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Abstract to locate hot regions of the code. However, for many
applications, such as path-sensitive optimizations and in
Since their introduction, path profiles have been used to struction scheduling, the execution frequencies of paths a
guide the application of aggressive code optimizations andmore desirable. Ball and Larus were the first to intro-
performing instruction scheduling. However, for optimiza duce path profiling in [3]. Path profiles were designed to
tion and scheduling, itis often desirable to obtain freqeen  subsume basic block and edge profiles. Moreover, Ball
counts of paths that extend across loop iterations and crossand Larus developed instrumentation algorithms that en-
procedure boundaries. These longer paths, referred to asabled their collection at a reasonable cost. Since their
interesting path this paper, account for over 75% of the introduction, path profiles have been extensively used to
flow in a subset of SPEC benchmarks. Although the fre-guide the application of path-sensitive code optimizatjon
guency counts ahteresting pathgan be estimated from performing instruction scheduling, performing code lay-
path profiles, the degree of imprecision of these estimates i out optimizations, and improving static branch prediction
very high. We extend Ball Larus (BL) paths to create slightly [5, 6, 7, 8, 9, 12, 13, 14, 20, 11, 1, 10, 21].
longer overlapping pathsnd develop an instrumentation
algorithm to collect their frequencies. While these paths  Ball Larus paths (BL paths) are designed such that they
are slightly longer than BL paths, they enable very precise Neither extend across consecutive loop iterations noreio th
estimation of frequencies of potentially much lonieer- extend across procedure boundaries. However, experience
esting pathsOur experiments show that the average cost of with some applications shows that this limitation is not de-
collecting frequencies of overlapping paths is 86.8% which sirable. Let us consider the partial redundancy optimiza-
is 4.2 times that of BL paths. However, while the average tions which can be applied to eliminate redundant execu-
imprecision in estimated total flow of interesting paths de- tions of expressions [7], array bounds checks [9], loads and
rived from BL path frequencies ranges from -38 % to +138 stores [8], and conditional branches [5]. Often redundancy
%, the average imprecision in flow estimates derived from Of these instructions arises when, during execution ofdpop
over|apping path frequencies ranges On|y from -4% to +8%. the same instruction is executed mUltlple times, once gurin
Keywords- path profiles, overlapping path profiles, profile €ach loop iteration. In [7, 8] it was shown that this situatio
guided optimization, and instruction scheduling. is common when redundancy in arithmetic expressions and
loads is considered. Therefore paths along which such re-
dundancy appears exteadross loop backedge#\nother
. situation where redundancy is observed is when instruction
1 Introduction executed before a call (return) causes another instruexion
Program profiling has been used extensively to distin- ecuted after the call (return) to become redundant. In [5] it
guish regions of a program that are hot from rest of the was shown that this situation is very frequent when redun-
program. Hot regions are portions of the code where thedancy in conditional branches is considered. Thus, paths
program spends most of its execution time. Execution along which such redundancy was observed extardss
counts for basic blocks and edges were used extensivelyprocedure boundariesinally, when instruction scheduling
~Supported by grants from IBM, Microsoft, Intel and NSF geant is carried out, if a loop is unrolled once before scheduling

CCR-0324969, CCR-0220334, CCR-0208756, CCR-0105355 E&fd (e.g., before trace scheduling [11]), then profiles of paths
0080123 to the Univ. of Arizona. that correspond to two loop iterations are needed.




From the above discussion it should be clear that mak- ber of BL paths. For example, in the benchmark 099.go, a
ing available the frequencies of paths that extend acrossfunction has 283063 static loop paths and this would give
loop iterations and procedure boundaries is useful. One ap283063 * 283063 two iteration paths. Therefore we de-
proach to obtaining frequencies of paths that are longer tha velop an alternative approach that allows control over this
BL paths is to make use afhole program path§WPPs) cost. We extend BL paths to create a new set of paths that
which consist of a complete control flow trace of a program are longer than BL paths but shorter than interesting paths.
[16, 22]. However, in contrast to path profiles, WPPs are The extended paths overlap each other and thus we refer to
expensive to collect and require large amounts of storage tahem asoverlapping pathsThe amount by which BL paths
save. An alternative approach is to estimate the frequencie are extended to create overlapping paths can be selected to
of longer paths from BL paths — this is analogous to the control the cost and this amount is referred to asdbe
approach developed in [4] to estimate the lower and uppergree of overlap. Using overlapping paths, the increase in
bounds on the frequency estimates of BL paths from edgespace is not so dramatic. For the above mentioned function
profiles. However, as we show in this paper, this approachin 099.go, overlapping paths of degreare 283063 * 2 in
yields highly imprecise estimates. number and for degree 2 there are 283063 * 4 paths. Once
we have collected the frequency counts of overlapping paths
by running an instrumented program, we use them to derive

Table 1. Flow attributable to interesting paths. estimates (lower and upper bounds) on the frequency counts

Benchmark Flow of paths across | Total of interesting paths.
LEOS PFOCZdL{re Flow We develop the instrumentation algorithms to collect
— Balcggtfes B"?‘:)”zi/”es — profiles of overlapping paths and develop algorithms for
Al . 0 . 0 . 0 P . . .

099,40 323 % 524% | 84.7% deriving (_est|mates of fre_quency counts of interesting :_path
134.perl 9.6 % 759% | 85.5% from profiles of overlapping paths. Each of these algorithms
008.espressq  56.4 % 26.1% | 825% are parameterized with respect to the degree of overlap. We
147vortex | 2.1% 941% | 96.2% have implemented these algorithms to compare the effec-
197.parser 16.2 % 72.7% 88.9 % ti d ts of derivi ti t fint ti t
181 mef 278 % 542% | 82.0% iveness and costs of deriving estimates of interes ing pa
300.twolf 69.1 % 13.9% | 83.0% profiles from BL paths and overlapping paths. Our experi-
126.gcc 26.1% 50.8% | 76.9% ments show that while overlapping paths are slightly longer

than BL paths, they enable very precise estimation of fre-

in thi dd th bl f collecti _quencies of potentially .much Ior!ger interesting paths.
N IS paper We address the proviem of coteciing pro The remainder of this paper is organized as follows. In

files for paths longer than BL paths. We begin by character- tion 2 id ths that | boundaries. W
izing the paths whose execution counts we desire to obtain.zec I(I)n \I/ve gt%n& fer paths tf"‘ clross oopd oun akzles. d c
We will refer to these paths as titeresting pathgor rest evelop aigorithms for computing lower and upper bounds

of the paper. The interesting paths for loops are the onés tha”" the frequencies of interesting paths. from exact frequen-
extend across two consecutive loop iterations. Intergstin cles of_overlapplng paths collected by instrumenting loops
interprocedural paths are formed in two ways. BL subpathsm section 3 we repeat the same process for paths that cross

in the caller leading to a call site are concatenated with theproce_dure tbogndaTes_. In SeCt'.On 4 we ptfeseSnt results of
BL paths that begin at the callee’s entry. Also BL paths ter- EXperiments. Lonclusions are given in section .

minating at the callee’s return point are concatenated with _

BL subpaths following the call site in the caller. The inter- 2 Paths Crossing Loop Backedges

esting paths as defined above are not only relevant for the Interesting paths are those paths that cross a loop

applications discussed earlier, th.ey a]so happen to a'tcounbackedge only once and they are paths that correspond to
for most of _the prog_ram's execution time. Data in Tablg 1 two consecutive iterations of aloopverlapping pathgoL
supports this assertion. The percentage of total flow (i.e., ja¢hs) are shorter than two iterations and OL path profiles
sum of the_ freque_ncy counts O_f all BL pathi) that is EOV' are used to estimate the execution frequencies of the inter-
ered by all interesting paths varies from 76.9% to 96.2%. It esting paths. The equations for deriving these estimates ar

is also clear that both types of interesting paths, those tha oo .-\ aterized by the degree of overlap. Overlap of zero
cross loop backedges and those that cross procedure boun@—

. == orresponds to BL paths.
aries, account for significant part of the flow.

While a straightforward approach for obtaining profiles
for interesting paths would be to instrument the program to
collect such profiles, this approach can be too expensive. The overlapping paths are constructed by simply extend-
The increase in number of paths whose frequency countsng BL paths. Consider the control flow graph and its cor-
would have to be maintained could greatly exceed the num-responding BL paths in Table 2. The basic blocks marked

2.1 Overlapping Paths



with a ‘P’ are predicate blocks (i.e., they end in a condi- We define an overlapping path, or an OL path, as the
tional branch). There arg2 BL paths in this example that one that is obtained by extending a BL path to cross the
are divided into four groups: (i) Paths beginning at thedasi backedge and then terminating at any predicate within the
block ‘En’ and ending at ‘Ex’. Paths, 2 and3 belong to loop. By this definition, all the interesting paths are over-
this group; (ii) Paths beginning at the basic block ‘En’ and lapping paths. More specifically, we define an overlapping
ending at P;’ and immediately followed by the backedge. path to be &-overlapping path, Olk path, if it terminates
Pathst, 5 and6 belong to this group; (iii) Paths beginning at at the(k + 1)t" predicate block following the backedge (the

‘ P’ following the backedge and ending &®" and imme- terminating block of the loop is also treated as a predicate
diately followed by the backedge. Paths’ and9 belong block). We also calk to be the degree of the overlapping
to this group; and (iv) Paths beginning &’ following the path. For example, a OR-path for the above loop would
backedge and ending at ‘Ex’. Path 11 and12 belong to be, (P, = B, = P; ! P;). Notice that this path is equiv-

this group. alent to BL path7. ThoughP; is not included in7, it is
trivial to see thatP; is the only basic block that can be ex-

Table 2. Ball-Larus paths in a CFG. ecuted after the backedge is taken. Similarly, patis 9

are all OL9 paths, since they end at predicate bldgk In

other words, OLO paths are BL paths unextended. How-
ever, consider the Oll-path, P, = B, = P3| P, = P,).

Itis clear that this path belongs to OlLas it ends at the 2nd
predicate block following the backedge. Note that this path
is nothing but BL pathr extended taP,, that is, extended
by 1 predicate block. The basic block sequences for few OL
paths of different overlaps are shown in Table 3. Also, the
number of OL paths of each degree are shown.

Group | Path Program Path
Id Id
1 Tno P o B, o D o b Table 3. Overlapping paths in the CFG.
1 2 En—= P, = P, => By = P3s = Ex |
3 En — P = Py — Bs = Py — Eg Delgree OL-k Path Examples N;g:.hgf
4 En= P = B; = P3
2 5 En= P, = P, = By = Ps 0 En= Py = B1 = P3! P, 6
6 En= P, = Py = B3 = P3 Pi=P=B=PF!P
7 PL= B, = P; 1 En= P, = By = P3! P, = B; = Ps, 12
3 8 Pl = Py= By = P4 P =By => P3| PL=> P
9 P = Py = B3 = P 2 Pr =By =>P3! P > P>= By = P3 12
10 P = B = P3 = Ex
4 11 Py = Py = By = P3 = Ex . . .
1 P> Py o By — Py~ Ex Notice that the maximum overlap possible for the loop

in Table 2 is only2. Also, notice that paths corresponding
] ] ] to this overlap are interesting paths. As stated earliegrwh
We define an interesting path for the loop as the one thatye estimate the profiles of the interesting paths, we choose
has a basic block sequence that starts with the loop entry, degree of overlap depending on the cost we are willing
qode,Pl in the above CFG, and corresponds to two itera- g incur. When we profile overlapping paths of degkee
tions of the loop. As an examplef’( = B1 = P3! PL = e also profile all other OL paths whose degree is less than
P, = B> = I%) is one such interesting path. This pathis j byt are not contained in the OL-k paths. Notice that as
nothing but the basic block sequence of BL pafbliowed e increase the degree of overlap, the number of paths that
by BL path8 and is denoted a5 ! 8), where " is used t0  paye to be profiled increases and hence, the cost of profiling
mark the position of the backedge. Note that this intergstin {hem.
path also appears i@ ! 8), (7! 11) and(4 ! 11). Thus the The next section discusses the equations involved in es-

frequency of the interesting path is the sum of the frequen-imating the flow across the interesting paths. By flow of a
cies of these four paths. For the loop shown above, there argyath we mean the frequency of a path.

exactly9 interesting paths formed from all pairs of the ba-
sic block sequences of ti3doop paths. However, the basic
block sequences corresponding to th@seteresting paths
appear in36 different pairs of BL paths. In gener@l! j) Consider a loop which has loop paths, numbered
is used to denote that interesting path whose basic block sei ... k, in the depth first search order. The number of dif-
guence appears in the two iterations of the loop containedferent interesting paths in this loop#s. Let F; denote the
in(i!j). flow of thest” loop path. If the frequency of the backedge

2.2 Estimating Flow



is B, then, the following equation holds.
Fi1+Fy+ ...+ F, > B. 1)
Now, we wish to estimate the frequencies of iienter-

esting paths, which are nothing but all paiid (j) formed
out of thek loop paths. Let; ; ; denote the real flow of the

interesting pathi ! j. Let OF;, (p,;) denote the frequency
of the OL path,i ! k(P;), that begins with basic block se-

Using equations 4, 5 and 6 we can complijg to be

OFp!a(Pj)pr!rf '-7Lp!s)a }
(prxp)r (Fq*E‘I) ’
™
The minimum of the three candidate upper bounds ensures
that our upper bound estimate is tight.
Equation 4 clearly shows that the upper bounds of the
frequencies could depend on the lower bounds. Similarly,

Uprg= MINIMUM{ (

. we will show in the next section that the lower bounds of the

quencei, takes the backedge, and then follows the basic frequencies also depend on the upper bounds. This means

block sequence contained in pdthhowever, terminating
at predicate?;. If more than oné&) L path contains this ba-

sic block sequence as its suffix, we add their frequencies to

that the equations have to be computed iteratively till the
values of the bounds stabilize. However, to compute the
initial values of the upper bounds, we can assume the lower

obtainOF; , x(p;)- As an example, for the loop in Table 4, bounds of all other paths to be zero.

OF} 1 3(p,) Will be the flow of the OL path that has the fol-

lowing basic block sequencé; = B; = P3| P, = Ps.

OF; \ y(p;) can be computed using the following equa- 2.2.2 Generating the Lower bounds of the Frequencies

tion.
OF; 1 k(p;) :ZFi!l 2

Again, consider Equation 3. Using a similar reasoning as in
the previous case, we can compute the lower bound of the

where; ! [ are all the interesting paths that contain the basic frequency of the interesting paghl ¢ to be

block sequence of the OL path!(k(F;)). For instance, for
the loop in Table 40F}  3p,) = Fi12 + Fi 13, and this
can be easily proved.

We derive the estimates for the frequencies of the over-
lapping paths by getting the upper and lower bounds of the

frequencies of the paths in the following sections.

2.2.1 Generating the Upper Bounds of the Frequencies

Ly = MAXIMUM{ (OF, 4(pj) ~Uptr —-.. —Up1s), 0}

®)

The above equation shows that the lower bounds do de-
pend on the upper bounds. The next section shows the use
of these equations in an example.

As mentioned in [4], the sum of the lower (upper) bounds
of the frequencies of the interesting paths is referred to as

Let us assume we profile overlapping paths of some degreghe Definite (Potential) flow.

less than or equal t6. Let us now find the upper bound

of the frequency of the interesting path! ¢. Let L, .,

andU, , , denote the lower and upper bounds for the flow 2-2-3 An Example

of pathp ! ¢ respectively. Also, IeODF,, ,p;) be the fre-
guency of the OL path of degree less than or equélwe
profiled such that,

OFp!a(Pj):Fp!q+Fp!r+--~Fp!s (3)
whereg, r, ...
ending inP;.

From the above equation a possible valuefpy , is the
right hand side of the inequality below.

, s all have the same prefix as the prefix

Fp!qSOFp!a,(Pj)pr!rf'--pr!s (4)
Subtracting the lower bounds of all paths other thang

Consider the control flow graph shown in Table 4. It is the
same loop as used before except that numbers mark the flow
values of different loop paths. The basic block sequences of
the 3 loop paths are shown below.

1:P1 = By = P;3
2:Pp = Py = By = Ps3
3:Pi=>P>=B3=P3

Consider the following execution history of the loop dur-
ing a program run. Lets say the loop was entei@@itimes
from outside. For the fir250 times, the path corresponding
to the sequenceé ! 1 ! 3 was taken and for the remaining

from OF, 1 ,(p,) gives us a candidate upper bound for the 250 times, the path corresponding to the sequeric2! 3
flow of pathp | ¢q. We can derive two other candidates Was taken. Thus, the frequencies of sequehc2and3 are
for U, , as follows. LetE, denote the number of times all 500. The frequency of the backedge B is 1000. This also

Ioopg)athqfvyas execuged asthe firstéteratiﬁn ?XTQ bethe  means thaE, andE; are 250 and(s is 500. Also, the only
number of times patlp was executed as the last iteration. jnteresting paths that have non-zero frequencies are shown
The value ofE; and X,, can be directly obtained from the :n Tablel 4g P . z quenc W
BL path profile. Clearly, Now, let us compute the estimates of the frequencies of
the interesting paths using Qb(i.e., BL) paths. In partic-
ular let us first get estimates for interesting paths begupni
with sequencé. The frequency of OL-0 path of interest is

Fpiqg < Fp— Xp. )

Also,
Fypyqg < Fy— Ey. (6)



Table 4. Frequencies of interesting paths.

[ Interesting Path] Frequency |

11 250
212 250
1!3 250
23 250

OF} ,(p,) andis equal ta00, sinceOFy ; y(p,) = Fi11+
Fy 5 + Fy 3. Now, applying these values in Equations 7
and 8 we get, the following value&? ;; = 250, Ly, =
0,Up12 =250, Li12 = 0andU; 3 = 500, Ly,3 = 0.

The estimates of the other paths can be similarly computed

and are given in Table 5.

Now to get the estimates of interesting paths beginning
with sequencd using OL4 paths, we use the frequency
OF} 1 y(p,) andOF; 1 p,). Notice thatOF, ; 1(p,) is ex-
actly equal toF; ; ;. Again, we apply the equations as be-
fore and the estimates obtained are shown in the table.

Table 5. Estimates using OL paths.

Interesting Real Lower Bound | Upper Bound
Path Frequency| OL-0 | OL-1 | OL-0 | OL-1
111 250 0 250 250 250
112 0 0 0 250 250
113 250 0 0 500 250
211 0 0 0 250 0
212 250 0 0 250 250
213 250 0 0 500 250
311 0 0 0 0 0
312 0 0 0 0 0
313 0 0 0 0 0

The real flow in the loop is the sum of the frequencies of
the interesting paths and is equallt@)0. The definite and
potential flows that we get using OlLpaths aré) and2000
which are off the real flow by-100%. Whereas, using OL-

1 paths, the flows arg50 and1250, off by -75% and +25%.
Also, notice that OL2 paths should give us accurate profiles
since the maximum overlap of this loop2s

2.3 Instrumentation

We extend the algorithm proposed by Ball and Larus so
that instead of collecting BL path profiles, we can collect
overlapping path profiles. This algorithm has two parts: de-
riving an acyclicpath graphwhich is used to determine the
required instrumentation and carrying out thetrumenta-
tion of the original code.

Deriving the Path Graph. Ball and Larus derive an
acyclic graph which contains exactly the BL paths. This
graph is used as a basis of assigning ids to paths and edges
of this graph are assigned increment values. The sum of the
increments on the edges along a given path generates the
path id. Figure 1 shows a CFG in (a) which is converted
into (b) to determine instrumentation for BL paths. To de-
termine instrumentation for overlapping paths of degree 2,
the graph in (c) is used. As we can see, an additional por-
tion of the loop body is included to extend the paths upto
the lengths of the desired overlapping paths. This addition
portion of thepath graphis called theoverlapping graph

Let us consider the construction of the path graph in de-
tail. As a first step, given a loop bodyand overlagk, three
sets of edges are identified In

e Definitely instrumented [DI] edges the number of
predicates along all the paths to these edges is less
than or equal tck. In Figure 1(c), edge® — P,
andB] — P are examples for DI edges for overlap
degree ob.

Possibly instrumented [P1] edgethe number of pred-
icates along some paths to these edges is less than or
equal tok. In Figure 1(c), edgeé’; — B} is Pl edge.
Because patl?; — B} — P; — B} has2 predicates

and pathP] — Py — P — B!, has3 predicates.

Definitely not instrumented [DNI] edgeshe num-

ber of predicates along all the paths to these edges is
greater thark. In Figure 1(b), edgé’s — B, is DNI
edge for overlapg. Because all the paths from loop
headP; to this edge has more tharpredicates.

Given the DI, Pl and DNI edges in a loop body the
overlapping graphs constructed as follows: all DNI edges
are removed frond; DI edges are distinguished from the
Pl edges (Pl edges are drawn using dotted lines in the fig-
ure); and nodes which are not reachable from loop head are
removed. The shaded area in Figure 1(c) contains the over-
lapping graph for overlap.

We first generate the path graph of Figure 1(b) from the
CFG of Figure 1(a) using Ball and Larus algorithm, which
removes the backedge, — P, adds dummy edges from
Ento P, and fromP, to Exz. Next we replace the dummy
edge fromP, (loop exit) to £z with an edge fromP, to
P/, the head of OG for the loop. For any noffein OG, if
there is a path from loop head 2 havingk + 1 predicates,
we connectV to Exz with a dummy edge. For example,
P; in (c) and P, in (c) are connected t&x with dummy
edges. Finally we assign chord increments to edges accord-
ing to Ball and Larus’s algorithm. The generated graph is
the desireghath graph



Instrumentation. The steps of the instrumentation algo- ¢ If eisthe entry edge to the loop, it is instrumented with
rithm for a given CFG and its corresponding path graph PG "ro = —o0’.

are as follows: ) ) o S
e If p is a predicate inside the loop, it is instrumented

with "ol + +;'.

e If e is the exit edge from the loop, it is instrumented
with ’ (ro > 0)? : count|ro] + +;.

e If e is the backedge, and the dummy edge frém
to loop head is marked with2 2’, the dummy edge
entering the dark area is marked witbp’ y’, the
backedge is instrumented with:

(ro > 0)? : count[ro] + +;
ro=r+y;r=u;0l =0;

If e is an edge toEz, it is instrumented with
"count[r] + +;.

The instrumented CFG for our running example is shown in
Figure 1(d).

3 Paths Crossing Procedure Boundaries

In this section, we consider interesting and overlapping
paths that cross procedure boundaries. These paths are the
ones that start in one procedure and end in another proce-
dure. It should be noted that while Melski and Reps [17]
have also proposed an approach for profiling interprocedu-
ral paths, their approach is too expensive for use in prac-
(toh2icountro]: tice. They create a singleupergraphwhich connects all
L] ro-rel; procedures and then use Ball Larus method to enumerate

the paths in this combined flow graph. The number of paths
will increase dramatically in this approach. Moreover, the
BL path (examgle for (b) : presence of function pointers complicates the constructip
P, P, P, B, P, of the supergraph. Our approach based upon overlapping
(path_id=20) interprocedural paths is much more practical.
OL2 path (example for (c) ):

(c) OL2 graph

Jeounti g B R 3.1 Interprocedural Overlapping Paths
(d) Instrumented CFG (OL2) (©) )
Table 6. OL- k Paths of Type I inthe CFG.
Figure 1. Instrumenting for OL paths. Degree I-OL-k Path Examples Number
k of Paths
e |f an edgee of CFG is markeddp x’ in the white area 0 fEn= P1 = B> = B3 = 3
e .y . !
of PG and it is not a dummy edge, it is instrumented Cilgbn= P
ith'r = ) 1 fEn=P; = By=> B3 =>C! 6
with "r =7 op x". gEn = Py = By = gFx
. . 2 En= P\ = By = B3 = C1 ! 6
e Ifan _eqlgee of CFG is markedop ;v’_ in the qla_rk area / gEn :1> P :i Py :‘i Ps '
and it is a non-dummy DI edge in PG, it is instru- 3 fEn =Py = By = B3 = C1 ' gEn = 12
mented with o = ro op x’. P = Py= Py = By = gFu

e If ¢ is marked vp ' in the dark area and it is a non-
dummy Pl edge in PG, it is instrumented witfa! < Consider the interprocedural control flow graph shown
k)?:ro=roopc. in Figure 2. The CFG for f() has a call site where function



Now, let us discuss the overlapping paths of Tyjie
called I7-OL paths. These paths correspond to the inter-
esting paths of Typél and are used to estimate their fre-
guencies. Al I-OL path of degreg, written as//-OL-k,
is a BL path in g() that extends into function f() after the re-
turn, and ends at thig + 1)** predicate block following the
return edge. Table 7 shows sorhBOL paths of different
degrees. We assume thab'z is a predicate node. Notice
that the maximum degree possible in the CFG.is

3.2 Estimating Flow

This section presents the equations involved in estimat-
ing the flow of paths across procedure boundaries. First, the
estimation process using BL paths is described and then the
estimation using overlapping paths is presented.

Figure 2. CFGs for two functions.

3.2.1 Estimation using BL Paths

Table 7. OL-k Paths of Type II'in the CFG. Consider an interprocedural CFG of two functions f() and

[ Degree k] I-OL-k Path Examples | Number of Paths] g(). Let f() be the caller and g() be the callee. Let us con-
0 gEn= P = B3 = 5 sider a call site in f() that has a call to function g(). Let us
- - QE;’ ! ClB:> Ps — 5 assume that there akepaths in function f() starting from
gbkn = P, = B3 = gbkx! .
Cr = Py = By = By = fEx the entry node to the call site. Let us number them . | k

according to a depth first search order. Also, let us assume
there ard paths in function g() numberdd. .., similarly.
Let us first estimate the flow of Typepaths. The analysis
g() is called. There are two types of interesting paths we for TypeII paths is similar.
want to look at. The first type of paths start in f() and end  Now, all the interesting paths of Typehave the form
in g(). The second type of paths start in g() and end in f(). p | ¢, wherep andq are the paths from f() and g() respec-
Examples of paths are given below. tively. Let F,,, represent the actual frequency of inter-
esting pathp ! ¢. LetU,,, andL,,, be its upper and
lower bounds. Also, let}, (¥,) be the frequency of the ba-
sic block sequence representedbyy). We can find the

Let us call them interesting paths of Typand TypelI. frequencies of each of these basic block sequences by sum-
Notice, that there aré5 different paths of Typd and10 ming the frequencies of all BL paths that contain these se-
different paths of TypdI. For paths of Typd, there are3 guences. Le€ be the number of calls made from f() to g().
different ways of reaching call sit€; from fEn and each  This can be obtained by instrumenting the program appro-
of these could end with any of tliepaths in g() giving rise  priately. Then, the following equation holds.
to a total of15 different paths. A similar argument holds

Typel:fEn = P) = By = B3 = C1 ! gEn = P; = B3 = gEx
Type ll:gEn = Py = B3 = gEx ! Cy = P3 = B4 = B = fEx

for paths of Typell. To estimate the profiles of these in- =hi=l
teresting paths, we form overlapping paths as follows. To ' Z Fiy=0C (©)
accommodate the interesting paths of Typave break the =1y=1

BL paths of function f() at the call site and extend them into gy equation 9 we can derive a candidate estimate for the

function g(), the extension being dependent on the overlap, ner hound to be the right hand side of the following equa-
in question. Lets call these overlapping paths-&L paths,

tion.
I used to indicate that they correspond to interesting paths i=k,j=1
of Typel. Uprg <CH+Lyrg—( Z Li!j) (10)
I-OL paths are defined as follows. /AOL-k path starts i=1,j=1

a_t the nodef £ and extengls Into f unction g() after_the call Also, we can derive two other candidate estimatedfpr,
site and stops at the + 1) predicate node following C1 o< tgj10ws.

in g(). Table 6 shows someOL paths of different degrees. Upig < Fp (11)
We assume thagtEz is a predicate node. Note thatthe max- gn(
imum degree for the example CFG3is Uprq <Fy (12)



3.2.3 An Example

Using equations 10, 11 and 12, we can compute the . . -
value o Up?q to be P Consider the interprocedural CFG shown in Figure 2. The

paths in function f() are
i=k,j=l
CH+Lyrg—Y "= Livi),
P Z’—l’f—l i) 1:fEn=P =Py, =B, = Bs = C,
(13) QZfETL:>P1=>P2:>B2:>B3z>Cl
3:fEn= P1 = Bs = B3 = (1

Up!q:MINIMUM{ (F "
py 4 q

Equation 13 shows that the upper bound is dependent and the paths in function g() are
on the lower bounds. We will also show by Equation 14
that the lower bound is also dependent on the upper bounds. 1:gEn= P1 = B3 = gEx
Hence, we need to recompute the bounds iteratively tilf thei 2:gEn= Py = P, = By = P3 = By = gEx
values stabilize. For, computing the initial values of uppe 3:9En= Py = P, = B1 = P3 = By = B3 = gEx
bounds, we can assume that the lower bounds are zeroes. 4:9En=> P = Py = P3 = B3 = gEg
Equation 14 shows the equation for calculating the lower 5:9En= Py = P> = P35 = By = Bs = gEz
bound.
i=k,j=I Consider an execution in which the number of calls made
Lpiq=MAXIMUM{ (C+Up,,,— Z Uirj), 0} (14) from f() to g() is100. Also, letl ! 1 is the only interesting
i=1,j=1 path to have a non-zero frequencyldf. Also, let the fre-
The equations for estimating the frequencies of the inter- quency of each of the sequences shown aboveli). An
esting paths of Typé&I are similar. estimate using BL path profiles alone would give a flow of
anywhere betweefi and 100 for all 15 interesting paths.
3.2.2 Estimation using Overlapping Paths Whereas, an estimate using Il—Cleaths would give us ex-
act values. Note that the maximum overlap possibf is
Let us derive equations for estimating the frequenciesef th

interesting paths using overlapping paths. Again, letss fir 3.3 Instrumentation
derive estimates of interesting paths of Typ&he analysis . . .
In the previous section, we mentioned that there are two

of Type I follows. LetOF), | x(p,) be the frequency of the ¢ dural laoDi h In thi
overlapping path that starts with the basic block sequencet.ypes of interprocedural overlapping paths. In this sec-
of the pt* path in function (), and follows the basic block tion, we explain how to instrument these paths. For the

sequence of thé!" path in function g(), however, termi- mst(;ur;elzanl_t,atl_on of overlapplnbg loop paths_ we hS|mpIy Iex-
nating at predicaté’; in function g(). For instance, in the tende S Instrumentation by enumerating the overlap-

CFG inFigure 20F. represents the frequency of the ping Io_op paths. But it is inappropriat_e to make a similar
overlappigg pathogif/(!e;l(gle)lovf a y extension for interprocedural overlapping paths becawse t

existence of function pointers can make the extended graph

fEn=P = By= B3 = C1=gEkn= P very huge. So we use a different instrumentation for in-
Now, the following equation holds terprocedural overlapping paths. Instead of using an one
dimensional counter array, we use four dimensional array
OF, 1k = Y Fpti 15 count[i][4][k][l] wherei is the function id of the calleg, is
wherel represents all the sequences in g() that have thethe global id for the call site; is the path id in callee, and
same prefix a, prefix ending in predicate;. [ is the path id in the _Caller. In other words, we use a four
LetOF, ; xp,) be the frequency of the overlapping path tuple to represent an interprocedural overlapping path.
of degree we profiled such that We demonstrate how to do instrumentation by an exam-
OFy 1 k(e = Fyptq+Fprr ... (16) ple. Figure 2 shows the CFGs for two functiofi@ndg.

the equation got by merely expanding the right hand s_deThere is a calC’; to functiong in f. We are going to instru-
uati y y ex [ i i Ol . P

of Equation 15. We can then compute the upper bounds ofmentthe II-OL-1 paths in t.h|s example. For th(_a call gite

frequency of patlp ! ¢ using Equation 16 as follows. we construct théverlapping Graph(OG) of Figure 3(a)

in a way similar to the overlapping loop paths. The entr
Uptq = MINIMUM{ (OFy 1i(ei) = Lotr B ) Fad _(17) node ofyOG here is a call sitepililstgead (F))fg loop head. Tr>1/e
and then compute the lower bounds using Equation 18 asyjier's parts of the interprocedural paths are enumetsted
shown below. : : .
this OG. The enumeration graph for the callee is the same as
Lprg = MAXIMUM{ (OFy1k(pj) —Uptr =+, 0} (18 B's enumeration graph. Given these enumeration graphs,
As before, since the values of upper and lower bounds arewe instrument the marked edges like BL's algorithm. Fur-
dependent on each other, we recompute them iteratively tillthermore, we instrument the call site by adding two param-
they stabilize. eters,r and func. Here func is to return the function id
The equations for the upper and lower bounds are similarof callee. This is necessary because if function pointers ar
for TypeII and can be derived analogously. used, the caller has no idea about who is the callee unless the



sults are reported in this section. There were two objec-
tives of the experimentation: to evaluate the improvement
in precision of estimates afteresting path profilesom-
puted fromoverlapping path profilesf varying degrees of
allowable overlap; and to evaluate theerheadof collect-

ing overlapping path profiles. It was also our goal to com-
pare the precision and overhead associated with overlgppin
path profiles with that of BL path profiles. We also collected
the whole program path profiles [16] to determine the pre-
cise frequency of any path for a program run.

4.1 Precision: OL vs. BL path profiles.

The detailed results of our experiments for nine bench-

mark programs are presented in Figures 5 and 6.
(a) Overlapping Graph ~ (b) BL graph for g First we computed the real total flow of the interest-
for call site C, in f ing paths and then compared it with the total estimated
flow (lower/upper bounds or definite/potential flows) for the
same paths when estimates were derived from overlapping
callee explicitly tells the caller. In the instrumented G~G path proﬁles of varymg_d_egr(_aes of overlap. As we can see
: . . . . from Figure 5, the precision improves as degree of overlap
of Figure 4, we can sefunc is assigned the id of function . ; :
L ) . . increases. The point corresponding to overlap of -1 repre-
g at the beginning of’s execution.r is used to enumerate . . . . .
the paths in the callee. which are the subpaths of the inter-sents estimates derived using BL paths. Itis clear thatewhil
P S . P BL paths provide highly imprecise estimates, an overlap
procedural overlapping pathso is used to enumerate the : ; . .
. : set at approximately one-third of maximum possible over-
subpath in the caller. The concatenated pathro is the . . . .
) . _lap gives us fairly good estimates. In Table 8 the estimates
interprocedural overlapping path. We can see, at the exit . . .
; . corresponding to this threshold are presented. While the
edge of caller's OG, the counter corresponding to the path . N . d 1l fi ,
Fune,Cy.r.ro > is incremented by 1 average imprecision in estimated total flow of interesting
< b ' paths derived from BL path frequencies ranges from -38%
to +138%, the average imprecision in flow estimates derived
| |
from overlapping path frequencies range only from -4% to
g (int & 1, void * &func) +8%.

Second we also looked at the number of interesting
paths for which estimated frequency matched the actual fre-
qguency (i.e., upper and lower bounds derived were identi-
cal). This data is plotted in Figure 6. The interesting ob-
servation here is that in benchmarks where there are large
number of interesting paths (e.gf andt wol f ) and the
maximum amount of overlap possible is very high, a small
overlap is sufficient to get precise estimates for vast major
ity of the paths. This observation further shows that it is
sufficient to use small overlaps to derive highly precise flow
estimates.

Figure 3. Path enumeration.

C,: g(r, func) ‘

ro=0;

4.2 Overhead: OL vs. BL path profiles.

count[func][C1][r][ro] ¥
We also present the overhead of collecting overlapping
Figure 4. Instrumentation. path profiles for varying degrees of overlap in Figures 7,
8 and 9. The first graph shows the overhead of collecting
. overlapping loop path profiles for varying degrees of over-
4 Experimental Results lap. The overhead corresponding to zero overlap represents
We have implemented our algorithms using the Trimaran the overhead of collecting BL path profiles in our imple-
compiler infrastructure [19]. Based upon this implementa- mentation. The second graph presents the data for overhead
tion we carried out an experimental evaluation whose re- associated with collecting overlapping interproceduedhp
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Figure 6. Precisely estimated paths.



Table 8. Definite and potential flow.

Overlap

Figure 7. Overhead of profiling OL loop paths.
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Figure 8. Overhead of profiling OL interpro-
cedural paths.

50

50

Benchmark Real Using BL Using OL-k
Flow Definite Flow | Potential Flow Definite Flow [ Potential Flow | k Chosen| k Max
130.li 3539310 || 2350308 (-33.6 % )| 4793897 (35.4 %) 3411257(-3.6 %) | 3666315 (3.5 %) 2 12
099.go 1043000 | 260200 (-75%) | 4549045 (336.2 %)|| 1017335 (-2.4 %) | 1089760 (4.4 %) 10 29
134.perl 583202 530643 (-9 %) 706814 (21.1 %) 583163 (0 %) 583289 (0 %) 10 29
008.espressqd| 1176329 || 677091 (-42 %) | 18988987 (1514 %)|| 1173703 (-0.2%) | 1970368 (67 %) 14 45
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181.mcf 4454330 || 2718793 (-38.9 %)| 6553449 (47.1 %) || 4345860 (-2.4 %) | 4577679 (2.7 %) 7 22
300.twolf 4509841 || 3041739 (-32.5%)| 6908699 (53.2 %) || 4415177 (-2.1 %) | 4636763 (2.8 %) 4 14
126.gcc 2076527 || 978781 (-52.8%) | 4487127 (116 %) || 2068457 (-0.4 %) | 2087944 (0.55%)| 14 48
Average 2479627 || 1545429 (-37.6 %)| 5895566 (138 %) 2376428 (-4.1 %) | 2678798 (8 %) 8 25
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Figure 9. Overhead of profiling all OL paths.

profiles. The third graph shown the overhead of collecting
profile data for all overlapping paths. The overhead of pro-
filing overlapping interprocedural paths is higher thart tha
of profiling overlapping loop paths.

Table 9 gives the overhead of collecting frequencies of
BL paths and overlapping paths when the overlap is set at
approximately one-third of the maximum possible overlap.
The average overhead of collecting overlapping path pro-
files is 86.8%. On an average this overhead is 4.2 times that
of profiling BL paths.

Recently techniques have been proposed that exploit
edge profiles to selectively profile subset of program paths
[2, 15]. These techniques can be used to reduce the over-
head of our approach.

5 Conclusions

In this paper we identified a new class of paths: over-
lapping loop and interprocedural paths. Collecting prsfile
for such paths is useful because using them we can estimate
the frequencies of interesting paths that cross loop and pro
cedure boundaries. The interesting paths are relevant for



Table 9. Instrumentation overhead.

Benchmark || BL (%) OL-k paths (%) All
Loop [ Interproc. [ All BL

130.li 335 435 67.3 110.8 || 3.3
099.go 20.3 33.0 47.8 80.8 || 3.98
134.perl 9.9 12.7 58.2 709 || 7.16
008.espressqg| 25.1 47.7 33.5 81.2 3.23
147 .vortex 17.3 17.9 62.3 80.2 4.64
197.parser 25.7 30.1 50.0 80.1 || 3.12
181.mcf 31.9 49.6 54.7 104.3 || 3.27
300.twolf 25.3 46.2 411 87.3 || 3.45
126.gcc 15.8 23.4 62.5 859 || 5.44
Average 22.7 33.8 53.0 86.8 4.2

many code optimizations and global instruction scheduling
The cost of collecting overlapping path profiles is reason-

able and the frequency estimates for interesting path psofil
derived from overlapping path profiles are highly precise. |

contrast similar estimates derived using BL path profiles ar

highly imprecise.
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