
Algorithms for Automatically Computing the

Causal Paths of Failures

William N. Sumner and Xiangyu Zhang

Department of Computer Science, Purdue University
{wsumner,xyzhang}@cs.purdue.edu

Abstract. We have proposed an automated debugging technique that
explains a failure by computing its causal path leading from the root
cause to the failure. Given a failing execution, the technique first searches
for a dynamic patch. Fine-grained execution comparison between the
failing run and the patched run is performed to isolate the causal path.
The comparison is enabled by precisely aligning the two executions. We
herein propose and study two algorithms aiming at efficiency. We also
evaluate the effectiveness and cost of our technique on a set of real bugs,
including requirement bugs in which no a single or small set of statements
can be blamed as the root cause. In such cases, understanding a failure
is more important.
Keywords: debugging, automated debugging, execution indexing

1 Introduction

During debugging, developers often have a “correct” oracle execution in mind
with which they compare a failing execution to identify faulty state and then
understand the failure. We have proposed an automated debugging technique
that mimics such a procedure [1]. Our technique computes the causal path of a
failure, a subsequence of the failing run that explains the failure. It first searches
for a dynamic patch for the failing run. The patch mutates the values of certain
variables or control flow at runtime to produce the desired output. If such a patch
can be found, which is true in most cases, the technique aligns the failing run
and the patched run by establishing a mapping between instruction instances
in the two runs. The states at aligned points are compared to identify faulty
variables, and causality testing is performed to isolate subsets of faulty variables
that are essential. The sequence of essential faulty states explains the failure.

The technique follows the direction pioneered by Zeller et al. in [2, 3]. In
their work, the idea is to isolate the state transitions that are critical for a
failure by comparing the faulty execution with a similar but correct execution.
Compared to their work, we made progress in the following directions. First,
we found that state comparisons need to be performed at rigidly corresponding
points in the two respective executions. Due to the differences between the two
executions, construction of such correspondence is challenging. In [2, 3], it was
carried out in an ad-hoc way such that points that are not compatible may be
selected for comparison. As a result, the computed chain may not be relevant



to the failure. We proposed using execution indexing (EI) [4] to align the two
executions before comparison. EI is a technique that constructs a hierarchical
tree of an execution based on program structure. Executions can be aligned
through their trees. Second, our experience shows that using a different execution
as the reference oracle often fails to explain the causality of the failure, as the
reference execution is semantically different from the failing execution. Thus,
comparing these two executions often exposes their inherent semantic differences
instead of causality information for the failure. Our solution is to use a patched
run derived from the same failure inducing input for comparison.

In our prior work [1], we have built a formal model of the technique, proposed
an objective evaluation metric, and evaluated the proposed technique using the
SIR suite [5]. Results show that our technique can produce high quality causal
paths that often capture the root cause at the beginning, the failure point at the
end, and causality information between consecutive steps. Comparison with the
technique in [3] shows that our approach provides much better failure explana-
tions. Details can be found in [1].

In this paper, we make the following contributions.

– We propose and study two algorithms that focus on cost-effectiveness. Both
algorithms compute the same causal paths but differ in their efforts for reduc-
ing the number of state comparisons and causality tests. The first algorithm
relies on the execution index tree to compute causal paths in a hierarchical
manner. The second algorithm speculatively takes shortcuts during causal
path derivation based on program dependence information.

– We evaluate our approach on a set of real world bugs collected from the Inter-
net. Results show that our technique is effective in explaining failures. The
shortcutting algorithm is orders of magnitude faster than the hierarchical
algorithm.

– We use concrete examples to explicitly explain the unique features of our
technique, including using EI to align executions before comparison and
using a patched execution rather than a different execution as the reference.

2 Background

The goal of our technique is to compute the causal path of a failure. Assume
we have the corrected version of the faulty program. The ideal causal path of a
failure is computed by comparing the failing execution and the execution of the
corrected program with the same input. The comparison is done by differencing
the states at corresponding points in the two respective runs, starting from the
failure point and proceeding backwards. In particular, faulty variables at a step
are determined by comparing their values in the failing run with those in the
correct run. Not all faulty variables are essential to the failure. Thus, we define
the failure inducing state (FIS) of a step in the failing run as the minimal set of
faulty variables that cause the failure or the FIS of the next step. Consider the
example in Fig. 1. There is a fault at line 10. Provided with the input a=2 and
b=3, the program produces a failure observed at line 18, i.e. printing the incorrect



value 0. The trace and the states at each execution step of the failing run are
presented in the second and the third columns, respectively. The two columns
on the right show the trace and the states for the correct execution. At 152 of
the failing run, meaning the second instance of statement 15, the faulty variables
are x and z, as they have different values at 152 in the correct run. However,
x is not essential to the failure, as replacing its value with that of (x 7→10) in
the correct run does not mask the failure. Therefore, the FIS of 152 contains
only z. Observe that the technique hinges on correctly identifying corresponding
points in the two executions. This is defined as the execution alignment problem.
While it is clear that 181 and 152 in the failing run align with 181 and 152 in the
correct run, the alignments of 141, 51, 142 and 52 of the failing run are less clear.
A simple strategy, which was used in [3, 2], is to align two execution points in
the two respective executions that have the same statement, calling context, and
instance count. Following such a strategy, 142 and 52 in the failing run do not
have aligned points in the correct run and the 141s and 51s in the two respective
executions align as shown in the figure. Such alignments are undesirable because
they result in FIS(141)=FIS(51)={i7→0}, i.e., the failure will not occur if the
value of i is replaced with that of i at 141 or 51 in the correct run. In other
words, the benign state {i7→0} is mistakenly identified as failure inducing state.

int F (int v, int w) {

     return v+w;

}

int G (int v, int w) {

     return v-w;

}

input (a,b);

y= F (a,b);

x=a+4; // should be x=a;

z=10;

for (i=0;i<2; i++) {

    if (x>b)  

        z=G (z, y);

    x=x+4;

}

print(z);

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

18.

input (a,b);

F (a,b);

  y=a+b;

x=a+4; 

z=10;

for (i=… ) {

   if (x>b)  

       G (z, y);

       z=z-y;            

    x=x+4;

for (i=… ) {

   if (x>b)  

       G (z, y);

       z=z-y;            

    x=x+4;

print(z);

2, 3, 0, 0,  0, 0, -

2, 3, 0, 0,  0, 0, -

2, 3, 0, 5,  0, 0, -

2, 3, 6, 5,  0, 0, -

2, 3, 6, 5,10, 0, -

2, 3, 6, 5,10, 0, -

2, 3, 6, 5,10, 0,T

2, 3, 6, 5,10, 0, -

2, 3, 6, 5,  5, 0, -

2, 3,10,5,  5, 0, -

2, 3,10,5,  5, 1, -

2, 3,10,5,  5, 1, T

2, 3,10,5,  5, 1, -

2, 3,10,5,  0, 1, -

2, 3,14,5,  0, 1, -

2, 3,14,5,  0, 2, -

a, b, x, y,  z,  i, (x>b)

input (a,b);

F (a,b);

  y=a+b;

x=a; 

z=10;

for (i=… ) {

   if (x>b)  

    x=x+4;

for (i=… ) {

   if (x>b)  

      G (z, y);

      z=z-y;            

    x=x+4;

print(z);

2, 3, 0, 0,  0, 0, -

2, 3, 0, 0,  0, 0, -

2, 3, 0, 5,  0, 0, -

2, 3, 2, 5,  0, 0, -

2, 3, 2, 5,10, 0, -

2, 3, 2, 5,10, 0, -

2, 3, 2, 5,10, 0, F

2, 3, 6, 5,10, 0, -

2, 3, 6, 5,10, 1, -

2, 3, 6, 5,10, 1, T

2, 3, 6, 5,10, 1, -

2, 3, 6, 5,  5, 1, -

2, 3,10, 5, 5, 1, -

2, 3,10, 5, 5, 2, -

a, b, x, y,  z,  i, (x>b)

81

91

21

101

111

121

131

141

51

151

122

132

142

52

152

181

81

91

21

101

111

121

131

151

122

132

141

51

152

181

Failing Execution (a=2, b=3) Ideal Execution (a=2, b=3)

Trace TraceState State

Code

Fig. 1. Misaligned failure inducing states. The ideal execution is from the corrected
program with the same input. The dashed lines represent execution alignments. Boxes
denote failure inducing states computed through comparisons. Note that function in-
vocations in the traces are transformed to better reflect their semantics, e.g., variables
such as v and w are omitted for brevity in the state columns.

In our prior work [1], we proposed using execution indexing [4] to align exe-
cutions. This uses a tree, called the index tree, that represents the hierarchical
structure of an execution so that executions can be aligned by aligning their
trees. Let us first focus on the tree for the failing run presented on the left in



Fig. 2. The root node denotes the entire execution, which is the body of the main
function. The main body comprises the execution of statements 81, 91, 101, 111,
121, and 181, which are the nodes at the first level. Observe that statement ex-
ecutions 91 and 121 have substructures, so substructure nodes are introduced
at the second level. The procedure continues until all hierarchical substructures
are exposed. Note that the second iteration of loop 12, denoted by the subtree
rooted at 122, is considered as part of the first iteration, denoted by node 121.
The reason is that the execution of the second iteration is determined by the
fact that the first iteration gets executed. Similarly, the index tree of the correct
run can be constructed. The two executions are aligned by aligning their index
trees. As a result, 141 and 51 in the left tree do not align with any nodes in the
right tree, and 142 and 52 in the left tree align with 141 and 51 in the right tree.
Thus, FIS(52) = {z 7→(0, 52)}, with the state of z being a pair comprising its
value and the definition point of the value, because it is the minimal subset of
the faulty variables at 52 that causes the FIS of its next step, 152. Recall that
FIS(152) = {z 7→(0, 52)}. FIS(142) = {z 7→(5, 51)}, as it induces FIS(52). The
FISs of all comparable execution points are annotated on the nodes in the left
tree. The definition points in these FISs constitute the causal path as highlighted
in the left tree, which is 101 → 131 → 51 → 52 → 181. One can see it starts with
the root cause and clearly explains how the fault leads to the failure. In com-
parison, the dynamic slice [6] of the failure point 181 contains all the executed
statements, including the causal path.

main ()

81 input(a,b)

141 G(z,y)

101 x=a+4 111 z=10 121 for (…)

21 y=a+b 131 if (…) 151 x=x+4 122 for (…)

181 print(z);91 F(a,b)

51 z=z-y 142 G(z,y)

132 if (…) 152 x=x+4

52 z=z-y

main ()

111 z=10 121 for (…)

131 if (…) 151 x=x+4 122 for (…)

181 print(z);

141 G(z,y)

132 if (…) 152 x=x+4

51 z=z-y

… … 

z=(0,52)

z=(5,51)

z=(5,51)

z=(5,51)

z=(0,52)

(x>b)=(T,131)

x=(6,101)

z=(5,51)

x=(6,101) x=(6,101)

Fig. 2. Index trees for the two executions in Fig. 1. Execution alignment is achieved
by aligning the two trees. The circled portion does not align with any part in the other
tree. FISs for aligned nodes are annotated. The state of a variable is a pair (value,
definition point). The causal path is highlighted in the index tree of the failing run.

So far, we have discussed how to compute the causal path in the ideal case
where the corrected program is available. In realistic debugging, however, only
the buggy program is available. It was proposed in [3, 2] to use a similar but pass-
ing run of the buggy program as the reference run to perform the comparison.
Unfortunately, since the two executions are derived from two different inputs,
the semantic differences often significantly compromise the resulting causal path.
Consider the case in Fig. 3. The failing run is the same as before, but since the
corrected program is not available, a similar but passing run of the buggy pro-



gram is used, derived from the input a=2 and b=1. Note that although the run
on the right is from the buggy program, it produces the expected output, i.e.,
the same output as that produced by the corrected program, because whether
x has the value of 6 or 2 at 101 does not affect the final output. The two ex-
ecutions have identical control flows and their inputs differ by only one value.
The two executions can be trivially aligned. Comparing the states at the aligned
steps as mentioned earlier produces the FISs boxed in the figure. Notice that
FIS(152) = {z 7→(0, 52)}, as it is the minimal state difference that induces the
failure. FIS(142) = {y7→(5, 21), z7→(5, 51)} because it is the minimal state differ-
ence that induces FIS(52) = {z7→(0, 52)}, even though we know y has a benign
value. The definition points of the faulty states at each step constitute the causal
path as highlighted on the left. Observe that although it has causality between
steps, the path does not explain the failure but rather the difference between the
two executions. Particularly, {b 7→(3, 81)} is computed for FIS(81) although b

has a completely benign value at 81. Similarly, FIS(21) = {y7→(5, 21)} is due to
the semantic differences between the two executions. Even worse, x is not part
of FIS(101) as it has the same value in both executions. In other words, the real
faulty state is mistakenly considered as being benign.

input (a,b);

F (a,b);

  y=a+b;

x=a+4; 

z=10;

for (i=… ) {

   if (x>b)  

       G (z, y);

       z=z-y;            

    x=x+4;

for (i=… ) {

   if (x>b)  

       G (z, y);

       z=z-y;            

    x=x+4;

print(z);

2, 3, 0, 0,  0, 0, -

2, 3, 0, 0,  0, 0, -

2, 3, 0, 5,  0, 0, -

2, 3, 6, 5,  0, 0, -

2, 3, 6, 5,10, 0, -

2, 3, 6, 5,10, 0, -

2, 3, 6, 5,10, 0,T

2, 3, 6, 5,10, 0, -

2, 3, 6, 5,  5, 0, -

2, 3,10,5,  5, 0, -

2, 3,10,5,  5, 1, -

2, 3,10,5,  5, 1, T

2, 3,10,5,  5, 1, -

2, 3,10,5,  0, 1, -

2, 3,14,5,  0, 1, -

2, 3,14,5,  0, 2, -

a, b, x, y,  z,  i, (x>b)

81
91
21
101
111
121
131
141
51
151
122
132
142
52
152
181

input (a,b);

F (a,b);

  y=a+b;

x=a+4; 

z=10;

for (i=… ) {

   if (x>b)  

       G (z, y);

       z=z-y;            

    x=x+4;

for (i=… ) {

   if (x>b)  

       G (z, y);

       z=z-y;            

    x=x+4;

print(z);

81
91
21
101
111
121
131
141
51
151
122
132
142
52
152
181

2, 1, 0, 0,  0, 0, -

2, 1, 0, 0,  0, 0, -

2, 1, 0, 3,  0, 0, -

2, 1, 6, 3,  0, 0, -

2, 1, 6, 3,10, 0, -

2, 1, 6, 3,10, 0, -

2, 1, 6, 3,10, 0,T

2, 1, 6, 3,10, 0, -

2, 1, 6, 3,  7, 0, -

2, 1,10,3,  7, 0, -

2, 1,10,3,  7, 1, -

2, 1,10,3,  7, 1, T

2, 1,10,3,  7, 1, -

2, 1,10,3,  4, 1, -

2, 1,14,3,  4, 1, -

2, 1,14,3,  4, 2, -

a, b, x, y,  z,  i, (x>b)

Failing Execution (a=2, b=3) A Similar but Passing Execution (a=2, b=1)

Trace TraceState State

Fig. 3. Comparing the failing run with a similar but passing run with different input.

In our technique, we first construct a dynamic patch to correct the failing
execution and then use the patched execution as the reference run for compar-
ison [1]. A failing execution is patched if mutating part of its state at one or
multiple execution points leads to the correct output. Since the patched execu-
tion is derived from the same input, it precludes state differences caused by the
input differences. Predicate switching [7] is our prior work on patching a fail-
ing run. It works by systematically changing the branch outcome of a predicate
instance and then observing if the mutated execution produces the expected



output. It was used as a fault localization technique because, if such a predicate
instance exists, called the critical predicate, it discloses a wealth of information
on the fault. Our study [1] showed that 80% of all the failing test cases in the
SIR [5] suite and 8 out of 12 real bugs collected from internet can be patched by
predicate switching. A patched run serves as an approximation of the ideal run
to carry out execution comparison. For instance, if the predicate instance 131

of the failing run in Fig. 1 is switched so that 141 and 51 are not executed, the
resulting z value at 181 becomes the desired 5. The patched run is very similar
to the ideal run on the right of Fig. 1. The only difference is that variable x has
different values from 101 to 131 in the two respective runs. The causal path is
computed as 131 → 51 → 52 → 181, which captures most of the ideal causal
path. Note that the root cause 101 is not caught, as the patched run has iden-
tical state as the failing run till the switched predicate instance 131. Although
the root cause is not captured in this example, it can often be captured by our
technique if the switched predicate determines if the root cause gets executed.
Our prior study [1] shows that about 45% of the causal paths computed by our
technique capture the root cause. Moreover, we argue that presenting the causal
path is more informative than pointing at root cause candidates. It is reported
in [8] that requirement bugs are the most frequently occurring kind of bug in the
field, which often do not have a single or a small set of statements to be blamed
as the root cause. For such cases, understanding failure causality is preferable.

3 Algorithms

The major contribution of this paper is a detailed study of two algorithms for the
aforementioned causal path computation. The two algorithms produce the same
causal paths but achieve efficiency with different approaches. A näıve approach
is to first align the two executions by aligning their index trees, then compute
the FISs for each aligned step backwards, starting from the failure point. Our
experience shows that such an algorithm is extremely expensive due to the large
number of aligned execution points. For the failures collected from Linux utilities,
listed in Section 4, the algorithm failed to terminate after 8 hours of computa-
tion. Note that all these algorithms require the same basic FIS computation
that compares states of two aligned steps in the two respective executions and
minimizes the state differences using the delta debugging algorithm [9, 3, 2].

3.1 A Hierarchical Algorithm

We have proven in [1] that FISs have a stability property, which states that
if the FISs computed at any two aligned points are the same, there is no need

to compute FISs between these two points because they will be identical. For
example, in Fig. 3, as the two aligned steps 51 and 142 in the failing run have
the same FIS, i.e., {y7→(5, 21), z 7→(5, 51)}, all aligned steps in between have the
same FIS, too. Formally, this property requires a more advanced notion of FIS
that captures the definition points and values from both the faulty and correct



executions, but we elide these details in presentation for simplicity. Based on this
property, a hierarchical algorithm can be designed to compute FISs in a demand-
driven fashion. The idea is to carry out state comparison and causality testing
top-down along the index tree of the failing execution until the right granularity
is reached. Each FIS is computed to induce the successive one except for the last
FIS, which induces the observed failure.

Algorithm 1 Hierarchical computation for causal paths of failures.

Primitives:
· AlignedChildren()- Finds the children that align with some nodes in the reference run.
· FIS()- Computes the FIS of the given aligned node.

Important Variables:
· target - The FIS to be induced when computing the preceding FIS.
· defs - The sequence of definition points that constitute the causal path.
· sets- A set of FISs.

CalculateCausalPath()
1 target ← failure
2 defs ← {target}
3 (sets,target) ← SetsInRegion(executionRoot,target)
4 defs ← defs ∪(∪fis∈sets)
5 return TemporalSort(defs)

SetsInRegion(node, target)
Input:A node in the index tree and the first FIS that must be induced.
Output:The set of FISs in the region and the single FIS that induces them.

1 sets ← ∅
2 kids ← AlignedChildren(node)\{children executing with or after target}.
3 while |kids| > 0 do

4 while |kids| > 1 do

5 mid ← |kids| / 2
6 newFIS ← FIS(kidsmid) inducing target
7 if newFIS = target then

8 kids ← kids0...mid−1

9 else

10 kids ← kidsmid...|kids|−1

11 if FIS(kids0) 6=target then

12 (subsets,target) = SetsInRegion(kids0, target)
13 sets ← sets ∪ subsets
14 kids ← AlignedChildren(node)\{children executing with or after kids0}.
15 newFIS ← FIS(node) inducing target
16 return (sets ∪ newFIS, newFIS)

The algorithm is shown in Algorithm 1. Using the failing execution and the
reference execution, CalculateCausalPath() generates the complete causal
path. This procedure first initializes variables target, which is the FIS or the
failure to be induced by the next computed FIS, and defs, which stores the se-
quence of definitions constituting the causal path. It then calls SetsInRegion()
with the root of the index tree and target to compute the set of FISs, stored in
sets, in a top-down manner. Once all FISs have been aggregated, the definitions
they contain are sorted by their temporal position and returned at line 5. This
sequence of definitions comprises the complete causal path.

SetsInRegion() generates the FISs for the portion of the indexing tree
rooted at node such that the temporally last generated FIS induces the FIS



target. At line 2, the algorithm extracts the ordered list of all the child nodes
that have alignments in the reference execution and stores them in kids, ex-
cluding those executed after or with target. If there are no such children, the
function skips the loop in lines 3-14 and computes the FIS for the node that
induces target. The loop computes the set of FISs of the subtree. The inner
loop in lines 4-10 performs a classic binary search on kids list to locate the first
child from the end that has an FIS different from target. Observe that if the
FIS of the midpoint is identical to target, as checked at line 7, the algorithm
safely skips computing FISs for the right half of the kids list and its subtrees.
If such a child is found, the function recursively calls itself to compute the FISs
in the subtree rooted at the child on line 12. On line 14, the kids list updates
to reflect a new FIS, so the next round of binary search will be performed on a
reduced list. The computation terminates if the list becomes empty.

Consider the example in Fig. 2. The computation starts from the top of the
tree on the left, and the failure at 181, i.e., {z7→(0, 52)}, is the target to induce.
In the first invocation of SetsInRegion(), the kids list is initialized to contain
{81, 91, 101, 111, 121}. The binary search in lines 4-10 identifies the first child
with an FIS different than target to be 121. It recursively calls itself on 121 to
compute the FISs in the subtree rooted at 121. This time, the kids list is initial-
ized to have {131, 151, 122}. The algorithm descends along 122, 132, and then 142

because their FISs are different than the failure until the closest different FIS in-
ducing the failure, namely 142, is identified. The target is updated to be 142. At
some point, the recursive call for 122 returns with FIS(122) = {z7→(5, 51)} being
the target. The kids list is updated to {131, 151} at line 14 to start a new round
of the binary search. This time, the search identifies FIS(151) = FIS(122), so
if 151 were the root for a subtree, the algorithm would not descend into the
subtree. Computation over the remainder of the tree can be similarly derived.

3.2 A Shortcutting Algorithm

We introduce here another algorithm that exploits the stability property in a
different way. That is, given an FIS to induce, we try to identify the earliest
aligned point that is likely to have the same FIS and jump directly to that
point without computing any FISs in between. The intuition is that the earliest
point that has the same FIS is very likely the last definition point, before the

current point, that occurs in any of the previously computed FISs because all
faulty values in previously computed FISs remain intact between their definition
points and FISs. For example, in Fig. 3, at the aligned step 142, the set of
definitions in all the previously computed FISs is {21, 51, 52}. Recall that causal
path computation proceeds backwards, starting from the failure, with the first
FIS inducing the failure and the remaining FISs each inducing the successive FIS.
The last definition point that happens before 142 is 51. Observe that FIS(51) is
still {y 7→(5, 21), z 7→(5, 51)}. That implies we are taking the shortcut, jumping
directly from 142 to 51. Further note that the FIS immediately before is {y 7→
(5, 21)}. This reflects the change in FIS that the definition at 51 causes. By
taking dependence shortcuts, fewer searches for computing an FIS are needed.



Pseudocode for this approach is presented in Algorithm 2. The main proce-
dure CalculateCausalPath() derives the causal path for the failing execu-
tion, computing backwards starting from the failure. In lines 4-17, the algorithm
traverses backwards by taking shortcuts if possible, accumulating FISs in defs

along the way, until there is no more relevant state, as checked at 4. On line 5,
the last definition that was previously caught in the causal path and occurred
before the current computation point is stored in closest. In lines 6-9, the algo-
rithm handles cases in which no shortcut is available as the captured definition
points happen after or at the current traversal point. The algorithm conserva-
tively moves one step backwards. Lines 10-17 handle cases in which a shortcut
is possible. Line 13 checks if taking the shortcut is valid by comparing the FIS
of closest with target. If they are identical, the shortcut is valid and then at
line 17, the algorithm updates currentNode. Note, however, the shortcut may
not always be valid, i.e., a different FIS may be computed at the destination of
the shortcut. For example, in Fig. 4 the failing run is different from the reference
run because it omits the execution of the true branch. Thus, variable x is not
updated. Assume FIS(71) is computed as {x → (2, 21)}. If the algorithm takes
the shortcut to 21, the FIS at 21 is empty as all variables have the right value.
More important, following the shortcut misses the real FIS alteration point 31.
This results from the failing run omitting execution that it should have gone
through. Note that similar effects can be observed if program state is updated
by the OS and thus not visible to our analysis. Fortunately, such cases are re-
flected in the FIS at the shortcut being different from target. If they occur, the
algorithm falls back to a revised hierarchical search at line 14.

… 

x=2;

if (p) {

   … 

   x= x-1;

}

…;

1.

2.

3.

4.

5.

6.

7.

… 

x=2;

if (p) 

… ;

… 

x=2;

if (p) {

    … 

    x=x-1; 

…;

   x        p

Failing Run Ref. Run
Code

TraceState State

(2, 21)      -

(2, 21)   (F,31)

(2, 21)       -

11
21
31

71

11
21
31
41
51
71

   x        p

(2, 21)      -

(2, 21)   (T,31)

(1, 51)      -

Fig. 4. Taking the shortcut is not successful due to execution omission in the failing
run. The horizontal lines denote execution alignment.

ClosestAdaptive() performs a revised hierarchical derivation of a single
FIS given the target, i.e., the FIS to be induced, and the bound on how early
the FIS transition could occur. Line 1 finds the common ancestor in the index
tree of both the early bound and the index at which the target FIS was de-
rived. Intuitively, execution within the provided bounds must be in the subtree
rooted at the ancestor. Lines 2-14 of ClosestAdaptive() simply perform a
hierarchical binary search for the resulting FIS. The procedure is very similar
to SetsInRegion in Algorithm 1. At line 3, the children of the start node are
retrieved. Those that happen before closest and after or at the point where



target is computed are filtered out. The loop in lines 4-10 is a classic binary
search that looks for the first kid with an FIS different from target, and then
the algorithm traverses the index tree one level down to the kid at line 14.

Algorithm 2 Shortcutting computation for causal paths of failures.

Important Variables:
· target - The FIS to be induced when computing the preceding FIS.
· defs - The sequence of definition points that constitute the causal path.
· currentNode - The current FIS computation point.

CalculateCausalPath()
1 currentNode← the failure point
2 target ← failure
3 defs ← {target}
4 while target 6= ∅ do

5 closest ← the temporally last definition in defs that happens before currentNode
6 if closest = ⊥ then

7 currentNode← the aligned point immediately preceding currentNode.
8 target ← FIS(currentNode)
9 defs ← defs ∪ target

10 else

11 if closest is not aligned then

12 closest ← the aligned point immediately preceding closest.
13 if FIS(closest) 6= target then

14 target ← ClosestAdaptive(target, closest)
15 defs ← defs ∪ target
16 else

17 currentnode← closest
18 return TemporalSort(defs)

ClosestAdaptive(target, closest)
Input: A target FIS to induce and a bound on the earliest point it may be induced.
Output: The FIS that immediately precedes the target in the sequence of FISs.

1 start ← the common ancestor in the indexing tree of closest and the index of target.
2 loop

3 kids ← AlignedChildren(start)\{children before closest, after target, and target itself}.
4 while |kids| > 1 do

5 mid ← |kids| / 2
6 newFIS ← FIS(kidsmid) inducing target
7 if newFIS = target then

8 kids ← kids0...mid−1

9 else

10 kids ← kidsmid...|kids|−1

11 if kids = ∅ then

12 currentnode← start
13 return FIS(start) inducing target
14 start ← kids0

Consider the example in Fig. 2. To start, target=failure={z7→(0, 52)}, so
the shortcut jumps to 52. The shortcut is valid, as FIS(152)=target. In the
next round of the main loop in CaculateCausalPath(), the algorithm tra-
verses one step backwards since no shortcut is available because all captured
definitions happen after or at 52. The next FIS computation is for 142, which
has the result {z 7→(5, 51)}. Due to the newly caught definition 51, a shortcut is
available to reach 51. However, 51 is not aligned and thus its immediate aligned
predecessor 131 is used to compute the FIS instead, as in line 12 of Caculate-
CausalPath(). The resulting FIS(131) = {(x > b) 7→ (T, 131)} differs from



target=FIS(142). That is, the shortcut is not valid and the algorithm must
fall back and call ClosestAdaptive(). The binary search eventually identi-
fies 131 as the closest point at which a different FIS is computed that induces
FIS(142). Now, since there is not a captured definition occurring before 131, the
algorithm moves one step backwards and computes FIS(121) = {x 7→(6, 101)}.
A shortcut is available leading to the root cause 101.

4 Evaluation

In order to evaluate the presented algorithms, we employed them against several
real world bugs found in the GNU utilities grep, gzip, bc, find, diff, and
tar. The debugging infrastructure comprises source to source transformation
via CIL, Python, and the public Python and GDB infrastructure from [3]. The
two algorithms were implemented with CIL and Python. The tests were run on
a 2GHz dual core machine with 2GB of RAM. For each analyzed bug, Table 1
presents the program and version the bug applies to, a bug report if available,
the number of definitions the causal path comprises, and the time in seconds
required for each algorithm to derive the causal path. Time 1 shows to the time
taken by Algorithm 1 and Time 2 shows the time taken by Algorithm 2.

Table 1. Examined bugs and their causal path properties. Time n is the time in seconds
taken to derive the causal path using Algorithm n. ‘Bug’ is the Internet address of a
bug report, if applicable.

Program Version Bug
Path

Length
Time 1 Time 2

bc 1.06 bugs.gentoo.org/51525 2 1130 135

diff 2.8 ....gnu....utils/2002-12/msg00067.html 8 2320 368

find 4.3.0 savannah.gnu.org/bugs/?18222 5 2906 48

grep 2.5.1 savannah.gnu.org/bugs/?11579 5 1220 159

grep 2.5.1 savannah.gnu.org/bugs/?9519 7 >4 hours 250

grep 2.5.1 savannah.gnu.org/bugs/?13920 7 6865 217

grep 2.5.1 savannah.gnu.org/bugs/?9768 5 6167 221

grep 2.5.1 savannah.gnu.org/bugs/?19491 9 >4 hours 244

grep 2.5.3 savannah.gnu.org/bugs/?15620 4 >4 hours 56

grep 2.5.3 -h -H with a single file 4 >4 hours 55

gzip 1.3.9 ....gnu....gzip/2007-05/msg00003.html 15 7583 651

tar 1.13.25 ....gmane....comp.gnu.tar.bugs/491 7 8823 531

Observe that the time taken by Algorithm 2, using shortcutting, is consis-
tently and substantially less than the time required by Algorithm 1, 7% as long
or less on average. The most significant factors in the runtime of the algorithm
are the number of causality tests and the size and complexity of the program
states that must be analyzed during causality tests. Causality testing is part of
the FIS computation. It determines if a subset of state differences induce the



successive FIS. It is done through re-executing the program with the state dif-
ferences applied. The efficiency difference in Table 1 results predominantly from
decreasing the number of causality tests via shortcutting. In practice, execution
omission and unobserved state force the shortcutting approach to degenerate
into a hierarchical binary search for some individual elements of the path, but
most shortcutting efforts are successful. Both algorithms are significantly faster
than a näıve algorithm that computes FISs linearly by traversing backwards step
by step. Note that all these algorithms compute the same causal path.

In the second experiment, we evaluate the effectiveness of our technique on a
set of real bugs from Linux utility programs. We collected these bugs by looking
into their CVS repositories and on-line bug reports. Some of these cases are
explained in detail below.

Grep. Version 2.5.3 of the grep regular expression matching utility incorrectly
handles command-line options -h and -H, which respectively disable and en-
able printing out the filename of a file containing a matched expression. If both
options are given, only the last should be obeyed, but both options are inde-
pendently enabled, yielding inconsistent results. Interestingly, there are multiple
ways that this fault can manifest, but they have the same causal path, which
identifies them as stemming from the same fault. If options -H -h are used when
searching multiple files, file names prefix all resulting output with matches in
those files, but they should not. If -H -h are used when searching one file con-
taining short lines of text, some of the resulting output lines have the filename
prefix, while others do not. It is not immediately apparent that the same fault
affects both executions. The causal paths and faulty code for these executions,
however, are the same, as shown in Fig. 5(a). The switched predicate on line 5
becomes false, preventing the flag for printing filename prefixes from becoming
enabled. The resulting causal path shows that in the failing runs, the predicate
on line 5 enables the flag out file for printing filename prefixes on line 6. Much
later in the execution, this causes the predicate on line 7 to be true, which then
results in failure when the filenames are printed at 8. The switched predicate
and causal path reveal that the predicate should not evaluate to true, but the
-H command forces it to via the variable with names, as it is mistakenly not
disabled by the later option -h. The applied fix was then to disable the opposing
commands on lines 2 and 3.

Find. Find is a tool that locates all files matching provided criteria and also
performs an action at all such files. Version 4.3.0 contains a bug when multiple
directories to search are specified. If the given action is -printf ‘%H %P\n’,
which prints out the specified directory name before each file found in the direc-
tory, then every directory name printed is no longer than the first. For instance,
if the directories dir1 and directory are specified, the contents of dir1 will
be printed with the prefix ‘dir1’, and the contents of directory will have the
prefix ‘dire’. The causal path is presented in Fig. 5 (b). At the first step of the
causal path, the variable s.starting length is set to 4, recording the length
of the first specified directory. The critical predicate is on line 1, which corre-
sponds to the second invocation of the function consider visiting(), handling



the second specified directory. In the failing run, it evaluates to false, so when it
gets switched, s.starting length is updated to 9 and thus leads to the correct
output. The causal path also captures that s.starting length is used at line 6
to cut off the second directory name and eventually produce the wrong output.
The assignment to cc at line 5 is in the causal path, even though it may not
seem needed for failure induction, because the wrong directory name ‘dire’ was
printed multiple times, and the assignment at line 5 is critical to continually
printing the wrong directory name. This case also shows how a causal path does
not necessarily start with the critical predicate. Namely, the definition at line 2
is the first step of the causal path because it is in FIS(5) and FIS(6).

Code Snippet:
main(argc,argv):
1 switch (options) {
2 case ’H’: with names = true;break;
3 case ’h’: no names = true;break;
4 . . .

5 if ((num files>1 && !no names) ||
with names)

6 out file = true;

print line head(beg, lim, sep):
7 if (out file)
8 print filename();

Causal Path:

At 5, (. . . || with names) is true
At 6, out file is given true
At 7, (out file) is true
Thus the filename is printed at 8.

Code Snippet:
consider visiting(p,ent):
1 if (0 == s.starting length)
2 s.starting length = ent->fts pathlen;

pred fprintf(pathname,stat buf,pred ptr):
3 switch (kind & 0xff) {
4 case ’H’:
5 cc = pathname[s.starting length];
6 pathname[s.starting length] = ’\0’;
7 printf(pathname);
8 pathname[s.starting length] = cc;
9 break;

Causal Path:

At 2, s.starting length is given 4
At 1, (0 == s.starting length) is false
At 5, cc is given ’c’
At 6, pathname is given ”dire”
So ”dire” is printed at 7.... ...
”dire” is printed at 7 again.

(a) (b)

Fig. 5. Causal paths for (a) grep and (b) find

Diff. The diff tool compares two files or the contents of two directories and
reports differences. In version 2.8, an option to ignore the case within filenames
works incorrectly when comparing directory contents. Thus, if one directory
contains the file bar while another contains BAR, comparing the directories with
the --ignore-file-name-case option should print nothing, but it reports the
above files as being different. The causal path and code in Fig. 6 for this bug
show that this is due to an incorrect name comparison algorithm. When com-
paring directories, the list of files from one directory is compared to the list in
another using the diff dirs function. This uses compare names() to compare
individual files. The critical predicate on line 2 shows that when two file names
are case-insensitively equal, that equality is immediately disregarded because
(r) is false. Thus, the compare names() function continues and returns that the
names are case-sensitively unequal via -7 at line 4 and into order at 6. This
is used to determine that one of the files is unique when (order<0) is true at
line 8 causes *fname1 to be zeroed out at 9. Thus, when the compare files()
function is called to show the results, the argument name1 is given 0, and
(!(name0 && name1)) evaluates to true, forcing one of the equivalent filenames,
name0, to be printed as a difference. The causal path indicates that the right



patch should be to change the algorithm in compare names() to make the com-
parison at line 4 case insensitive when the option is set.

Code Snippet:
compare names(name1,name2):
1 r = strcasecmp(name1,name2);
2 if (r)
3 return r
4 return strcoll(name1,name2);

diff dirs(cmp,handle file):
5 while (fname0 || fname1) {
6 order = compare names(*fname0,*fname1);
7 . . .

8 if (order < 0)
9 *fname1 = 0;
10 v1 = compare files(cmp,*fname0,*fname1);

compare files(parent,name0,name1):
11if (!(name0 && name1))
12 print(name0 == 0 ? name1 : name0);

Causal Path:

At 2, (r) is false
At 4, compare names returns -7
At 6, order is given -7
At 8, (order < 0) is true
At 9, *fname1 is given 0
At 10, name1 is given 0
At 11, (!(name0 && name1)) is true
So the filename is shown at 12

Fig. 6. Causal path for diff

5 Related Work

Delta Debugging. The work most relevant to ours is that by Zeller et al.
[9, 2, 3]. The project in [2] is the first one to propose comparing two similar
executions using delta debugging [9] to compute cause-effect chains, which is a
concept similar to causal paths of failures. Later in [3], the technique is extended
to link cause transitions to a faulty statement. Compared to these works, we
make significant progress on the following: we identify execution indexing as
a key technique, use a patched execution instead of a different execution to
reduce noise from semantic differences, and develop efficient algorithms. Our
prior evaluation [1] using the SIR suite [5] showed that our technique is superior.
Fault Localization. Fault localization computes fault candidates by looking
at many executions, both passing and failing, as exemplified by [10, 11, 12,
13, 14, 15, 16, 17]. Details of these techniques cannot be presented due to space
limits. Compared to our technique, fault localization techniques are less effective
in explaining failures. They produce a ranked candidate set, usually containing
static statements. Reasoning about the candidates and the failure often falls onto
the programmer.
Dynamic Slicing. Dynamic slicing was introduced as an aid to debugging [6].
Compared to fault localization, slicing features the capability of capturing causal-
ity through program dependencies. However, slicing tends to produce fat slices
containing not only the failure inducing dependencies but also benign dependen-
cies. Although various techniques have been proposed to prune dynamic slices
[18, 19], without using a reference execution to exclude benign chains, inspect-
ing pruned slices still requires non-trivial human effort. Dicing [20] aggregates
slices from multiple executions. However, the simple set manipulations in dicing
undermine causality and make resulting slices hard to understand. Furthermore,
it does not handle cases in which a faulty statement occurs in both the benign
and faulty slices. In comparison, our work does not rely strictly on program



dependence but rather on semantic causality. The use of a reference execution
effectively excludes benign state.

Acknowledgments

This work is supported by NSF grants CNS-0720516 and CNS-0708464 to Purdue
University.

References

[1] Sumner, W.N., Zhang, X.,“Automatic failure inducing chain computation
through aligned execution comparison,” Tech. Rep. 08-023, Purdue University,
http://www.cs.purdue.edu/homes/wsumner/CSD TR 08-023.pdf (2008)

[2] Zeller, A., “Isolating cause-effect chains from computer programs,” in FSE (2002)
[3] Cleve, H., Zeller, A., “Locating causes of program failures,” in ICSE (2005)
[4] Xin, B., Sumner, W.N., Zhang, X., “Efficient program execution indexing,” in

PLDI (2008)
[5] Do, H., Elbaum, S., Rothermel, G., “Supporting controlled experimentation with

testing techniques: An infrastructure and its potential impact.,” Empirical Soft-
ware Engineering: An International Journal, vol. 10, no. 4.

[6] Korel, B., Laski, J.,“Dynamic program slicing,” Information Processing Letters,
vol. 29, no. 3 (1988)

[7] Zhang, X., Gupta, N., Gupta, R., “Locating faults through automated predicate
switching,” in ICSE (2006)

[8] Jackson, D., Thomas, M., Millett, L.I., Software for Dependable Systems:Sufficient
Evidence? THE NATIONAL ACADEMIES PRESS.

[9] Zeller, A., Hildebrandt, R., “Simplifying and isolating failure-inducing input,”
IEEE Transactions on Software Engineering, vol. 28, no. 2 (2002)

[10] Harrold, M.J., Rothermel, G., Sayre, K., Wu, R., Yi, L., “An empirical inves-
tigation of the relationship between spectra differences and regression faults,”
Software Testing, Verification and Reliability, vol. 10, no. 3.

[11] Jones, J.A., Harrold, M.J., Stasko, J., “Visualization of test information to assist
fault localization,” in ICSE (2002)

[12] Renieris, M., Reiss, S., “Fault localization with nearest neighbor queries,” in ASE
(2003)

[13] Liblit, B., Aiken, A., Zheng, A.X., Jordan, M.I., “Bug isolation via remote pro-
gram sampling,” in PLDI (2003)

[14] Liu, C., Yan, X., Fei, L., Han, J., Midkiff, S., “Sober: statistical model-based bug
localization,” in FSE (2005)

[15] Brun, Y., Ernst, M.D., “Finding latent code errors via machine learning over
program executions,” in ICSE (2004)

[16] Chesley, O.C., Ren, X., Ryder, B.G., Tip, F., “Crisp–a fault localization tool for
java programs,” in ICSE (2007)

[17] Wang, T., Roychoudhury, A., “Automated path generation for software fault lo-
calization,” in ASE (2005)

[18] Gupta, N., He, H., Zhang, X., Gupta, R.,“Locating faulty code using failure-
inducing chops,” in ASE (2005)

[19] Zhang, X., Gupta, N., Gupta, R., “Pruning dynamic slices with confidence,” SIG-
PLAN Not., vol. 41, no. 6 (2006)

[20] Chen, T.Y., Cheung, Y.Y., “Dynamic program dicing,” in ICSM (1993)


