, the failing run takes the false branch, making p point to its
second node. Pointer p further advances to the third node at line 10. In contrast, the passing run takes the
true branch, eventually resulting in both p and r pointing to its third node. The failure is observably wrong
output. The memory snapshots are before the failure at statement 11.

memory index of the head of the region. Such a canonical
value will be used in pointer manipulation. For example,
in the second iteration of the loop in Figure 7, after the
allocation in statement 2, PV(h)=([F, 1T, 1T, 2], 0).
Memory locations across multiple runs are aligned by their

indices. By this criterion, in Figure 7, the head of the list
in (b) does not have alignment while the remaining three
nodes align with the list in (c).

A key feature of memory indexing is pointer value com-
parison across runs. Besides a concrete memory address,
a pointer variable is also associated with a canonical value.
Canonical pointer values are updated on the fly in the online
semantics, as specified by Rules 8-10. For brevity, we assume
a simple syntax for pointer operations. In particular, if the
address of a variable v is retrieved and assigned to a pointer,
the canonical value of the pointer is the memory index of v’s
address (Rule 8). If a pointer variable is copied to another
variable, the canonical value gets copied too (Rule 9). For
pointer arithmetic expressions p = q ± offset, variable p’s
canonical value is computed by copying the region identifier
of q and adding r to the offset of q (Rule 10). For brevity,
our semantics assumes type information has been processed
so that offset variables are identified at the unit of bytes.

4.2 Lazy Semantics
For high level languages in which pointer arithmetic is not

permitted, or when client applications do not require con-
sidering the effects of pointer arithmetic, we can derive PV
values on demand and hence allow a more efficient imple-
mentation. The semantics is called the lazy semantics. The
observation is that canonical values of pointers can be lazily
inferred from their concrete values. That is, given a pointer
p, PV(p)=MI(p). Recall that in the online semantics, PV is
computed by interpreting pointer arithmetic (Rule 10) and
hence PV(p) is not necessarily equivalent to MI(p).

Rule Event Instrumentation
(11) pc: p = malloc(s) MI(p)=([SI, pc], 0)
(12) Query the index t = a

of heap address a while (MI(t)≡ nil) t=t-1
return (MI(t).first, a-t)

Figure 9: Lazy Semantics.
The new rules are presented in Figure 9. On the fly com-

putation is only needed upon heap allocation (Rule 11): the

current SI is assigned to the region base address, but not
to the other cells in the region. When the MI value of a
heap address is queried (Rule 12), the algorithm scans back-
wards from the given address to find the first address with
a non-empty index. The memory index of the given address
consists of the region denoted by the non-empty index and
the offset inside the region. For large heap regions, we set
the MI for a number of addresses at set intervals besides the
base address such that the linear scan can quickly encounter
a non-empty MI. No on-the-fly computation is needed for
global and stack memory. The MI values of global and stack
addresses can similarly be computed on demand.

In languages with pointer arithmetic, the lazy semantics
does not instrument pointer operations or track the origi-
nal regions of pointers. The looser coupling with program
semantics may lead to undesirable imprecision in certain ap-
plications. Details of when this may occur can be found in
our extended technical report [20].

5. DESIGN AND OPTIMIZATIONS
Rule Event Instrumentation
(15) pc: p = malloc(s) l=new Leaf(pc, p, s)

Tree Insert (SI, l)
MI(p)=(l, 0)

(16) free (p) Tree Remove (MI(p).first)

Figure 10: Tree based Indexing in Lazy Semantics.

The semantics in the previous section are conceptual. They
model an index as a sequence of symbols (the region) and an
integer (the offset). This is too expensive to operate with in
practice. In our design, we explicitly maintain an index tree
for heap memory and represent a heap region as a reference
to some leaf in the tree. The full index of a heap location can
be acquired by traversing bottom-up from the leaf. Rules
15 and 16 show the tree based instrumentation for the lazy
semantics. Upon heap allocation (Rule 15), a leaf node rep-
resenting the allocation is created and inserted into the tree
by calling Tree Insert(). The function first checks if the cur-
rent SI is part of the tree. If not, it adds the SI to the tree
before it inserts the leaf node. At the end, the instrumenta-
tion sets the MI of the region base address to the leaf. Upon
deallocation (Rule 16), Tree Remove() is called with the leaf
node corresponding to the to-be-freed region. Recursive tree
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elimination is performed, meaning that removing a leaf node
may lead to removing its ancestors if they have no children.
Shaded subtrees in Figure 7 are example heap index trees.
Dotted edges link leaf nodes to memory regions. We have
the following optimizations to make our design practical.

OPT-1: Removing Redundant Instrumentation. We
have two observations that help remove redundant instru-
mentation. The first one is that we only need a partial
structural tree to index heap allocations. Hence we can avoid
instrumentation that maintains irrelevant structural indices.
If a function does not allocate heap memory, it is not nec-
essary to compute structural indices inside that functions.
More formally, a function or a predicate branch is relevant
to heap allocation if and only if a heap allocation can di-
rectly or transitively occur in its body. Irrelevant functions
and predicates are not instrumented with pushes and pops.

The second observation is that we do not need to instru-
ment all relevant functions or predicate branches. More
specifically, given a relevant function other than main (pred-
icate) n, if all index paths from any of n’s parents to a heap
allocation inside n’s body have to go through n, we don’t
need to instrument n. We call n a dominant function (pred-
icate). Intuitively, we don’t need to instrument if we can
infer the presence of n on an index path given the allocation
site and the parent node. We have developed static anal-
yses to identify relevant but not dominant functions and
predicates. They are analyses on call graphs and control
dependence graphs. Details are elided. Note that such opti-
mizations are not applicable to general structural indexing
because they leverage heap allocation information.

OPT-2: Handling Loop Nodes. From the semantics,
loops require pushing multiple entries of the same predicate,
which can be optimized as follows. As in [21, 15], we add
a counter field to the stack entry; then upon encountering
a loop predicate, it is first checked if the top entry is the
same predicate. If so, the counter is incremented instead
of pushing. When the current stack is materialized to the
tree due to heap allocation, a new node is inserted to the
tree if there is not an existing node with the same counter
value. The optimization does not affect the uniqueness and
alignment properties of indexing.

The space consumption is dominated by the tree, whose
size depends on its shape and the number of live heap re-
gions. A pessimistic bound is O(maximum tree depth ×
maximum live heap regions). In theory, the tree depth is un-
bounded because it is tied with loop counts and the depth of
recursion. In practice, because we are only interested in the
partial tree for allocations and we optimize loop predicates
using counters, tree depth is often well bounded such that
the space overhead is feasible (see Section 7).

6. ROBUST MEMORY COMPARISON AND
REPLACEMENT

Cause transition computation [5, 22] produces a causal
explanation for a software failure. The technique takes two
executions: one failing and the other passing that closely re-
sembles the failing. The passing run can be generated by se-
lecting an input similar to the failing input. The overall idea
is to compare memory snapshots of the two runs at selected
execution points. A reference graph [1] is constructed to rep-
resent a snapshot. Memory comparison is reduced to graph
comparison driven by symbolic reference paths. Causality

testing is conducted to isolate a minimal subset of graph dif-
ferences relevant to the failure. More specifically, subsets of
graph differences are enumerated through the delta debug-
ging algorithm. A subset is considered relevant if replacing
the program state specified by the subset in the passing run
with the corresponding values in the failing run produces the
failure. The minimal subsets computed at the selected ex-
ecution points are chained together to form an explanation.
In [19], the technique is improved by automatically aligning
two execution traces using structural indexing before com-
parison. However, in both [5] and [19], memory comparison
and replacement is driven by symbolic paths, and hence has
the issues mentioned in Section 2.

Consider the example in Figure 7. Using symbolic align-
ment and comparing only non-pointer values, if only heap
memory is considered, the set of differences (failing - pass-
ing) Δ={p → val, r → val, r → next → val, r → next →
next → val, h → next → val, h → next → next → val}.
None of the subsets, including the Δ set itself, can induce
the same failure. For instance, applying subset {p → val,
r → val } does not work due to the lost mutation prob-
lem. As a result, the delta debugging algorithm terminates
without finding the minimal failure inducing subset. Since
aliasing is very common in general programs, we need to
perform robust memory comparison and replacement.

With MI, we are able to develop two robust primitives:
comparison of memory snapshots Mem Comp() and appli-
cation of a memory difference Diff Apply(), i.e., copy a value
from one memory snapshot to the other (across runs).

For the comparison primitive, snapshots are first aligned
by their indices and then comparison is conducted on aligned
locations. Memory locations with non-pointer types are
compared by their concrete values. Locations with pointer
types are compared by their canonical values. Differences
are presented as a set of indices, denoting that the corre-
sponding locations are different.

Consider the two snapshots in Figure 7. Global variables
C, h, p, and r are aligned. Since C is of boolean type, its
values are compared and classified as differences. In con-
trast, canonical value comparison is conducted for pointer
variables h, p and r. It is easy to see that they are different.
Heap memory is compared by the index trees. The region
pointed to by h in (b) is identified as the only tree difference.
Hence, if we compute the difference set (passing - failing),
the result is {(nil, offset(C)), (nil, offset(h)), (nil, offset(p)),
(nil, offset(r)), ([F, 5T, 7], *)}. The symbol ‘*’ in the last in-
dex signifies that the entire region is different. It is much
smaller than the symbolic results.

The second primitive is the application of a unit differ-
ence1 represented as an index, from which the corresponding
concrete memory location in both snapshots can be identi-
fied. The value is copied from the source snapshot to the
target snapshot. If the value is a pointer, we cannot simply
copy the concrete address. Instead, we identify the proper
concrete address in the target snapshot following the canon-
ical value of the pointer. If the region is not present in the
target snapshot, it is first allocated.

Function Diff Apply() in Algorithm 1 describes how to
apply a heap unit difference. In the algorithm, the source
and target heaps are indexed by trees rooted at T ′ and T ,
respectively. Variable δ represents the unit difference. Lines

1A unit difference is a difference regarding a specific memory
location instead of a region.
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Algorithm 1 Apply a heap difference.

Description: Copy the value in location δ from T ′ to T . Leaf
node is of the type (pc, base, size).

1: Diff Apply (T , T ′, δ):
2: let δ be (path, offset)
3: let (-, base′, -) be the leaf node in T ′ along path
4: let (-, base, -) be the leaf node in T along path
5: a ← base+ offset
6: a′ ← base′ + offset

7: if (*(a′)T
′
is NOT a pointer) then:

8: ∗(a)T ← ∗(a′)T ′

9: else
10: let PV(a′)T

′
be (p′, f ′)

11: if (T does not have path p′) then:
12: Region Copy (T , T ′, p′)
13: let (-, b, -) be the leaf node in T following p′
14: ∗(a)T ← b+ f ′

Description: copy region path′ in T ′ to T .

1: Region Copy (T , T ′, path′):
2: let (-, base′, size′) be the leaf in T ′ along path′
3: r ← allocate(size′) in the run denoted by T
4: insert path′ to T
5: set the leaf node following path′ in T to (-, r, size′)
6: for (i=0 to size′ − 1) do:
7: Diff Apply(T , T ′, (path′,i))

3 and 4 identify the heap region denoted by δ in T ′ and T . In
lines 5 and 6, the concrete addresses are computed. At line
7, the algorithm tests if the computed address is a pointer
(the superscript specifies where the dereference occurs). If
not, the algorithm copies the value (line 8). If so, it tests
if the region pointed-to is present in T (line 11). If not, it
copies the region (line 12). Finally at line 14, the concrete
address stored to the pointer is set to a location in the region
(in T ) aligned with the source region (in T ′).
Function Region Copy() copies a region denoted by the

parameter path′ from T ′ to T . It first locates the region in
T ′ (line 2) and allocates a region of the same size in T (line
3). The path′ is inserted to T and a leaf node is created
to represent the allocated region (lines 4-5). This avoids
allocating the same region again. Finally, individual fields
are copied from T ′ to T by calling Diff Apply() (lines 6-7).
Note, it may transitively copy more regions from T ′ to T .

Applying stack and global differences is similarly defined.

Example. Consider the example in Figure 7. Assume we
want to apply the differences of p and r to the passing run.
Observe that p points to the third node in the failing run
and PV(p)fail= ([F, 1T, 1T, 1T, 2], 0). During the p difference
application, following the path, the concrete address of the
fourth node in the passing run is identified and assigned
to p. Similarly, after applying the r difference, r holds the
concrete address of the second node in the passing run. Note
that, by applying these two differences, the same failure can
be produced. Applying other differences, such as C, at this
point (before statement 11) has no impact on the failure.
The minimal failure inducing difference subset including p
and r is emitted as one cause transition.

The same memory comparison and difference minimiza-
tion is further performed at aligned instructions 10 and 5; it
stops at 4 as no state difference is identified. The chain of
cause transitions is: C has the incorrect value false at 5, then

Table 1: Instrumentation and allocation.
program instmt. instmt. # of alloc avg. alloc tree

func branch stat/ dyn. size dep.
164.gzip 11 (12%) 17 (1.8%) 5 / 436k 28 KB 130
175.vpr 100 (37%) 202 (7.5%) 3 / 107k 481 B 59
176.gcc 1282 (57%) 17774 (24.9%) 236/ 10.2m 5 KB 700
181.mcf 5 (19%) 6 (2%) 4 / 3 33 MB 8

186.crafty 8 (7.3%) 158 (2.9%) 12 / 37 23 KB 6
197.parser 2 (0.6%) 41(1.3%) 1 / 1 31 MB 292
254.gap 596 (70%) 4109 (19%) 2 / 2 100 MB 10

255.vortex 672 (73%) 3400 (19%) 9 / 258k 399 B 365
256.bzip2 8 (11%) 7 (1.1%) 10 / 36 16 MB 51
300.twolf 59 (31%) 218 (3.5%) 3 / 574k 31 B 28

p and r point to the wrong places at 10 and 11, and finally
the failure. These transitions compose a failure explanation.

Next, we define the composability property and show that
it holds for the proposed primitive.

Definition 1. A scheme for memory differencing and
replacement is composable iff given a set of unit differences
Δ={δ1, δ2, ..., δn} and the universal set U of all differ-
ences, after applying the differences in Δ from T ′ to T , the
differences between T ′ and the mutated T is U −Δ.

Composability is very important for cause transition com-
putation, it ensures that the delta debugging algorithm is
able to make progress, because it mandates that the effect
of applying a set of differences must subsume the effect of
applying a subset of the differences [22]. If a replacement
scheme is not composable, applying the universal set of dif-
ferences may even fail to convert T to T ′. The symbolic
path based scheme is not necessarily composable. As shown
in Figure 7, applying the two differences of p → val and
r → val from the failing run to the passing run results in a
state in which p → val still manifests itself as a difference.

Property 1. The proposed MI based memory differenc-
ing and replacement primitive is composable.

The proof is elided due to space limits. However from
Algorithm 1, we observe that for non-pointers, the primitive
faithfully copies values; hence the property is trivially true.
For pointers, the primitive either allocates a region when it
is not present in the index tree or simply assigns the address
if the region is present. Such behavior does not lead to
additional differences that were not present in the original
difference set or mask any other existing differences.

7. EVALUATION
The implementation consists of both semantics and two

client studies. It is based on the CIL infrastructure and has
3500 lines OCaml, 3500 lines C and 3000 lines Python.

7.1 Efficiency
The first experiment focuses on cost. The evaluation is

on SPECint 2000 benchmarks. We excluded 252.eon and
253.perlbmk because they were not compatible with CIL.
All experiments were executed on an Intel Core 2 2.1GHz
machine with 2 GB RAM and running Ubuntu 9.04.

Table 1 shows the instrumentation needed and character-
istics of allocations. All executions are acquired on reference
inputs. The second column shows the number of instru-
mented functions (after optimizations) and their percentage
over all functions. The third column shows the same data
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for predicates. The fourth column shows the numbers of
static allocation sites and dynamic allocations. The fifth
column shows the average size of each allocation. The last
column shows the maximum depth of the memory index
tree. We observe that some programs make a lot of alloca-
tions with various sizes (gcc and twolf) and some make very
few but large allocations (mcf and bzip2). They have differ-
ent impacts on the performance. Programs parser and gap

allocate a memory pool at the beginning and then rely on
their own memory management systems. Our current sys-
tem does not trace into memory pool management. We leave
it for future work. Observe, the maximum tree depth is not
high with respect to the structural complexity of programs.
Recall that we collapse consecutive instances of a loop pred-
icate, so the depths are largely decoupled from loop counts.

The overhead can be seen in Figure 11, in which Full rep-
resents implementation without removing redundant instru-
mentation; Part removing redundant instrumentation; Flow
the online semantics; and Lazy the lazy semantics. The
figure presents the performance overhead for a number of
combinations. In practice, Part+Lazy is desirable for most
applications, as illustrated by later client studies. Space

represents the space overhead for Part+Lazy. All data is
normalized against original runs without instrumentation.

We observe first that Full+Lazy has substantially more
runtime overhead than Part+Lazy. Part+Flow is slightly
more expensive than Part+Lazy due to instrumentation on
pointer operations. The overhead of Part+Lazy is low (41%).
Next, observe that in half the benchmarks, there is little
space overhead. This is because the number of allocations
and the tree depth are relatively low regarding the size of
each allocation. In contrast, 300.twolf had the most over-
head. It performs a large number of very small allocations,
<32 bytes on average, so on average maintaining the index
for each allocation is more costly2. Nonetheless, the average
space overhead is 213% (111% without twolf). The conclu-
sion is that the cost of MI is feasible for many applications.

7.2 Trace Canonicalization
Trace canonicalization is the alignment of control flow

and memory accesses across traces from two executions. It
plays a part in debugging and regression analyses [17, 10,
7], among others. With MI, an important question can be
answered, given two address entries in two respective traces,
should they be considered differences? Note, two accesses at
the corresponding points in the two traces do not mean that
they operate on the same data; the accessed addresses being
different does not mean they do not semantically correspond.

The study is on three common, open source programs,
make, gawk, and dot. We reported the number of address
differences before and after MI canonicalization. We turned
off all memory layout randomization. To avoid comparing
trace entries that do not correspond, we used structural in-
dexing to establish which memory accesses occurred at the
same point in both traces and only compare those accesses.

The traces were generated from the programs’ provided
test suites or, in the case of dot, the provided examples
in the documentation. Each full trace was compared with
traces generated by a fixed percentage of the input, i.e., re-
moving part of the inputs. The results are shown in Fig. 12.
For each percentage of input similarity, we present the per-
centage of matched stack and heap memory accesses before

2In our implementation, we use 22 bytes for each tree node.

and after canonicalization. For MI, these are ‘MI locals’
and ‘MI allocs’ respectively, while for the addresses with-
out canonicalization, they are ‘Addr allocs’ and ‘Addr lo-

cals’. We furthermore present the percentage of control
flow correspondence (‘Control Flow’).

Observe first that MI provides a substantially higher level
of heap access correspondence (50% more for make and 50-
60% more for gawk, and 15-30% more for dot). Less benefit
was observed in dot because dot’s dynamic allocations are
largely on fixed buffers that do not change according to in-
puts. MI was able to find more corresponding addresses for
local variables too. Observe that stack local allocation and
variable sized objects on the stack make it more difficult to
find correspondences without MI (e.g. the make case).

The control flow similarity increases as the input similar-
ity increases. Note that the address correspondence without
canonicalization stays roughly the same or even decreases
as the control flow similarity increases (like in dot). The
decrease happened because greater control flow similarity
allows more (different) addresses to be compared. In con-
trast, the correspondence found by MI is roughly consistent.

7.3 Cause Transition Computation
This experiment evaluates the impact of MI on computing

cause transitions. The algorithm in [19] was implemented
as a platform on which we tested two versions of the mem-
ory comparison and replacement primitive: one is symbolic
path based, used in [5, 19]; the other is the new MI-based.
The study is on several real bugs in open source programs,
including gcc, make, and gawk, that have non-trivial heap
behavior and aliasing. The failing runs are generated ac-
cording to the bug reports. The passing runs are acquired
from the correct inputs in the reports if provided; previ-
ous non-regressing versions; or using an automated patch-
ing technique [23]. Note that acquiring passing runs is an
orthogonal problem out of our scope. Other patching tech-
niques such as [12] can also be used.

Results are summarized in Table 2. The Program column
contains the buggy programs. Bug ID presents the bug id,
through which one can identify the report online, or the
publication date on the mailing list. Bug describes each bug.
Passing Run shows the sources of the passing runs: inputs
provided in reports (correct input), non-regressing ver-
sions (non-regressing), and dynamic patching (predicate
switch). The maximum number of differences (present in
failing and absent in passing) found using symbolic differ-
encing is presented in Sym Diffs, and the maximum when
using MI is in MI Diffs. In Sym Diffs, we report one mem-
ory cell only once although it may be a difference along
multiple paths. Of further interest is the number of differ-
ences with aliases (in column Aliases), or multiple symbolic
paths. They can cause issues as discussed in Section 2. Col-
umn Issue presents the exhibited problems when using the
symbolic path based primitive. We also present the number
of transitions and the average number of differences included
in each transition in Trans/Diffs, along with time required
(in seconds) in Time when using the MI version.

Observe that in every case, the number of symbolic dif-
ferences is substantially, 2-50 times, larger than the number
of differences when using MI, because the proper memory
correspondence cannot be found. Furthermore, the Aliases
column shows that substantial aliasing is common, creating
a lot of difficulties for the symbolic method. As seen in the
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Figure 11: Normalized runtime and space overheads of memory indexing with and without optimizations.

Figure 12: Percent of corresponding memory accesses w. and w/o MI.
Figure 13: Heap accesses and control
flow trace similarity after state muta-
tion in the execution of make.

Issue column, in most cases, symbolic path based computa-
tion would not terminate within 12 hours. The main reason
is that lost mutation and destructive mutation caused (see
Section 2) by aliasing prevent the relevant difference subset
from being computed, so the algorithm ends up searching
subsets of the already significant difference sets. For ex-
ample, in the first gcc case, it may be possible that all the
enumerated subsets of the 8365 differences need to be tested.
In gawk, the algorithm simply terminated early, unable to
produce relevant transitions for the failure.

A Case Study on Detailed Comparison. We performed a
separate test focusing on make bug 18435 from Table 2. We
selected 10 sample points at 10% intervals along the part
of the passing run that is beyond the first divergence of the
two runs. At each sample point, we compared the memory
snapshots across the two runs and then mutated the memory
in the passing to that in the failing by applying the univer-
sal set of differences, alternatively using the symbolic path
based primitive [5, 19] and the MI based primitive. Then
we collected the trace after the mutation and compared it to
that of the failing run. Trace comparison is conducted using
control flow canonicalization and MI based memory canon-
icalization. According to the discussion in Section 6, the
traces should be identical if the primitives are composable.

The results are shown in Figure 13. ‘Heap (MI)’ and ‘Con-
trol Flow (MI)’ represent the similarities of heap access
and control flow traces using the MI based primitive, and
‘Heap (Sym)’ and ‘Control Flow (Sym)’ represent those us-
ing the symbolic primitive. Observe, the access similarity
when using MI is consistently near 100%, and the control
flow similarity is consistently above 90% until the end. This
means the mutation is mostly successful in turning the pass-
ing run to the failing run. The similarity is not 100% be-
cause we currently do not model external state such as file
IDs, process IDs, etc. Thus, such states are not eligible
for meaningful comparison and replacement. In contrast,
when the symbolic primitive is used, the execution quickly

diverges from the expected control flow, having near 0% sim-
ilarity, and it has near 0% similarity for accessing the heap.
In fact, the mutated run often quickly crashes due to de-
structive mutation (Section 2). This supports that the MI
primitive is composable, but the symbolic primitive is not.
A more in-depth consideration of memory indexing and con-
crete examples of computing cause transitions can be found
in our tech report [20].

In summary, MI allows the strength of cause transition
computation to be fully realized, reflected by our success of
scaling to programs like gcc with full automation. Note,
although a gcc case was presented in [22]. It was conducted
with human intervention. The later automated system [5]
works well for small programs without much aliasing.

8. RELATED WORK
Trace normalization [6] divides traces into segments. Seg-

ments with the same starting and ending state are consid-
ered equivalent. Client applications using such traces only
need to look at a consistent representative segment from
each equivalence class. The outcome is reduced workload
and increased precision. Memory indexing is complemen-
tary in that it provides a robust way of comparing program
state across executions and hence helps identify equivalent
trace segments.

There has been recent work on comparing executions for
debugging regression faults [10], analyzing impact of code
changes [17], and finding matching statements across pro-
gram versions [7]. These techniques are able to construct
a symbolic mapping of variables across program versions
through profiling, such as pointer x in version one being
renamed to y in version two. The constructed mapping is
static. In comparison, we focus on comparing dynamic (ad-
dress) values of corresponding variables, answering questions
like “does x point to the corresponding address in the two
executions”. Furthermore, trace canonicalization facilitated
by MI would improve the precision of these analyses.
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Table 2: Cause Transition Computation for Failures.
Program Bug ID Bug Passing Sym. Diffs MI Diffs Aliases Issue Trans/Diffs Time (s)
gcc 2.95.2 529 -Wshadow warns on functions predicate switch 8365 233 8105 >12h 8/1 4559
gcc 2.95.2 776 Large array size causes abort predicate switch 10101 230 9027 >12h 2/1 379
gcc 2.95.2 2771 -O1 breaks strength-reduce provided input 11095 284 10254 >12h 4/1 1797
make 3.81 16958 .PHONY targets are unrecognized non-regressing 2699 184 33 >12h 9/1 740
make 3.81 18435 Parentheses break make targets provided input 3301 336 356 >12h 29/2 645
make 3.81 19133 ./ prevents self remake provided input 3728 550 187 >12h 5/2 235
make 3.80 112 Rules cannot handle colons provided input 3309 645 217 >12h 11/6 685
gawk 3.1.5 1/20/06 Deallocate bad pointer provided input 630 22 509 early term. 8/1 56

Many debugging techniques [14, 16, 3, 13, 4, 11] compute
fault candidates by looking at a large number of executions,
both passing and failing. In these techniques, execution pro-
files are collected and analyzed statistically. Some debugging
techniques compare a simple profile of a failure with a small
number of correct runs (usually one) [9]. They use control
flow paths and code coverage. MI is complementary to these
techniques by providing a way to canonicalize profiles before
they are analyzed to achieve better precision, especially for
pointer related bugs. We have demonstrated in this paper
that MI is able to drive cause transition computation that
is highly sensitive to memory alignment.

Compared to the recent advances on generating causal
explanations of failures [13, 4], The proposed robust, fine-
grained memory differencing and substitution primitives make
it feasible to extract succinct and in-depth information about
failures. For instance, it is relatively easier for us to reason
about whether a value at a given execution point is rele-
vant to a failure. Furthermore, MI improves cause transition
computation [5, 19] by allowing alignment along the mem-
ory dimension, which substantially improves robustness in
the presence of aliasing.

Abstractions for memory regions used in static analysis
also have the notion that small, bounded chains of the con-
trol dependence of a region’s creation provide a notion of
identity for that region[18]. In contrast, we extend this into
the dynamic domain, efficiently capturing precise identities
online instead of just over-approximations.

In [15], execution indices are used to locate locks across
executions of Java programs, but the approach is not as
generalized or optimized as memory indexing.

9. CONCLUSIONS
We present a novel challenge in dynamic program analy-

sis: aligning memory locations across executions. We pro-
pose a solution called memory indexing (MI), which provides
a canonical representation for memory addresses such that
memory locations across runs can be aligned by their in-
dices. Pointer values can be compared across runs by their
indices. The index of a memory region is derived from the
canonical control flow representation of its dynamic alloca-
tion site such that control flow correspondence is projected
to memory correspondence. Enabled by MI, we also pro-
pose a novel memory substitution primitive that allows ro-
bustly copying states across runs. We evaluate the efficiency
of two memory indexing semantics. Our results show that
the technique has 41% runtime overhead and 213% space
overhead on average. We evaluate effectiveness through two
client studies: one is trace canonicalization and the other is
cause transition computation on failures. The studies show
that MI reduces address trace differences by 15-60%. It also

scales cause transition computation to programs with com-
plex heap structures.
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