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Fig. 1: A comparison of fixed integration time approach and our approach on the right flow recirculation bubble of the Delta
Wing dataset. (a) Ridge surfaces extracted from a FTLE field computed with a “short” integration time τ = 0.010; (b) ridge
surfaces corresponding to a “long” integration time τ = 0.025; (c) ridge surfaces extracted by our approach over an integration
time interval [0.005,0.025]; (d) ridge surfaces corresponding to (c) rendered with transparency. Ridge surfaces extracted from
a “short” integration time miss inner parts of the flow recirculation bubble, which appear after a “long” integration time, while
a “long” integration time yields a low-quality approximation of the geometry of the outer layer of the recirculation bubble. In
contrast, our proposed temporal-scale approach correctly reconstructs the LCS of both inner and outer parts.

Abstract—Lagrangian coherent structures (LCS) have become a prominent means to reveal significant geometric structures in time-
dependent vector fields. Their characterization, however, requires the selection of a suitable time parameter that may not be known in
advance. We present in this paper a continuous time-scale framework for LCS extraction and visualization. Specifically, we treat the
time axis as a continuum from which a best temporal scale is automatically determined at each spatial location for the extraction of
a LCS. Beyond its effectiveness with vector fields we show that this method can be successfully applied to maps to reveal the fractal
structural hierarchy underlying chaotic dynamics. We present applications of our method in the context of problems spanning fluid
dynamics and Hamiltonian system applications. The results show that our approach can reveal important structural features that are
missed by existing LCS extraction methods.

Index Terms—Lagrangian coherent structures, ridge

1 INTRODUCTION

Lagrangian coherent structures (LCS) correspond to material surfaces
embedded in time-dependent flows that form the boundaries of regions
exhibiting distinct dynamics behavior. As such, they offer an effective
means to understand the geometric structure and visualize the trans-
port properties of complex fluid flows. A popular characterization
of LCS is based on the finite-time Lyapunov exponent (FTLE), which
measures the local rate of separation of nearby fluid particles: high val-
ues of FTLE for forward advection indicate a repelling behavior while
high values during backward advection signal an attracting behavior.
Practically a repelling LCS is then extracted as a ridge of the forward-
time FTLE field and an attracting LCS as a ridge of the backward-time
FTLE field [12, 13]. Together, these structures control the behavior of
the flow and nearby massless tracers.

The FTLE-based approach to characterizing LCS has proved suc-
cessful in a wide array of fluid dynamics applications [24]. Each time,
a suitable advection time must be specified by the user before com-
puting the FTLE measure through numerical integration of the vec-
tor field. Yet, in many instances, a good integration time may not be
known a priori, which leads to costly trials before a satisfactory param-
eter value can be determined. Indeed, the integration time should be
chosen long enough to allow flow features to emerge. On the other
hand, it should not be too long to prevent multiple flow structures
to compound their individual signatures in the FTLE field and create
aliasing artifacts as a result. In addition, since most vector fields in
computational fluid dynamics are simulated within a bounded domain,
the motion of particles is undefined once they leave the domain, which
complicates the FTLE computation. In many applications, the integra-
tion time used to compute FTLE must therefore be carefully chosen
based on prior knowledge of the flow behavior or on multiple and pos-

sibly redundant computations.
Considering the time axis as a continuum, we introduce a temporal-

scale analysis approach to determine the best integration time at each
spatial location, and thereby extract ridges over different integration
times. The main contributions of this paper include:

• Automatic detection of the spatially varying best integration time
to characterize all relevant LCS.

• Explicit characterization and combined visualization of long-
time and short-time FTLE ridges.

• Improved structure characterization over existing LCS methods.

• Extension of the time-scale concept to the characterization of
topological structures in chaotic maps.

The paper is organized as follows. Section 2 reviews past work that
is most directly related to our approach. We document the aliasing is-
sues associated with the extraction of LCS from FTLE fields computed
with uniform integration length with a well-known example in sec-
tion 3, before describing our temporal-scale analysis in section 4. We
describe an extension of the time-scale concept to the study of maps
in Hamiltonian system in section 5. We present results for a variety of
applications and offer quantitative comparisons with existing methods
in section 6. We comment on our findings in section 7. Specifically,
we provide data about the performance of the proposed temporal-scale
approach (section 7.1), the influence of the temporal resolution on the
results (section 7.2), and the integration of our approach into existing
LCS based flow visualization methods (section 7.3). Finally conclu-
sion and future research directions are discussed in section 8.
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2 RELATED WORK

Haller pioneered the use of the finite-time Lyapunov exponent (FTLE)
to characterize Lagrangian coherent structures in planar and three-
dimensional unsteady flows [12, 13, 16]. A study of the robustness of
the LCS characterized by FTLE was presented by the same author [14].
Shadden et al. showed that LCS can be approximated by maximum
ridges of FTLE fields with a sufficiently long integration time as the
net flux across those ridges is small and typically negligible [34]. Later,
Sadlo et al. presented a method to determine a uniform lower bound
of finite time scope for FTLE computation [31]. For a finite domain,
Tang et al. proposed a method to solve the problem of trajectories
leaving the domain by extending the given velocity field [35]. Haller
presented a study showing shortcomings of the FTLE-based approach
in the presence of shear and proposed a variational characterization of
LCS [15]. A FTLE benchmark method measuring the quality of the
extracted LCS by comparison with a “ground truth” was proposed by
Kuhn et al. [20].

Developed as a diagnostic for multi-scale mixing, the finite-size lya-
punov exponent (FSLE) has also been used as an alternative to FTLE
to detect coherent structures in dynamical systems [1, 4]. The basic
idea of this method consists in measuring the time needed to achieve
a given separation from each location, thereby substituting a size pa-
rameter to the time parameter found in the definition of FTLE. Direct
comparisons between FTLE and FSLE have been made by Boffetta et
al. [4], Sadlo and Peikert [30], and Peikert et al. [25]. Most recently,
Karrasch and Haller showed that FSLE was prone to inaccuracies and
false positives in the characterization of LCS [17].

Recently, instead of using a fixed time, a varying integration time
concept named Lyapunov time was introduced by Sadlo [28] in
trajectory-based visualization.

In image processing and computer vision, the notion of scale-space
embeds a signal f (x) into a family of functions F(x, t) with a con-
tinuum scales t for analysis. The basic insight behind this approach
is that objects inherently comprise details at various scales. Hence the
features associated with different observation scales can be detected by
extending the original image to a family of smoothed images where the
size of the smoothing kernel is defined by the scale [21,22]. A number
of feature-extraction methods have been developed within the theo-
retical framework of scale-space. Lindeberg in particular introduced
a ridge detection approach that automatically determines the optimal
scale based on a normalized ridge strength criterion at each point [23].

In the visualization community, scale-space theory has been ap-
plied in flow visualization and feature extraction. Bauer and Peikert
proposed to use parallel vector operator [26] to recover vortex lines
in scale-space [3]. Klein and Ertl presented a critical points tracking
method for vector fields through discretely sampled scales to filter out
noise in the dataset [19]. Combining scale-space concept with parti-
cle systems, Kindlmann et al. [18] extracted crease surfaces in three-
dimensional medical images while maintaining the spatial continuity
of the scale.

Recently, two works applying scale-space theory to extract ridges in
FTLE fields have been published. Barakat and Tricoche [2] proposed
a GPU-based adaptive technique for height ridge [8] extraction and
visualization across scales, while Fuchs et al. [9] introduced a similar
method to characterize the C-ridge [32]. Though an optimal integra-
tion time concept was mentioned, Fuchs et al. did not explore this
avenue further in their work.

3 BACKGROUND

In this section, we review the widely used FTLE-based LCS definition
proposed by Haller [16]. Further, we illustrate the possible issues as-
sociated with a uniform integration time in structure characterization
by considering a well known example.

3.1 Finite-Time Lyapunov Exponent and LCS

The trajectory seeded at (x0, t0) is the solution φx0,t0(t) of following
initial value problem in a given time-dependent vector field u(x, t)

{

∂
∂ t

φx0,t0(t) = u(φx0,t0(t), t)
φx0,t0(t0) = x0,

(1)

whereby t = t0 + τ and τ is the integration time. Keeping t0 and
τ fixed and varying x0, one obtains the flow map φ t

t0
(x). The spatial

variations of this flow map around x0 are determined by its Jacobian
Jx(t, t0,x0) := ∇x0

φ t
t0
(x0) and the maximal dispersion around x0 at t is

given by the spectral norm of Jx(t, t0,x0):

στ (t0,x0) :=
√

λmax(Jx(t, t0,x0)T Jx(t, t0,x0)). (2)

Normalizing by the integration time τ yields the finite-time Lya-
punov exponent:

FTLE(t0,x0,τ) =
1

|τ|
lnστ (t0,x0). (3)

Lagrangian coherent structures can then be extracted as ridges of
the FTLE field, whereby repelling LCS are characterized by forward
FTLE and attracting LCS are revealed by backward FTLE.

3.2 Limitations of Fixed Time FTLE for LCS Extraction

Images (a) and (b) in Figure 2 show the variation of forward FTLE
fields with two different integration time τ = 9 and τ = 22 from the
Double Gyre vector field [34]. Comparing both images, one may no-
tice that as the integration time τ is increased, several ridges are re-
vealed by the FTLE field while others become obfuscated by aliasing.
In this paper, we define the short-time and long-time FTLE ridge as
the one associated with an FTLE field computed with a short integra-
tion time and long integration time respectively. Two sampling points
p and q on the short-time and long-time ridges were selected respec-
tively. Image (c) and (d) show trajectories of particles released near
these sampling points. Particles released near sampling point p stay
close to each other until they have reached the saddle point at the bot-
tom and separate from each other at an integration time close to 7.
These particles start to come close to each other again as they are ef-
fected by the saddle point at the top at an integration time close to 19
and cause the aliasing effects on the FTLE field. In contrast, particles
released near sampling point q do not reach the saddle point at the bot-
tom until the integration time approaches 20. Therefore, a single fixed
integration time fails to characterize LCS at both sampling point p and
q. Image (e) and (f) show the extracted LCS as ridge lines from each
FTLE field. Though the result for τ = 22 contains short-time LCS as
well as long-time LCS, the characterized short-time LCS are broken
and discontinuous compared to the one obtained for τ = 9.

In general, LCS can shrink, grow, appear, and disappear with
changes in integration time [33]. Therefore, a single and fixed integra-
tion time is not sufficient to simultaneously characterize and visualize
LCS that develop over different time scales in flow visualization ap-
plications. Different integration time must be specified for short-time
structures and long-time structures. In this work, we consider the inte-
gration time as a degree of freedom within a time interval defined by
the user, and let the system automatically determine the optimal value.
The following section presents our temporal-scale, which follows this
basic principle.

4 TEMPORAL-SCALE APPROACH

In this section we describe an approach that characterizes LCS with
different life spans through a temporal-scale analysis. With a specified
starting time t0 and a user defined integration time interval [τLB,τUB], a
series of FTLE fields F

τi
t0

could be computed for various values of the

integration time τi ∈ [τLB,τUB]. Our temporal-scale approach analyzes
these FTLE fields and extracts ridges from them.

In digital image processing, edges can be detected through a scale
analysis method [5]. First a feature map which records the maximum
edge strength of each pixel from different scales is created through
the scale analysis. Then edges are characterized by extracting ridges
from this feature map. Inspired by it, our approach consists of the two
following steps,
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Fig. 2: (a) and (b) Forward FTLE fields computed at two different
integration times with τ = 9 and τ = 22 from the “Double Gyre” vector
field; (c) and (d) trajectories of particles near sampling point p and q
marked in image (a) and (b). (e) and (f) extracted ridge lines from
image (a) and (b). Trajectories are color coded by the integration time
ranging from 0.0 (blue) to 25.0 (yellow).

1. generates a hyper-FTLE field through a temporal-scale analysis
on all FTLE fields F

τi
t0

computed within the user defined interval

[τLB,τUB];

2. characterizes LCS directly from the hyper-FTLE field.

4.1 Hyper-FTLE field generation

The FTLE-based LCS definition [13] states that in forward time a large
FTLE value indicates strong divergence while in backward time a large
FTLE value designates strong attraction. Therefore, a ridge associated
with a larger FTLE value is presumably more significant than one as-
sociated with a smaller FTLE value. Furthermore, a study by Shadden
et al. [34] shows that sharp, well-defined ridges are more Lagrangian
than poorly defined ridges, whereby the sharpness is measured by the
ridge strength. Based on the above two points, here we define our
hyper-FTLE field as

Ht0(x) = max
τi∈[τLB,τUB]

(F τi
t0
(x)×S

τi
t0
(x)) (4)

where S
τi

t0
is the ridge strength estimated from the FTLE field F

τi
t0

.

The integration time τi which maximizes F
τi
t0
(x)×S

τi
t0
(x) is defined

as the optimal integration time in this paper. Although there are many
possible ways to combine FTLE value with ridge strength into a quan-
tity to maximize, the simple solution here not only produces highly
accurate LCS (section 6.1), but also prevents problematic spatial dis-
continuities that would interfere with the ridges that we are interested
in.

In this paper, without loss of generality, we consider the height ridge
as our ridge definition. According to this definition, a point lies on the
ridge where the field reaches a maximum in a transversal direction
corresponding to the minor eigenvector of the Hessian matrix, and the
minor eigenvalue is negative. The ridge strength is quantified by the
magnitude of the minor eigenvalue of the Hessian matrix [23].

In contrast to previous techniques [2, 9, 18], our approach reduces
the memory requirements by only recording the hyper-FTLE value and
the optimal integration time at each point during the computation.

For every FTLE field F
τi
t0

computed with integration time τi, Hes-
sian matrix H is evaluated by central differences, followed by the ridge
strength computation. Then for each point on the sampling grid, the
temporal-scale analysis approach updates the maximal hyper-FTLE
value as well as the corresponding integration time if necessary. Fig-
ure 3(a) shows the forward time hyper-FTLE field of Double Gyre
dataset with a user defined integration time interval [1,25], and fig-
ure 3(b) visualizes the corresponding optimal integration time deter-
mined by the temporal-scale analysis.

4.2 Ridge extraction

After the hyper-FTLE field is generated, one can apply the original
nonparallel Marching Ridges method [10] to extract ridges from it.
In order to accelerate the ridge extraction process, here we present a
modified Marching Ridges method consisting of the following three
steps.

1. For every cells in the sampling grid, determines average direc-
tions, calculates zero-crossings, and checks the minor eigenvalue
λmin in parallel. This step collects all ridge segments (line seg-
ments in 2D, triangles in 3D) for further computation. Similar to
the hyper-FTLE generation, 1st and 2nd order derivatives are es-
timated though central differences. Figure 3(c) shows the ridge
line segments computed from Figure 3(a).

2. Connects all ridge segments after filtering with a threshold on
ridge strength. Figure 3(d) colors each connected ridge line by a
unique random assigned color.

3. The final ridges are extracted by filtering with a threshold on
length or area. Figure 3(e) shows the final ridge lines extracted
by our approach. The ridge lines are color coded by the optimal
integration time determined through the temporal-scale analysis.
The smooth transition of colors along the extracted ridge lines
shows the smoothness of the time-selection along them.

5 TEMPORAL-SCALE ANALYSIS IN MAPS

maps can be thought of as describing successive states of a discrete
dynamical system. From a visualization standpoint, maps are hard
to study because of their fractal topological structures and regions of
chaotic behavior [37].

Recently, the definition of FTLE was extended to such maps in
the context of astrodynamics problems to investigate the underlying
salient structure of the dynamics [11]. Due to the discrete nature of the
dynamics in this case, the notion of finite-time must be expressed in
number of iterations and the finite iteration Lyapunov exponent (FILE)
at a given location x0 is defined as:

FILE(0,x0,k) =
1

|k|
lnσk(0,x0) (5)

where k is the number of iterations of the map.

As mentioned in prior work [38], identifying a proper iteration scale
k is challenging for the characterization of the structures. However
a large enough number of iterations would “sharpen” even the small
(visible) structures, the structures associated with a shorter number of
iterations become extremely noisy in the resulting images.

Figure 4(c) and Figure 4(d) visualize the FTLE measured on stan-
dard map for K = 0.75. Previous study shows that FTLE-based
method is able to convey the chaos that surround the saddle points,
and present the invariant manifolds of the individual island chains of
the map [38]. However, using a fixed number of iterations, it is hard
to distinguish structures associated with a shorter number of iterations
while keeping the small structures like the ones inside islands visible.

Using the discrete notion of finite-time, our temporal-scale analy-
sis approach provides a solution in maps. It analyzes all FTLE fields
computed with different number of iterations k and characterize salient
structures from them. Section 6.5 presents the result of our approach.
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Fig. 3: The ridge extraction result on Double Gyre dataset with a user
specified integration time interval [1,25]. (a) Hyper-FTLE field cre-
ated by our approach; (b) optimal integration time determined by our
approach; (c) ridge line segments computed from (a); (d) connected
ridge lines, color coded by a random color; (e) ridge lines color coded
by the optimal integration time, ranging from 1(blue) to 25(yellow).

6 RESULTS

Datasets from different applications, including computational fluid dy-
namics and Hamiltonian systems are considered to study the perfor-
mance of the presented temporal-scale approach. Double Gyre, Mean-
dering Jet, and Standard Map are well-known synthetic datasets while
Delta Wing and Cylinder are the results of CFD simulations.

6.1 Double Gyre

The Double Gyre used in this paper is a synthetic test case that we
used to document and benchmark the proposed approach. The flow is
described by the stream function

ψ(x,y, t) = Asin(π f (x, t))sin(πy) (6)

where

f (x, t) = a(t)x2 +b(t)x
a(t) = εsin(ωt)
b(t) = 1−2εsin(ωt)

(7)

over the domain [0,2]× [0,1]. The velocity field is given by

u = − ∂ψ
∂y

= −πAsin(π f (x))cos(πy)

v = ∂ψ
∂x

= πAcos(π f (x))sin(πy) d f
dx

(8)

With t0 = 0.0, A = 0.1, ε = 0.25 and ω = 2π
10 , there is a unstable

manifold (a repelling LCS) attached to the bottom boundary. However
as the integration time is increased, more of the manifold is revealed
in the FTLE field. One may notice in Figure 2 that an early part of the
manifold (highlighted in red rectangle) becomes obfuscated by alias-
ing and results in a low quality ridge line. The particles released from
this location could reach other structural features in the flow when the

(a) (b)

(c) (d)

0.0

0.20

0.0

0.031

Fig. 4: Salient structures of standard map for K = 0.75. (a) Salient
structures is depicted using orbit averaging [37]. (b) Closed-up in the
top-left region highlighted in (a), which near the saddle of period 1. An
island chain associated with this saddle is clearly visualized. (c) FTLE-
based visualization of stable manifolds with the number of iterations
k = 40. (d) Stable manifolds at the same region with the number of
iterations k= 300. One may noticed that salient structures (highlighted
by the black arrow in (d)) inside isolated islands are visible at such a
high number of iterations while others (highlighted by the black arrow
in (c)) become hard to distinguish due to the limitation on the spatial
sampling resolution.

integration time is long. Due to an insufficient spatial sampling reso-
lution, the discontinuity in flow map affects the FTLE measurement
and causes the aliasing in the resulting image. All FTLE fields used in
Figure 2 and Figure 3 were computed with a spatial sampling resolu-
tion at 2048×1024. Comparing Figure 3(e) with image (e) and (f) in
Figure 2, our temporal-scale approach automatically solves the alias-
ing problem by using the information in a short integration time and
extracts the same high quality ridge lines at these parts (highlighted in
red rectangles in Figure 3(e)) and preserves the manifolds as the ones
shown in a long integration time.

In order to enable a quantitative comparison between the exist-
ing methods and the proposed temporal-scale approach, the ridge
lines extracted from a high spatial sampling resolution (16384×8192)
FTLE image with integration time τ = 25.0 were used as the ground
truth [20]. Two methods, namely fixed time FTLE and FSLE, were
compared with the temporal-scale approach in this study. For each
method, distances from vertices on the resulting ridge lines to the
ground truth were measured and quantified as the error of each method.
Figure 5 visualizes the error of each method as well as the ground
truth ridge lines. The fixed time FTLE ridges were extracted from the
FTLE field computed with integration time τ = 25.0, the FSLE ridges
were extracted from the FSLE field computed with the dispersion fac-
tor 300 and maximum time 400. The temporal-scale ridges were ex-
tracted from 25 FTLE fields with a uniform temporal sampling of the
integration time ranging from 1.0 to 25.0. All FTLE and FSLE fields
were computed with a spatial sampling resolution at 2048×1024 and
t0 = 0.0.

To further study the accuracy of the characterized LCS from these
three methods, we advected every vertices on each initial LCS ob-
tained at t0 = 0.0 to t = 5.0 and measured their distance to the ground

4



Online Submission ID: 270
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mean distance: 0.00044 mean distance: 0.00018

mean distance: 0.00013

(a) Fixed time FTLE (b) FSLE

(c) Temporal-scale approach (d) Ground truth

Fig. 5: A comparison of LCS characterized by fixed time FTLE, FSLE
and the proposed temporal-scale approach. The resulting ridges are
color coded by the distance to the ground truth.

truth which was achieved in a same way as the previous comparison.
Figure 6 shows the error of the advected LCS initially obtained from
these methods.

0.0 0.0024 0.0 0.0024

0.0 0.0024

mean distance: 0.0012 mean distance: 0.00059

mean distance: 0.00041

(a) Fixed time FTLE (b) FSLE

(c) Temporal-scale approach (d) Ground truth

Fig. 6: A comparison of the advected LCS at t = 5.0. All vertices were
color coded by the distance to the ground truth.

With both comparisons, it is clear that temporal-scale approach out-
performs both fixed time FTLE and FSLE under a same spatial sam-
pling resolution. Though the FSLE method could achieve a close re-
sult to the temporal-scale approach, it takes about 2 hours to compute
the FSLE field on our test machine while the temporal-scale approach
only takes a few minutes.

As we already mentioned in section 4.1, the hyper-FTLE definition
we purposed which combines the FTLE value and its associated ridge
strength is only one of many possible solutions. Two possible alterna-
tives are considered: FTLE value alone and ridge strength alone. We
extracted ridge lines of both alternatives, and measured the distance to
the ground truth.

Table 1: Mean distance and maximum distance of different hyper-
FTLE definition.

method mean distance maximum distance

our approach 0.00013 0.00072

FTLE value only 0.00015 0.0012

ridge strength only 0.00021 0.0018

Table 1 lists both the mean and maximum distance between the
extracted ridges with different hyper-FTLE definitions to the ground
truth. Comparing these numbers to the spatial sampling distance,

0.00097, only the maximum error of the ridge lines extracted by our
approach is less than the spatial sampling distance.

6.2 Meandering Jet

The meandering jet flow has been widely used by FSLE ap-
proaches [1]. A comparison of FTLE and FSLE on this dataset has
been studied by Peikert et al. [25] and Boffetta et al. [4]. Both of them
used Samelson’s model with parameters B0 = 1.2, L = 10.0, k = 2π/L
and c = 0.1. For the parameter pair (ω,ε) the setting (0.1,0.3) was
investigated. We reproduced FSLE results for the same parameter set-
tings with dispersion factor r = 300, maximum time 300π(fifteen flow
periods), extracted ridge lines from FSLE field, fixed time FTLE field
with integration time equals to 65π and compared them with results
through the temporal-scale analysis approach (integration time ranging
from 30π to 65π). All FTLE and FSLE fields were computed with a
spatial sampling resolution at 1000×800 and t0 = 0.0. Similar to Dou-
ble Gyre, ridge lines extracted from a high resolution, 4000× 3200,
were used as ground truth. Then for each vertex on the resulting ridge
lines, a distance to the ground truth was measured. Figure 7 shows
the comparison of fixed time FTLE, FSLE, and the temporal-scale ap-
proach.

0.0 0.015 0.0 0.015

0.0 0.015

mean distance: 0.0039 mean distance: 0.0032

mean distance: 0.0021

(a) Fixed time FTLE (b) FSLE

(c) Temporal-scale approach (d) Ground truth

(e) Highlighted region, from left to right: fixed time FTLE, FSLE, and temporal-scale approach

Fig. 7: A comparison of LCS characterized by fixed-time FTLE, FSLE
and the proposed temporal-scale approach on meandering jet dataset.
The resulting ridges are color coded by the distance to the ground truth.

The comparison on meandering jet dataset indicates that the pro-
posed temporal-scale approach has the ability to characterize smoother
and more accurate LCS than the existing methods.

6.3 2D Flow Around a Cylinder

The 2D flow around a cylinder was simulated by Weinkauf [39] using
the free software Gerris Flow Solver [27].

Using a large spatial sampling resolution, 7000 × 1000, our ap-
proach successively reconstructed LCS of the von Kármán vortex from
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the 2D simulated data. Figure 8 shows the ridge lines extracted from
the FTLE fields computed with the integration time ranging from 1.0
to 7.0. Image (a) illustrates the LCS formed at a short integration time
(color coded as blue) are embedded with the one formed at a long in-
tegration time (color coded as yellow). A detailed comparison of the
ridge lines extracted by our approach and by a standard ridge detec-
tion approach on an FTLE field with a fixed integration time τ = 7.0
is given as image (b) and (c) in Figure 8.

6.4 Delta Wing

The EDELTA dataset is designed to study the transient flow above
a delta wing at low speeds and increasing angle of attack. The an-
gle of attack increases over time, leading to vortex breakdown in later
timesteps.

Previous study [36] has already shown two asymmetric vortex
breakdown bubbles exist in this dataset, a chaotic vortex breakdown is
on the left side of the wing while a stable one is on the right side. The
main challenge in characterizing LCS of the vortex breakdown bub-
ble is the complexity of the flow near the edge of delta wing resulting
a noisy FTLE field when the integration time reaches a certain value.
Figure 9 visualizes four slices of backward FTLE fields computed with
a different integration time than for the right vortex breakdown bubble.
With the integration time τ equals to 0.020 and 0.025, the noise around
the outer layer of the vortex breakdown bubble makes it difficult to ex-
tract clear and smooth ridge surfaces. On the other hand, the inner
parts of the vortex breakdown can only be revealed at a sufficient long
integration time such as 0.025.

Images (a) and (b) in Figure 1 show the ridge surfaces of the right
vortex breakdown bubble extracted from the FTLE field with a “short”
integration time τ = 0.01 and a “long” integration time τ = 0.025 re-
spectively. Image (c) illustrates the results of the time-scale approach
with an integration time ranging from 0.005 to 0.025. Comparing
those images, our approach not only characterizes a high quality ridge
surface of the inner part of the vortex breakdown bubble, but also ex-
tracts a smooth and complete result for the outer layer. Image (d) vi-
sualizes the ridge surfaces rendered with transparency and a different
camera setting.

6.5 Standard Map

The standard map (also known as the Chirikov-Taylor map) [6, 7] is
an area-preserving chaotic map for two canonical dynamical variables,
namely momentum and coordinate (p,x), from a square with side 2π
onto itself. The map is defined as follows

p = p+Ksinx
x = x+ p

(9)

Where p and x are taken modulo 2π and K is the parameter that con-
trols the nonlinearity of the map. The bar indicates the new values of
variables after one iteration. The standard map describes the dynamics
of several mechanical systems and has attracted the attention of theo-
retical and computational research alike since it is a simple yet power-
ful tool to study Hamiltonian chaos. We tested the proposed temporal-
scale approach on the standard map for K = 0.75. Figure 10(a) and (b)
show the characterized stable and unstable manifolds in the interesting
region of Figure 4 by applying the temporal-scale analysis both on the
forward and backward time FTLE fields computed with a uniform sam-
pling of n ranging from 10 to 300. In the context of Hamiltonian sys-
tems, finding fixed points in such maps can be a computationally chal-
lenging task that requires an extremely dense sampling of the phase
portrait. With highly accurate characterized manifolds, fixed points
can easily be detected by testing the intersection points between stable
and unstable manifolds. Figure 10(c) illustrates both stable (in blue)
and unstable (in red) manifolds simultaneously in this region. Many
intersection points can be identified in this image. We have tested sev-
eral intersection points highlighted in black cycles, and computed the
distance δd between the coordinate of a intersection point to the actual
fixed point. The average distance of those highlighted points is around
3×10−5, which is relatively small compared to the sampling distance
used in the FTLE computation (3.8×10−4).

7 DISCUSSION

7.1 Performance

To study the performance of the proposed temporal-scale approach, we
measured the running time on a machine with a hex-core i7 CPU and
12GB memory. Table 2 summarizes the running time of the temporal-
scale approach on different datasets, as well as the running time of
fixed time FTLE and FSLE. Both the running time of fixed time FTLE
and temporal-scale approach include the time used in flow map gen-
eration and FTLE measurement. The temporal sampling resolution
means the number of FTLE fields used to sample the integration time
within the user defined interval. Temporal-scale analysis was per-
formed through these FTLE fields. In unsteady flows, the running
time of both fixed time FTLE and temporal-scale approach are close
to each other. It is because the computational time spends on flow
map generation dominates the running time in both cases. However,
FSLE requires a significant longer running time as it usually needs a
longer integration time to reveal salient structures and has to measure
the dispersion during every time steps.

7.2 Temporal resolution

We investigated the influence of the temporal resolution on the result
by applying our temporal-scale approach on Double Gyre with differ-
ent temporal resolution settings. In general, more samples within the
user defined integration time interval [τLB,τUB] results in a higher ac-
curacy LCS characterized by our approach. Figure 11 visualizes the
distance between vertices on extracted ridge lines to the ground truth
using different number of samplings within a user defined integration
time interval [1,25]. The result shows the improvement from 26 sam-
ples to 241 samples is relatively small compared to the improvement
from 4 to 26.

7.3 Applications in Flow Visualization

As the classical FTLE based LCS approach, our temporal-scale ap-
proach can easily be integrated into other fluid analysis and visualiza-
tion methods that are based on LCS. Figure 12 shows the result of
our approach in a LCS based space-time visualization framework [29]
for the Double Gyre dataset. In this framework, time-dependent vec-
tor fields turn into stationary ones by treating time as an additional
dimension. Therefore, 2D unsteady vector fields (u(x,y, t),v(x,y, t))⊺

are converted into a steady 3D vector field (u(x,y, t),v(x,y, t), t)⊺. Our
approach searches the best integration time for each point on the sam-
pling grid and extracts the corresponding ridge surface.

8 CONCLUSION

In many applications of Lagrangian coherent structures, the integration
time used to compute FTLE is an important yet ambiguous parameter.
In this paper, we have shown that an automatic method to determine
the spatially varying optimal integration time enables better LCS char-
acterization results. Instead of showing the structures corresponding
to a single and arbitrary integration time, our approach embeds var-
ious temporal scales into a time continuum to produce an improved
presentation of all LCS within a relevant time range.

The evaluation of the method with both synthetic and real-world
datasets shows the ability of our approach to reveal important struc-
tural features in time-dependent fluid flows. Further, we have shown
the benefits of this approach in the context of maps Hamiltonian sys-
tems. In all these cases our method reveals structures that are typically
missed by other methods.

An interesting avenue for future work concerns the improvement of
the performance of the scale-space approach using a GPU-based im-
plementation and develop a user friendly interface. This would allow
the user to interactively visualize and explore the structural features
characterized by an approach combining temporal and spatial scales
in the analysis of the dataset. The extended time perspective afforded
by our method could also find compelling applications in the context
of methods that aim to reduce the redundancy of LCS extraction and
tracking over time.
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(a)

(b)

(c)

7.0

1.0

Fig. 8: Ridge lines extracted from the 2D cylinder dataset. (a) Ridge lines extracted by our approach, color coded by the integration time
ranging from 1.0 (blue) to 7.0 (yellow); A detailed comparison of the ridge lines extracted by our approach (b) and by a standard ridge detection
approach on an FTLE field with a fixed integration time τ = 7.0 (c) is given.
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