
Deriving Input Syntactic Structure From Execution

Zhiqiang Lin Xiangyu Zhang

Department of Computer Science
Purdue University, West Lafayette, Indiana 47907

ABSTRACT
Program input syntactic structure is essential for a wide range of
applications such as test case generation, software debugging and
network security. However, such important information is often
not available (e.g., most malware programs make use of secret pro-
tocols to communicate) or not directly usable by machines (e.g.,
many programs specify their inputs in plain text or other random
formats). Furthermore, many programs claim they accept inputs
with a published format, but their implementations actually support
a subset or a variant. Based on the observations that input structure
is manifested by the way input symbols are used during execution
and most programs take input with top-down or bottom-up gram-
mars, we devise two dynamic analyses, one for each grammar cat-
egory. Our evaluation on a set of real-world programs shows that
our technique is able to precisely reverse engineer input syntactic
structure from execution.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Parsing; D.2.5
[Software Engineering]: Testing and Debugging—Tracing; D.2.7
[Distribution, Maintenance, and Enhancement]: [Restructuring,
reverse engineering, and re-engineering]

General Terms
Algorithms, Verification

Keywords
reverse engineering, syntax tree, control dependence, input lineage,
top-down grammar, bottom-up grammar

1. INTRODUCTION
Most software applications take structural inputs. Document

processing software such as XML, PDF and WORD processors re-
quires input files in specific formats. Compilers consume inputs
written in programming languages. Network applications commu-
nicate through sessions in which messages have to follow certain
formats. Data processing programs such as audio/video codecs ac-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT 2008/FSE-16,November 9–15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-559593-995-1 ...$5.00.

cept structural bit streams. As an integral component, the syntactic
structure of program inputs serve in a wide range of applications.

Software Engineering –In software testing, automatically gen-
erating tests from input grammar is a technique originated in 1970’s
[13, 24]. It has been continuously studied ever since, e.g. in [8, 19,
26]. Most recently, it was found that considering input grammars
can significantly scale up symbolic execution based test generation
techniques [17, 12].Delta Debugging[32] is a highly effective au-
tomatic debugging technique that reduces a large failure inducing
input to its minimal subset that still exposes the fault. Thereduc-
tion is done through a binary-search like procedure in whichthe
program is executed iteratively. Most recently, it was shown in Hi-
erarchical Delta Debugging(HDD) [20] that the search procedure
can be greatly accelerated if the input hierarchical structure is pro-
vided.Execution Fast Forwarding[35] treats event replay log as the
program input that drives program re-execution, and reduces a long
execution by reducing the replay log for the purpose of debugging.
Considering event hierarchy would avoid producing ill-structured
reduced logs.

Computer Security – Input structure, reflected as protocol for-
mats in network security, is critical in a number of scenarios. Pro-
tocol structure can be used in penetration testing that evaluates the
security of a system by simulating attacks. For instance, packet
vaccine [28] is a technique that randomizes the address fields in a
network packet in order to simulate control flow hijacking. The
information of packet format can actually better guide the vaccine
generation as illustrated in ShieldGen [10]. Signature generation
techniques construct signatures for exploits. Packet format infor-
mation such as payload lengths, keywords, field types and state
transitions is essential to signature composition [27]. Intrusion
detection systems such as snort [3] match network traffic to pre-
defined protocols. Scanning unauthorized services provided at non-
standard ports requires understanding the communication protocol.

Despite the importance of input structure, acquiring such infor-
mation often demands a lot of efforts. First, input structure is often
specified in a machine unfriendly way (e.g. textual documents).
Hence, in applications such as HDD [20] and the recent work of
combining input grammar with symbolic execution based testgen-
eration [17, 12], the onus is on users to provide input grammars and
parsers, even for inputs such as C programs and XML files. Second,
various software applications that claim to accept inputs in a gram-
mar may indeed implement slight variants of the grammar. For
example, it is quite common that an implementation of a network
protocol does not support part of the specification. Third, input
structure is not even specified in many cases. A zombie computer
usually communicates with the remote attacker through secret pro-
tocols. Analyzing and understanding these protocols has imposed
great challenges. Even benign software such asYahoo Messenger

makes use of a closed protocol. It took the open source community
years to understand the protocol and provide a usable open source
client [1]. Upon the happening of a failure, modern systems often
provide channels to turn in failure reports. As a failure inducing in-
put is the most critical part of a failure report, HDD may be used on
the user side to reduce the failure inducing inputs. However, regu-
lar users often have no access to the source code, let alone the input
specification. Similarly, penetration testing is often carried out by
administrators or regular users after a software is deployed and thus
lacks input specification. Therefore, techniques that automatically
reverse engineer input structure are highly desirable to circumvent
these difficulties.

Recently, research has been conducted on automatic input struc-
ture derivation in the context of network security, particularly for
protocol reverse engineering [11, 14, 29, 30]. The basic observa-
tion is that a protocol implementation that handles incoming pro-
tocol messages reveals a wealth of information about protocol for-
mat. Therefore, protocol structure can be naturally discovered by
analyzing program binary based on dynamic data flow analysis.
In particular, [11] and [29] exploit semantics of message payload
processing instructions such as loops and comparison to identify
keywords, delimiters and thus fields in messages. Along thisway,
Tupni [30] makes such analysis applicable to inferring record se-
quences, record types, and input constraints. It also generalizes
format specification over multiple messages, facilitated by instruc-
tion semantics. AutoFormat [14] leverages execution contexts (i.e.,
call stacks and instruction addresses), in which messages are pro-
cessed, to identify input fields and hierarchical structure.

These systems are able to derive input structure to some extent,
but fail to deliver an effective general solution as they catch only
part of the problem’s essence. First of all, these techniques as-
sume programs take inputs with top-down grammars, which often
implies input structure being reflected in program structure. How-
ever, we observe that many programs require inputs with bottom-
up grammars, which are parsed by automata. In such a scenario,
program structure does not reflect input structure. Our study on
SPEC95INT programs shows that 25% of the applications rely on
bottom-up grammars. Some network applications such asWuftp
require protocol messages with bottom-up grammars as well.Ex-
isting reverse engineering techniques fail to derive inputstructure
for these applications. Second, even for inputs with top-down gram-
mars, these techniques do not catch the essence of the problem and
provide only partial solutions. For example, [11] and [29] rely on
delimiter identification to identify network message fields; and de-
limiter identification is based on a heuristic that a delimiter is a byte
that appears in a loop predicate and is compared against multiple
bytes in a message. Such heuristic may not work well in many sit-
uations such as message fields are not divided by delimiters or de-
limiters are implicit (e.g., in the case that fields have fixedlengths)
so that they do not appear as constants in the code. Similarly, our
previous work AutoFormat [14] relies on execution context,and
thus if application implementation does not follow the modular
programming practice so that multiple message fields are parsed
in the same execution context, the identified structure would be too
coarse-grained.

In this paper, we propose two dynamic analyses that reverse en-
gineer syntactic structure for inputs with top-down grammars and
bottom-up grammars respectively. Given a program binary (with-
out source code) and a program input, our system executes thepro-
gram with the provided input, and at the end, emits the syntaxtree
of the input without any user interference. Currently, our technique
only derives syntax trees for individual inputs. We leave input
grammar derivation to our future work. While handling bottom-

Doc−→ Head Body
Head−→ H Text/H
Body−→ B Tag /B
Tag−→ T Text/T Tag | ǫ

Text−→ [a-Z]∗

Figure 1: A Simple Language with Top-Down Grammar

up grammars is a feature that has not been supported by existing
techniques, our solution to top-down grammars supersedes existing
techniques as well because it better reflects the problem’s essence
and thus is more systematic. The unique observation we obtain
(regarding inputs with top-down grammars) is that dynamic con-
trol dependence is the most prominent evidence of input structure,
reflecting input syntactic structure at the finest level. Delimiters
in [11, 29] and execution contexts in [14] only catch part of the
exercised dynamic control dependence, and thus cannot construct
precise syntactic input structure. Programs that accept inputs with
bottom-up grammars manifest completely different runtimecharac-
teristics, rendering the control dependence based approach not ap-
plicable. We observe bottom-up parsing is mostly associated with
a parsing stack, and operations on the stack serve as a strongin-
dicator of the input structure. We devise an analysis to extract the
stack related sub-execution and build the input syntax treefrom the
sub-execution. Our evaluation on a set of real-world applications
show that the proposed techniques produce input syntax trees with
high quality.

The contributions of our paper are highlighted as follows.
• We devise a dynamic analysis to reverse engineer the struc-

ture of input with top-down grammars. The analysis heavily
depends on dynamic program control dependence.

• We have the insight that programs that consume input with
bottom-up grammar behave differently at runtime and thus
make existing approaches and the proposed dynamic control
dependence based approach ineffective.

• We propose a dynamic analysis to handle inputs with bottom-
up grammars. It relies on identifying and monitoring the
parsing stack.

• We evaluate our technique on a set of benchmarks that em-
ploy top-down and bottom-up parsing. Our results show that
the proposed analyses are highly effective in producing pre-
cise input syntax trees. Particularly, the derived trees for the
set of benchmark applications with bottom-up input gram-
mars are identical to the real trees.

2. HANDLING INPUTS WITH TOP-DOWN
GRAMMARS

Most programs take inputs with top-down grammars or bottom-
up grammars. In this section, we first discuss how to handle inputs
with top-down grammars.

A grammar that can be parsed by a top-down parser is called
a top-down grammar. A top-down parser parses an input string
from the root of the syntax tree (ST) to the leaves. The input of
a wide range of applications can be described by top-down gram-
mars. Examples includehtml/xmlpages,http/sippackages, and bi-
nary inputs such asaudio/videofiles. Due to their implementation
simplicity, many hand written parsers are a top-down parser.

Example. Fig. 1 shows a simple language with a top-down gram-
mar, which accepts strings that have structure similar to html pages.

Input: Haa/HBTbb/TTccc/T/B

Doc

Head Body

H /HText B /BTag

Tag

T /T

aa

c

Text

c c

T

b

Text

b

/T

Tag

ε

Figure 2: A Sample ST.

A document consists of two parts, a header and a body. A header
is delimited by “H” and “/H”. A body consists of a series of tags
that are confined by symbols “T” and “/T”. Fig. 2 presents a string
that belongs to the grammar and its corresponding derivation. The
derivation is also called the syntax tree (ST). In order to parse the
string into its ST, the parser first takes the top rule, i.e., the Doc
rule. As theDoc rule is composed of theHeadandBodyrules, it
next takes theHeadrule to parse the string. TheHeadrule accepts
the first symbol ”H” and continues with theText rule, and so on.
The whole procedure is like walking from the top of the derivation
tree to the bottom.

A unique characteristic of top-down grammars is thata top-down
parser can precisely predict the next rule to parse the remaining in-
put at any particular time based on the current parsing rule and the
incoming element.For instance in Fig. 1, if a character “T” is seen
and the parser is not in the middle of parsing ruleText. RuleTag is
taken to parse the character. Fig. 3 shows a top-down parser of our
sample grammar, which is a highly simplified version of the html
parser intidy. In the implementation, each function corresponds
to one nonterminal in the grammar. The parser starts parsingby
calling functionPDoc on the input, which in turn callsPHead and
PBody. PBody verifies if the next character is ‘B’. If not, an er-
ror is reported because it violates the parser’s expectation at current
state. Otherwise, it callsPTag and then verifies the remaining end-
ing delimiter symbol.PTag parses allTag expressions through a
loop.

Doc * PDoc (FStream * f)

{

 Doc * d = new Doc ();

 d→head = PHead (f);

 d→body = PBody (f);

 return d;

}

Body * PBody (FStream * f)

{

 char c = f→getchar();

 Body * b = new Body ();

 if (c == ’B’) {

 PTag (f, b);

 c = f→getchar();

if (c != ’/’) error (…);

c = f→getchar();

if (c != ’B’) error (…);

 } else error (…);

 return b;

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Head * PHead (FStream * f)

{

 …

 }

void PTag (FStream * f, Body * b)

{

 char c = f→getchar();

 while (c == ’T’) {

Tag * t = new Tag ();

 t→text=PText (f);

 b→tags→add (t);

 c = f→getchar();

if (c != ’/’) error (…);

c = f→getchar();

if (c != ’T’) error (…);

c = f→getchar();

 }

 f→ungetchar(c);

}

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Figure 3: An Implementation of the Grammar In Fig. 1

2.1 Runtime Analysis
Recall the objective of our technique is to derive the structure

of an input, given the application binary. The parser is an integral
part of the binary, statically indistinguishable from other functional
components. The key observation is thatdynamic control depen-
dences disclose the syntactic structure of inputs with a top-down
grammar. Intuitively, a top-down parser decides if a grammar rule
is taken by comparing the incoming input symbol with the lead-
ing symbol of the rule. The parsing of all the constituent symbols
of the rule, either terminals or nonterminals, is guarded bya com-
parison. In other words, the dynamic control dependence caused
by the comparison discloses the hierarchical relation between child
symbols and their parent. Therefore, our technique traces the dy-
namic control dependences that are exercised during execution and
constructs thedynamic control dependence graph(DCDG). By ob-
serving how input elements are used in the DCDG, the syntactic
structure can be derived.

To describe our analysis, we first formally define the problem.

PROBLEM STATEMENT 1. Given a pair〈P ,I〉, in whichP is
a program binary andI is an input token listi1i2...im for P , con-
struct the syntactic structure ofI as a syntax tree.

The idea is to derive input structure through dynamic control
dependence. Informally, an executed statementxi, denoting the
ith instance of statementx, is dynamically control dependent on

another executed statementyj , represented byyj
dcd
−−→ xi, if and

only if y is a predicate or a function call site andyj directly decides
the execution ofxi. For example in the execution shown on the left
hand side of Fig. 4, produced by supplying the input in Fig. 2 to the

implementation in Fig. 3,111

dcd
−−→ 121 since the branch outcome

of 111 directly decides the execution of121. Similarly, 31

dcd
−−→

101. More formal definition is elided for brevity, interested readers
are referred to [31]. If each executed statement is considered as a
node and each exercised dynamic control dependence is considered
as an edge, a DCDG is constructed. The right hand side of Fig. 4
shows a DCD subgraph for the trace on the left.

To derive input structure from the execution structure revealed
by the DCDG, we label the nodes thatusean input value. For
example in Fig. 4, node111 uses the first ‘B’ in the input string
(stored in variablec) and thus it is labeled with‘B’ 1. The labels of
other nodes, if any, are also displayed in the figure. Throughthese
labels, the hierarchy of the DCDG is translated to the hierarchy of
input elements.

A number of issues need to be addressed to make the runtime
analysis work. First, constructing the DCDG for the whole execu-
tion entails tremendous space overhead [34], and is not necessary
as only the labeled subgraph is needed, which is often a tiny part of
the whole DCDG. Second, we need to handle propagation of input
values to assign correct labels to DCDG nodes as an input value
can be propagated through variable assignments. Third, an online
algorithm is highly desirable as post-mortem analyses require col-
lecting and storing traces.

We devise a cost-effective online algorithm to address these is-
sues. It was observed dynamic control dependence has the LIFO
characteristic and thus can be maintained by a stack calledcon-
trol dependence stack(CDS) [31, 18]. In particular, an entry is
pushed onto CDS when a predicatepi is executed, and the same
entry is popped if the immediate post-dominator ofpi is executed,
indicating the end of the execution region that is directly or indi-
rectly dynamic control dependent onpi. For instance in the execu-
tion trace in Fig. 4, the execution of111 pushes an entry to CDS.
The entry is later popped at the execution of181, the immediate

d = new Doc ();

d→head = PHead ();

…

d→body = PBody ();

c = f→getchar();

b = new Body ();

if (c == ’B’) {

PTag (f, b);

c = f→getchar();

while (c == ‘T’)

t = new Tag ();

t→text=PText (f);

…

while (c == ‘T’)

t = new Tag ();

t→text=PText (f);

…

f→ungetchar (c);

c = f→getchar();

if (c != ’/’) ...

c = f→getchar();

if (c != ’B’) ...

return b;

11

21

31

91

101

111

121

241

251

261

271

252

262

272

351

131

141

151

161

181

START

21 PHead () 31 PBody ()

101 b=... 111 if (c==’B’)

121 PTag()

251 while (c==’T’)

141 if (c!=’/’)

251 while (c==’T’)271 PText ()

351 ungetchar(c)

…

… …

…

‘B’1

‘T’1

‘/’4

‘T’2

‘/’4

‘b’1 ‘c’3‘b’2

Figure 4: Execution Trace and Control Dependence Graph.

post-dominator of111. This implies the executions in between are
directly/indirectly dynamically control dependent on111. This is
true because if the branch outcome of111 had taken its opposite,
the execution in between111 and181 would not have occurred.
Furthermore, the dynamic control dependence transitive closure of
a statement instance is captured by the CDS state at the moment of
its execution. For instance, the execution of251 after111 pushes
another entry to the stack. Upon the execution of261, its dynamic
control dependence transitive is disclosed by the current CDS, i.e.,

...111

dcd
−−→ 251

dcd
−−→ 261. Efficient online algorithms have been

designed to detect dynamic control dependence based on thisob-
servation [31, 18].

DEFINITION 1. Given a statement executionsi, CDS(si) =
〈p1, p2, ..., pn〉 refers to the control dependence stack (CDS) state
whensi is executed, representing the dynamic control dependence
transitive closure ofsi.

Algorithm 1 presents the instrumentation that produces theinput
ST on the fly. The algorithm first updates the CDS at line 3. If
sm is a predicate instance,updateCDSperforms a push; ifsm is a
post-dominator instance, it performs pop(s)1. More details about
updateCDSsuch as the proof of the LIFO property and handling ir-
regular control flow can be found in our prior work [31]. At line 4,
the algorithm tests ifsm uses a variable that has been labeled with
an input value. If yes, it retrieves the current CDS, and creates a
node in the ST for each CDS entry if the node has not been created
before. Two nodes that are consecutive in the CDS are connected
with an edge. At line 10, a leaf node is introduced denoting the
input label. Lines 11-12 handle label propagation, it propagates the
label from the source variablev to the destinationd. Note that we
only propagate labels for assignment type of instructions.In other
words, we do not propagate labels for binary operations. Ourex-
perience shows that most top-down parsers do not perform binary
operations on two input related variables. Line 14 turns offthe in-
strumentation after all inputs have entered the execution,implying
the parsing phase is over. In our implementation, we initiate input
labeling by intercepting input system calls likeSYS READ, through
which we also identify the last input symbolin.

1Sincesm could be the post-dominator for multiple consecutive
predicates, we use a loop here.

Algorithm 1 Online Analysis
constructTreeupdates the ST upon each instruction execution.
updateCDSmaintains the control dependence stack.
addNodeadds a node to the resulting ST.
addEdgeadds an edge to the resulting ST.
instrumentationOffturns off the instrumentation.

1: constructTree(sm)
2: {
3: updateCDS(sm);
4: if (variablev is used insm andv is labeled with inputix)
5: addNode(ix);
6: foreachpt in CDS(sm) in the bottom-up order{
7: addNode(pt);
8: addEdge(pt−1 → pt);
9: }

10: addEdge(CDS(sm).top() → ix)
11: if (sm has the form ofd = f(v))
12: label variabled with ix; /*for label propagation*/
13: }
14: if (the last inputin has been used)instrumentationOff();
15: }
16: updateCDS(sm)
17: {
18: while (s is the immediate post dominator
19: of CDS(sm).top())
20: CDS(sm).pop();
21: if (s is a predicate or a method call)
22: CDS(sm).push(sm);
23: }

Example. The left hand side of Fig. 5 shows part of the resulting
ST. Statement instance111 uses a variable labeled with‘B’ 1 (note
that althoughc is defined with input‘B’ 1 at 91, it is not usedtill
111, and thus91 does not lead to a node creation).CDS(111) =
〈START, 31, 111〉, and thus the online algorithm generates three
corresponding nodes and a leaf node‘B’ 1. Similarly, 141 has the
CDS of 〈START, 31, 111, 141〉 and it uses a variable labeled with
‘/’ 4, resulting in a node whose parent is a sibling of node‘B’ 1.

2.2 Offline Transformations
The ST constructed by the online analysis does not preciselymir-

ror the real input structure. The comparison between the left hand
side of Fig. 5 and the real derivation in Fig. 2 suggests that further
transformations are needed.

Duplicated Leaf Nodes Elimination. On the left hand side of
Fig. 5, we can see the same leaf node‘/’ 4 appears in three places.
Two are the children of nodes141 and121, and the third one is
a descendants of252. They correspond to the executions of141,
351 and253, respectively2. Such a situation arises if the same in-
put value is used in multiple places to control the parser execution.
These input values having multiple use points are often delimiters.
As a ST has one leaf node for one use of an input symbol, we need
to identify the one that reveals the true structure and remove the
rest from the resulting tree. Two observations can be exploited to
achieve this goal. The first one is that most parsers parse input

2Note that we only create internal nodes for predicates or call sites
according to the definition of dynamic control dependence. Since

121

dcd
−−→ 351, a node is created for121 although the symbol is

used at351.

symbols in order, i.e., one symbol is not parsed until its predeces-
sor is parsed. Second, if a symbol is used in multiple points during
execution, like delimiters, the last use point before its successor
being parsed is the parsing point of the symbol. The observation
behind this is that a delimiter is permanently removed from the
input buffer, and thus parsed, right before the next symbol is pro-
cessed. Note that a symbol may be used beyond its successor’s
parsing point, e.g., aprintf may print all input symbols at the
end of the program execution. Therefore, we cannot simply con-
sider the last use point as the parsing point.

DEFINITION 2. A statement instancesm is theanchor point of
an input valueix, denoted byAP (ix) = sm, if and only ifsm uses
a variable labeled withix and there is NO other instancetn that
uses a variable with the same label during the parsing phase.

In other words, if an input element is used at only one place
during the parsing phase, the use point is its anchor point. For
instance,AP (‘B’ 2) = 161. Based on anchor points, we define the
parsing points of an input symbol.

DEFINITION 3. The parsing point of an input elementix is de-
fined as:

PP (ix) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

AP (ix) if AP (ix)! = ⊥;
sm if sm uses a variable labeled withix ∩

∀y > x s.t.AP (iy)! = ⊥,

sm occurs beforeAP (iy) ∩
sm is the latest point that satisfies

the previous two conditions.
⊥ otherwise.

The symbol⊥ stands forundefined. If an input symbol has mul-
tiple use points, the above definition identifies the parsingpoint of
the symbol as the one that happens before the next anchor point and
has the largest timestamp. Other use points are removed fromthe
tree. In our example, input‘/’ 4 has three use points,141, 253, and
351, resulting in the three labels in the left graph of Fig. 5. Thenext
anchor point of‘/’ 4 is AP (‘B’ 2) = 161. Since all three uses hap-
pen before161 and141 has the largest timestamp,141 is identified
asPP (‘/’ 4) and the other two points are pruned from the tree.

Redundant Intermediate Nodes Elimination. The approxima-
tion produced by the online analysis often contains redundant in-
termediate nodes, which do not provide useful information.An
intermediate node is redundant if and only if it has only one child.
The redundancy can be removed by replacing the intermediatenode
with its child. This process continues until no further reduction can
be conducted. For instance, nodes31, 141, 161, and321 on the left
hand side of Fig. 5 are redundant. Node121 is also redundant after
its leaf labeled with‘/’ 4 is pruned according to the aforementioned
transformation, and hence it is replaced with node251.

After applying the transformations, the final ST produced for our
sample is presented on the right hand side of Fig. 5, which precisely
reflects the desired hierarchical structure of the input.

3. HANDLING INPUTS WITH BOTTOM-
UP GRAMMARS

We observe that many applications consume inputs with bottom-
up grammars, e.g., most programming languages have a bottom-up
grammar. Due to the different runtime characteristics of top-down
and bottom-up parsers, reverse engineering syntactic structure for
inputs with bottom-up grammars requires a different solution.

‘B’1

‘/’4 ‘B’2

‘T’1

‘/’4

‘b’1 ‘b’2 ‘T’3 ‘T’4

…

‘B’1 ‘/’4 ‘B’2

‘T’1 ‘/’2 ‘T’2

‘b’1 ‘b’2

‘T’3 ‘T’4

…

S

…

…

‘/’4

…

S
31

111

141 161121

251

… 252

…

‘T’2

321

111

251

Figure 5: Transformations.

A grammar that can be parsed by a bottom-up parser is called
a bottom-up grammar. A bottom-up parser parses a string by con-
structing the derivation in a bottom-up manner, namely, it starts at
the leaf level and works up towards the root byreducinga set of
low level nodes to a higher level intermediate node at each step
[6]. A large body of applications make use of bottom-up gram-
mars due to their expressiveness. The class of languages that can
be expressed by bottom-up grammars is a proper superset of those
expressed by top-down grammars. The intuitive explanationis that
top-down grammars require parsers to predict a grammar ruleby
looking at the first (a few) symbol(s), whereas bottom-up parsers
delay making this decision till all the symbols of a grammar rule
are in sight, which is far less stringent. Although bottom-up gram-
mars feature higher complexity in implementation, there exist tools
such asyaccor bison that can automatically generate parsers for
bottom-up grammars.

state=0;

stack.push($state);

c=getchar();

while (action[state, c].first !=accept) {

 if (action[state, c].first== shift) {

 state=action[state, c].second;

 stack.push(cstate);

 c=getchar();

 } else if (action[state, c].first == reduce) {

 A→ β = action[state, c].second;

 stack.pop (|β|);

 state=goto[stack.top(), A];

 stack.push (Astate);

 }

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Figure 6: A General Bottom-Up Parsing Algorithm

Deriving input structure for bottom-up parsers is intriguing due
to the way they are implemented. Figure 6 presents a general pars-
ing algorithm used by most bottom-up parsers [6]. The algorithm
is facilitated by a stack and a DFA, encoded by theaction and
goto tables. Given the current state of the DFA, which is stored in
the stack, and an incoming input symbol, i.e., the leftmost symbol
of the input string, there are two possible actions. If the top sym-
bols on the stack do not constitute the righthand side of a grammar
rule, indicated by theaction table entry indexed by the current
state and the incoming input symbolc having the value ofshift,
as shown at line5 of the algorithm, the input symbolc is removed
from the input string and pushed to the stack, being labeled with the

updated state. If the top symbols are indeed the righthand side of a
grammar ruleA → β, encoded by theaction table entry having
the value ofreduceas shown at line9, the topn = |β| elements are
popped from the stack and the lefthand side symbolA is resulted
at lines10-11. At line 12, the current state is updated based on the
state on the top of the stack andA according to thegoto table. The
symbolA labeled with the new state is pushed to the stack at line
13. The process terminates when the start symbol meets with an
exhausted input string, encoded by anacceptaction. The DFA en-
coded by tablesaction andgoto can be constructed in various
ways, giving rise to different subclasses of bottom-up grammars.
Our analysis described later is independent of the way the DFA is
constructed and thus is general for bottom-up grammars.

(1) Body−→ B Tag /B
(2) Tag−→ TagT Text/T
(3) Tag−→ T Text/T
(4) Text−→ Texta
(5) Text−→ a

Figure 7: A Sample Bottom-Up Rule

Table 1: Parsing string “BTa/TTaa/T/B”.
Stack Input Stack operation trace

(1) $0 BTa/TTaa/T/B$ push(B1,1)
(2) $0B1 Ta/TTaa/T/B$ push(T3,2)
(3) $0B1T3 a/TTaa/T/B$ push(a7,3)

(4) $0B1T 3 a7 /TTaa/T/B$ pop(1); push (Text6,3)
rule: Text−→ a

(5) $0B1T3Text6 /TTaa/T/B$ push(/T9,4)

(6) $0B1 T3Text6/T9 Taa/T/B$ pop(3); push (Tag2,2)
rule: Tag−→ T Text /T

(7) $0B1Tag2 Taa/T/B$ push(T5,3)
(8) $0B1Tag2T5 aa/T/B$ push(a7,4)

(9) $0B1Tag2T5 a7 a/T/B$ pop(1); push (Text6,4)
rule: Text−→ a

(10)$0B1Tag2T5Text8 a/T/B$ push(a10,5)

(11)$0B1Tag2T5 Text8a10 /T/B$ pop(2); push(Text8,4)
rule:Text−→ Texta

(12)$0B1Tag2T5Text8 /T/B$ push(/T11,5)

(13)$0B1 Tag2T5Text8/T11 /B$ pop(4); push(Tag2,2)

Tag−→ Tag T Text /T
(14)$0B1Tag2 /B$ push(/B4,3)

(15)$0 B1Tag2/B4 $ pop(3); push(Body12,1)

Body−→ B Tag /B
(16)$0Body12 $ exit the while loop
The superscripts of stack entries are the states associatedwith symbols.
push(st,p) means pushing symbols to thepth position, and the state ist.
pop(n) means popping the topn stack entries.

Example. Fig. 7 shows a sample bottom-up grammar. It is not a
top-down grammar because of the left-recursions in rules (2) and
(4), which make a top-down parser fail to predict which rule to
follow upon seeing a symbola or T. Table 1 illustrates how an
input in the sample grammar is parsed according to the algorithm
in Fig. 6. The grammar is translated toaction andgoto tables
in Table 2. Note tools are available to automate the translation, and
interested readers are referred to [6]. At step (1) in Table 1, the
next input symbolB is pushed to the stack and the current state is
updated to 1, which is decided byaction[0, B]= 〈shift, 1〉 in
Table 2. At step (4), the top element on the stack is popped and
reduced toText, which is decided byaction[7, /T]= 〈reduce,
Text −→ a〉, which is pushed to the stack with the new state 6

Table 2: Parsing Table For the Grammar in Fig. 7.
action goto

state B /B T /T a $ Body Tag Text

0 s1 g10
1 s3 g2
2 s4 s5
3 s7 g6
4 r1
5 s7 g8
6 s9 s10
7 r5 r5
8 s11 s10
9 r3 r3
10 r4 r4
11 r2 r2
12 acc

sn denotes shifting in one input and updating the current stateto n;
rn denotes reducing according to rulen;
gn denotes updating the current state ton.

(goto[3, Text]= 6 in Table 2). The process terminates at step
(16) where the stack contains the start symbolBodyand the input
string becomes empty.

The analysis described in the previous section does not workwell
for bottom-up parsers. Execution structure, illustrated by exercised
control dependences, no longer approximates input syntactic struc-
ture. According to the algorithm in Fig. 6, input symbols arecon-
sumed in different iterations of thewhile loop at runtime. As one
iteration is dynamically control dependent on its preceding itera-
tion, a node labeled with an input symbol is dynamically control
dependent on the node labeled with its preceding symbol. There-
sulting ST approximation has a close-to-linear structure.

Fortunately, execution of a bottom-up parser exposes inputstruc-
ture nonetheless through a different channel. Consider thestack
column in Table 1, the reductions at steps (4), (6), (9), etc., high-
lighted by boxes, introduce hierarchical relations between symbols.
For instance, the reduction at step (6) indicates that the resulting
Tagsymbol is derived from theT, Textand/T symbols on the stack,
which constitute the child nodes ofTag in the ST. The key obser-
vation is thatreductions reveal input structure and a reduction can
be identified from behavior of the parsing stack.

DEFINITION 4. Given a bottom-up parserP and an inputI,
the stack operation traceof the executionP(I) is defined as the
sequence of push and pop operations of the parsing stack.

• A push operation is represented as push(st, p), meaning push-
ing the symbols with the new statet to the top positionp.

• A pop operation is represented as pop(n), meaning popping
the topn entries.

For instance, thestack operation trace column of Ta-
ble 1 lists the sequence of stack operations. We can observe from
Table 1 that reductions are always associated with pop operations.
Unfortunately, pop operations are hard to identify from execution
trace, assuming no knowledge of the source code, because they
are often translated to pointer arithmetic operations on the stack
variable, which are indistinguishable from numerous otherpointer
arithmetic operations during execution. Furthermore, as pointers
are often stored in registers, tracing operations on registers is very
expensive. In comparison, push operations are much more visi-
ble as they are always associated with memory writes on a specific
region (the stack) with certain patterns. Therefore, we decide to
identify reduction steps from push operations. We define a subset
of push operations as backward operations as follows.

DEFINITION 5. Given a stack operation trace, assume a push
operationx = push(st, p), and its preceding push operationxpred =
push(s’t’, p’), x is abackwardoperation if and only ifp <= p’.

Intuitively, a push operation that pushes to a position thatis
smaller than its predecessor is a backward push. In Table 1, the
push operation at step (4) is a backward operation because itpushes
to position 3 and its preceding push operation at step (3) pushes to
the same location 3. Similarly, the pushes at steps (6), (9),(11),
(13), and (15) are also backward operations.A backward opera-
tion implies a step of reduction.This property can be exploited
to discover input structure. The algorithm is presented in Algo-
rithm 2. Given a stack operation traceT , the algorithm scans each
push operationx in the time order. Line 5 decides ifx is a back-
ward operation. If so, edges are introduced between the stack entry
of the backward operation, denoting the lefthand side symbol of a
grammar rule, and the entries that are in betweenp andp’ , which
constitute the righthand side of the rule.

Algorithm 2 Construct a ST from a stack operation traceT .
1: STFromTrace(T)
2: {
3: foreach operation inT with the form ofx = push(st , p) {
4: x’s preceding push operationxpred = push(s’t’ , p’);
5: if (p <= p’) {
6: addNode(x);
7: foreacht ∈ [p, p’] {
8: y = push(..., t) precedesx and is closest tox;
9: addNode(y);

10: addEdge(x → y);
11: }
12: }
13: }

push (Body
12
, 1)

push (B1, 1) push (Tag
2
, 2) push (B4, 3)

push (Tag
2
, 2) push (T5, 3) push (Text

8
, 4)

push (/T9, 4) push (Text
8
, 4) push (a10, 5)

push (a7, 4)

push (T3, 2) push (Text
6
, 3)

push (/T11, 5)

push (a7, 3)

Figure 8: The Derived ST For the Sample Trace in Table 1.

Consider our example trace in Table 1, the push operation at (6)
is a backward operation, which pushes to position 2, and its preced-
ing push operates at position 4. According to lines 7-11 in Algo-
rithm 2, edges are introduced between the push at (6) and the most
recent pushes to stack positions of 2, 3, and 4, namely, the pushes
at steps (3), (4) and (5), which constitute exactly the righthand side
of rule (3). The resulting ST is shown in Fig. 8, which faithfully
mirrors the true derivation tree.

Extract Stack Operation Trace. One issue remains unsolved is to
extract stack operation trace. Recall that we only assume the pro-
gram binary. It is challenging to identify which part of the binary
contributes to operating the parsing stack. Fortunately, this part
of execution often demonstrates unique runtime characteristics. To
explain the idea, we first define the concept ofdata lineage.

DEFINITION 6. Thedata lineageof variablev at an executed
statement instancesi, denoted byDL(v@si), refers to the set of

input values that affect the value ofv at si through direct/indirect
dynamic data dependence.

A dynamic data dependence exists between two statement in-
stancesxi andyj if and only if a variable is defined atxi and then
used atyj . In the below code snippet, the execution instances of
statement 3, 4 and 5 are data dependent on that of 1. Accordingto
the above definition,DL(x@11) = DL(a@31) = DL(c@51) =
{INPUT[1]}, DL(y@21) = {INPUT[2]}, DL(b@41) = DL(
x@11) ∪ DL(y@21) = {INPUT[1], INPUT[2]}. Efficient com-
putation of data lineage can be found in [33].

11 x=INPUT[1];
21 y=INPUT[2];
31 a=x;
41 b=x+y;
51 c=A[x];
61 ...

Data lineage is crucial to distinguish parsing stack operations.
Specifically,multiple instances of push operations of the parsing
stack have increasing lineage sets, and the lineage set of each in-
stance contains all the input symbols seen so far.Consider the
general algorithm in Fig. 6, this property can be proved by show-
ing DL(state) ⊇ (DL(statelast) ∪ DL(c)) at lines 7 and
13, wherestatelast stands for the value ofstate in the pre-
vious iteration. It is true for line 7 because for any instance i,
DL(state@7i) = DL(state@6i) ⊇ (DL(statelast@6i)∪
DL(c@6i)) as the value ofstate at 6 is a function of thestate
in the last iteration andc. As for line 13,DL(state@13i) =
DL(state@12i) ⊇ DL(A@10i) ⊇ (DL (statelast@10i) ∪
DL(c@10i)) Given the input string shown in the caption of Ta-
ble 1, after the first iteration of the while loop, the lineageof the
state variable has the lineage of{‘B′}, after the second itera-
tion, it becomes{‘B′, ‘T ′}, and so on.

Increasing lineage is not unique to push operations. Other opera-
tions that perform accumulative computation on input, suchassum,
may manifest the same lineage pattern. Those operations mostly
access a single variable while push operations access a set of mem-
ory locations. In the bottom-up parsers we have studied, we suc-
cessfully extract stack push operation traces by searchingfor write
instructions that access a set of memory locations in a fluctuating
pattern and have increasing data lineage.

Deciding Grammar Category. As the different natures of top-
down and bottom-up grammars lead to two different solutions, it
becomes an issue to decide which one to apply given that we have
no knowledge about the input grammar category of a program (re-
call we assume no source code access). In practice, if that happens,
we apply both analyses. Our study in the evaluation section shows
that by inspecting the two generated trees, one can easily tell which
generated tree is the right one because applying the top-down ap-
proach to inputs with a bottom-up grammar generates a meaning-
less tree and vice versa.

4. EVALUATION
Our analyses are implemented usingDiablo [25] andValgrind

[22]. Diablo is used to perform post-dominance analysis on bina-
ries. Valgrind is used to instrument binaries to catch data and con-
trol dependences. The algorithms described in previous sections
are implemented in Valgrind. All our experiments were performed
on a machine with two 2.13Ghz Pentium processors and 2G RAM
running the Linux kernel 2.6.15.

Table 3: Experimental Result for Top-Down Grammars
Benchmark Description Input size #Derived #Real Edit

(LOC) (bytes) Node Node Dist.

A HTML file 126 32 14 18
Tidy checking & cleaning 2891 183 76 107

up tool (34k) 8044 954 412 542
414 53 13 40

Apache An HTTP server 459 48 13 35
-2.0.59 (230K) 557 68 16 52

551 128 29 99
Asterisk A voice over IP 556 128 30 98
-1.4.4 platform (324K) 534 124 29 95

48 14 17 4
Zebra A GNU routing 80 30 36 8
-0.95a software (49.2K) 100 23 27 9

An SMB/CIFS pro- 133 33 35 3
Samba-3.0.8 tool implementation 330 64 63 11

software(420K) 236 44 43 10

4.1 Quality of Derived STs
To measure the effectiveness of our approach, we apply it to an-

alyzing input structure for a set of real world applications. We col-
lect two sets of benchmark programs for top-down and bottom-up
grammars as shown in Table 3 and Table 4, respectively. Bottom-
up parsers are mostly generated by automatic tools. In orderto
evaluate the robustness of our analysis in the presence of various
parser generation tools, for each program in the bottom-up cat-
egory, we used two most popular open-source parser generators,
bison-2.1 andbyacc-1.9, to generate two different bottom-
up parsers. Each program (version) is tested on a number of inputs.
For each input, we compare the derived input tree with thereal tree,
which is acquired from the input specification.

We comparederivedtrees andreal trees by calculating theirtree
edit distance[7]. Tree edit distance is a technique to compare la-
beled trees based on simple local operations of deleting, inserting,
and relabeling nodes. A labeled tree is a tree in which each node is
assigned a label. Recall that the internal nodes of our syntax trees
are not labeled. In order to perform the comparison, we labelan
internal noden by the sequence of input symbols that is the union
of all the children’s labels. One can consider that the labelof an
internal noden represents the input subsequence whose derivation
is the tree rooted atn. Three primitive operations are defined which
can be applied to transforming a labeled tree. They are: (a)relabel-
change the label of a node; (b)delete- remove a non-root node in
the tree by connecting its children to its parent; (c)insert - insert a
node as a child of an existing node. The tree edit distance of trees
t1 andt2 is defined as the number of primitive operations required
in order to transformt1 to t2, assuming each primitive operation
has a unit cost.
Top-Down Grammars. We first evaluate our analysis for top-
down grammars. The results are shown in Table 3. In order to
evaluate the derived trees, we usedWireshark[4] to generate the
real syntax trees for most programs excepttidy. Wireshark is a
very popular network trouble shooting tool, which containsman-
ually crafted information about network protocol formats.It was
widely used in other projects such as [9, 11, 14] to evaluate the
quality of reverse engineered network protocol formats. For tidy,
which was not documented by Wireshark, the corresponding real
tree was generated under the guidance of HTML grammar [5].

Lets look at the data fortidy (the version released in Nov.
2003). We used three html files with different sizes, rangingfrom
a small size of 126 bytes to a large size of 8k, to test the quality
of the generated trees fortidy. Observe that the derived trees are
much larger than the real trees and the tree edit distance is identi-
cal to the difference between the node numbers of the derivedtree
and the real tree, which implies the real tree is included in the de-

Host: 129.174.88.71\r\n Connection: Keep-Alive\r\n

Host:

Host: 129.174.88.71\r\n

129.174.88.71 \r\n

\r\n
Some Leaves in

Wireshark ST

Some Leaves in

our ST

Connection: Keep-Alive\r\n

Connection: ...

Wireshark Formated Data (an HTTP GET Request)

Figure 9: Tree Comparison Between Wireshark and Ours for
apache.

rived tree3. This is further validated by our manual inspection. The
results forapache andasterisk are similar. Our inspection re-
veals that the additional nodes in the derived trees are mainly due
to Wireshark being too coarse-grained. For instance, for bench-
markapache, we observe that Wireshark only formats inputs to a
certain level and treats nonterminals as terminals. For example, as
shown in Fig. 9, Wireshark treats the MIME type data (e.g.,Host:

192.168.10.44\r\n) as a terminal whereas our technique further
breaks the sequence into smaller pieces. One can clearly tell that
our derived tree is more informative than the Wireshark tree. This
could be explained by Wireshark being actually a network trou-
ble shooting tool that only requires high level protocol formats,
especially for text based protocols. In some cases, our derived
trees seem to provide more-than-necessary break-downs. For in-
stance intidy, our analysis divides the tag node “<html>” in
Wireshark to ‘<’, ” html”, and ‘>’. This is because the function
CheckAttribute () parses tags in a more detailed way. We
argue this is necessary as a tag may contain attributes.

The first three applications accept text inputs, whereas there-
maining two, namelyzebra andsamba, accept binary inputs.
The evaluation results for these two display different character-
istics. First, we observe that the derived trees and the realtrees
are not much different at their sizes. The edit distances aremuch
smaller compared to the three text-based programs. Our inspection
shows that Wireshark has much more fine-grained definitions on bi-
nary input formats. We speculate that the contributors of Wireshark
may think binary formats are opaque and thus require detailed spec-
ifications. Second, the Wireshark trees are no longer included in
our derived trees, implied by edit distances not equal to thedif-
ferences of the two node numbers. It suggests that transforming a
Wireshark tree to the corresponding derived tree entails both insert
and delete operations, and the derived tree has some nodes that are
missing in the wireshark tree and vice versa. The main reasonis
that the implementations do not fully respect the documented input
specifications.
Bottom-Up Grammars. Most applications with bottom-up input
grammars use parsers that are automatically generated by tools due
to implementation complexity. These applications typically con-
tain a standard grammar file which can be used by a parser gen-

3According to [7], a treet1 is included in a treet2 if and only if t1
can be obtained by deleting nodes fromt2.

eration tool. Such grammar files can be used to provide the real
trees for our evaluation. In particular, we instrument the gram-
mar files so that if multiple symbols are going to be reduced toa
higher level symbol, edges are added between the reduced symbols
and the resulting symbol. For instance, we add new actions toa
grammar file so that upon a reduction based on the grammar rule
input_item: semicolon_list ENDOF_LINE, two edges
will be added between a node representinginput_item and the
two nodes representingsemicolon_list andENDOF_LINE.
Eventually, a syntax tree is explicitly constructed duringparsing.
Since this tree is stringently created according to the input gram-
mar, it can be considered as a real tree.

The results for bottom-up grammars are presented in Table 4.
Each row ofbc corresponds to parsing a single file while each row
of wuftpd is for parsing a series of ftp commands in a session.
Note thatbyacc failed to generate a parser for the grammar file of
gcc, and hence we used onlybison. For these applications, we
are able to acquire STs that are identical to the real ones despite dif-
ferent benchmarks considered and different parser generators used.
A possible explanation is that the bottom-up parsers considered are
all automatically generated by tools and thus their runtimebehav-
ior is well regulated, which makes them highly amenable to our
analysis. In contrast, top-down parsers, due to their implementa-
tion simplicity, are often hand-coded and thus display significant
variety. Potentially, bottom-up parsers in a different paradigm may
degrade the effectiveness of our analysis. We plan to study more
parsers and parser generators to further validate our technique in
the future.

Table 4: Experimental Result for Bottom-Up Grammars
Bench- Description Input Size #Derived Note/ Edit
mark (LOC) Tool (bytes) #“Real” Node Dist.

Arbitrary pre- 372 253/253 0
Bc-1.0.6 cision numeric Bison 891 612 / 612 0

processing lan- 1325 954 / 954 0
guage (14.4K) Byacc 434 329 / 329 0

56 24 / 24 0
Wuftpd An FTP Bison 241 97 / 97 0
-2.6.2 server (27.1K) 132 78 / 78 0

Byacc 285 113 / 113 0
GNU 60 25 / 25 0

gcc-3.4.6 Compiler 241 151 / 151 0
Collection Bison 623 453 / 453 0

(212K) 9430 5649 / 5649 0

4.2 Deciding the Grammar Category
As we discussed earlier, if an input grammar can not be decided

beforehand to be one of the two options, our strategy is to apply
both analyses. In this experiment, we applied the top-down analy-
sis to the set of bottom-up applications and applied the bottom-up
analysis to the set of top-down programs and observe if we can
easily tell which of the two trees is the desired one. Applying
the bottom-up analysis to top-down programs failed to produce any
trees as the analysis failed to identify the parsing stack. Applying
the top-down analysis to bottom-up programs was able to produce
trees. However, these trees are mostly meaningless and thusthe
winner becomes clear when compared to the trees generated bythe
bottom-up analysis. Due to the space limit, we show the two trees
for the benchmarkbc in Fig. 10 and Fig. 11. The input is a program
shown below.

i=0;
for (i=0;i<3;i++) {

b+=i;
}

We can clearly see in Fig. 11, the tree generated by the top-down
algorithm does not make sense as the labels on the second layer

nodes are meaningless. In comparison, the tree in Fig. 10 clearly
depicts the input structure.

0

2

4

6

8

10

x=Log10
1000600 1000030002000 40000

No Instrumentation

Input Length (bytes)

T
im

e
 T

a
ke

n
 (

s)

W/ Execution Tracing Module

20000

(a) tidy (Top-down Parsing)

50 100 150 200 250 300 350 400 450 500 550 600 650 700
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
No Instrumentation

Input Length (bytes)

T
im

e
 T

a
ke

n
 (

s)

W/ Execution Tracing Module

(b) bc (Bottom-up Parsing)

Figure 12: Performance Overhead of Execution Tracing

4.3 Performance Overhead
The next experiment is to evaluate performance. Due to the space

limit, we usetidy andbc (the parser is generated bybison) to
evaluate the performance of our system and its sensitivity to input
size. We feed the two programs with inputs of different sizesto
observe the overhead imposed by our analyses. The overhead is
measured by comparing the execution times against those of the
corresponding base line runs on Valgrind without instrumentation.

The execution times oftidy for inputs with different sizes (var-
ied from 800 to 40k bytes) are shown in Fig. 12(a). The perfor-
mance overhead varies from 5X to 45X. This is due to the fact that
larger inputs entail more operations. Thus, the control dependence
stack becomes deeper and the number of labeled operations be-
comes larger, and thus the online maintenance induces more over-
head. Forbc, we use inputs with different sizes but with similar
structure. This is because inputs with different structurewill lead to
significantly varied execution times asbc is an interpreter, whose
execution time heavily depends on the structure of the inputpro-
gram. The execution times ofbc are shown in Fig. 12(b). The
overhead ranges from 6X to 8X for the given experiment inputs.

4.4 A Client Study on HDD
Delta debugging [32] is an automatic debugging technique that

looks for a valid and minimal subset of a failure inducing input
that produces the same failure through an iterative algorithm. Hi-
erarchical Delta Debugging [20] improves the algorithm by con-
sidering the hierarchical structure of the input so that invalid input
subsets can be avoided. However, HDD requires the programmer
to provide input grammars and the corresponding parsers. Wehave
built a completely automated HDD system by integrating our in-
put derivation system with the HDD algorithm. The independence
of a priori knowledge of input structure enables new applications
such as failure report composition, which often targets on deployed
software without source code. More details can be found in our
technical report [15].

5. RELATED WORK
In the area of network security, research has been conductedto

extract protocol formats from a large pool of network traces[9, 2],
and through dynamic binary analysis [11, 14, 29, 30]. The network
trace based techniques do not look at execution of network appli-

i

i=0;

0 =

i=0;’\n’

;

i=0;’\n’

’\n’

i=0;’\n’for(i=0;i<3;i++){’\n’	b+=i;’\n’}’\n’

i

i=0;

0=

for(i=0;i<3;i++){’\n’	b+=i;’\n’}

...

i<3;

i<3;

i <i

i+

i++

+

+

...

’\n’	b+=i;

’\n’

’\n’	b+=i;’\n’

’\n’	b+=i;’\n’}

’\n’

’\n’	b+=i;’\n’}

}

{) (for

for(i=0;i<3;i++){’\n’	b+=i;’\n’}’\n’

’\n’

Figure 10: The Tree Derived Using the Bottom-up Analysis forbc.

3{b+i;\n}\n

+i ... ;}\n {}\n } 3+

i=0;\nf(i=0;i<3;i+){\n b3+i;\n}\n

i=0;\nf(i=0;i<3;i+){\n	b+ b

i=0;\nf(i=0;i<3;i+){\n	b + i=0;\nf(i=0;i<3;i+){\n	b

= i ... b i =0 i=0;\nf(i=0;i<3;i+){\n	b

= 0 i =0; 0 ... b

= 0 ;

+ i ; } \n \n } { 3 +

Figure 11: The Tree Derived Using the Top-Down Analysis forbc.

cations. The accuracy of these approaches relies on the sizeof the
trace pool and the heuristics used. In contrast, as demonstrated in
[11, 14, 29, 30], by analyzing how a program processes input data,
dynamic binary analysis could be used to reveal input structure.
The difference between our technique and these binary analysis
based approaches lies in (1) they only handle top-down grammars,
whereas we also handle bottom-up grammars, which are the other
very important input category; (2) regarding top-down grammars,
our system is superior for being more general, robust, and accurate
since it captures the essence of the problem – dynamic control de-
pendence. Indeed, the artifacts used in other projects, such as loops
and comparisons in [11, 29, 30] and execution contexts in [14], are
subsets of control dependence information.

In [16], Lim et al. propose using static analysis to derive output
structure. They observe that the structure of a program contains a
wealth information of the output format. They use interprocedural
control flow graphs, call graphs, and value set analysis to extract
output format step by step. Their technique is a static analysis that
analyzes output structure instead of input structure. Our technique
is dynamic analysis based and is more appropriate for deriving the
structure for a single input.

Our technique is also related togrammar inference(GI) in the
language research area. Grammar inference concerns the acquisi-

tion of the syntax or the grammar of a target language. It is defined
as the process of learning a grammar from a set of grammatically
correct and, if available, incorrect sentences. More information can
be found in [23], a survey by Parekh et al. on computational ap-
proaches for learning different classes of formal languages. Com-
pared to our work, which derives input structure from program exe-
cution, GI techniques try to tackle the problem from a much harder
way, i.e., by only looking at inputs. As reported in [9], GI ap-
proaches are too complex to apply and have very limited success.

6. LIMITATIONS AND FUTURE WORK
There are a number of issues that affect the effectiveness ofour

technique. First, the robustness of our technique needs to be further
tested. Although most programs we have seen so far take inputs of
top-down or bottom-up grammars, there may exist other grammars.
Even with the two types of grammars, individual parser implemen-
tations may not fall into the specific paradigms. In the worstsce-
nario, one might write a top-down parser so that the control depen-
dence structure is totally independent of the parsing structure. In
the future, we plan to study more parser implementations andeval-
uate the performance of our technique on obfuscated binaries such
as malware and viruses. Second, our technique derives the struc-
ture for individual inputs. It is more desirable to be able toinfer

the input grammar especially for applications like testing. While
combining the syntax trees of multiple inputs into a grammaris our
ongoing work, we believe at the end, in order to acquire a complete
grammar, we need to address the coverage problem, meaning we
need enough inputs to exercise all parts of a grammar. Third,our
technique currently only derives syntactical structure. Many secu-
rity applications desire semantic information as well, such as the
keywords of a protocol, constraints across multiple fields (e.g., the
length of fieldB is confined by the value of fieldA). We plan to
extend our technique to solve this problem in our future work.

7. CONCLUSION
Deriving input syntactic structure is very important for a wide va-

riety of applications such as test generation, delta debugging, fail-
ure reporting and protocol reverse engineering. We proposetwo
dynamic analyses that construct input structure from program exe-
cution. Our technique does not require source code or any symbolic
information. Our evaluation shows that the proposed techniques are
highly effective and produce input syntax trees with high quality.

Acknowledgments
This work is supported by grants CNS-0720516 and CNS-0708464
from NSF to Purdue University.

8. REFERENCES
[1] Libyahoo2: A c library for yahoo! messenger.

http://libyahoo2.sourceforge.net/.
[2] The Protocol Informatics Project.

http://www.baselineresearch.net/PI/.
[3] The SNORT network intrusion detection system.

http://www.snort.org.
[4] Wireshark: The World’s Most Popular Network Protocol Analyzer.

http://www.wireshark.org/.
[5] Grammar of HTML Document.

http://www.unix.org.ua/orelly/web/html/appa02.html.
[6] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers: Principles,

Techniques, and Tools. Addison-Wesley, 1986.
[7] Philip Bille, A survey on tree edit distance and related problems. In

Theoretical Computer Science. 337(1-3), 2005.
[8] D. Coppit and J. Lian. Yagg: an easy-to-use generator forstructured

test inputs. InProceedings of the 20th IEEE International
Conference on Automated Software Engineering (ASE), 2005.

[9] W. Cui, J. Kannan, and H. J. Wang. Discoverer: Automatic protocol
reverse engineering from network traces. InProceedings of the 16th
USENIX Security Symposium, Boston, MA, 2007.

[10] W. Cui, M. Peinado, H. J. Wang, and M. Locasto. Shieldgen:
Automatic data patch generation for unknown vulnerabilities with
informed probing. InIn Proceedings of 2007 IEEE Symposium on
Security and Privacy, Oakland, CA, 2007.

[11] J. Caballero and D. Song. Polyglot: Automatic extraction of protocol
format using dynamic binary analysis. InProceedings of the 14th
ACM Conference on Computer and and Communications Security
(CCS’07), 2007.

[12] P. Godefroid, A. Kiezun, and M. Y. Levin Grammar-based whitebox
fuzzing. InProceedings of the 2008 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
Tucson, AZ, 2008.

[13] K. Hanford. Automatic Generation of Test Cases. InIBM Systems
Journal, 9(4), 1970.

[14] Z. Lin, X. Jiang, D. Xu and X. Zhang. Automatic Protocol Format
Reverse Engineering through Context-Aware Monitored Execution.
In Proceedings of the 15th Annual Network and Distributed System
Security Symposium (NDSS), 2008.

[15] Z. Lin and X. Zhang. Deriving Input Syntactic Structurefrom
Execution and Its Applications.Purdue Technical Report CSD TR
#08-006, 2008.

[16] J. Lim, T. Reps, and B. Liblit. Extracting file formats from
executables. InProceedings of the 13th Working Conference on
Reverse Engineering, 2006.

[17] R. Majumdar and R. Xu. Directed test generation using symbolic
grammars. InProceedings of the 22th IEEE International Conference
on Automated Software Engineering (ASE), 2007

[18] W. Masri, A. Podgurski, and D. Leon. Detecting and debugging
insecure information flows. InProceedings of the 15th International
Symposium on Software Reliability Engineering (ISSRE), 2004.

[19] P. Maurer. Generating test data with enhanced context-free
grammars. InIEEE Software, 7(4), 1990.

[20] G. Misherghi and Z. Su. HDD: Hierarchical delta debugging. In
Proceedings of the 28th International Conference on Software
Engineering (ICSE), Shanghai, China, 2006.

[21] V. Nagarajan, R. Gupta, X. Zhang, M. Madou, B. De Sutter,and
K. De Bosschere. Matching control flow of program versions. In
Proceedings of the 2007 International Conference on Software
Maintenance (ICSM), Paris, 2007.

[22] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. InProceedings of the
ACM SIGPLAN 2007 Conference on Programming Language Design
and Implementation (PLDI), San Diego, CA, 2007.

[23] R. Parekh and V. Honavar. Grammar Inference, Automata Induction,
and Language Acquisition. 2000.

[24] P. Purdom. A sentence generator for testing parsers. InBIT
Numerical Mathematics,12(3), 1972.

[25] L. V. Put, D. Chanet, B. De Bus, B. De Sutter, and K. D. Bosschere.
Diablo: a reliable, retargetable and extensible link-timerewriting
framework. InProceedings of IEEE International Symposium On
Signal Processing And Information Technology, 2005.

[26] E. Sirer and B. Bershad. Using production grammars in software
testing. InProceedings of the 2nd conference on Domain-specific
languages,1999.

[27] H. Wang, C. Guo, D. Simon, and A. Zugenmaier. Shield:
vulnerability-driven network filters for preventing known
vulnerability exploits. InProceedings of the 2004 ACM Conference
on Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM), 2004.

[28] X. Wang, Z. Li, J. Xu, M. K. Reiter, C. Kil, and J. Y. Choi. Packet
vaccine: Black-box exploit detection and signature generation. In
Proceedings of the 13th ACM conference on Computer and
communications security (CCS), 2006.

[29] G. Wondracek, P. M. Comparetti, C. Kruegel, and E. Kirda.
Automatic Network Protocol Analysis. InProceedings of the 15th
Annual Network and Distributed System Security Symposium
(NDSS), 2008.

[30] W. Cui, M. Peinado, K. Chen, H. Wang, L. Irun-Briz. Tupni:
Automatic Reverse Engineering of Input Formats. InProceedings of
the 15th ACM Conference on Computer and Communications
Security (CCS), 2008.

[31] B. Xin and X. Zhang. Efficient online detection of dynamic control
dependence. InProceedings of the International Symposium on
Software Testing and Analysis (ISSTA), 2007.

[32] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input.IEEE Transaction on Software Engineering
(TSE), 28(2):183–200, 2002.

[33] M. Zhang, X. Zhang, X. Zhang, and S. Prabhakar. Tracing lineage
beyond relational operators. InProceedings of the International
Conference on Very Large Data Bases (VLDB), Austria, 2007.

[34] X. Zhang and R. Gupta. Cost effective dynamic slicing. In
Proceedings of the 2004 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2004.

[35] X. Zhang, S. Tallam, and R. Gupta. Dynamic slicing long running
programs through execution fast forwarding. InProceedings of the
14th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE), 2006.

