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Abstract

Different types of program profiles (control flow, value,
address, and dependence) have been collected and exten-
sively studied by researchers to identify program character-
istics that can then be exploited to develop more effective
compilers and architectures. Due to the large amounts of
profile data produced by realistic program runs, most work
has focused on separately collecting and compressing dif-
ferent types of profiles. In this paper we present a uni-
fied representation of profiles called Whole Execution Trace
(WET) which includes the complete information contained
in each of the above types of traces. Thus WETs provide
a basis for a next generation software tool that will enable
mining of program profiles to identify program characteris-
tics that require understanding of relationships among var-
ious types of profiles. The key features of our WET rep-
resentation are: WET is constructed by labeling a static
program representation with profile information such that
relavent and related profile information can be directly ac-
cessed by analysis algorithms as they traverse the represen-
tation; a highly effective two tier strategy is used to signifi-
cantly compress the WET; and compression techniques are
designed such that they do not adversely affect the ability
to rapidly traverse WET for extracting subsets of informa-
tion corresponding to individual profile types as well as a
combination of profile types (e.g., in form of dynamic slices
of WETs). Our experimentation shows that on an aver-
age execution traces resulting from execution of 647 Million
statements can be stored in 331 Megabytes of storage after
compression. The compression factors range from 16 to 83.
Moreover the rates at which different types of profiles can
be individually or simultaneously extracted are high.

1. Introduction
A software tool for collection, maintenance, and analy-

sis of detailed program profiles for realistic program runs
can greatly benefit compiler and architecture researchers.
This is because program profiles can be analyzed to iden-
tify program characteristics that can then be exploited by

researchers to guide the design of superior compilers and
architectures. The key challenge that one faces in develop-
ing a software tool is that the amounts of profile information
generated during realistic program runs can be extremely
large. Therefore researchers have developed compression
techniques to limit the memory required to store different
types of profiles.

Lossless compression techniques for several different
types of profiles have been separately studied. Com-
pressed representations of control flow traces can be found
in [14, 26]. These profiles can be analyzed for presence of
hot program paths or traces [14] which have been exploited
for performing path sensitive optimizations [24, 2, 10] and
path-sensitive prediction techniques [11]. Value profiles
have been compressed using value predictors [3] and used
to perform code specialization [6], data compression [27],
value speculation [15], and value encoding [23]. Address
profiles have also been compressed [7] and used for identi-
fying hot data streams that exhibit data locality which can
help in finding cache conscious data layouts [18] and de-
veloping data prefetching mechanisms [8, 12]. Dependence
profiles have been compressed in [25] and used for compu-
tation of dynamic slices [25], studying the characteristics of
performance degrading instructions [28], and studying in-
struction isomorphism [21].

Each of the above works has studied the handling of a
single type of profile. The next step in profiling research is
to develop a software tool that unifies the maintenance and
analysis of all of the above types of profiles. An effective
tool cannot be created by simply using the above mentioned
techniques in combination. If we use the above techniques
as is, the stream of values representing control flow, val-
ues, and addresses will be separately compressed. Now if a
request is made for the profile information related to the ex-
ecution of a statement, we will have to search through each
of the compressed streams to collect this information. In
other words the above representation will not provide easy
access to related profile information. The goal of design-
ing a unified representation is to overcome the above draw-
back and open the door to understanding program behavior



involving interactions among the different program charac-
teristics captured by these profiles. This will lead to ex-
ploration of advanced compiler and architecture techniques
which simultaneously exploit multiple types of profiles.

In this paper we present an unified representation and
show that it is possible to maintain and make use of such a
representation. There are three key challenges that are ad-
dressed in this paper in developing such a unified represen-
tation which we call whole execution traces (WETs). First
WETs provide an ability to relate different types of profiles
(e.g., for a given execution of a statement, we can easily find
the control flow path, the data dependences, values, and ad-
dresses involved). This goal is achieved by designing WET
so it is constructed by labeling a static program representa-
tion with profile information such that relavent and related
profile information can be directly accessed by analysis al-
gorithms as they traverse the representation. Second we de-
velop an effective two tier compression strategy to reduce
the memory needed to store WETs: first we use customized
compression techniques for different types of profiles and
then we use a generic compression technique to compress
streams of values corresponding to all types of profile infor-
mation. Third the compression is achieved in such a way
that WETs can be rapidly traversed to extract subsets of
information corresponding to individual profile types (i.e.,
control flow, value, address, and dependence) as well as
subsets of related information including all types of profiles
(e.g., dynamic slices of WETs corresponding to computa-
tion of a value). The customized compression schemes are
designed such that they minimally affect the cost of travers-
ing the WETs. The generic compression scheme is designed
to enable bidirectional traversal, i.e. give a position of a
value in the stream, it is possible to find the immediately
preceding and following values with equal ease.

We have implemented the unified WET representation
using the Trimaran compiler infrastructure [22]. Extrapo-
lation from our experimental results shows that whole exe-
cution trace corresponding to a program run involving ex-
ecution of 3.9 Billion intermediate code statements can be
stored in 2 Gigabytes of memory which is commonly avail-
able on machines today. Being able to hold profiles of a
few billion instructions in memory is a critical milestone
because other works have shown that behaviors of long pro-
gram runs can be effectively characterized by considering
smaller program runs or smaller segments of longer pro-
gram runs that are few billion instructions long [13, 17].
In [13] program inputs with smaller program runs that ef-
fectively characterize program behavior were identified for
Spec benchmarks. In [17] it was shown that by appropri-
ate selection of smaller segment of a longer program run,
program’s execution can be effectively characterized. We
have also evaluated the ease and hence the speed at which
subsets of profile information can be extracted from WET

in response to a variety of queries. Our results show that
these queries which ask for related profile information can
be responded to rapidly.

Rest of the paper is organized as follows. Section 2
describes the uncompressed WET representation. Section
3 presents first tier compression methods for control flow,
data dependences, values, and addresses. The key charac-
teristic of first tier compression is that it does not negatively
impact the speed with which the profile information can be
accessed. Section 4 presents a generic scheme for com-
pressing a stream of values that is used to compress stream
of values corresponding to all types of profile information.
Section 5 presents results of experiments aimed at measur-
ing the space and time costs of storing and using WETs.
Conclusions are given in section 6.

2 Whole Execution Trace
The WET is a unified representation that holds full ex-

ecution history including, control flow, value, address, and
dependence (data and control) histories. WET is essentially
a static representation of the program that is labeled with the
dynamic profile information. This organization provides a
direct access to all of the relevant profile information asso-
ciated with every execution instance of every statement. A
statement in WET can correspond to a source level state-
ment, intermediate level statement, or a machine instruc-
tion. In our discussion we assume that each statement is an
intermediate code statement.

In order to represent profile information of every exe-
cution instance of every statement, it is clearly necessary
that we are able to distinguish between execution instances
of statements. The WET representation we develop distin-
guishes between execution instances of a statement by as-
signing unique timestamps to them. To generate the times-
tamps we maintain a time counter that is initialized to one
and each time a basic block is executed, the current value of
time is assigned as a timestamp to the current execution in-
stances of all the statements within the basic block and then
time is incremented by one. Timestamps assigned in this
fashion essentially allow us to remember the ordering of all
statements executed during a program execution. The no-
tion of timestamps is also key to representing and accessing
the dynamic information contained in WET.

The WET is essentially a labeled graph whose form is
defined next. A label associated with a node or an edge in
this graph is an ordered sequence where each element in
the sequence represents a subset of profile information as-
sociated with an execution instance of a node or edge. The
relative ordering of elements in the sequence corresponds to
the relative ordering of the execution instances. We denote
a sequence of elements e1, e2,.. as [e1e2...]. For ease of
presentation we assume that each basic block contains one
statement, i.e. there is one to one correspondence between
statements and basic blocks.
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Figure 1. An example: (a) CFG and its control flow trace; (b) WET subgraph of node 8.

Definition: The Whole Execution Trace (WET) is repre-
sented in form of a labeled graph G(N, E(CF, CD, DD))
where:

N is the set of statements in the program. Each state-
ment s ∈ N is labeled with a sequence of ordered pairs:
[< ts, vals >] where statement s was executed at time ts

and it produced the value vals. Note that in general when a
node contains multiple statements, instead of a single value
in each ordered pair, we have a set of values one each for
every statement in the basic block.
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E is the set of edges. The edges are bidirectional so that the
graph can be traversed in either direction. (s → d) denotes
direction of the edge that takes us from the source s of the
dependence to the destination d of the dependence while
(s ← d) is used to denote the reverse direction. The edges
are subdivided into three disjoint categories.

• DD is the set of data dependence edges in the pro-
gram. Each edge (sdd → s) ∈ DD is labeled with a
sequence of ordered pairs: [< ts, tsdd >] where state-
ment s was executed at time ts using an operand whose
value was produced by statement sdd at time tsdd.

• CD is the set of control dependence edges in the pro-
gram. Each edge (scd → s) ∈ CD is labeled with a
sequence of ordered pairs: [< ts, tscd >] where state-
ment s was executed at time ts as a direct result of the
outcome of predicate scd executed at time tscd.

• CF is the set of control flow edges in the program.
These edges are unlabeled.

The example in Figure 1 illustrates the form of WET. A
control flow graph and control flow trace of one possible
execution is given in Figure 1a. Since the entire WET for
the example is too large, we show the subgraph of WET that
captures the profile information corresponding to the execu-
tions of node 8. The label on node 8 says that statement 8 is
executed five times at timestamps 7, 37, 57, 77, and 97 pro-
ducing values c, d, d, d, and c respectively. Executions of
statement 8 are control dependent upon statement 6 and data
dependent on statements 4, 2 and 15. Therefore CD and DD
edges are introduced whose labels express the dependence
relationships between execution instances of statements 6,
4, 2, and 15 with statement 8. Unlabeled control flow edges
connect statement 8 with its predecessor 6 and successor 9
in the control flow graph.

Queries. Next we show how WET can be used to respond
to a variety of useful queries for subsets of profile informa-
tion. The ability to respond to these queries demonstrates
that the WET representation incorporates all of the con-
trol flow, data and control dependence, value, and address
profile information. Also given the bidirectional nature of
edges, the graph and hence the profiles can be traversed in
forward or backward direction starting from any execution
point.

Control flow path. The path taken by the program can be
generated from WET using the combination of static con-
trol flow edges (CF ) and the sequences of timestamps as-
sociated with nodes (N ). If a node is labeled with
< t,− >, the node that is executed next must be labeled
with < t + 1,− >. Using this observation we can generate
the complete path or part of the program path starting at any
execution point.



Values and addresses. The value and address profiles are
captured by the values contained in [< t, v >] sequences
associated with nodes. Some values represent data while
others represent addresses – the distinction can be made by
examining the use of the values. Values produced by exe-
cutions of a statement can be obtained by simply examining
its [< t, v >] sequence. Addresses corresponding to execu-
tions of a specific statement can be obtained by simply ex-
amining the [< t, v >] sequences of statements that produce
the operands for the statement of interest. On the other hand
if we are interested in examining the sequence of values
(addresses) that are produced (referenced) during program
execution, we need to follow the control flow path taken as
described earlier and then examine the relevant < t, v >

pair of each node as it is encountered.
Data and control dependences. All instances of data

and control dependences are captured explicitly by labeled
edges (CD and DD). Chains of data dependences, control
dependences, or combinations of both types of dependences
can all be easily found by traversing the WET.

WET slices. We define the backward WET slice of a
value produced by an execution instance of a statement as
the subgraph of WET that captures all of the profile infor-
mation that led to the computation of the value. By travers-
ing the WET in backward direction along data and control
dependences we can compute this slice. A forward WET
slice can be found by forward traversal of data and con-
trol dependence edges originating from the computed value.
The forward slice of WET shows all values whose compu-
tation was influenced by the value at which the slice compu-
tation originates. WET slices are examples of queries that
request all types of profile information contained in WET.

We have shown the organization of all types of pro-
file data in the WET representation which allows variety
of queries to be responded to with ease. Given the large
amounts of profile information, the sizes of WETs are ex-
pected to be extremely large. Therefore the next challenge
we face is to compress the WETs in a manner that does not
destroy the ease or efficiency with which queries for infor-
mation can be handled. In the next two sections we present a
two tier compression strategy that accomplishes these goals.

3 Customized Compression
The first tier of our compression strategy focuses on de-

veloping separate compression techniques for each of the
three key types of information labeling the WET graph:
(a) timestamps labeling the nodes; (a) values labeling the
nodes; and (c) timestamp pairs labeling the dependence
edges. The compression is accompanied with minimal im-
pact on the ease and efficiency of accessing the profiles.

3.1 Timestamps labeling nodes
The total number of timestamps generated is equal to the

number of basic block executions and each of the timestamp

labels exactly one basic block. We can reduce the space
taken up by the timestamp node labels as follows. Instead
of having nodes that correspond to basic blocks, we create a
WET in which nodes can correspond to Ball Larus paths [1]
that are composed of multiple basic blocks. Since a unique
timestamp value is generated to identify the execution of
a node, now the number of timestamps generated will be
fewer. In other words when a Ball Larus path is executed,
all nodes in the path share the same timestamp. By reducing
the number of timestamps we save space without having
any negative impact on the traversal of WET to extract the
control flow trace.
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Figure 2. Reducing number of timestamps.

As an example, the execution shown in Figure 1a in-
volves 103 executions of basic blocks and hence generates
103 timestamps. However, the entire execution can be bro-
ken down into a total of 10 executions of 4 distinct Ball
Larus paths as shown in Figure 2. Thus, if we use the trans-
formed graph shown in Figure 2 where edges represent flow
of control across Ball Larus paths, we only need to generate
10 timestamps as shown.

3.2 Values labeling nodes

It is well known that subcomputations within a program
are often performed multiple times on the same operand val-
ues – this observation is the basis for widely studied tech-
niques for reuse based redundancy removal [21]. Next we
show how the same observation can be exploited in devis-
ing a compression scheme for sequence of values associated
with statements belonging to a node in the WET.

We describe the compression scheme using the exam-
ple below in which the value of x is an input to a node
and using this value, the values of y and z are computed.
Further assume that while the node is executed four times,
only two unique values of x (x1 and x2) are encountered
in the value sequence V als[0..3] = [x1x2x1x2]. Given the
nature of the computation, the values of y and z also fol-
low similar patterns. We can compress the value sequences
by storing each unique value produced by a statement only
once in the UV als[0..1] array. In addition, we remember
the pattern in which these unique values are encountered.



This pattern is of course common to the entire group of
statements. The pattern [0101] gives the indices of values
in the UV als[] array that are encountered in each position.
Clearly the V als[0..3] corresponding to each statement can
be determined using the following relationship.

V alues[i] = UV alues[Pattern[i]]

Before
Statement V als[0..3]

x [x1x2x1x2]
y = f(x) [y1y2y1y2]

z = g(x, y) [z1z2z1z2]

After: Pattern=[0101]
Statement UV als[0..1]

x [x1x2]
y = f(x) [y1y2]

z = g(x, y) [z1z2]

The above technique yields compression because by
storing the pattern only once, we are able to eliminate all
repetitions of values in value sequences associated with all
statements. The ease with which the sequence of values can
be generated from the unique values is a good characteris-
tic of this compression scheme. The compression achieves
space savings at the cost of slight increase in the cost of
recovering the values from WET.
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(a) Before compression.
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(b) After compression.

Figure 3. Value compression.

In the above discussion the situation considered is such
that all of the statements shared a single pattern. In general,
multiple patterns may be desirable because different subsets
of statements may depend upon different subsets of inputs
that are either received from outside the node or are read
through input statements within the node. Statements be-
longing to a node are subdivided into disjoint groups as fol-
lows. For each statement the input variables that it depends
upon (directly or indirectly) is first determined. Groups are
first formed by including all statements that depend upon
exactly the same inputs into the same group. Next if a group
depends upon set of inputs that are a proper subset of inputs
for another group, then the two groups are merged. Finally
input statements within the node on which many groups de-
pend is included in exactly one of the groups. Once the
groups are formed, for each group a pattern is found and
the values are compressed according to the groups pattern.

In Figure 3 formation of groups for node P3 is illus-
trated. The first figure shows the value sequences associ-
ated with statements before compression. The statements
depend upon values of u and v from outside the node and
the value of x that is read by a statement inside the node.
Two groups are formed because some statements depend
upon values of x and v while other statements depend upon
values of x and u. The statement that reads the value of x

is added to one of the groups. Once the groups have been
identified, patterns are formed for each group as shown.

3.3 Timestamp pairs labeling edges

Each dependence edge is labeled with a sequence of
timestamp pairs. Next we describe how the space taken by
these sequences can be reduced. Our discussion focuses
on data dependences; however, similar solutions exist for
handling control dependence edges [25]. To describe how
timestamp pairs can be reduced, we divide the data depen-
dences into two categories: edges that are local to a Ball
Larus path; and edges that are non-local as they cross Ball
Larus path boundaries.

Let us consider a node n that contains a pair of state-
ments s1 and s2 such that local data dependence edge ex-
ists due to flow of values from s1 to s2. For every timestamp
pair < ts2

, ts1
> labeling the edge it is definitely the case

that ts1
= ts2

. In addition, if s2 always receives the in-
volved operand value from s1, then we do not need to label
this edge with timestamp pairs. This is because the times-
tamp pairs that label the edge can be inferred from the labels
of node n. If node n is labeled with timestamp tn, under the
above conditions, the data dependence edge must be labeled
with the timestamp pair < tn, tn >. It should be noted that
by creating nodes corresponding to Ball Larus paths, op-
portunities for elimination of timestamp pair labels increase
greatly. This is because many non-local edges get converted
to local edges.



�
�
�

�����

���
�������	
��

���
�
��
�
����� ����

�
��
�
�����

�����
�
��

�
�����

�����
�
��

�
��
�
���

�������
�
��
�
���

������
�
������������

�������
�
��
�
���

������
�
������������

�
�

������������

�	�
��

�
�

������������

�	�
�� �
�

������������

�	�
��

�
�

������������

�	�
��

�


������������

�	�
��

�
�

������������

�	�
��

(a) Removing labels on local edges.
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(b) Sharing labels across non-local edges.

Figure 4. Reducing timestamp pairs.

Let us consider non-local edges next. Often there are
multiple data dependence edges that are introduced between
a pair of nodes. It is further often the case that these edges
have identical labels. In this case we can save space by
creating a representation for a group of edges and save a
single copy of the labels.

While the above approach reduces the space required to
store timestamp pairs, it is worth noting that there is no neg-
ative impact on ease with which profile information can be
accessed. The techniques described above are simple and
very frequently applicable. More aggressive techniques for
removing timestamp pairs can be found in [25].

The example in Figure 4 illustrates the above technique.
The detailed data dependences corresponding to Ball Larus
path P3 are shown. The first figure shows what the graph
looks like after removal of all timestamp pairs that label the

edges local to P3 while the second figure shows the sharing
of timestamp pairs across non-local edges from Ball Larus
path P2 to P3.

4 Stream Compression

For the next step in compression we view the information
labeling the WET as consisting of streams of values arising
from following sources: a sequence of < t, v > pairs la-
beling a node gives rise to two streams, one corresponding
to the timestamps (t’s) and the other corresponding to the
values (v’s); and a sequence of < ts2

, ts1
> pairs label-

ing a dependence edge also gives rise to two streams, one
corresponding to the first timestamps (ts2

’s) and the other
corresponding to the second timestamps (ts1

’s). Each of
the above streams are compressed using the same algorithm
that is developed in this section.

The stream compression algorithm should be designed
such that the compressed stream of values can be rapidly
traversed. An analysis algorithm using the WET repre-
sentation may traverse the program representation in for-
ward or backward direction (recall that is why all edges in
WET are bidirectional). Thus, during a traversal, it is ex-
pected that the profile information, and hence the values in
above streams, will be inspected one after another either
in forward or backward direction. Unfortunately existing
algorithms for effectively compressing streams are unidi-
rectional, i.e. the compressed stream can be uncompressed
only in one direction typically starting from the first value
and going towards the last. Examples of such algorithms
include compression algorithms designed from value pre-
dictors which were used for compressing value and address
traces in [3, 4]. The problem with using a unidirectional
predictor is that while it is easy to traverse the value stream
in the direction corresponding to the order in which values
were compressed, traversing the stream in the reverse di-
rection is expensive. The only way to efficiently traverse
the streams freely in both directions is to uncompress them
first which is clearly undesirable. Sequitur [16] which was
used for compressing control flow traces in [14] and address
traces in [7] yields a representation which can be traversed
in both directions. However, it is well known that Sequitur
is nearly not as effective as the above unidirectional predic-
tors when compressing value streams [3].

To overcome the above problem with existing compres-
sion algorithms, we have developed a novel approach to
constructing bidirectional compression algorithms. The ap-
proach can be used to convert an unidirectional value pre-
dictor based compression algorithm into a bidirectional one.
Let us consider the highly effective FCM predictor [19, 20].
A unidirectional FCM predictor compresses a stream in the
forward direction such that a value is successfully com-
pressed if it can be correctly predicted from its left con-
text (i.e., pattern of immediately preceding n values); oth-



erwise the value is saved in uncompressed form. A look
up table TB is maintained to store predictions correspond-
ing to a limited number of left context patterns encountered
in the past. The index of the entry at which the prediction
for a pattern is stored is derived by hashing the pattern into
an index. The compressed stream has two types of entries
< T > and < F, v > where T and F are one bit values
indicating true and false while v is an uncompressed value.
If a value is correctly predicted by the look up table TB

using the left context, an entry < T > is created in the
compressed stream. If a prediction v provided by the look
up table TB using the left context does not match the value
v′ being compressed, then an entry < F, v > is created
in the uncompressed stream while the look up table TB is
updated using v′ to enable future predictions. Clearly for
a stream that is forward compressed in the above fashion,
only forward traversal is possible.

Backward compressed
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Bidirectional compression derived from the FCM pre-
dictor. Now let us look at the design of a bidirectional
predictor. In particular, we look at a bidirectional coun-
terpart of the FCM predictor [9]. In general a stream that
has been compressed using a bidirectional predictor with
a context size of n values can be viewed as consisting of
three parts: [FRi

1][U
i+n

i+1
][BLm

i+n+1] where [FRi
1] is ob-

tained by forward compressing (F ) values 1 through i us-
ing right context (R); [U i+n

i+1
] are the n uncompressed val-

ues (U ) that form the context of the bidirectional predic-
tor; and [BLm

i+n+1] is obtained by backward compressing
(B) values i + n + 1 through m using the left context
(L). Two look tables, FRTB for [FRi

1] and BLTB for
[BLm

i+n+1], are also maintained. Thus, from the context
of n uncompressed values [U i+n

i+1
] and FRTB/BLTB the

values FRi/BLi+n+1 can be uncompressed.
Backward traversal by one step shifts the context from

[U i+n

i+1
] to [U i+n−1

i
] which is achieved by first uncompress-

ing FRi into Ui and then compressing Ui+n into BLi+n.
FRTB and BLTB are also updated. Forward traversal by
one step shifts the context from [U i+n

i+1
] to [U i+n+1

i+2
] which is

achieved by first uncompressing BLi+n+1 into Ui+n+1 and
then compressing Ui+1 into FRi+1. FRTB and BLTB

are also updated in this case. The details of forward an
backward traversal by one step are given in Figure 5.

We have shown how values are compressed and uncom-
pressed during traversal. Initially all values are compressed
by repeated application of above compression operation. In

order to ensure that enough left context and right context is
available to compress values at the beginning and end of the
stream, we assume that the stream is extended by n values
each at the two ends where n is the size of the context.

Backward Traversal
– Uncompress FRi and update FRTB.

index = hash(U i+n

i+1
)

if FRi =< T > then
Ui = FRTB[index]

else Let FRi =< F, v >

Ui = FRTB[index]
FRTB[index] = v

endif
– Compress Ui+n and update BLTB.

index = hash(U i+n−1

i
)

if BLTB[index] = Ui+n then
BLi+n =< T >

else
BLi+n =< F, BLTB[index] >

BLTB[index] = Ui+n

Forward Traversal
– Uncompress BLi+n+1 and update BLTB.

index = hash(U i+n

i+1
)

if BLi+n+1 =< T > then
Ui+n+1 = BLTB[index]

else let BLi+n+1 =< F, v >

Ui+n+1 = BLTB[index]
BLTB[index] = v

endif
– Compress Ui+1 and update FRTB.

index = hash(U i+n+1

i+2
)

if FRTB[index] = Ui+1 then
FRi+1 =< T >

else
FRi+1 =< F, FRTB[index] >

FRTB[index] = Ui+1

Figure 5. Traversing by one step.

The example in Figure 6 illustrates the above algorithm.
The first figure shows a portion of the uncompressed stream
while the second figure shows the state of the stream and
look up tables corresponding to four consecutive positions
of the context which consists of three uncompressed val-
ues. No matter whether the stream is traversed forwards or
backwards, the sequence of states encountered is the same.

Bidirectional compression derived from a Last n predic-
tor. Another predictor which has been used for unidirec-
tional compression is the last n predictor [15, 5]. We also
derived a bidirectional compression algorithm using the last
n predictor. This is because studies have shown that while
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overall performance of both FCM and Last n predictors is
quite good, there are also specific situations where one pre-
dictor works well while the other does not and vice versa
[3]. The full details of bidirectional compression algorithm
based upon last n predictor are omitted due to space limita-
tions. However, the main cases of forward compression of a
value are summarized in Figure 7. Backward compression
is similar. It should be noted that unlike the bidirectional
FCM predictor only a single look up table TB is used for
both forward and backward compression.

Selection. For each stream we selected from one of sev-
eral bidirectional versions of compression methods. Ini-
tially we use all methods to compress the stream. After a
certain number of instances we pick the method that per-
forms the best up to that point. We implemented the FCM,
differential FCM (this is an adaptation of FCM that works
on strides [9]), last n, and last n stride methods. For each
type we created three versions with differing context size.

5 Experimental Results

We have implemented the WET construction and com-
pression techniques presented in this paper. In addition, we
have also developed implementations of several queries for
subsets of profile information that were described in sec-
tion 2. To carry out this work we used the Trimaran [22]
compiler infrastructure to profile several benchmarks from
the SpecInt 2000 and 1995 suites. The statements cor-
respond to Trimaran’s intermediate level statements. The
program is executed on the simulator which avoids intro-
duction of intrusion as no instrumentation is needed. We
do not count pseudo statements and we do not maintain re-
sult values for intermediate statements that do not have a def
port (e.g., stores and branches). In our implementation, for
labeling dependences, instead of using global timestamps
to identify statement instances, we use local timestamps for
each statement because this approach yields greater levels
of compression. These experiments were carried out on a
Pentium IV 2.4 GHz machine with 2 Gigabyte RAM and
120 Gigabyte hard disk. Our evaluation focuses on two
main aspects of WETs. First we evaluate the practicality of
WETs by considering the sizes of WETs in relation to the
length of the program execution. We also examine in detail
the effectiveness of the two tier compression strategy. Sec-
ond we evaluate the speeds with which queries requesting
subsets of profile information can extract the information
from a compressed WET representation.

5.1 WET Sizes

Table 1 lists the benchmarks considered and the lengths
of the program runs which vary from 365 and 751 Mil-
lion intermediate level statements. The effect of our two



tier compression strategy is also summarized in Table 1.
While the average size of the original uncompressed WETs
(Orig. WET) is 9589 Megabytes, after compression their
size (Comp. WET) is reduced to 331 Megabytes which rep-
resents a compression ratio (Orig./Comp.) of 41. Therefore
on an average our approach enables saving of the whole ex-
ecution trace corresponding to program run of 647 Million
intermediate statements using 331 Megabytes of storage.

Table 1. WET sizes.
Benchmark Stmts Executed Orig. WET Comp. WET Orig./

(Millions) (MB) (MB) Comp.

099.go 685.28 10369.32 574.65 18.04
126.gcc 364.80 5237.89 89.03 58.84
130.li 739.84 10399.06 203.01 51.22
164.gzip 650.46 9687.88 537.72 18.02
181.mcf 715.16 10541.86 416.21 25.33
197.parser 615.49 8729.88 188.39 46.34
255.vortex 609.45 8747.64 104.59 83.63
256.bzip2 751.26 11921.19 220.70 54.02
300.twolf 690.39 10666.19 646.93 16.49

Avg. 646.90 9588.99 331.25 41.33

Now let us examine the effectiveness of our two tier com-
pression strategy in detail. Table 2 shows the sizes of node
labels, timestamp and value sequences, before and after
compression while Table 3 presents the same information
for edge labels.

Table 2. Effect of compression on node labels.
Benchmark ts labels vals labels

Orig. Orig./ Orig./ Orig. Orig./ Orig./
(MB) Tier-1 Tier-2 (MB) Tier-1 Tier-2

099.go 2614.12 37.96 47.13 1847.09 2.48 6.33
126.gcc 1391.60 50.06 126.63 945.03 3.15 17.62
130.li 2822.26 32.47 105.88 1894.48 3.83 17.33
164.gzip 2481.32 30.33 152.76 1733.13 1.66 4.02
181.mcf 2728.12 22.12 127.09 1875.21 2.37 7.02
197.parser 2347.92 30.61 101.82 1615.57 2.05 12.45
255.vortex 2324.87 53.51 176.55 1641.31 3.51 23.82
256.bzip2 2865.81 55.24 1171.6 2154.85 2.46 10.61
300.twolf 2633.64 27.36 69.49 1873.52 2.13 4.36

Avg. 2467.74 37.74 230.99 1731.13 2.63 11.51

Table 3. Effect of compression on edge labels.

Benchmark Edge labels
Orig. Orig./ Orig./
(MB) Tier-1 Tier-2

099.go 5908.12 9.00 26.00
126.gcc 2901.26 15.37 118.94
130.li 5682.32 11.36 84.74
164.gzip 5473.42 10.13 60.37
181.mcf 5938.54 7.62 46.56
197.parser 4766.38 15.57 133.92
255.vortex 4781.46 21.75 212.35
256.bzip2 6900.52 32.06 455.44
300.twolf 6159.03 7.05 34.43

Avg. 5390.12 14.43 130.31

The above results show that while the average compres-
sion ratios of all the timestamp sequences are very high (231

for nodes and 130 for edges), the same is not true for value
sequences that label the nodes (compression ratio for these
is only 11.5). Compression of values is much harder – even
though our value compression algorithm is aggressive, the
compression ratios for value sequences are modest in com-
parison to those for timestamp sequences.

In Figure 8 the relative sizes of the three main compo-
nents of profile data (node timestamp sequences, node value
timestamp sequences, and edge timestamp sequences) are
shown before compression (Original), after first tier com-
pression (After Tier-1), and after second tier compression
(After Tier-2). As we can see, the contribution of value
sequences to the total size increases in percentage follow-
ing each compression step since the degree of compression
achieved for value sequences is lower.
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Figure 8. Relative sizes of WET components.

Next we show that WETs can be augmented with sig-
nificant amounts of architecture specific information with
modest increase in WET sizes. In particular, lets consider
the augmentation of WETs with branch misprediction, load
miss, and store miss information. For a single execution of
a branch, load, or store the history of misprediction or cache
miss can be remembered using one bit. Table 4 shows the
additional storage taken by the above uncompressed exe-
cution histories. Clearly the amount of additional storage
needed even without compression is quite small.

Table 4. Architecture specific information.

Benchmark Space (MB)
Branch Load Store

099.go 9.68 12.17 5.87
126.gcc 5.28 6.11 4.09
130.li 11.36 11.16 8.08
164.gzip 9.64 10.95 5.87
181.mcf 12.88 11.93 3.32
197.parser 9.24 10.67 6.39
255.vortex 7.24 14.79 10.49
256.bzip2 10.08 14.51 3.26
300.twolf 9.76 13.38 4.94

Avg. 9.46 11.74 5.81

Next we study the scalability of our approach so that we
can estimate the limit on the length of a program run for
which we can realistically keep the whole execution trace
in memory. For this purpose we study the impact of trace



length on the compression ratios. In Figure 9 the compres-
sion ratios (y-axis) for different trace lengths (x-axis) are
plotted for each of the benchmarks. From the results in
Figure 9 we notice that for 7 out 9 programs the compres-
sion ratios either improve or roughly remain the same as the
length of the run increases.
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Let us assume that the compression ratio remains con-
stant across the length of a program run. Further recall
that our earlier experiments show that the compressed WET
for execution of 647 Million Trimaran intermediate code
statements took approximately 331 Megabytes of storage.
Therefore we can extrapolate that if our machine has 2 Gi-
gabyte of RAM, which is a common configuration these
days, we can hold the WET corresponding to a program
run involving execution of 3.9 Billion Trimaran intermedi-
ate code statements in memory. This is a fairly long trace
and thus can be used effectively to study program behavior
when designing compilers and architectures.

5.2 WET Construction Times
& Response Times for Queries

For the purpose of timing experiments we used shorter
traces. Table 5 gives the lengths of the program runs used in
the subsequent experiments. The runs used vary from 114
and 139 Million intermediate level statements. The times
taken to construct the compressed WETs for these program
runs are also given in Table 5 – the times for different pro-
grams are close because the lengths of the program runs are
quite close.

In the preceding section we studied the effectiveness of
our compression strategy and the scalability of our com-
pressed WET representation. Recall that the WET repre-
sentation and compression techniques were designed so as
to allow access to related profile information with ease and
hence with good speed. Next we study the response times to
various queries for profile information. The response times
are provided by using the WET after only first tier com-
pression and after second tier compression, i.e. after full
compression.

Query for control flow trace. Let us consider the request
for the control flow trace. Such a request can be made with
respect to any point either along the execution flow (for-

Table 5. WET construction times.

Benchmark Stmts Executed Construction
(Millions) Time (Minutes)

099.go 132.52 34.52
126.gcc 139.46 34.09
130.li 126.78 36.84
164.gzip 123.06 34.10
181.mcf 137.31 39.69
197.parser 122.12 39.13
255.vortex 119.50 34.43
256.bzip2 128.25 39.47
300.twolf 114.85 34.14

Avg. 127.09 36.27

ward) or in the reverse direction (backward). The rates at
which control flow trace can be extracted from WET in ei-
ther direction are given in Table 6. The total control flow
trace size, the time to extract this entire trace, and rate at
which it is extracted are given. We can see that on an aver-
age the entire control flow trace can be extracted in roughly
20 seconds in either direction. The response times after tier-
1 compression and tier-2 compression are very close and so
are the times in forward and backward direction. This indi-
cates that the bidirectional compression algorithm that we
use is very effective for node timestamp labels.

Query for per instruction load value traces. Let us con-
sider requests for load values on per instruction basis. Such
traces can be useful for designing load value predictors. In
Table 7 the size of complete load value trace, response time
for extracting this trace, and the rates at which it is extracted
after tier-1 compression and after tier-2 compression are
shown. The average times to extract the entire load value
trace after tier-1 and tier-2 compression are little over 47
seconds and 210 seconds respectively. Since the values are
not compressed as effectively as timestamps, as expected,
there is a notable increase in response time as we go from
using tier-1 compressed representation to tier-2 compressed
representation.

Query for per instruction load/store address traces. Let
us consider requests for load and store address traces on per
instruction basis. Such traces can be useful for designing
address predictors for data prefetch mechanisms. In Table 8
the size of complete address trace, response time for extract-
ing this trace, and the rates at which it is extracted after tier-
1 compression and after tier-2 compression are shown. The
average time to extract the entire address trace after tier-1
and tier-2 compression are little over 114 seconds and 226
seconds respectively. Since addresses are simply part of val-
ues in WET representation, and values are not compressed
as effectively as timestamps, there is a notable increase in
response time as we go from using tier-1 compressed repre-
sentation to tier-2 compressed representation.



Table 6. Response times for control flow traces.

Benchmark CF trace Forward Backward
(MB) Tier-1 Tier-2 Tier-1 Tier-2

time (sec.) MB/sec time (sec.) MB/sec time (sec.) MB/sec time (sec.) MB/sec

099.go 530.09 146.49 3.62 147.43 3.60 136.58 3.88 136.80 3.87
126.gcc 557.85 5.45 102.36 6.12 91.15 5.59 99.79 6.03 92.51
130.li 507.12 3.16 160.48 3.68 137.80 3.20 158.47 3.70 137.06
164.gzip 492.24 1.10 447.49 1.28 384.56 1.03 477.90 1.26 390.67
181.mcf 549.25 4.07 134.95 4.14 132.67 3.71 148.05 4.20 130.77
197.parser 488.50 5.21 93.76 6.14 79.56 5.13 95.22 5.67 86.16
255.vortex 477.98 4.84 98.76 5.39 88.68 4.55 105.05 5.24 91.22
256.bzip2 512.99 1.13 453.97 1.56 328.84 1.10 466.35 1.38 371.73
300.twolf 459.40 10.36 44.34 10.70 42.93 9.86 46.59 10.31 44.56

Avg. 508.38 20.20 171.08 20.72 143.31 18.97 177.92 19.40 149.84

Table 7. Response times for per instruction
load value traces.

Benchmark Ld value After Tier-1 After Tier-2
trace (MB) sec. MB/sec sec. MB/sec

099.go 77.99 185.03 0.42 301.02 0.26
126.gcc 77.45 38.99 1.99 45.89 1.69
130.li 66.98 9.56 7.01 64.00 1.05
164.gzip 70.58 35.77 1.97 587.70 0.12
181.mcf 74.58 42.38 1.76 425.20 0.18
197.parser 70.09 14.80 4.74 34.08 2.06
255.vortex 86.92 7.73 11.24 45.98 1.89
256.bzip2 75.31 6.72 11.21 13.62 5.53
300.twolf 71.13 85.70 0.83 375.03 0.19

Avg. 74.56 47.41 4.57 210.28 1.44

Table 8. Response times for per instruction
load/store address traces.

Benchmark Address After Tier-1 After Tier-2
trace (MB) sec. MB/sec sec. MB/sec

099.go 115.79 377.79 0.31 556.22 0.21
126.gcc 127.64 61.28 2.08 65.56 1.95
130.li 112.92 15.29 7.39 202.16 0.56
164.gzip 96.12 41.88 2.30 256.30 0.38
181.mcf 98.85 52.81 1.87 443.45 0.22
197.parser 111.47 21.29 5.24 60.65 1.84
255.vortex 145.55 12.73 11.43 98.22 1.48
256.bzip2 126.78 12.00 10.57 21.40 5.92
300.twolf 96.80 116.86 0.83 330.53 0.29

Avg. 114.66 79.10 4.67 226.05 1.43

Query for WET slices. Finally we consider query for a
WET slice. Given a value computed by the execution of a
code statement during program execution, the WET slice is
a backward slice over the WET representation starting from
the value of interest. This slice captures the complete flow
of control, flow of values across dependences, and address
references that directly or indirectly impacted the computa-
tion of the value of interest. Thus a WET slice provides a
superset of information provided by a traditional dynamic
slice [25]. The average times needed to extract a WET slice
after tier-1 and tier-2 compression are little over 14.34 sec-
onds and 90.98 seconds respectively.

Table 9. WET slices (avg. over 25 slices).

Benchmark Tier-1 Tier-2 Tier-2/
(sec.) (sec.) Tier-1

099.go 58.31 412.44 7.07
126.gcc 10.91 17.74 1.63
130.li 10.00 121.42 12.14
164.gzip 4.20 102.33 24.34
181.mcf 17.47 76.07 4.35
197.parser 1.55 4.69 3.02
255.vortex 4.75 18.09 3.81
256.bzip2 2.76 3.90 1.42
300.twolf 19.10 62.15 3.25

Avg. 14.34 90.98 6.78

This query is particularly interesting because its response
contains all types of profile information. While it is straight-
forward to determine the profile information that must be
contained in a WET slice given our WET representation,
providing the same information using a combination of ex-
isting compressed representations for different types of pro-
files can be expected to be very tedious and very expensive.
Till recently no algorithm existed that could perform dy-
namic slicing of long program runs. Our compression algo-
rithms have made dynamic slicing feasible for reasonably
long program runs.

Finally we would like to point out that response times
for the 099.go benchmark are higher than other programs.
Due to complex control flow structure of 099.go each
node had several incoming edges and thus it took longer
to identify the appropriate relevant edge during traversal.

The results in this section have shown the versatility of
the compressed WET representation in quickly responding
to queries with wide range of characteristics: those that re-
quire traversal of the graph (control flow traces), those that
are instruction specific requiring only the information la-
beling a node (load value traces), those that are instruction
specific but also require limited traversal (load/store address
traces), and those that require traversal to collect different
types of related profile information (WET slices).



6 Conclusions
In this paper we presented the design and evaluation of a

compressed whole execution trace representation. The rep-
resentation presents complete profile information, including
control flow, value and addresses, and control and data de-
pendences, in an integrated manner such that wide range
of queries requiring single or multiple types of profile in-
formation can be responded to quickly and with ease. We
presented compression techniques that are highly effective
in reducing the sizes of WETs. In particular, on an aver-
age, compressed WET representation for an execution of
647 Million statements can be stored in 331 Megabytes of
storage. Our extrapolation shows that whole profile infor-
mation corresponding to a program run involving execution
of 3.9 Billion intermediate code statements can be stored
in 2 Gigabytes of memory which is commonly available on
machines today. Thus, the compressed WET representation
can form the basis of a powerful tool for analyzing profile
information to discover program characteristics that can be
exploited to design better compilers and architectures.
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