Deriving Input Syntactic Structure From Execution

Zhigiang Lin

Xiangyu Zhang

Department of Computer Science
Purdue University, West Lafayette, Indiana 47907

ABSTRACT

Program input syntactic structure is essential for a wichgeaof
applications such as test case generation, software diglguggd
network security. However, such important information ften
not available (e.g., most malware programs make use oftgacre
tocols to communicate) or not directly usable by machineg. (e
many programs specify their inputs in plain text or otherd@n
formats). Furthermore, many programs claim they accepitinp
with a published format, but their implementations actuallpport

a subset or a variant. Based on the observations that inpuatuste

is manifested by the way input symbols are used during eixestut
and most programs take input with top-down or bottom-up gram
mars, we devise two dynamic analyses, one for each gramrar ca
egory. Our evaluation on a set of real-world programs shbwas t
our technique is able to precisely reverse engineer inpuastic
structure from execution.

Categories and Subject Descriptors

D.3.4 [Programming Language$: Processors-Parsing D.2.5
[Software Engineering: Testing and Debugging-Facing D.2.7
[Distribution, Maintenance, and Enhancement: [Restructuring,
reverse engineering, and re-engineering]

General Terms
Algorithms, Verification

Keywords

reverse engineering, syntax tree, control dependenagt linpage,
top-down grammar, bottom-up grammar

1. INTRODUCTION

Most software applications take structural inputs. Docoime

processing software such as XML, PDF and WORD processors re-

quires input files in specific formats. Compilers consumauisp
written in programming languages. Network applicationsowu-
nicate through sessions in which messages have to follotainer
formats. Data processing programs such as audio/videcs@de

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGSOFT 2008/FSE-16lovember 9-15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-559593-995-1%5.00.

cept structural bit streams. As an integral component, yheastic
structure of program inputs serve in a wide range of apptinat

Software Engineering —In software testing, automatically gen-
erating tests from input grammar is a technique originate®i’0’s
[13, 24]. It has been continuously studied ever since, a.f8,i19,
26]. Most recently, it was found that considering input gnaans
can significantly scale up symbolic execution based testrg¢ion
techniques [17, 12]Delta Debuggindg32] is a highly effective au-
tomatic debugging technique that reduces a large failudedimg
input to its minimal subset that still exposes the fault. Téauc-
tion is done through a binary-search like procedure in whih
program is executed iteratively. Most recently, it was shamavHi-
erarchical Delta DebuggingHDD) [20] that the search procedure
can be greatly accelerated if the input hierarchical stimacis pro-
vided. Execution Fast Forwardin{5] treats event replay log as the
program input that drives program re-execution, and resladeng
execution by reducing the replay log for the purpose of dglngy
Considering event hierarchy would avoid producing ilustured
reduced logs.

Computer Security —Input structure, reflected as protocol for-
mats in network security, is critical in a number of scergriBro-
tocol structure can be used in penetration testing thatieted the
security of a system by simulating attacks. For instanceketa
vaccine [28] is a technique that randomizes the address field
network packet in order to simulate control flow hijackingheT
information of packet format can actually better guide thecine
generation as illustrated in ShieldGen [10]. Signatureegstion
techniques construct signatures for exploits. Packetdotinfor-
mation such as payload lengths, keywords, field types arid sta
transitions is essential to signature composition [27]trulsion
detection systems such as snort [3] match network traffiage p
defined protocols. Scanning unauthorized services prdtiaon-
standard ports requires understanding the communicataogol.

Despite the importance of input structure, acquiring sudbri
mation often demands a lot of efforts. First, input struetigroften
specified in a machine unfriendly way (e.g. textual docuisient
Hence, in applications such as HDD [20] and the recent work of
combining input grammar with symbolic execution baseddest
eration [17, 12], the onus is on users to provide input grareraad
parsers, even for inputs such as C programs and XML files.r8eco
various software applications that claim to accept inputs gram-
mar may indeed implement slight variants of the grammar. For
example, it is quite common that an implementation of a ngkwo
protocol does not support part of the specification. Thinghut
structure is not even specified in many cases. A zombie canput
usually communicates with the remote attacker throughes@co-
tocols. Analyzing and understanding these protocols hassed
great challenges. Even benign software sucNa®o Messenger

makes use of a closed protocol. It took the open source coritynun
years to understand the protocol and provide a usable opeoeso
client [1]. Upon the happening of a failure, modern systefftesno
provide channels to turn in failure reports. As a failurelicitig in-
put is the most critical part of a failure report, HDD may bedisn
the user side to reduce the failure inducing inputs. Howeegu-
lar users often have no access to the source code, let alimgptit
specification. Similarly, penetration testing is oftenriEat out by
administrators or regular users after a software is deplayel thus
lacks input specification. Therefore, techniques thatraatically
reverse engineer input structure are highly desirablertmgivent
these difficulties.

Recently, research has been conducted on automatic impot st
ture derivation in the context of network security, paracly for
protocol reverse engineering [11, 14, 29, 30]. The basienfs
tion is that a protocol implementation that handles incarpno-
tocol messages reveals a wealth of information about pobfoc-
mat. Therefore, protocol structure can be naturally disced by
analyzing program binary based on dynamic data flow analysis
In particular, [11] and [29] exploit semantics of messagg qeed
processing instructions such as loops and comparison tifigle
keywords, delimiters and thus fields in messages. Alongwhig
Tupni [30] makes such analysis applicable to inferring recse-
quences, record types, and input constraints. It also gkres
format specification over multiple messages, facilitatgéhistruc-
tion semantics. AutoFormat [14] leverages execution castg.e.,
call stacks and instruction addresses), in which messaggsre-
cessed, to identify input fields and hierarchical structure

These systems are able to derive input structure to sometexte
but fail to deliver an effective general solution as theychabnly
part of the problem’s essence. First of all, these techsicqase
sume programs take inputs with top-down grammars, whigmoft
implies input structure being reflected in program strugtusiow-
ever, we observe that many programs require inputs wittobwott
up grammars, which are parsed by automata. In such a scenario
program structure does not reflect input structure. Ourystrd
SPECO95INT programs shows that 25% of the applications nely o
bottom-up grammars. Some network applications sucWidg p
require protocol messages with bottom-up grammars as Egi.
isting reverse engineering techniques fail to derive irgiuicture
for these applications. Second, even for inputs with toprdgram-
mars, these techniques do not catch the essence of themprabte
provide only partial solutions. For example, [11] and [28]yron
delimiter identification to identify network message fieldad de-
limiter identification is based on a heuristic that a delenis a byte
that appears in a loop predicate and is compared againsiphault
bytes in a message. Such heuristic may not work well in many si
uations such as message fields are not divided by delimitets-o
limiters are implicit (e.g., in the case that fields have filkatyths)
so that they do not appear as constants in the code. Simitany
previous work AutoFormat [14] relies on execution conteadd
thus if application implementation does not follow the miadu
programming practice so that multiple message fields argepar
in the same execution context, the identified structure ebaltoo
coarse-grained.

In this paper, we propose two dynamic analyses that reverse e
gineer syntactic structure for inputs with top-down gramsrend
bottom-up grammars respectively. Given a program binaithfw
out source code) and a program input, our system executgsdhe
gram with the provided input, and at the end, emits the sytntax
of the input without any user interference. Currently, @atinique
only derives syntax trees for individual inputs. We leavpuin
grammar derivation to our future work. While handling batto

Doc— Head Body
Head— H Text/H
Body— B Tag/B

Tag— T Text/T Tag | €
Text— [a-Z]*

Figure 1: A Simple Language with Top-Down Grammar

up grammars is a feature that has not been supported byngxisti
techniques, our solution to top-down grammars supersedsting
techniques as well because it better reflects the problesssnee
and thus is more systematic. The unique observation werpbtai
(regarding inputs with top-down grammars) is that dynanaio-c
trol dependence is the most prominent evidence of inputtstre,
reflecting input syntactic structure at the finest level. iD#érs
in [11, 29] and execution contexts in [14] only catch part loé t
exercised dynamic control dependence, and thus cannotrecins
precise syntactic input structure. Programs that accept$nwith
bottom-up grammars manifest completely different runtaharac-
teristics, rendering the control dependence based agprozap-
plicable. We observe bottom-up parsing is mostly assatiaith
a parsing stack, and operations on the stack serve as a $trong
dicator of the input structure. We devise an analysis tcaextthe
stack related sub-execution and build the input syntaxftoze the
sub-execution. Our evaluation on a set of real-world aptibns
show that the proposed techniques produce input syntax ivitle
high quality.
The contributions of our paper are highlighted as follows.
e \We devise a dynamic analysis to reverse engineer the struc-
ture of input with top-down grammars. The analysis heavily
depends on dynamic program control dependence.

We have the insight that programs that consume input with

bottom-up grammar behave differently at runtime and thus

make existing approaches and the proposed dynamic control
dependence based approach ineffective.

We propose a dynamic analysis to handle inputs with bottom-
up grammars. It relies on identifying and monitoring the
parsing stack.

We evaluate our technique on a set of benchmarks that em-
ploy top-down and bottom-up parsing. Our results show that
the proposed analyses are highly effective in producing pre
cise input syntax trees. Particularly, the derived treeshe

set of benchmark applications with bottom-up input gram-
mars are identical to the real trees.

2. HANDLING INPUTS WITH TOP-DOWN

GRAMMARS

Most programs take inputs with top-down grammars or bottom-
up grammars. In this section, we first discuss how to hangietin
with top-down grammars.

A grammar that can be parsed by a top-down parser is called
a top-down grammar. A top-down parser parses an input string
from the root of the syntax tree (ST) to the leaves. The infut o
a wide range of applications can be described by top-dowm-gra
mars. Examples includetml/xmlpageshttp/sippackages, and bi-
nary inputs such aaudio/videdfiles. Due to their implementation
simplicity, many hand written parsers are a top-down parser

Example. Fig. 1 shows a simple language with a top-down gram-
mar, which accepts strings that have structure similanto pages.

Input: Haa/HBTbb/TTcce/T/B

Doc
/\
Head Body
H Text /H%i /B
a zl T Text /T Tag
b b T th /T ng

Figure 2: A Sample ST.

2.1 Runtime Analysis

Recall the objective of our technique is to derive the stmect
of an input, given the application binary. The parser is degral
part of the binary, statically indistinguishable from atfienctional
components. The key observation is tdghamic control depen-
dences disclose the syntactic structure of inputs with admpn
grammar Intuitively, a top-down parser decides if a grammar rule
is taken by comparing the incoming input symbol with the fead
ing symbol of the rule. The parsing of all the constituent bgia
of the rule, either terminals or nonterminals, is guardec lopm-
parison. In other words, the dynamic control dependenceethu
by the comparison discloses the hierarchical relation eetwchild
symbols and their parent. Therefore, our technique trduesly-

A document consists of two parts, a header and a body. A headernamic control dependences that are exercised during ésrartd

is delimited by ‘H” and “/H”. A body consists of a series of tags
that are confined by symbol3" and “/T". Fig. 2 presents a string
that belongs to the grammar and its corresponding derivalibe
derivation is also called the syntax tree (ST). In order tepdhe
string into its ST, the parser first takes the top rule, ilee,Doc
rule. As theDoc rule is composed of theleadandBodyrules, it
next takes théleadrule to parse the string. THéeadrule accepts
the first symbol H” and continues with th&extrule, and so on.
The whole procedure is like walking from the top of the detitva
tree to the bottom.

A unique characteristic of top-down grammars is taip-down
parser can precisely predict the next rule to parse the reingiin-
put at any particular time based on the current parsing ruhel ghe
incoming element-or instance in Fig. 1, if a charactef™is seen
and the parser is not in the middle of parsing rigst Rule Tagis
taken to parse the character. Fig. 3 shows a top-down pédrser o
sample grammar, which is a highly simplified version of thealht
parser int i dy. In the implementation, each function corresponds
to one nonterminal in the grammar. The parser starts patsing
calling functionPDoc on the input, which in turn callBHead and
PBody. PBody verifies if the next character i8". If not, an er-
ror is reported because it violates the parser’s expeatatiourrent
state. Otherwise, it calBTag and then verifies the remaining end-
ing delimiter symbol.PTag parses allfag expressions through a
loop.

Doc * PDoc (FStream *) Head * PHead (FStream *)
{ {

1 Doc * d =new Doc (); 19.

2 d—head = PHead (f); 20. }

3 d—body = PBody (f); 21.

4 return d; 22. void PTag (FStream * f, Body * b)
5.3 23. {

6. 24. char ¢ = f—getchar();

7. Body * PBody (FStream * f) 25. while (c=="T") {

8. { 26. Tag * t=new Tag ();
9. char ¢ = f—getchar(); 27. t—text=PText (f);

10. Body * b=new Body (); 28. b—tags—add (t);

11. if (c=="B") { 29. ¢ = f—getchar();

12. PTag (f,b); 30. if (c!="/)error (...);
13. ¢ = f—getchar(); 31. ¢ = f—getchar();

14. if (c!="/")error (...); 32. if (c!="T)error(...);
15. ¢ = f—getchar(); 33. ¢ = f—getchar();

16. if (c!="B’)error (...); 34.

17. 1 else error (...); 35. f—ungetchar(c);

18. return b; 36. }

}

Figure 3: An Implementation of the Grammar In Fig. 1

constructs thelynamic control dependence gra@CDG). By ob-
serving how input elements are used in the DCDG, the syntacti
structure can be derived.

To describe our analysis, we first formally define the problem

PROBLEM STATEMENT 1. Given a pair(P,Z), in whichP is
a program binary and’ is an input token list':2...a™ for P, con-
struct the syntactic structure @fas a syntax tree.

The idea is to derive input structure through dynamic cdntro
dependence. Informally, an executed statemgntdenoting the
ith instance of statement, is dynamically control dependent on

another executed statemayyt represented by; ded, 4, if and
only if y is a predicate or a function call site apgddirectly decides
the execution of;. For example in the execution shown on the left
hand side of Fig. 4, produced by supplying the input in Figh the

implementation in Fig. 3]11; <<% 12, since the branch outcome

of 11, directly decides the execution @2,. Similarly, 3; ded,

101. More formal definition is elided for brevity, interestecders

are referred to [31]. If each executed statement is coresidas a
node and each exercised dynamic control dependence isleoedi

as an edge, a DCDG is constructed. The right hand side of Fig. 4
shows a DCD subgraph for the trace on the left.

To derive input structure from the execution structure aése
by the DCDG, we label the nodes thasean input value. For
example in Fig. 4, nodé1; uses the firstB’ in the input string
(stored in variable) and thus it is labeled witlB’ ;. The labels of
other nodes, if any, are also displayed in the figure. Thrabghke
labels, the hierarchy of the DCDG is translated to the hagnaof
input elements.

A number of issues need to be addressed to make the runtime
analysis work. First, constructing the DCDG for the whole@x
tion entails tremendous space overhead [34], and is nossace
as only the labeled subgraph is needed, which is often a &rtyop
the whole DCDG. Second, we need to handle propagation of inpu
values to assign correct labels to DCDG nodes as an inpué valu
can be propagated through variable assignments. Thirdnlameo
algorithm is highly desirable as post-mortem analysesirequl-
lecting and storing traces.

We devise a cost-effective online algorithm to addressetlies
sues. It was observed dynamic control dependence has tl@ LIF
characteristic and thus can be maintained by a stack catiad
trol dependence stacfCDS) [31, 18]. In particular, an entry is
pushed onto CDS when a predicateis executed, and the same
entry is popped if the immediate post-dominatopefs executed,
indicating the end of the execution region that is directlynali-
rectly dynamic control dependent pn. For instance in the execu-
tion trace in Fig. 4, the execution a@fl; pushes an entry to CDS.
The entry is later popped at the execution18f, the immediate

L
2

3

9

10,
11
12,
24,
25,
26,
27,

25,
26,
27,

35
13,
14,

d=new Doc ();
d—head = PHead ();

d—body = PBody ();

¢ = f—getchar();
b =new Body ();
if (c=="B’) {
PTag (f, b);

¢ = f—getchar();
while (¢ ==‘T")
t=new Tag ();
t—text=PText (f);

while (c ==‘T")
t=new Tag ();
t—text=PText (f);

f—ungetchar (c);
¢ = f—getchar();
if (c!="/)...

[2,PHead () | [3, PBody () |

| 12, PTag() | | 14, if(c!="/) |

T, P,
\ 25, while (¢=="T") \ 35, ungetchar(c) \

o,
[27,PText() | [25, while (c="T")

15,
16,
18,

¢ = f—getchar();
if (c!="B")...
return b;

‘b,l gbsz sc’3

Figure 4: Execution Trace and Control Dependence Graph.

post-dominator ofl 1;. This implies the executions in between are
directly/indirectly dynamically control dependent ;. This is
true because if the branch outcomeladf had taken its opposite,
the execution in betweehl; and 18; would not have occurred.
Furthermore, the dynamic control dependence transitosuce of

a statement instance is captured by the CDS state at the mofnen
its execution. For instance, the executior26f after11; pushes
another entry to the stack. Upon the executio2®f, its dynamic

control dependence transitive is disclosed by the curr@g,G.e.,

11 22 95, 2% 96, Efficient online algorithms have been

designed to detect dynamic control dependence based oalthis
servation [31, 18].

DEFINITION 1. Given a statement execution, CDYs;) =
(p*, p?, ..., p") refers to the control dependence stack (CDS) state

Algorithm 1 Online Analysis

constructTreaupdates the ST upon each instruction execution.
updateCDSnaintains the control dependence stack.
addNodeadds a node to the resulting ST.

addEdgeadds an edge to the resulting ST.
instrumentationOffurns off the instrumentation.

1: constructTreds,)
2: {
3 updateCDSsm);
4 if (variablew is used ins,, andv is labeled with input®)
5: addNodé&™);
6: foreachp’ in CDS(s,y,) in the bottom-up ordef
7 addNodép");
8: addEdgép' ' — p);
9: }
10: addEdgg(CDS s,).top() — i)
11: if (sm has the form ofl = f(v))
12: label variablel with :; /*for label propagation*/
13:
14: if (the last input™ has been used)strumentationOf);
15: }
16: updateCDSsy,)
17: {
18: while (s is the immediate post dominator
19: of CDY(sm).top())
20: CDS(sm).pop();
21: if (s is a predicate or a method call)
22: CDSsm).push(sm);
23: }

Example. The left hand side of Fig. 5 shows part of the resulting
ST. Statement instandd ; uses a variable labeled witB’; (note
that althoughe is defined with inputB’ 1 at 94, it is not usedtill
11;, and thus9; does not lead to a node creatiofyDS11,) =

whens; is executed, representing the dynamic control dependence (START31, 111), and thus the online algorithm generates three

transitive closure of;.

Algorithm 1 presents the instrumentation that produce st
ST on the fly. The algorithm first updates the CDS at line 3. If
sm IS a predicate instancapdateCDSerforms a push; if,, is a
post-dominator instance, it performs popts)More details about
updateCDSuch as the proof of the LIFO property and handling ir-
regular control flow can be found in our prior work [31]. Atdirt,
the algorithm tests i§,,, uses a variable that has been labeled with
an input value. If yes, it retrieves the current CDS, andteea
node in the ST for each CDS entry if the node has not been dreate
before. Two nodes that are consecutive in the CDS are cagthect
with an edge. At line 10, a leaf node is introduced denotirgy th
input label. Lines 11-12 handle label propagation, it pgatas the
label from the source variabteto the destination. Note that we
only propagate labels for assignment type of instructiénsther
words, we do not propagate labels for binary operations. eur
perience shows that most top-down parsers do not perforanbin
operations on two input related variables. Line 14 turnghw#fin-
strumentation after all inputs have entered the execuitioplying
the parsing phase is over. In our implementation, we imtiaput
labeling by intercepting input system calls li8¥S_READ, through
which we also identify the last input symbii.

!Sinces,, could be the post-dominator for multiple consecutive
predicates, we use a loop here.

corresponding nodes and a leaf noBe;. Similarly, 14, has the
CDS of (START31, 114, 141) and it uses a variable labeled with
‘I 4, resulting in a node whose parent is a sibling of ntile.

2.2 Offline Transformations

The ST constructed by the online analysis does not preaisiely
ror the real input structure. The comparison between thd&efd
side of Fig. 5 and the real derivation in Fig. 2 suggests tindhér
transformations are needed.

Duplicated Leaf Nodes Elimination. On the left hand side of
Fig. 5, we can see the same leaf ndde appears in three places.
Two are the children of nodekt; and12,, and the third one is
a descendants @b.. They correspond to the executionslaf,

351 and253, respectivel%. Such a situation arises if the same in-
put value is used in multiple places to control the parsectien.
These input values having multiple use points are oftemtis.

As a ST has one leaf node for one use of an input symbol, we need
to identify the one that reveals the true structure and renibe

rest from the resulting tree. Two observations can be etgudb
achieve this goal. The first one is that most parsers parsé inp

2Note that we only create internal nodes for predicates ositak
according to the definition of dynamic control dependendeces

12: 2% 35,, a node is created far2; although the symbol is
used aBb5;.

symbols in order, i.e., one symbol is not parsed until itslpoes-
sor is parsed. Second, if a symbol is used in multiple pointsg
execution, like delimiters, the last use point before itscessor
being parsed is the parsing point of the symbol. The observat
behind this is that a delimiter is permanently removed from t
input buffer, and thus parsed, right before the next symbolo-

cessed. Note that a symbol may be used beyond its successor’s

parsing point, e.g., ari nt f may print all input symbols at the
end of the program execution. Therefore, we cannot simphy co
sider the last use point as the parsing point.

DEFINITION 2. A statement instancs,, is theanchor point of
an input value®”, denoted byA P(i*) = s, if and only ifs,, uses
a variable labeled with® and there is NO other instanadg that
uses a variable with the same label during the parsing phase.

In other words, if an input element is used at only one place
during the parsing phase, the use point is its anchor poior. F
instance AP(‘B’2) = 16,. Based on anchor points, we define the
parsing points of an input symbol.

DEFINITION 3. The parsing point of an input elemeiitis de-
fined as:

AP@®) if AP(GS)! = L;
Sm if s, uses avariable labeled witlf N
Yy >z st AP(Y) = 1,
PP(i") = sm occurs beforedA P(i¥) N
sm is the latest point that satisfies
the previous two conditions.
1 otherwise.

The symboll stands foundefined If an input symbol has mul-
tiple use points, the above definition identifies the pargioigt of
the symbol as the one that happens before the next anchaigpain
has the largest timestamp. Other use points are removedtfrem
tree. In our example, inpWt 4 has three use point$4,, 253, and
351, resulting in the three labels in the left graph of Fig. 5. Tibgt
anchor point of/’ 4 is AP(‘B’2) = 16,. Since all three uses hap-
pen beforel6; and14; has the largest timestampt; is identified
asPP('I' 1) and the other two points are pruned from the tree.

Redundant Intermediate Nodes Elimination. The approxima-
tion produced by the online analysis often contains redonoe
termediate nodes, which do not provide useful informatidm
intermediate node is redundant if and only if it has only ohidc
The redundancy can be removed by replacing the intermeuttale
with its child. This process continues until no further retiion can
be conducted. For instance, nodes14,, 16,, and32; on the left
hand side of Fig. 5 are redundant. Nady is also redundant after
its leaf labeled with/’ 4 is pruned according to the aforementioned
transformation, and hence it is replaced with nade.

After applying the transformations, the final ST producedbiar
sample is presented on the right hand side of Fig. 5, whiatigely
reflects the desired hierarchical structure of the input.

3. HANDLING INPUTS WITH BOTTOM-
UP GRAMMARS

We observe that many applications consume inputs with tmtto
up grammars, e.g., most programming languages have a baftom
grammar. Due to the different runtime characteristics pfdown
and bottom-up parsers, reverse engineering syntactictsteufor
inputs with bottom-up grammars requires a different sohuti

‘T’Z ‘T,S ‘T’4 ‘/’4

Figure 5: Transformations.

A grammar that can be parsed by a bottom-up parser is called
a bottom-up grammar. A bottom-up parser parses a string by co
structing the derivation in a bottom-up manner, namelytatts at
the leaf level and works up towards the rootteglucinga set of
low level nodes to a higher level intermediate node at eagp st
[6]. A large body of applications make use of bottom-up gram-
mars due to their expressiveness. The class of languagesatha
be expressed by bottom-up grammars is a proper superseisaf th
expressed by top-down grammars. The intuitive explanasioimat
top-down grammars require parsers to predict a grammarbsule
looking at the first (a few) symbol(s), whereas bottom-upspes
delay making this decision till all the symbols of a grammaler
are in sight, which is far less stringent. Although bottomewam-
mars feature higher complexity in implementation, theristérols
such asyaccor bisonthat can automatically generate parsers for
bottom-up grammars.

1. state=0;

2. stack.push($"*°);

3. c=getchar();

4. while (action[state, c].first !=accepr) {
5. if (action[state, c].first==shift) {
6. state=action[state, c].second;

7. stack.push(c®**);

8. c=getchar();

9. } else if (action[state, c].first == reduce) {
10. A— B = action[state, c].second;
11. stack.pop (|B|);

12. state=goto[stack.top(), A];

13. stack.push (A*™°);

14. }

}

Figure 6: A General Bottom-Up Parsing Algorithm

Deriving input structure for bottom-up parsers is intriggiidue
to the way they are implemented. Figure 6 presents a gerens p
ing algorithm used by most bottom-up parsers [6]. The allgori
is facilitated by a stack and a DFA, encoded by &w i on and
got o tables. Given the current state of the DFA, which is stored in
the stack, and an incoming input symbol, i.e., the leftmgsitsl
of the input string, there are two possible actions. If the ggm-
bols on the stack do not constitute the righthand side of mgrar
rule, indicated by the@ct i on table entry indexed by the current
st at e and the incoming input symbal having the value o$hift,
as shown at liné of the algorithm, the input symbal is removed
from the input string and pushed to the stack, being labeldtthe

updated state. If the top symbols are indeed the righthateddfia
grammar ruled — 3, encoded by thact i on table entry having
the value ofeduceas shown at ling, the topn. = |3| elements are
popped from the stack and the lefthand side symbdd resulted

at lines10-11. At line 12, the current state is updated based on the
state on the top of the stack addaccording to thgot o table. The
symbol A labeled with the new state is pushed to the stack at line
13. The process terminates when the start symbol meets with an
exhausted input string, encoded byamteptaction. The DFA en-
coded by tableact i on andgot o can be constructed in various
ways, giving rise to different subclasses of bottom-up grears.
Our analysis described later is independent of the way the IBF
constructed and thus is general for bottom-up grammars.

(1) Body— B Tag/B

(2) Tag— TagT Text/T
(3) Tag— T Text/T

(4) Text— Texta

(5) Text— a

Figure 7: A Sample Bottom-Up Rule

Table 1: Parsing string “BTa/TTaa/T/B".

[Stack [Input [Stack operation trace |

(1) $° BTa/TTaa/T/B$ | push(B',1)

(2)s'B! Ta/TTaa/T/B$ | push(P,2)

(3)$°BIT? a/TTaa/T/B$ | push(d,3)

@s° B a7 | [TTaa/T/B$ | pop(1); pushTexf,3)
rule: Text— a

(5)$°B T3 TexP [TTaa/T/B$ | push(/P,4)

(6) $°B*| T3 Text/T° Taa/T/B$ | pop(3); pushTag®,2)
rule: Tag — T Text/T

(7) $"B'Tag” Taa/T/B$ | push(T,3)

(8) $"B'Tag’T° aa/T/B$ | push(d,4)

(©)$"B Tag? T | a/T/BS | pop(1); pushTexf 4)
rule: Text— a

(10)$”B Tag” T° Text a/T/B$ | push(d”,5)

(11)$°B* Tag?T°| Texfa'® T/B$ | pop(2); pushlext,4)
ruleText — Texta

(12)$°B Tag” T° Text /T/B$ | push(/T',5)

(13)$°B*| Tag? T® Text/T! /B$ | pop(4); pushlag®,2)
Tag — Tag T Text/T

(14)$"B'Tag® /B$ | push(/B",3)

(15)$°| B! Tag?/B* $ | pop(3); pushBody'?,1)
Body — B Tag/B

(16) $"Body? $ | exit the while loop

The superscripts of stack entries are the states assoeidakesymbols.
pushg*,p) means pushing symbelto thepth position, and the state is
pop(n) means popping the top stack entries.

Example. Fig. 7 shows a sample bottom-up grammar. It is not a
top-down grammar because of the left-recursions in rulgsut@

(4), which make a top-down parser fail to predict which rude t
follow upon seeing a symba or T. Table 1 illustrates how an
input in the sample grammar is parsed according to the algori

in Fig. 6. The grammar is translateddct i on andgot o tables

in Table 2. Note tools are available to automate the trainslaand
interested readers are referred to [6]. At step (1) in Tablthé
next input symbolB is pushed to the stack and the current state is
updated to 1, which is decided fact i on[0, B] = (shift,) in

Table 2: Parsing Table For the Grammar in Fig. 7.

[action [goto |

Sl g T7/B T T [/T [a [$ || Body[Tag [Text]
0 sl gl0

1 s3 g2

2 s4 | s5

3 s7 96
4 rl

5 s7 98
6 s9 | s10

7 5 5

8 s11 | s10

9 13 | r3

10 r4 r4

11 2 | r2

12 acc

sn denotes shifting in one input and updating the current state
rn denotes reducing according to rute
gn denotes updating the current stateito

(got o[3, Text]=61inTable 2). The process terminates at step
(16) where the stack contains the start synibotlyand the input
string becomes empty.

The analysis described in the previous section does notweltk
for bottom-up parsers. Execution structure, illustratgéxercised
control dependences, no longer approximates input syattatic-
ture. According to the algorithm in Fig. 6, input symbols ac®-
sumed in different iterations of thehi | e loop at runtime. As one
iteration is dynamically control dependent on its precgdiera-
tion, a node labeled with an input symbol is dynamically coint
dependent on the node labeled with its preceding symbol.r&he
sulting ST approximation has a close-to-linear structure.

Fortunately, execution of a bottom-up parser exposes stpuit-
ture nonetheless through a different channel. Considestlae k
column in Table 1, the reductions at steps (4), (6), (9), &igh-
lighted by boxes, introduce hierarchical relations betwsenbols.
For instance, the reduction at step (6) indicates that theltieg
Tagsymbol is derived from th&, Textand/T symbols on the stack,
which constitute the child nodes @agin the ST. The key obser-
vation is thateductions reveal input structure and a reduction can
be identified from behavior of the parsing stack.

DEFINITION 4. Given a bottom-up parseP and an inputZ,
the stack operation tracef the executior?(Z) is defined as the
sequence of push and pop operations of the parsing stack.

e Apush operation is represented as p(gsfp), meaning push-
ing the symbos with the new statéto the top positiorp.

e A pop operation is represented as o}, meaning popping
the topn entries.

For instance, thet ack operati on trace column of Ta-
ble 1 lists the sequence of stack operations. We can obsenve f
Table 1 that reductions are always associated with pop tipesa
Unfortunately, pop operations are hard to identify fromaxsn
trace, assuming no knowledge of the source code, becauge the
are often translated to pointer arithmetic operations enstiack
variable, which are indistinguishable from numerous off@nter
arithmetic operations during execution. Furthermore,@stprs
are often stored in registers, tracing operations on regiss very
expensive. In comparison, push operations are much more vis
ble as they are always associated with memory writes on afigpec

Table 2. At step (4), the top element on the stack is popped andregion (the stack) with certain patterns. Therefore, waddeto

reduced tdlext which is decided byct i on[7, / T] = (reduce,
Text — a), which is pushed to the stack with the new state 6

identify reduction steps from push operations. We definebsetu
of push operations as backward operations as follows.

DEFINITION 5. Given a stack operation trace, assume a push
operationz = pushs, p), and its preceding push operatiaf,..q =
push(s',p'), = is abackwardoperation if and only ip <= p'.

Intuitively, a push operation that pushes to a position that
smaller than its predecessor is a backward push. In Tableel, t
push operation at step (4) is a backward operation becapssties
to position 3 and its preceding push operation at step (F)qri0
the same location 3. Similarly, the pushes at steps (6),(19),
(13), and (15) are also backward operatiodsbackward opera-
tion implies a step of reductionThis property can be exploited
to discover input structure. The algorithm is presented ligoA
rithm 2. Given a stack operation tra@e the algorithm scans each
push operatiorx in the time order. Line 5 decides:ifis a back-
ward operation. If so, edges are introduced between thk stdry
of the backward operation, denoting the lefthand side symoba
grammar rule, and the entries that are in betweamdp’, which
constitute the righthand side of the rule.

Algorithm 2 Construct a ST from a stack operation trace
1. STFromTrac&7)

2:{

3: foreach operation i with the form ofz = push(s, p) {
4: x’s preceding push operatiar,,.q = pushs™,p’);
5 if(p<=p){

6: addNodéx);

7: foreacht € [p,p’] {

8: y = push(..., t) precedes: and is closest ta;
9: addNod¢y);

10: addEdg(zz — y);

11: }

12: }

13}

push (Body'?, 1)

push (B', 1) push (Tag’,2) push (B 3)
push (Tag?,2) push(T°,3) push (Text*,4) push (/T", 5)
push (T3, 2) push (Text", 3) push (/Tg, 4) push (Textg, 4) push (am, 5)

push @, 3) push (a’, 4)

Figure 8: The Derived ST For the Sample Trace in Table 1.

Consider our example trace in Table 1, the push operatid®) at (
is a backward operation, which pushes to position 2, andéisqul-
ing push operates at position 4. According to lines 7-11 igcAl
rithm 2, edges are introduced between the push at (6) anddke m
recent pushes to stack positions of 2, 3, and 4, namely, thlegsu
at steps (3), (4) and (5), which constitute exactly the tight side
of rule (3). The resulting ST is shown in Fig. 8, which faitlju
mirrors the true derivation tree.

Extract Stack Operation Trace. One issue remains unsolved is to
extract stack operation trace. Recall that we only assum@ribr
gram binary. It is challenging to identify which part of thimary
contributes to operating the parsing stack. Fortunatéig, part
of execution often demonstrates unique runtime charatiesi To
explain the idea, we first define the conceptlafa lineage

DEFINITION 6. Thedata lineageof variablev at an executed
statement instance;, denoted byD L(v@s;), refers to the set of

input values that affect the value ofat s; through direct/indirect
dynamic data dependence.

A dynamic data dependence exists between two statement in-
stancese; andy; if and only if a variable is defined at; and then
used aty;. In the below code snippet, the execution instances of
statement 3, 4 and 5 are data dependent on that of 1. Accaaling
the above definitionDL(x@1,) = DL(a@3,) = DL(c@5,) =
{INPUT[1]}, DL(y@2;) = {INPUT[2]}, DL(b@Q4,) = DL(
z@1;) U DL(y@2,) = {INPUT[1], INPUT[2]}. Efficient com-
putation of data lineage can be found in [33].

11
21
31

x=INPUT[1];
y=INPUTI[2];
a=x;

41 b=x+y;

51 c=A[X];

61 ...

Data lineage is crucial to distinguish parsing stack opemat
Specifically,multiple instances of push operations of the parsing
stack have increasing lineage sets, and the lineage setobf iea
stance contains all the input symbols seen so faonsider the
general algorithm in Fig. 6, this property can be proved bynsh
ing DL(state) D (DL(state;.s) U DL(c)) at lines 7 and
13, wherest at e;,s: Stands for the value ot at e in the pre-
vious iteration. It is true for line 7 because for any insenc
DL(state@Q7;) = DL(state @6;) D (DL(st at €;,5:@6;) U
DL(c@QG6;)) as the value o$t at e at 6 is a function of thet at e
in the last iteration an@. As for line 13, DL(st at e@13;) =
DL(state@l2;) O DL(AQ10;) O (DL (st at e;,5:@10;) U
DL(c@10;)) Given the input string shown in the caption of Ta-
ble 1, after the first iteration of the while loop, the lineagehe
st at e variable has the lineage éf B'}, after the second itera-
tion, it becomeq‘B’, “T’}, and so on.

Increasing lineage is not unique to push operations. Otheree
tions that perform accumulative computation on input, saggum
may manifest the same lineage pattern. Those operationymos
access a single variable while push operations access tisetro
ory locations. In the bottom-up parsers we have studied,uge s
cessfully extract stack push operation traces by searé¢bmgrite
instructions that access a set of memory locations in a fhticty
pattern and have increasing data lineage.

Deciding Grammar Category. As the different natures of top-
down and bottom-up grammars lead to two different solutigins
becomes an issue to decide which one to apply given that we hav
no knowledge about the input grammar category of a program (r
call we assume no source code access). In practice, if thaeha,

we apply both analyses. Our study in the evaluation sectiows
that by inspecting the two generated trees, one can ealsiyhieh
generated tree is the right one because applying the top-dpw
proach to inputs with a bottom-up grammar generates a mganin
less tree and vice versa.

4. EVALUATION

Our analyses are implemented usiD@blo [25] and Valgrind
[22]. Diablo is used to perform post-dominance analysis ioa-b
ries. Valgrind is used to instrument binaries to catch dathcaon-
trol dependences. The algorithms described in previousossc
are implemented in Valgrind. All our experiments were parfed
on a machine with two 2.13Ghz Pentium processors and 2G RAM
running the Linux kernel 2.6.15.

Table 3: Experimental Result for Top-Down Grammars

Benchmark Description Input size | #Derived | #Real | Edit
(LOC) (bytes) Node Node | Dist.
A HTML file 126 32 14 18
Tidy checking & cleaning 2891 183 76 107
up tool (34k) 8044 954 412 | 542
414 53 13 20
Apache An H;?T’(';Kser"er 759 73 3 1 35
-2.0.59 (230K) 557 8 6 | 52
Avor P 551 128 29 99
Asterisk voice over 556 128 30 98
144 platform (324K) 537 24 29 | 95
) 48 14 17 7
Zebra A GNU routing 80 30 36]
-0.95a software (49.2K) 100 23 27 9
An SMBJ/CIFS pro- 133 33 35 3
Samba-3.0.8| tool implementation 330 64 63 11
software(420K) 236 vl a3 10

4.1 Quality of Derived STs

To measure the effectiveness of our approach, we apply it-to a
alyzing input structure for a set of real world applicatioxée col-
lect two sets of benchmark programs for top-down and botipm-
grammars as shown in Table 3 and Table 4, respectively. Betto
up parsers are mostly generated by automatic tools. In acder
evaluate the robustness of our analysis in the presenceriofisa
parser generation tools, for each program in the bottomaip c
egory, we used two most popular open-source parser gergrato
bi son- 2. 1 andbyacc- 1. 9, to generate two different bottom-
up parsers. Each program (version) is tested on a numbeputsin
For each input, we compare the derived input tree withr¢hétree,
which is acquired from the input specification.

We comparalerivedtrees andeal trees by calculating thetree
edit distancg7]. Tree edit distance is a technique to compare la-
beled trees based on simple local operations of deletisgrtimg,
and relabeling nodes. A labeled tree is a tree in which eadk i®
assigned a label. Recall that the internal nodes of our gytreas
are not labeled. In order to perform the comparison, we lahel
internal noden by the sequence of input symbols that is the union
of all the children’s labels. One can consider that the lalbeln
internal noden represents the input subsequence whose derivation
is the tree rooted at. Three primitive operations are defined which
can be applied to transforming a labeled tree. They areel@)et
change the label of a node; (B¢lete- remove a non-root node in
the tree by connecting its children to its parent;itsert- insert a
node as a child of an existing node. The tree edit distanceee$t
t1 andt, is defined as the number of primitive operations required
in order to transformt; to ¢2, assuming each primitive operation
has a unit cost.

Top-Down Grammars. We first evaluate our analysis for top-
down grammars. The results are shown in Table 3. In order to
evaluate the derived trees, we udafteshark[4] to generate the
real syntax trees for most programs excepty. Wireshark is a
very popular network trouble shooting tool, which containan-
ually crafted information about network protocol formatswas
widely used in other projects such as [9, 11, 14] to evaluage t
quality of reverse engineered network protocol formats.tkaly,
which was not documented by Wireshark, the correspondiab re
tree was generated under the guidance of HTML grammar [5].

Lets look at the data foti dy (the version released in Nov.
2003). We used three html files with different sizes, randimom
a small size of 126 bytes to a large size of 8Kk, to test the yuali
of the generated trees foi dy. Observe that the derived trees are
much larger than the real trees and the tree edit distancienmnsii
cal to the difference between the node numbers of the detireed
and the real tree, which implies the real tree is includedhénde-

Wireshark Formated Data (an HTTP GET Request)

GET Aindex.htm] HTTR/1.1%rn
Accept: image/gif, image/x-xbitmap, image/jpegy, magespipeq, application
Accept-Language: zh-cnirin
accept-encoding: gzip, deflatevriyn
If-modified-since: Tue, 12 Jun 2007 05:29:31 GMTYrNh
If-none-match: "22b8d-252-c82e04c0" NN
user-agent: mMozilla/sA.0 (compatible; MSIE 6.0; windows NT 5.1; sSvl)wryn
Host: 128.174.88. 71 n
cConnection: Keep-alivewrin

ryn

Some Leaves in
Wireshark ST

Host: 129.174.88.71\r\n Connection: Keep-Alive\r\n @

Host: 129.174.88.71\r\n Connection: Keep-Alive\r\n
129.174.88.71

Figure 9: Tree Comparison Between Wireshark and Ours for
apache.

Some Leaves in
our ST

rived tree’. This is further validated by our manual inspection. The
results forapache andast er i sk are similar. Our inspection re-
veals that the additional nodes in the derived trees arelyndire

to Wireshark being too coarse-grained. For instance, focie
markapache, we observe that Wireshark only formats inputs to a
certain level and treats nonterminals as terminals. Fanel& as
shown in Fig. 9, Wireshark treats the MIME type data (e4gsit :

192. 168. 10. 44\ r\ n) as a terminal whereas our technique further
breaks the sequence into smaller pieces. One can cledrihael
our derived tree is more informative than the Wireshark. tig@s
could be explained by Wireshark being actually a networki-tro
ble shooting tool that only requires high level protocolnfiaits,
especially for text based protocols. In some cases, ouveteri
trees seem to provide more-than-necessary break-downsin+o
stance int i dy, our analysis divides the tag nodeHt ml >" in
Wireshark to €', "ht ml ”, and *>’. This is because the function
CheckAttribute () parses tags in a more detailed way. We
argue this is necessary as a tag may contain attributes.

The first three applications accept text inputs, whereagéahe
maining two, namelyzebr a and sanba, accept binary inputs.
The evaluation results for these two display different abser-
istics. First, we observe that the derived trees and thetreas
are not much different at their sizes. The edit distancesrareh
smaller compared to the three text-based programs. Ougdtisp
shows that Wireshark has much more fine-grained definitiors-o
nary input formats. We speculate that the contributors af¥fiark
may think binary formats are opaque and thus require detsgec-
ifications. Second, the Wireshark trees are no longer ieclud
our derived trees, implied by edit distances not equal todife
ferences of the two node numbers. It suggests that transfgran
Wireshark tree to the corresponding derived tree entails insert
and delete operations, and the derived tree has some nedese¢h
missing in the wireshark tree and vice versa. The main re&son
that the implementations do not fully respect the docunteimeut
specifications.

Bottom-Up Grammars. Most applications with bottom-up input
grammars use parsers that are automatically generateadlsydice

to implementation complexity. These applications typicabn-

tain a standard grammar file which can be used by a parser gen-

According to [7], a tred; is included in a tree, if and only if ¢;
can be obtained by deleting nodes from

eration tool. Such grammar files can be used to provide tHe rea
trees for our evaluation. In particular, we instrument thang
mar files so that if multiple symbols are going to be reduced to
higher level symbol, edges are added between the reducdabim
and the resulting symbol. For instance, we add new actiorss to

grammar file so that upon a reduction based on the grammar rule

input _item senicolon_|ist ENDOF_LI NE, two edges
will be added between a node representimgut _i t emand the
two nodes representingem col on_| i st and ENDOF_LI NE.

Eventually, a syntax tree is explicitly constructed durpaysing.
Since this tree is stringently created according to thetiigpam-
mar, it can be considered as a real tree.

The results for bottom-up grammars are presented in Table 4.
Each row ofbc corresponds to parsing a single file while each row
of wuf t pd is for parsing a series of ftp commands in a session.
Note thatbyacc failed to generate a parser for the grammar file of
gcc, and hence we used ony son. For these applications, we
are able to acquire STs that are identical to the real ongutdehf-
ferent benchmarks considered and different parser gemsnaged.

A possible explanation is that the bottom-up parsers censttare
all automatically generated by tools and thus their runtioalav-
ior is well regulated, which makes them highly amenable to ou
analysis. In contrast, top-down parsers, due to their implga-
tion simplicity, are often hand-coded and thus display ificant
variety. Potentially, bottom-up parsers in a differentgaigm may
degrade the effectiveness of our analysis. We plan to stuzhg m
parsers and parser generators to further validate our itpgiiin
the future.

Table 4: Experimental Result for Bottom-Up Grammars

Bench- Description Input Size | #Derived Note/ | Edit
‘ mark ‘ (LOC) ‘ Tool H (bytes) #‘Real” Node ‘ Dist. ‘

Arbitrary pre- _ 372 253/253 0
Bc-1.0.6 | cision numeric | BiSON 891 6127612 0
processing lan- 1325 9547954 0
guage (14.4K) | Byace 34 3297329 0
) 56 24724 0
Wuftpd AnFTP Bison 241 97797 0
2.6.2 | server(27.1K) 132 78778 0
Byacc 285 1137113 0
GNU 60 25725 0
gcc-3.4.6 Compiler) 241 1517151 0
Collection | Bison 623 7537453 0
(212K) 9430 5649 /5649 0

4.2 Deciding the Grammar Category

As we discussed earlier, if an input grammar can not be décide
beforehand to be one of the two options, our strategy is tdyapp
both analyses. In this experiment, we applied the top-davatya
sis to the set of bottom-up applications and applied theohwiip
analysis to the set of top-down programs and observe if we can
easily tell which of the two trees is the desired one. Apmyin
the bottom-up analysis to top-down programs failed to pcecany
trees as the analysis failed to identify the parsing staghplying
the top-down analysis to bottom-up programs was able toyz®d
trees. However, these trees are mostly meaningless andhéus
winner becomes clear when compared to the trees generatbé by
bottom-up analysis. Due to the space limit, we show the teesr
for the benchmarkc in Fig. 10 and Fig. 11. The input is a program
shown below.

i =0;
for (i=0;i<3;i++) {
, b+=i;

We can clearly see in Fig. 11, the tree generated by the tepdo

Time Taken (s)
~

nodes are meaningless. In comparison, the tree in Fig. Hdlgle
depicts the input structure.

10

T 20 L N N N O N T N A
—-— No Instrumentation
t—+— W/ Execution Tracing Module

T
—-— No Instrumentation
—+— W/ Execution Tracing Module

T
ime Taken (s)
T T

\+
.

+ 06

— v

2r —t
et

T T T S PO HUY RPN SUPU SO R
50 100 150 200 250 300 350 400 450 500 550 600 650 700

Input Length (bytes)

0 T 1
600 1000 2000 3000 10000

Input Length (bytes)

20000 40000
xeLog10

(@) ti dy (Top-down Parsing) (b) bc (Bottom-up Parsing)

Figure 12: Performance Overhead of Execution Tracing

4.3 Performance Overhead

The next experiment is to evaluate performance. Due to thessp
limit, we uset i dy andbc (the parser is generated by son) to
evaluate the performance of our system and its sensitivitggut
size. We feed the two programs with inputs of different sies
observe the overhead imposed by our analyses. The overbead i
measured by comparing the execution times against thodeeof t
corresponding base line runs on Valgrind without instrutaton.

The execution times dfi dy for inputs with different sizes (var-
ied from 800 to 40k bytes) are shown in Fig. 12(a). The perfor-
mance overhead varies from 5X to 45X. This is due to the faat th
larger inputs entail more operations. Thus, the controkddpnce
stack becomes deeper and the number of labeled operatiens be
comes larger, and thus the online maintenance induces rere o
head. Foibc, we use inputs with different sizes but with similar
structure. This is because inputs with different structitdead to
significantly varied execution times &g is an interpreter, whose
execution time heavily depends on the structure of the ippor
gram. The execution times dic are shown in Fig. 12(b). The
overhead ranges from 6X to 8X for the given experiment inputs

4.4 A Client Study on HDD

Delta debugging [32] is an automatic debugging techniqaé th
looks for a valid and minimal subset of a failure inducingubp
that produces the same failure through an iterative algoritHi-
erarchical Delta Debugging [20] improves the algorithm lop-c
sidering the hierarchical structure of the input so thagliavinput
subsets can be avoided. However, HDD requires the programme
to provide input grammars and the corresponding parserae
built a completely automated HDD system by integrating our i
put derivation system with the HDD algorithm. The indeperate
of a priori knowledge of input structure enables new apfibce
such as failure report composition, which often targetsepiayed
software without source code. More details can be found in ou
technical report [15].

5. RELATED WORK

In the area of network security, research has been condtwted
extract protocol formats from a large pool of network traf@&<],
and through dynamic binary analysis [11, 14, 29, 30]. Thevagk

algorithm does not make sense as the labels on the secomnd layetrace based techniques do not look at execution of netwqok-ap

i=0;\n'for(i=0;i<3;i++){"\n’ b+=i;'\n'}'\n"

for(i=0;i<3;i++){"\n’ b+=i;\n'}

for(i=0;i<3;i++){"\n’ b+=i;\n'}'\n’

Figure 10: The Tree Derived Using the Bottom-up Analysis fobc.

i=0,\nf(i=0;i<3;i+){\n b ‘

i=0:nf(i=0;i<3;i+)(\n b3+iAnfn
i=0;\nf(i=0;i<3;i+){\n b+ Q

i=0:nf(i=0;i<3;i+){\n b

i=0Anf(i=0;i<3;i+){n b

Figure 11: The Tree Derived Using the Top-Down Analysis folbc.

cations. The accuracy of these approaches relies on thefsize
trace pool and the heuristics used. In contrast, as denabedtin
[11, 14, 29, 30], by analyzing how a program processes inatat, d
dynamic binary analysis could be used to reveal input sirect
The difference between our technique and these binary sinaly
based approaches lies in (1) they only handle top-down gesym

whereas we also handle bottom-up grammars, which are tlee oth

very important input category; (2) regarding top-down gnaans,
our system is superior for being more general, robust, aodrate
since it captures the essence of the problem — dynamic ¢alro
pendence. Indeed, the artifacts used in other projecth,aoops
and comparisons in [11, 29, 30] and execution contexts i) firé
subsets of control dependence information.

In [16], Lim et al. propose using static analysis to derivépaiti
structure. They observe that the structure of a programagma
wealth information of the output format. They use intergaharal
control flow graphs, call graphs, and value set analysis taeix
output format step by step. Their technique is a static amathat
analyzes output structure instead of input structure. @chirtique
is dynamic analysis based and is more appropriate for derivie
structure for a single input.

Our technique is also related ggammar inferenc€Gl) in the
language research area. Grammar inference concerns thisiacq

tion of the syntax or the grammar of a target language. Itfinee

as the process of learning a grammar from a set of grammigtical
correct and, if available, incorrect sentences. More mftion can

be found in [23], a survey by Parekh et al. on computational ap
proaches for learning different classes of formal langeag&om-
pared to our work, which derives input structure from progexe-
cution, Gl techniques try to tackle the problem from a mucatiéa
way, i.e., by only looking at inputs. As reported in [9], Gl-ap
proaches are too complex to apply and have very limited sscce

6. LIMITATIONS AND FUTURE WORK

There are a number of issues that affect the effectivenessrof
technique. First, the robustness of our technique needsfirthner
tested. Although most programs we have seen so far takesioput
top-down or bottom-up grammars, there may exist other graram
Even with the two types of grammars, individual parser impe-
tations may not fall into the specific paradigms. In the wers-
nario, one might write a top-down parser so that the conepka-
dence structure is totally independent of the parsing &trac In
the future, we plan to study more parser implementationszat
uate the performance of our technique on obfuscated bisaueh
as malware and viruses. Second, our technique derivesrtiee st
ture for individual inputs. It is more desirable to be ablartfer

the input grammar especially for applications like testivghile
combining the syntax trees of multiple inputs into a gramimaur
ongoing work, we believe at the end, in order to acquire a detap

[16]

grammar, we need to address the coverage problem, meaning weél7]

need enough inputs to exercise all parts of a grammar. Taoind,
technique currently only derives syntactical structurenysecu-
rity applications desire semantic information as well,lsas the
keywords of a protocol, constraints across multiple fietdg.(the
length of field B is confined by the value of field). We plan to
extend our technique to solve this problem in our future work

7. CONCLUSION

Deriving input syntactic structure is very important for ale/va-
riety of applications such as test generation, delta debhggdgil-
ure reporting and protocol reverse engineering. We propese
dynamic analyses that construct input structure from @nogexe-
cution. Our technigue does not require source code or anpaljen
information. Our evaluation shows that the proposed tepies are
highly effective and produce input syntax trees with highlgw

Acknowledgments

This work is supported by grants CNS-0720516 and CNS-079846

from NSF to Purdue University.

8. REFERENCES

[1] Libyahoo2: A c library for yahoo! messenger.
http://libyahoo2.sourceforge.net/

[2] The Protocol Informatics Project.
http://www.baselineresearch.net/PI/

[3] The SNORT network intrusion detection system.
http://www.snort.org

[4] Wireshark: The World’s Most Popular Network Protocol dyzer.
http://www.wireshark.org/

[5] Grammar of HTML Document.
http://www.unix.org.ua/orelly/web/html/apga2. html

[6] A.V. Aho, R. Sethi, and J. D. UllmarCompilers: Principles,
Techniques, and Toolé&ddison-Wesley, 1986.

[7] Philip Bille, A survey on tree edit distance and relatedigems. In
Theoretical Computer Sciencg37(1-3), 2005.

[8] D. Coppit and J. Lian. Yagg: an easy-to-use generatostiwictured
test inputs. IrProceedings of the 20th IEEE International
Conference on Automated Software Engineering (ASE)5.

[9] W. Cui, J. Kannan, and H. J. Wang. Discoverer: Automatmqcol

reverse engineering from network tracesPhoceedings of the 16th

USENIX Security Symposiyioston, MA, 2007.

W. Cui, M. Peinado, H. J. Wang, and M. Locasto. Shieldgen

Automatic data patch generation for unknown vulnerabaitwith

informed probing. Inn Proceedings of 2007 IEEE Symposium on

Security and PrivacyOakland, CA, 2007.

J. Caballero and D. Song. Polyglot: Automatic extr@etof protocol

format using dynamic binary analysis. Bioceedings of the 14th

ACM Conference on Computer and and Communications Security

(CCs'07) 2007.

P. Godefroid, A. Kiezun, and M. Y. Levin Grammar-baselitebox

fuzzing. InProceedings of the 2008 ACM SIGPLAN Conference on

Programming Language Design and Implementation (PL.DI)

Tucson, AZ, 2008.

K. Hanford. Automatic Generation of Test CasesIBM Systems

Journal 9(4), 1970.

Z. Lin, X. Jiang, D. Xu and X. Zhang. Automatic Protocarmat

Reverse Engineering through Context-Aware Monitored Htien.

In Proceedings of the 15th Annual Network and Distributede3yst

Security Symposium (NDS8D08.

Z. Lin and X. Zhang. Deriving Input Syntactic Structdfrem

Execution and Its Application®urdue Technical Report CSD TR

#08-006 2008.

[20]

(11]

[12]

[13]

[14]

[15]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

J. Lim, T. Reps, and B. Liblit. Extracting file formatofn
executables. liProceedings of the 13th Working Conference on
Reverse Engineerin@006.

R. Majumdar and R. Xu. Directed test generation usinglsylic
grammars. IrProceedings of the 22th IEEE International Conference
on Automated Software Engineering (ASE)07

W. Masri, A. Podgurski, and D. Leon. Detecting and defing
insecure information flows. IRroceedings of the 15th International
Symposium on Software Reliability Engineering (ISSR&)4.

P. Maurer. Generating test data with enhanced corfitegt-
grammars. INEEE Software7(4), 1990.

G. Misherghi and Z. Su. HDD: Hierarchical delta debuggiln
Proceedings of the 28th International Conference on Soéwa
Engineering (ICSE)Shanghai, China, 2006.

V. Nagarajan, R. Gupta, X. Zhang, M. Madou, B. De Suter

K. De Bosschere. Matching control flow of program versions. |
Proceedings of the 2007 International Conference on Soéwa
Maintenance (ICSM)Paris, 2007.

N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation.Hroceedings of the
ACM SIGPLAN 2007 Conference on Programming Language Design
and Implementation (PLDJ)San Diego, CA, 2007.

R. Parekh and V. Honavar. Grammar Inference, Autonradadtion,
and Language Acquisition. 2000.

P. Purdom. A sentence generator for testing parseBlTn
Numerical Mathematicsl2(3), 1972.

L. V. Put, D. Chanet, B. De Bus, B. De Sutter, and K. D. Ri&se.
Diablo: areliable, retargetable and extensible link-timeriting
framework. InProceedings of IEEE International Symposium On
Signal Processing And Information Technolpg905.

E. Sirer and B. Bershad. Using production grammars ftwsoe
testing. InProceedings of the 2nd conference on Domain-specific
languages1999.

H. Wang, C. Guo, D. Simon, and A. Zugenmaier. Shield:
vulnerability-driven network filters for preventing known
vulnerability exploits. InProceedings of the 2004 ACM Conference
on Applications, Technologies, Architectures, and Prot®éor
Computer Communication (SIGCOMN2004.

X.Wang, Z. Li, J. Xu, M. K. Reiter, C. Kil, and J. Y. Choiakket
vaccine: Black-box exploit detection and signature ger@raln
Proceedings of the 13th ACM conference on Computer and
communications security (CGS006.

G. Wondracek, P. M. Comparetti, C. Kruegel, and E. Kirda
Automatic Network Protocol Analysis. IRroceedings of the 15th
Annual Network and Distributed System Security Symposium
(NDSS) 2008.

W. Cui, M. Peinado, K. Chen, H. Wang, L. Irun-Briz. Tupni
Automatic Reverse Engineering of Input FormatsPhceedings of
the 15th ACM Conference on Computer and Communications
Security (CCS)2008.

B. Xin and X. Zhang. Efficient online detection of dynantiontrol
dependence. IRroceedings of the International Symposium on
Software Testing and Analysis (ISST2()07.

A. Zeller and R. Hildebrandt. Simplifying and isoladin
failure-inducing inputlEEE Transaction on Software Engineering
(TSE) 28(2):183-200, 2002.

M. Zhang, X. Zhang, X. Zhang, and S. Prabhakar. Tradimgglge
beyond relational operators. Rroceedings of the International
Conference on Very Large Data Bases (VLDB)stria, 2007.

X. Zhang and R. Gupta. Cost effective dynamic slicing. |
Proceedings of the 2004 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PL.R20D4.
X. Zhang, S. Tallam, and R. Gupta. Dynamic slicing longning
programs through execution fast forwarding Aroceedings of the
14th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE2006.

